Lp quasi-norm minimization: algorithm and applications

Sparsity finds applications in diverse areas such as statistics, machine learning, and signal processing. Computations over sparse structures are less complex compared to their dense counterparts and need less storage. This paper proposes a heuristic method for retrieving sparse approximate solution...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:EURASIP journal on advances in signal processing Jg. 2024; H. 1; S. 22 - 28
Hauptverfasser: Sleem, Omar M., Ashour, M. E., Aybat, N. S., Lagoa, Constantino M.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Cham Springer International Publishing 01.12.2024
Springer
Springer Nature B.V
SpringerOpen
Schlagworte:
ISSN:1687-6180, 1687-6172, 1687-6180
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Sparsity finds applications in diverse areas such as statistics, machine learning, and signal processing. Computations over sparse structures are less complex compared to their dense counterparts and need less storage. This paper proposes a heuristic method for retrieving sparse approximate solutions of optimization problems via minimizing the ℓ p quasi-norm, where 0 < p < 1 . An iterative two-block algorithm for minimizing the ℓ p quasi-norm subject to convex constraints is proposed. The proposed algorithm requires solving for the roots of a scalar degree polynomial as opposed to applying a soft thresholding operator in the case of ℓ 1 norm minimization. The algorithm’s merit relies on its ability to solve the ℓ p quasi-norm minimization subject to any convex constraints set. For the specific case of constraints defined by differentiable functions with Lipschitz continuous gradient, a second, faster algorithm is proposed. Using a proximal gradient step, we mitigate the convex projection step and hence enhance the algorithm’s speed while proving its convergence. We present various applications where the proposed algorithm excels, namely, sparse signal reconstruction, system identification, and matrix completion. The results demonstrate the significant gains obtained by the proposed algorithm compared to other ℓ p quasi-norm based methods presented in previous literature.
AbstractList Abstract Sparsity finds applications in diverse areas such as statistics, machine learning, and signal processing. Computations over sparse structures are less complex compared to their dense counterparts and need less storage. This paper proposes a heuristic method for retrieving sparse approximate solutions of optimization problems via minimizing the $$\ell _{p}$$ ℓ p quasi-norm, where $$0<p<1$$ 0 < p < 1 . An iterative two-block algorithm for minimizing the $$\ell _{p}$$ ℓ p quasi-norm subject to convex constraints is proposed. The proposed algorithm requires solving for the roots of a scalar degree polynomial as opposed to applying a soft thresholding operator in the case of $$\ell _{1}$$ ℓ 1 norm minimization. The algorithm’s merit relies on its ability to solve the $$\ell _{p}$$ ℓ p quasi-norm minimization subject to any convex constraints set. For the specific case of constraints defined by differentiable functions with Lipschitz continuous gradient, a second, faster algorithm is proposed. Using a proximal gradient step, we mitigate the convex projection step and hence enhance the algorithm’s speed while proving its convergence. We present various applications where the proposed algorithm excels, namely, sparse signal reconstruction, system identification, and matrix completion. The results demonstrate the significant gains obtained by the proposed algorithm compared to other $$\ell _{p}$$ ℓ p quasi-norm based methods presented in previous literature.
Sparsity finds applications in diverse areas such as statistics, machine learning, and signal processing. Computations over sparse structures are less complex compared to their dense counterparts and need less storage. This paper proposes a heuristic method for retrieving sparse approximate solutions of optimization problems via minimizing the ℓp quasi-norm, where 0<p<1. An iterative two-block algorithm for minimizing the ℓp quasi-norm subject to convex constraints is proposed. The proposed algorithm requires solving for the roots of a scalar degree polynomial as opposed to applying a soft thresholding operator in the case of ℓ1 norm minimization. The algorithm’s merit relies on its ability to solve the ℓp quasi-norm minimization subject to any convex constraints set. For the specific case of constraints defined by differentiable functions with Lipschitz continuous gradient, a second, faster algorithm is proposed. Using a proximal gradient step, we mitigate the convex projection step and hence enhance the algorithm’s speed while proving its convergence. We present various applications where the proposed algorithm excels, namely, sparse signal reconstruction, system identification, and matrix completion. The results demonstrate the significant gains obtained by the proposed algorithm compared to other ℓp quasi-norm based methods presented in previous literature.
Sparsity finds applications in diverse areas such as statistics, machine learning, and signal processing. Computations over sparse structures are less complex compared to their dense counterparts and need less storage. This paper proposes a heuristic method for retrieving sparse approximate solutions of optimization problems via minimizing the [Formula omitted] quasi-norm, where [Formula omitted]. An iterative two-block algorithm for minimizing the [Formula omitted] quasi-norm subject to convex constraints is proposed. The proposed algorithm requires solving for the roots of a scalar degree polynomial as opposed to applying a soft thresholding operator in the case of [Formula omitted] norm minimization. The algorithm's merit relies on its ability to solve the [Formula omitted] quasi-norm minimization subject to any convex constraints set. For the specific case of constraints defined by differentiable functions with Lipschitz continuous gradient, a second, faster algorithm is proposed. Using a proximal gradient step, we mitigate the convex projection step and hence enhance the algorithm's speed while proving its convergence. We present various applications where the proposed algorithm excels, namely, sparse signal reconstruction, system identification, and matrix completion. The results demonstrate the significant gains obtained by the proposed algorithm compared to other [Formula omitted] quasi-norm based methods presented in previous literature.
Sparsity finds applications in diverse areas such as statistics, machine learning, and signal processing. Computations over sparse structures are less complex compared to their dense counterparts and need less storage. This paper proposes a heuristic method for retrieving sparse approximate solutions of optimization problems via minimizing the $$\ell _{p}$$ ℓ p quasi-norm, where $$0<p<1$$ 0 < p < 1 . An iterative two-block algorithm for minimizing the $$\ell _{p}$$ ℓ p quasi-norm subject to convex constraints is proposed. The proposed algorithm requires solving for the roots of a scalar degree polynomial as opposed to applying a soft thresholding operator in the case of $$\ell _{1}$$ ℓ 1 norm minimization. The algorithm’s merit relies on its ability to solve the $$\ell _{p}$$ ℓ p quasi-norm minimization subject to any convex constraints set. For the specific case of constraints defined by differentiable functions with Lipschitz continuous gradient, a second, faster algorithm is proposed. Using a proximal gradient step, we mitigate the convex projection step and hence enhance the algorithm’s speed while proving its convergence. We present various applications where the proposed algorithm excels, namely, sparse signal reconstruction, system identification, and matrix completion. The results demonstrate the significant gains obtained by the proposed algorithm compared to other $$\ell _{p}$$ ℓ p quasi-norm based methods presented in previous literature.
Sparsity finds applications in diverse areas such as statistics, machine learning, and signal processing. Computations over sparse structures are less complex compared to their dense counterparts and need less storage. This paper proposes a heuristic method for retrieving sparse approximate solutions of optimization problems via minimizing the ℓ p quasi-norm, where 0 < p < 1 . An iterative two-block algorithm for minimizing the ℓ p quasi-norm subject to convex constraints is proposed. The proposed algorithm requires solving for the roots of a scalar degree polynomial as opposed to applying a soft thresholding operator in the case of ℓ 1 norm minimization. The algorithm’s merit relies on its ability to solve the ℓ p quasi-norm minimization subject to any convex constraints set. For the specific case of constraints defined by differentiable functions with Lipschitz continuous gradient, a second, faster algorithm is proposed. Using a proximal gradient step, we mitigate the convex projection step and hence enhance the algorithm’s speed while proving its convergence. We present various applications where the proposed algorithm excels, namely, sparse signal reconstruction, system identification, and matrix completion. The results demonstrate the significant gains obtained by the proposed algorithm compared to other ℓ p quasi-norm based methods presented in previous literature.
ArticleNumber 22
Audience Academic
Author Ashour, M. E.
Lagoa, Constantino M.
Sleem, Omar M.
Aybat, N. S.
Author_xml – sequence: 1
  givenname: Omar M.
  orcidid: 0000-0002-4994-0808
  surname: Sleem
  fullname: Sleem, Omar M.
  email: oms46@psu.edu
  organization: Department of Electrical Engineering, Pennsylvania State University
– sequence: 2
  givenname: M. E.
  surname: Ashour
  fullname: Ashour, M. E.
  organization: Wireless R&D Department, Qualcomm Technologies, Inc
– sequence: 3
  givenname: N. S.
  surname: Aybat
  fullname: Aybat, N. S.
  organization: Department of Industrial and Manufacturing Engineering, Pennsylvania State University
– sequence: 4
  givenname: Constantino M.
  surname: Lagoa
  fullname: Lagoa, Constantino M.
  organization: Department of Electrical Engineering, Pennsylvania State University
BookMark eNp9kUtv1TAQhSPUSvT1B1hFYp3isRM_2FUVlEpXYgNra-LHra8SO7VzF_DrcW9AIBZdWLbG5zuamXPZnMUUXdO8A3ILIPmHAoyzviO0HgDoO_6muQAuRcdBkrN_3m-by1IOhAycEnrR8N3SPh-xhC6mPLdziGEOP3ENKX5scdqnHNanucVoW1yWKZjTV7luzj1Oxd38vq-a758_fbv_0u2-Pjze3-0603O5dm7oBRgYjSEDgjXI7WhGxgZE0ZNBWGMEeKZGZz0yQi1hOPTEI_XEGDTsqnncfG3Cg15ymDH_0AmDPhVS3mvMazCT0xaQDaMYvfesdxKkot6iEr2gykv14vV-81pyej66supDOuZY29dUUQZCMcWq6nZT7bGahujTmrG2gtbNwdSt-1Drd0JWPYdBVUBugMmplOy8NmE9bamCYdJA9EtEeotI14j0KSLNK0r_Q_9M-CrENqhUcdy7_HeMV6hfyJ6lqQ
CitedBy_id crossref_primary_10_1109_ACCESS_2024_3483908
crossref_primary_10_1016_j_dsp_2024_104520
Cites_doi 10.1109/TAC.2014.2313761
10.1007/s10915-018-0757-z
10.1137/110840364
10.1137/1038003
10.1109/TSP.2012.2208955
10.1109/TSP.2014.2309076
10.1137/S1052623497328987
10.1109/TIT.2006.871582
10.1137/100786721
10.1109/TSP.2010.2046900
10.1016/j.sigpro.2022.108730
10.1561/2400000003
10.1287/moor.1100.0449
10.1007/s10115-013-0713-z
10.1007/s10107-011-0484-9
10.1137/080716542
10.1186/s13634-022-00886-z
10.1007/s10107-011-0470-2
10.1109/TNNLS.2012.2197412
10.1016/j.acha.2012.07.004
10.1137/140998135
10.1007/BF01647331
10.1007/s10898-020-00955-3
10.1109/LSP.2007.898300
10.1137/060657704
10.1109/TIT.2004.834793
10.1088/1361-6420/ac274a
10.1016/S0167-6377(02)00231-6
10.1007/s10107-007-0170-0
10.1016/j.acha.2008.09.001
10.1109/TIT.2005.858979
10.1016/j.neucom.2018.05.073
10.1109/TIT.2005.862083
10.1109/JPROC.2010.2044010
10.1137/110853996
10.1109/TPAMI.2008.79
10.1007/s10107-013-0701-9
10.1109/78.258082
10.1137/120891009
10.1109/TSP.2017.2762286
10.23919/ACC.2004.1384521
10.1109/CDC.2009.5400177
10.1109/ISBI.2009.5193034
10.1109/ICASSP.2018.8462524
10.1561/9781601984616
10.1201/9781420035933
10.1109/ICASSP.2008.4518502
10.1109/ICASSP.2013.6638818
10.1109/ACC.2001.945730
10.1109/CDC.1999.830903
10.24963/ijcai.2017/462
10.1109/ICASSP.2008.4518498
10.1109/ICCV.2013.201
10.1137/1.9781611970791
10.1137/1.9780898718829
10.1109/ACC.2010.5531594
ContentType Journal Article
Copyright The Author(s) 2024
COPYRIGHT 2024 Springer
The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2024
– notice: COPYRIGHT 2024 Springer
– notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
3V.
7SC
7SP
7XB
8AL
8FD
8FE
8FG
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L7M
L~C
L~D
M0N
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
DOA
DOI 10.1186/s13634-024-01114-6
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology collection
ProQuest One
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central Basic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList
Publicly Available Content Database

CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1687-6180
EndPage 28
ExternalDocumentID oai_doaj_org_article_d1a35b7bfff34e81892fda974729f89c
A781796159
10_1186_s13634_024_01114_6
GrantInformation_xml – fundername: National Science Foundation
  grantid: 1808266
  funderid: http://dx.doi.org/10.13039/100000001
– fundername: Foundation for the National Institutes of Health
  grantid: R01 HL142732
  funderid: http://dx.doi.org/10.13039/100000009
GroupedDBID -A0
.4S
.DC
0R~
29G
2WC
3V.
4.4
40G
5GY
5VS
6OB
8FE
8FG
8R4
8R5
AAFWJ
AAJSJ
AAKKN
AAKPC
ABEEZ
ABUWG
ACACY
ACGFO
ACGFS
ACULB
ADBBV
ADINQ
ADMLS
AEGXH
AENEX
AFGXO
AFKRA
AFPKN
AHBYD
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
ARAPS
ARCSS
AZQEC
BAPOH
BCNDV
BENPR
BGLVJ
BPHCQ
C24
C6C
CCPQU
DU5
DWQXO
E3Z
EBLON
EBS
EDO
F5P
GNUQQ
GROUPED_DOAJ
HCIFZ
IAO
ITC
K6V
K7-
KQ8
M0N
M~E
OK1
P62
PIMPY
PQQKQ
PROAC
Q2X
RHU
RHW
RNS
RSV
SEG
SOJ
TUS
U2A
AASML
AAYXX
CITATION
OVT
7SC
7SP
7XB
8AL
8FD
8FK
JQ2
L7M
L~C
L~D
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQUKI
Q9U
ID FETCH-LOGICAL-c468t-e5471c1bcc05a1dca6dbcb335aa74057dcc71f39bedfa302d03a540fa2f0ccac3
IEDL.DBID K7-
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001157038500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1687-6180
1687-6172
IngestDate Fri Oct 03 12:52:25 EDT 2025
Sat Oct 11 06:11:18 EDT 2025
Mon Oct 20 17:11:23 EDT 2025
Tue Nov 18 22:26:22 EST 2025
Sat Nov 29 03:12:13 EST 2025
Fri Feb 21 02:40:19 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Alternating direction method of multipliers
Sparsity
Rank minimization
System identification
Compressed sensing
Matrix completion
Proximal gradient method
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c468t-e5471c1bcc05a1dca6dbcb335aa74057dcc71f39bedfa302d03a540fa2f0ccac3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-4994-0808
OpenAccessLink https://www.proquest.com/docview/2923179393?pq-origsite=%requestingapplication%
PQID 2923179393
PQPubID 237299
PageCount 28
ParticipantIDs doaj_primary_oai_doaj_org_article_d1a35b7bfff34e81892fda974729f89c
proquest_journals_2923179393
gale_infotracacademiconefile_A781796159
crossref_citationtrail_10_1186_s13634_024_01114_6
crossref_primary_10_1186_s13634_024_01114_6
springer_journals_10_1186_s13634_024_01114_6
PublicationCentury 2000
PublicationDate 2024-12-01
PublicationDateYYYYMMDD 2024-12-01
PublicationDate_xml – month: 12
  year: 2024
  text: 2024-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: New York
PublicationTitle EURASIP journal on advances in signal processing
PublicationTitleAbbrev EURASIP J. Adv. Signal Process
PublicationYear 2024
Publisher Springer International Publishing
Springer
Springer Nature B.V
SpringerOpen
Publisher_xml – name: Springer International Publishing
– name: Springer
– name: Springer Nature B.V
– name: SpringerOpen
References Zhang, Zhang, Wang (CR22) 2021; 37
Luo, Feng, Guo, Zhang (CR24) 2022; 2022
Benidis, Feng, Palomar (CR52) 2018; 66
Nie, Wang, Huang, Ding (CR30) 2015; 42
CR37
CR36
CR32
Chartrand (CR9) 2007; 14
Ge, Jiang, Ye (CR53) 2011; 129
Zha, Zhang, Wu, Wang, Liu, Tang, Yuan (CR38) 2018; 311
Helmberg, Rendl (CR34) 2000; 10
Zeng, Lin, Wang, Xu (CR19) 2014; 62
Attouch, Bolte, Redont, Soubeyran (CR45) 2010; 35
Sznaier, Ayazoglu, Inanc (CR59) 2014; 59
Wright, Yang, Ganesh, Sastry, Ma (CR2) 2009; 31
CR44
CR41
Xu, Chang, Xu, Zhang (CR18) 2012; 23
Mirsky (CR39) 1975; 79
Candes, Tao (CR12) 2005; 51
Wang, Yin, Zeng (CR21) 2019; 78
Foucart, Lai (CR51) 2009; 26
Aybat, Iyengar (CR62) 2012; 22
Tropp, Wright (CR6) 2010; 98
Mohan, Fazel (CR57) 2012; 13
Li, Pong (CR20) 2015; 25
Bolte, Sabach, Teboulle (CR46) 2014; 146
CR17
CR16
Hu, Li, Meng, Yang (CR49) 2021; 79
CR14
Wang, Zhang (CR23) 2022; 201
CR58
CR13
CR11
CR55
CR10
CR54
CR50
Chartrand (CR31) 2012; 60
Vandenberghe, Boyd (CR1) 1996; 38
Beck, Teboulle (CR42) 2009; 2
Bahmani, Raj (CR33) 2013; 34
Candes, Romberg, Tao (CR3) 2006; 52
Lai, Xu, Yin (CR56) 2013; 51
CR29
CR28
Attouch, Bolte, Svaiter (CR43) 2013; 137
Tropp (CR8) 2004; 50
CR27
Fazel, Pong, Sun, Tseng (CR61) 2013; 34
CR26
Mallat, Zhang (CR7) 1993; 41
CR25
Mourad, Reilly (CR15) 2010; 58
Parikh, Boyd (CR40) 2014; 1
CR64
Donoho (CR4) 2006; 52
CR63
Tseng, Yun (CR48) 2009; 117
Beck, Teboulle (CR35) 2003; 31
CR60
Bruckstein, Donoho, Elad (CR5) 2009; 51
Razaviyayn, Hong, Luo (CR47) 2013; 23
1114_CR16
1114_CR17
H Attouch (1114_CR43) 2013; 137
P Tseng (1114_CR48) 2009; 117
L Vandenberghe (1114_CR1) 1996; 38
R Chartrand (1114_CR9) 2007; 14
1114_CR10
1114_CR54
1114_CR11
1114_CR55
D Ge (1114_CR53) 2011; 129
1114_CR14
1114_CR58
K Mohan (1114_CR57) 2012; 13
Z Xu (1114_CR18) 2012; 23
1114_CR13
J Bolte (1114_CR46) 2014; 146
AM Bruckstein (1114_CR5) 2009; 51
F Nie (1114_CR30) 2015; 42
1114_CR50
C Helmberg (1114_CR34) 2000; 10
K Benidis (1114_CR52) 2018; 66
1114_CR29
1114_CR27
1114_CR28
J Zhang (1114_CR22) 2021; 37
N Parikh (1114_CR40) 2014; 1
DL Donoho (1114_CR4) 2006; 52
NS Aybat (1114_CR62) 2012; 22
Y Wang (1114_CR21) 2019; 78
1114_CR63
S Bahmani (1114_CR33) 2013; 34
1114_CR64
1114_CR25
1114_CR26
S Foucart (1114_CR51) 2009; 26
1114_CR60
SG Mallat (1114_CR7) 1993; 41
R Chartrand (1114_CR31) 2012; 60
A Beck (1114_CR35) 2003; 31
EJ Candes (1114_CR12) 2005; 51
L Mirsky (1114_CR39) 1975; 79
H Attouch (1114_CR45) 2010; 35
JA Tropp (1114_CR6) 2010; 98
1114_CR32
G Li (1114_CR20) 2015; 25
1114_CR36
1114_CR37
N Mourad (1114_CR15) 2010; 58
A Beck (1114_CR42) 2009; 2
JA Tropp (1114_CR8) 2004; 50
J Wright (1114_CR2) 2009; 31
Z Zha (1114_CR38) 2018; 311
M-J Lai (1114_CR56) 2013; 51
Y Hu (1114_CR49) 2021; 79
J Zeng (1114_CR19) 2014; 62
W Wang (1114_CR23) 2022; 201
X Luo (1114_CR24) 2022; 2022
M Fazel (1114_CR61) 2013; 34
1114_CR44
1114_CR41
M Razaviyayn (1114_CR47) 2013; 23
M Sznaier (1114_CR59) 2014; 59
EJ Candes (1114_CR3) 2006; 52
References_xml – volume: 59
  start-page: 2837
  issue: 10
  year: 2014
  end-page: 2842
  ident: CR59
  article-title: Fast structured nuclear norm minimization with applications to set membership systems identification
  publication-title: IEEE Trans. Autom. Control
  doi: 10.1109/TAC.2014.2313761
– volume: 78
  start-page: 29
  issue: 1
  year: 2019
  end-page: 63
  ident: CR21
  article-title: Global convergence of ADMM in nonconvex nonsmooth optimization
  publication-title: J. Sci. Comput.
  doi: 10.1007/s10915-018-0757-z
– volume: 51
  start-page: 927
  issue: 2
  year: 2013
  end-page: 957
  ident: CR56
  article-title: Improved iteratively reweighted least squares for unconstrained smoothed minimization
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/110840364
– volume: 38
  start-page: 49
  issue: 1
  year: 1996
  end-page: 95
  ident: CR1
  article-title: Semidefinite programming
  publication-title: SIAM Rev.
  doi: 10.1137/1038003
– ident: CR16
– volume: 60
  start-page: 5810
  issue: 11
  year: 2012
  end-page: 5819
  ident: CR31
  article-title: Nonconvex splitting for regularized low-rank + sparse decomposition
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2012.2208955
– volume: 62
  start-page: 2317
  issue: 9
  year: 2014
  end-page: 2329
  ident: CR19
  article-title: regularization: convergence of iterative half thresholding algorithm
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2014.2309076
– ident: CR29
– ident: CR54
– volume: 10
  start-page: 673
  issue: 3
  year: 2000
  end-page: 696
  ident: CR34
  article-title: A spectral bundle method for semidefinite programming
  publication-title: SIAM J. Optim.
  doi: 10.1137/S1052623497328987
– ident: CR58
– ident: CR25
– volume: 52
  start-page: 1289
  issue: 4
  year: 2006
  end-page: 1306
  ident: CR4
  article-title: Compressed sensing
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.2006.871582
– volume: 22
  start-page: 429
  issue: 2
  year: 2012
  end-page: 459
  ident: CR62
  article-title: A first-order augmented Lagrangian method for compressed sensing
  publication-title: SIAM J. Optim.
  doi: 10.1137/100786721
– volume: 58
  start-page: 3485
  issue: 7
  year: 2010
  end-page: 3496
  ident: CR15
  article-title: Minimizing nonconvex functions for sparse vector reconstruction
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2010.2046900
– volume: 201
  year: 2022
  ident: CR23
  article-title: Performance guarantees of regularized minimization for robust sparse recovery
  publication-title: Signal Process.
  doi: 10.1016/j.sigpro.2022.108730
– volume: 1
  start-page: 127
  issue: 3
  year: 2014
  end-page: 239
  ident: CR40
  article-title: Proximal algorithms
  publication-title: Found. Trends Optim.
  doi: 10.1561/2400000003
– volume: 35
  start-page: 438
  issue: 2
  year: 2010
  end-page: 457
  ident: CR45
  article-title: Proximal alternating minimization and projection methods for nonconvex problems: an approach based on the Kurdyka-Lojasiewicz inequality
  publication-title: Math. Oper. Res.
  doi: 10.1287/moor.1100.0449
– ident: CR50
– ident: CR11
– volume: 42
  start-page: 525
  issue: 3
  year: 2015
  end-page: 544
  ident: CR30
  article-title: Joint schatten -norm and norm robust matrix completion for missing value recovery
  publication-title: Knowl. Inf. Syst.
  doi: 10.1007/s10115-013-0713-z
– volume: 137
  start-page: 91
  issue: 1
  year: 2013
  end-page: 129
  ident: CR43
  article-title: Convergence of descent methods for semi-algebraic and tame problems: proximal algorithms, forward-backward splitting, and regularized Gauss-Seidel methods
  publication-title: Math. Program.
  doi: 10.1007/s10107-011-0484-9
– ident: CR32
– volume: 2
  start-page: 183
  issue: 1
  year: 2009
  end-page: 202
  ident: CR42
  article-title: A fast iterative shrinkage-thresholding algorithm for linear inverse problems
  publication-title: SIAM J. Imag. Sci.
  doi: 10.1137/080716542
– volume: 2022
  start-page: 1
  issue: 1
  year: 2022
  end-page: 14
  ident: CR24
  article-title: Exact recovery of sparse signals with side information
  publication-title: EURASIP J. Adv. Signal Process.
  doi: 10.1186/s13634-022-00886-z
– volume: 129
  start-page: 285
  issue: 2
  year: 2011
  end-page: 299
  ident: CR53
  article-title: A note on the complexity of minimization
  publication-title: Math. Program.
  doi: 10.1007/s10107-011-0470-2
– ident: CR60
– ident: CR36
– volume: 23
  start-page: 1013
  issue: 7
  year: 2012
  end-page: 1027
  ident: CR18
  article-title: regularization: a thresholding representation theory and a fast solver
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2012.2197412
– ident: CR64
– ident: CR26
– volume: 34
  start-page: 366
  issue: 3
  year: 2013
  end-page: 378
  ident: CR33
  article-title: A unifying analysis of projected gradient descent for -constrained least squares
  publication-title: Appl. Comput. Harmon. Anal.
  doi: 10.1016/j.acha.2012.07.004
– volume: 25
  start-page: 2434
  issue: 4
  year: 2015
  end-page: 2460
  ident: CR20
  article-title: Global convergence of splitting methods for nonconvex composite optimization
  publication-title: SIAM J. Optim.
  doi: 10.1137/140998135
– volume: 79
  start-page: 303
  issue: 4
  year: 1975
  end-page: 306
  ident: CR39
  article-title: A trace inequality of John von Neumann
  publication-title: Monatshefte für mathematik
  doi: 10.1007/BF01647331
– volume: 79
  start-page: 853
  issue: 4
  year: 2021
  end-page: 883
  ident: CR49
  article-title: Linear convergence of inexact descent method and inexact proximal gradient algorithms for lower-order regularization problems
  publication-title: J. Global Optim.
  doi: 10.1007/s10898-020-00955-3
– ident: CR14
– ident: CR37
– volume: 14
  start-page: 707
  issue: 10
  year: 2007
  end-page: 710
  ident: CR9
  article-title: Exact reconstruction of sparse signals via nonconvex minimization
  publication-title: IEEE Signal Process. Lett.
  doi: 10.1109/LSP.2007.898300
– volume: 51
  start-page: 34
  issue: 1
  year: 2009
  end-page: 81
  ident: CR5
  article-title: From sparse solutions of systems of equations to sparse modeling of signals and images
  publication-title: SIAM Rev.
  doi: 10.1137/060657704
– volume: 50
  start-page: 2231
  issue: 10
  year: 2004
  end-page: 2242
  ident: CR8
  article-title: Greed is good: algorithmic results for sparse approximation
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.2004.834793
– volume: 37
  issue: 11
  year: 2021
  ident: CR22
  article-title: Robust signal recovery for minimization via prior support information
  publication-title: Inverse Prob.
  doi: 10.1088/1361-6420/ac274a
– volume: 31
  start-page: 167
  issue: 3
  year: 2003
  end-page: 175
  ident: CR35
  article-title: Mirror descent and nonlinear projected subgradient methods for convex optimization
  publication-title: Oper. Res. Lett.
  doi: 10.1016/S0167-6377(02)00231-6
– ident: CR10
– volume: 117
  start-page: 387
  issue: 1
  year: 2009
  end-page: 423
  ident: CR48
  article-title: A coordinate gradient descent method for nonsmooth separable minimization
  publication-title: Math. Program.
  doi: 10.1007/s10107-007-0170-0
– volume: 26
  start-page: 395
  issue: 3
  year: 2009
  end-page: 407
  ident: CR51
  article-title: Sparsest solutions of under-determined linear systems via -minimization for
  publication-title: Appl. Comput. Harmon. Anal.
  doi: 10.1016/j.acha.2008.09.001
– ident: CR63
– ident: CR27
– volume: 51
  start-page: 4203
  issue: 12
  year: 2005
  end-page: 4215
  ident: CR12
  article-title: Decoding by linear programming
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.2005.858979
– volume: 311
  start-page: 209
  year: 2018
  end-page: 224
  ident: CR38
  article-title: Non-convex weighted nuclear norm-based ADMM framework for image restoration
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.05.073
– ident: CR44
– volume: 13
  start-page: 3441
  issue: 110
  year: 2012
  end-page: 3473
  ident: CR57
  article-title: Iterative reweighted algorithms for matrix rank minimization
  publication-title: J. Mach. Learn. Res.
– volume: 52
  start-page: 489
  issue: 2
  year: 2006
  end-page: 509
  ident: CR3
  article-title: Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.2005.862083
– volume: 98
  start-page: 948
  issue: 6
  year: 2010
  end-page: 958
  ident: CR6
  article-title: Computational methods for sparse solution of linear inverse problems
  publication-title: Proc. IEEE
  doi: 10.1109/JPROC.2010.2044010
– ident: CR17
– ident: CR13
– volume: 34
  start-page: 946
  issue: 3
  year: 2013
  end-page: 977
  ident: CR61
  article-title: Hankel matrix rank minimization with applications to system identification and realization
  publication-title: SIAM J. Matrix Anal. Appl.
  doi: 10.1137/110853996
– volume: 31
  start-page: 210
  issue: 2
  year: 2009
  end-page: 227
  ident: CR2
  article-title: Robust face recognition via sparse representation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2008.79
– volume: 146
  start-page: 459
  issue: 1
  year: 2014
  end-page: 494
  ident: CR46
  article-title: Proximal alternating linearized minimization for nonconvex and nonsmooth problems
  publication-title: Math. Program.
  doi: 10.1007/s10107-013-0701-9
– volume: 41
  start-page: 3397
  issue: 12
  year: 1993
  end-page: 3415
  ident: CR7
  article-title: Matching pursuits with time-frequency dictionaries
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/78.258082
– ident: CR55
– ident: CR28
– ident: CR41
– volume: 23
  start-page: 1126
  issue: 2
  year: 2013
  end-page: 1153
  ident: CR47
  article-title: A unified convergence analysis of block successive minimization methods for nonsmooth optimization
  publication-title: SIAM J. Optim.
  doi: 10.1137/120891009
– volume: 66
  start-page: 155
  issue: 1
  year: 2018
  end-page: 170
  ident: CR52
  article-title: Sparse portfolios for high-dimensional financial index tracking
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2017.2762286
– volume: 26
  start-page: 395
  issue: 3
  year: 2009
  ident: 1114_CR51
  publication-title: Appl. Comput. Harmon. Anal.
  doi: 10.1016/j.acha.2008.09.001
– volume: 37
  issue: 11
  year: 2021
  ident: 1114_CR22
  publication-title: Inverse Prob.
  doi: 10.1088/1361-6420/ac274a
– ident: 1114_CR28
  doi: 10.23919/ACC.2004.1384521
– volume: 66
  start-page: 155
  issue: 1
  year: 2018
  ident: 1114_CR52
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2017.2762286
– ident: 1114_CR60
  doi: 10.1109/CDC.2009.5400177
– volume: 25
  start-page: 2434
  issue: 4
  year: 2015
  ident: 1114_CR20
  publication-title: SIAM J. Optim.
  doi: 10.1137/140998135
– volume: 62
  start-page: 2317
  issue: 9
  year: 2014
  ident: 1114_CR19
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2014.2309076
– ident: 1114_CR14
  doi: 10.1109/ISBI.2009.5193034
– volume: 201
  year: 2022
  ident: 1114_CR23
  publication-title: Signal Process.
  doi: 10.1016/j.sigpro.2022.108730
– volume: 42
  start-page: 525
  issue: 3
  year: 2015
  ident: 1114_CR30
  publication-title: Knowl. Inf. Syst.
  doi: 10.1007/s10115-013-0713-z
– volume: 51
  start-page: 34
  issue: 1
  year: 2009
  ident: 1114_CR5
  publication-title: SIAM Rev.
  doi: 10.1137/060657704
– ident: 1114_CR29
– ident: 1114_CR63
– ident: 1114_CR64
  doi: 10.1109/ICASSP.2018.8462524
– ident: 1114_CR17
  doi: 10.1561/9781601984616
– ident: 1114_CR44
– volume: 38
  start-page: 49
  issue: 1
  year: 1996
  ident: 1114_CR1
  publication-title: SIAM Rev.
  doi: 10.1137/1038003
– volume: 1
  start-page: 127
  issue: 3
  year: 2014
  ident: 1114_CR40
  publication-title: Found. Trends Optim.
  doi: 10.1561/2400000003
– volume: 51
  start-page: 4203
  issue: 12
  year: 2005
  ident: 1114_CR12
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.2005.858979
– ident: 1114_CR11
  doi: 10.1201/9781420035933
– volume: 50
  start-page: 2231
  issue: 10
  year: 2004
  ident: 1114_CR8
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.2004.834793
– volume: 78
  start-page: 29
  issue: 1
  year: 2019
  ident: 1114_CR21
  publication-title: J. Sci. Comput.
  doi: 10.1007/s10915-018-0757-z
– ident: 1114_CR13
  doi: 10.1109/ICASSP.2008.4518502
– volume: 52
  start-page: 489
  issue: 2
  year: 2006
  ident: 1114_CR3
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.2005.862083
– ident: 1114_CR16
  doi: 10.1109/ICASSP.2013.6638818
– volume: 311
  start-page: 209
  year: 2018
  ident: 1114_CR38
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.05.073
– volume: 146
  start-page: 459
  issue: 1
  year: 2014
  ident: 1114_CR46
  publication-title: Math. Program.
  doi: 10.1007/s10107-013-0701-9
– volume: 34
  start-page: 946
  issue: 3
  year: 2013
  ident: 1114_CR61
  publication-title: SIAM J. Matrix Anal. Appl.
  doi: 10.1137/110853996
– ident: 1114_CR26
  doi: 10.1109/ACC.2001.945730
– volume: 79
  start-page: 853
  issue: 4
  year: 2021
  ident: 1114_CR49
  publication-title: J. Global Optim.
  doi: 10.1007/s10898-020-00955-3
– volume: 58
  start-page: 3485
  issue: 7
  year: 2010
  ident: 1114_CR15
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2010.2046900
– ident: 1114_CR25
  doi: 10.1109/CDC.1999.830903
– ident: 1114_CR55
– ident: 1114_CR41
  doi: 10.24963/ijcai.2017/462
– volume: 52
  start-page: 1289
  issue: 4
  year: 2006
  ident: 1114_CR4
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.2006.871582
– volume: 23
  start-page: 1126
  issue: 2
  year: 2013
  ident: 1114_CR47
  publication-title: SIAM J. Optim.
  doi: 10.1137/120891009
– volume: 10
  start-page: 673
  issue: 3
  year: 2000
  ident: 1114_CR34
  publication-title: SIAM J. Optim.
  doi: 10.1137/S1052623497328987
– volume: 13
  start-page: 3441
  issue: 110
  year: 2012
  ident: 1114_CR57
  publication-title: J. Mach. Learn. Res.
– volume: 117
  start-page: 387
  issue: 1
  year: 2009
  ident: 1114_CR48
  publication-title: Math. Program.
  doi: 10.1007/s10107-007-0170-0
– volume: 59
  start-page: 2837
  issue: 10
  year: 2014
  ident: 1114_CR59
  publication-title: IEEE Trans. Autom. Control
  doi: 10.1109/TAC.2014.2313761
– ident: 1114_CR10
  doi: 10.1109/ICASSP.2008.4518498
– volume: 2022
  start-page: 1
  issue: 1
  year: 2022
  ident: 1114_CR24
  publication-title: EURASIP J. Adv. Signal Process.
  doi: 10.1186/s13634-022-00886-z
– volume: 22
  start-page: 429
  issue: 2
  year: 2012
  ident: 1114_CR62
  publication-title: SIAM J. Optim.
  doi: 10.1137/100786721
– volume: 129
  start-page: 285
  issue: 2
  year: 2011
  ident: 1114_CR53
  publication-title: Math. Program.
  doi: 10.1007/s10107-011-0470-2
– ident: 1114_CR27
– ident: 1114_CR32
  doi: 10.1109/ICCV.2013.201
– ident: 1114_CR36
  doi: 10.1137/1.9781611970791
– volume: 98
  start-page: 948
  issue: 6
  year: 2010
  ident: 1114_CR6
  publication-title: Proc. IEEE
  doi: 10.1109/JPROC.2010.2044010
– ident: 1114_CR37
  doi: 10.1137/1.9780898718829
– volume: 34
  start-page: 366
  issue: 3
  year: 2013
  ident: 1114_CR33
  publication-title: Appl. Comput. Harmon. Anal.
  doi: 10.1016/j.acha.2012.07.004
– ident: 1114_CR54
– volume: 31
  start-page: 210
  issue: 2
  year: 2009
  ident: 1114_CR2
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2008.79
– ident: 1114_CR58
  doi: 10.1109/ACC.2010.5531594
– volume: 14
  start-page: 707
  issue: 10
  year: 2007
  ident: 1114_CR9
  publication-title: IEEE Signal Process. Lett.
  doi: 10.1109/LSP.2007.898300
– volume: 41
  start-page: 3397
  issue: 12
  year: 1993
  ident: 1114_CR7
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/78.258082
– ident: 1114_CR50
– volume: 51
  start-page: 927
  issue: 2
  year: 2013
  ident: 1114_CR56
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/110840364
– volume: 23
  start-page: 1013
  issue: 7
  year: 2012
  ident: 1114_CR18
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2012.2197412
– volume: 31
  start-page: 167
  issue: 3
  year: 2003
  ident: 1114_CR35
  publication-title: Oper. Res. Lett.
  doi: 10.1016/S0167-6377(02)00231-6
– volume: 2
  start-page: 183
  issue: 1
  year: 2009
  ident: 1114_CR42
  publication-title: SIAM J. Imag. Sci.
  doi: 10.1137/080716542
– volume: 60
  start-page: 5810
  issue: 11
  year: 2012
  ident: 1114_CR31
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2012.2208955
– volume: 79
  start-page: 303
  issue: 4
  year: 1975
  ident: 1114_CR39
  publication-title: Monatshefte für mathematik
  doi: 10.1007/BF01647331
– volume: 35
  start-page: 438
  issue: 2
  year: 2010
  ident: 1114_CR45
  publication-title: Math. Oper. Res.
  doi: 10.1287/moor.1100.0449
– volume: 137
  start-page: 91
  issue: 1
  year: 2013
  ident: 1114_CR43
  publication-title: Math. Program.
  doi: 10.1007/s10107-011-0484-9
SSID ssj0056202
Score 2.420533
Snippet Sparsity finds applications in diverse areas such as statistics, machine learning, and signal processing. Computations over sparse structures are less complex...
Abstract Sparsity finds applications in diverse areas such as statistics, machine learning, and signal processing. Computations over sparse structures are less...
SourceID doaj
proquest
gale
crossref
springer
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 22
SubjectTerms Algorithms
Alternating direction method of multipliers
Comparative analysis
Compressed sensing
Continuity (mathematics)
Engineering
Heuristic methods
Iterative methods
Machine learning
Matrix completion
Operators (mathematics)
Optimization
Polynomials
Quantum Information Technology
Rank minimization
Signal processing
Signal reconstruction
Signal,Image and Speech Processing
Sparsity
Spintronics
System identification
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07SwQxEA5yWGghPnF9sYVgoeE2m91kY3eKh4WIhYJdyFMPdD1vT3-_k32cJ6I2tnnAZCaZ-YYk3yB0qCBby5lNsCdZjgNgx9DkMLdGaUFMzo2ti03w6-vi_l7czJX6Cm_CGnrgRnF9SxTNNdfee5o5CC8i9VYFFJwKXwgTvC-gni6ZanwwBPXwbqf5IlOwfkUooxmGeIRDbfUMsy9hqGbr_-6Tv12O1jFnuIpWWrAYDxoh19CCK9fR8hyF4AZiV-P49U1VI1wC-owDU8hz-7XyNFZPDy-Q_D8-x6q08fxd9Sa6G17cnl_ithYCNhkrptjlEEUM0cYkuSKgSGa10ZTmSvGAuawxnHgqtLNe0SS1CVUAxrxKfQJGMnQL9cqX0m2jWAFmsylznFOTEWUh49KOO5cJahjRLEKkU400LVF4qFfxJOuEoWCyUacEdcpanRLmHM_mjBuajF9HnwWNz0YGiuu6AQwvW8PLvwwfoaNgLxkOIogHa2z-E8AiA6WVHPACnA0ANhGhvc6ksj2hlUwDsgXnJGiETjozf3b_LPzOfwi_i5bSsBvrdzF7qDedvLl9tGjep6NqclDv5Q84n_aQ
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Springer Nature OA Free Journals
  dbid: C24
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB5R6IEeWp7qAkU5VOJALeI4sePeKAL1gBCHInGz_KQrLVnYLPx-xk7CQ4hK9OqHZM_zG9kzA_BdY7RWcZeTQMuKRMBOcMgT4aw2ktpKWJeaTYizs_ryUp73SWHt8Nt9eJJMljqpdc0PWso4Kwn6FBL7o5eEf4ClitYyyvVRzHHo7C869PhnZ-vtfS9cUKrU_9oev3oYTf7m5Mv_nXQFPvf4MjvsBGIVFnyzBp-eVR1cB356k93e6XZMGgSsWSwuct1nY_7M9ORqOhvP_15nunHZ8-ftDbg4Of5z9Jv07ROILXk9J75Cx2OpsTavNEXac2esYazSWkSY5qwVNDBpvAua5YXLmUb8FnQRcuSrZZuw2Ewb_xUyjTDPFdwLwWxJtcMgzXjhfSmZ5dTwEdCBosr2tcVji4uJSjFGzVVHE4U0UYkmCvfsP-656Spr_HP1r8iox5WxKnYamM6uVK9kylHNKiNMCIGVHqGILILTMWIqZKilHcFeZLOKuovHwzt2KQh4yVgFSx2KGu0TYjw5gp1BElSv1K0qIhhGeybZCH4MnH-afvvwW-9bvg3LRRSe9GlmBxbnszv_DT7a-_m4ne0mYX8AzjD5Vg
  priority: 102
  providerName: Springer Nature
Title Lp quasi-norm minimization: algorithm and applications
URI https://link.springer.com/article/10.1186/s13634-024-01114-6
https://www.proquest.com/docview/2923179393
https://doaj.org/article/d1a35b7bfff34e81892fda974729f89c
Volume 2024
WOSCitedRecordID wos001157038500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1687-6180
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0056202
  issn: 1687-6180
  databaseCode: DOA
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVAVX
  databaseName: Springer Nature OA Free Journals
  customDbUrl:
  eissn: 1687-6180
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0056202
  issn: 1687-6180
  databaseCode: C24
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RlgMcyltsKasckDiA1dhO7JgLaqtWIGAVIZAKF8vxo1Rqs9vNlt_P2EnaoopeuOTgl-x8Y883fswAvDJorZXC5STQoiSRsBNM8kQ6axpFbSmtS8Em5GxWHR2pethw64ZrleOamBZqN7dxj3yHRSaCwqT4-8U5iVGj4unqEEJjDTYoYzTK-SdJxpUYVXt_51BU6SkcGx_NVGKno1zwgqCGIjHaekHEX4op-e-_uUrfOC5NWujwwf_2_yFsDvwz2-0F5hHc8e1juH_NK-ETEJ8X2fmF6U5Ii4Q2i85HzobXmu8yc3qMra5-nWWmddn14--n8P3w4Nv-BzKEVyC2ENWK-BIVk6WNtXlpKGIjXGMbzktjZKRxzlpJA1eNd8HwnLmcG-R3wbCQI-6WP4P1dt7655AZpIGOCS8ltwU1Do24xkvvC8WtoI2YAB3_rbaD7_EYAuNUJxukErrHQyMeOuGhsc6byzqL3vPGraX3ImSXJaPX7JQwXx7rYRJqRw0vG9mEEHjhkaooFpyJFhVToVJ2Aq8j4DrObewejrF_ooCDjF6y9K6sEELkgGoC2yPKepj0nb6CeAJvRzm5yv5357dub-0F3GNRUNMlmm1YXy0v_Eu4a3-vTrrlFDb2Dmb11yms7bNimvYUpmka4Lcuf2J-_fFL_eMPHpcLug
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9wwEB5RWqnlQN9iC21zaNVDaxHbiZ1Uqir6QKDdrnqgEjfj-EGRILtsllb9U_xGxk4CVKjcOPTqxJad-TzzTeyZAXil0VvLhU2Jp1lOAmEn2OSItEZXJTW5NDYWm5DjcbG7W35fgNM-FiZcq-x1YlTUdmLCP_J1FpgIgqnkH6fHJFSNCqerfQmNFhZD9-c3umzNh-0vKN_XjG1-3fm8RbqqAsRkopgTl6M-NrQyJs01xSkJW5mK81xrGdiLNUZSz8vKWa95ymzKNdIar5lPcbmG47i34HbGCxly9Q8l6TU_Uon2jqMoYugd64N0CrHeUC54RtAiklDdPSPiL0MY6wVctQpXjmej1du8_799rwew3PHrZKPdEA9hwdWPYOlS1sXHIEbT5PhENwekRsKehOQqR1006vtEH-7jKuY_jxJd2-Ty8f4T-HEjE38Ki_WkdiuQaKS5lgknJTcZ1Rad1MpJ57KSG0ErMQDay1KZLrd6KPFxqKKPVQjVyl-h_FWUv8I-b8_7TNvMIte-_SlA5PzNkBU8Nkxm-6pTMspSzfNKVt57njmkYiXzVgePkZW-KM0A3gSAqaC7cHq4xjYEAxcZsoCpDVkgZJDjlgNY61GlOqXWqAtIDeBdj8uLx_-e_LPrR3sJd7d2vo3UaHs8XIV7LGySeGFoDRbnsxP3HO6YX_ODZvYibrcE9m4ar2e82WbN
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VghA98EZdKJADiANYG9uJnVSqUKGsqLZa9QBSb8bxo1Rqs9vNFsRf66_r2EnaooreeuDqxJYdf575Jp4HwBuN1loubEo8zXISCDvBJkekNboqqcmlsbHYhJxMir29cncJTvtYmOBW2cvEKKjt1IR_5EMWmAiCqeRD37lF7G6NPs6OSaggFW5a-3IaLUTG7s9vNN-aje0t3Ou3jI2-fPv8lXQVBojJRLEgLkfZbGhlTJpritMTtjIV57nWMjAZa4yknpeVs17zlNmUa6Q4XjOf4tINx3FvwW3Uwnk4Y2NJei2AtKL1dxRFDMNjfcBOIYYN5YJnBLUjCZXeMyL-UoqxdsBVDXHlqjZqwNGD__nbPYT7He9ONtuD8giWXP0YVi5lY3wCYmeWHJ_o5oDUSOSTkHTlqItSXU_04T6uYvHzKNG1TS5f-z-F7zcy8WewXE9rtwqJRvprmXBScpNRbdF4rZx0Liu5EbQSA6D9virT5VwPpT8OVbS9CqFaLCjEgopYUNjn_XmfWZtx5Nq3PwW4nL8ZsoXHhul8X3XCR1mqeV7JynvPM4cUrWTe6mBJstIXpRnAuwA2FWQaTg_X2IZm4CJDdjC1KQuED3LfcgBrPcJUJ-wadQGvAXzoMXrx-N-Tf379aK_hLsJU7WxPxi_gHgvnJfoRrcHyYn7iXsId82tx0MxfxZOXwI-bhusZu8Rvhw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Lp+quasi-norm+minimization%3A+algorithm+and+applications&rft.jtitle=EURASIP+journal+on+advances+in+signal+processing&rft.au=Sleem%2C+Omar+M&rft.au=Ashour%2C+M.+E&rft.au=Aybat%2C+N.+S&rft.au=Lagoa%2C+Constantino+M&rft.date=2024-12-01&rft.pub=Springer+Nature+B.V&rft.issn=1687-6172&rft.eissn=1687-6180&rft.volume=2024&rft.issue=1&rft.spage=22&rft_id=info:doi/10.1186%2Fs13634-024-01114-6&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1687-6180&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1687-6180&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1687-6180&client=summon