Lp quasi-norm minimization: algorithm and applications
Sparsity finds applications in diverse areas such as statistics, machine learning, and signal processing. Computations over sparse structures are less complex compared to their dense counterparts and need less storage. This paper proposes a heuristic method for retrieving sparse approximate solution...
Gespeichert in:
| Veröffentlicht in: | EURASIP journal on advances in signal processing Jg. 2024; H. 1; S. 22 - 28 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Cham
Springer International Publishing
01.12.2024
Springer Springer Nature B.V SpringerOpen |
| Schlagworte: | |
| ISSN: | 1687-6180, 1687-6172, 1687-6180 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Sparsity finds applications in diverse areas such as statistics, machine learning, and signal processing. Computations over sparse structures are less complex compared to their dense counterparts and need less storage. This paper proposes a heuristic method for retrieving sparse approximate solutions of optimization problems via minimizing the
ℓ
p
quasi-norm, where
0
<
p
<
1
. An iterative two-block algorithm for minimizing the
ℓ
p
quasi-norm subject to convex constraints is proposed. The proposed algorithm requires solving for the roots of a scalar degree polynomial as opposed to applying a soft thresholding operator in the case of
ℓ
1
norm minimization. The algorithm’s merit relies on its ability to solve the
ℓ
p
quasi-norm minimization subject to any convex constraints set. For the specific case of constraints defined by differentiable functions with Lipschitz continuous gradient, a second, faster algorithm is proposed. Using a proximal gradient step, we mitigate the convex projection step and hence enhance the algorithm’s speed while proving its convergence. We present various applications where the proposed algorithm excels, namely, sparse signal reconstruction, system identification, and matrix completion. The results demonstrate the significant gains obtained by the proposed algorithm compared to other
ℓ
p
quasi-norm based methods presented in previous literature. |
|---|---|
| AbstractList | Abstract Sparsity finds applications in diverse areas such as statistics, machine learning, and signal processing. Computations over sparse structures are less complex compared to their dense counterparts and need less storage. This paper proposes a heuristic method for retrieving sparse approximate solutions of optimization problems via minimizing the $$\ell _{p}$$ ℓ p quasi-norm, where $$0<p<1$$ 0 < p < 1 . An iterative two-block algorithm for minimizing the $$\ell _{p}$$ ℓ p quasi-norm subject to convex constraints is proposed. The proposed algorithm requires solving for the roots of a scalar degree polynomial as opposed to applying a soft thresholding operator in the case of $$\ell _{1}$$ ℓ 1 norm minimization. The algorithm’s merit relies on its ability to solve the $$\ell _{p}$$ ℓ p quasi-norm minimization subject to any convex constraints set. For the specific case of constraints defined by differentiable functions with Lipschitz continuous gradient, a second, faster algorithm is proposed. Using a proximal gradient step, we mitigate the convex projection step and hence enhance the algorithm’s speed while proving its convergence. We present various applications where the proposed algorithm excels, namely, sparse signal reconstruction, system identification, and matrix completion. The results demonstrate the significant gains obtained by the proposed algorithm compared to other $$\ell _{p}$$ ℓ p quasi-norm based methods presented in previous literature. Sparsity finds applications in diverse areas such as statistics, machine learning, and signal processing. Computations over sparse structures are less complex compared to their dense counterparts and need less storage. This paper proposes a heuristic method for retrieving sparse approximate solutions of optimization problems via minimizing the ℓp quasi-norm, where 0<p<1. An iterative two-block algorithm for minimizing the ℓp quasi-norm subject to convex constraints is proposed. The proposed algorithm requires solving for the roots of a scalar degree polynomial as opposed to applying a soft thresholding operator in the case of ℓ1 norm minimization. The algorithm’s merit relies on its ability to solve the ℓp quasi-norm minimization subject to any convex constraints set. For the specific case of constraints defined by differentiable functions with Lipschitz continuous gradient, a second, faster algorithm is proposed. Using a proximal gradient step, we mitigate the convex projection step and hence enhance the algorithm’s speed while proving its convergence. We present various applications where the proposed algorithm excels, namely, sparse signal reconstruction, system identification, and matrix completion. The results demonstrate the significant gains obtained by the proposed algorithm compared to other ℓp quasi-norm based methods presented in previous literature. Sparsity finds applications in diverse areas such as statistics, machine learning, and signal processing. Computations over sparse structures are less complex compared to their dense counterparts and need less storage. This paper proposes a heuristic method for retrieving sparse approximate solutions of optimization problems via minimizing the [Formula omitted] quasi-norm, where [Formula omitted]. An iterative two-block algorithm for minimizing the [Formula omitted] quasi-norm subject to convex constraints is proposed. The proposed algorithm requires solving for the roots of a scalar degree polynomial as opposed to applying a soft thresholding operator in the case of [Formula omitted] norm minimization. The algorithm's merit relies on its ability to solve the [Formula omitted] quasi-norm minimization subject to any convex constraints set. For the specific case of constraints defined by differentiable functions with Lipschitz continuous gradient, a second, faster algorithm is proposed. Using a proximal gradient step, we mitigate the convex projection step and hence enhance the algorithm's speed while proving its convergence. We present various applications where the proposed algorithm excels, namely, sparse signal reconstruction, system identification, and matrix completion. The results demonstrate the significant gains obtained by the proposed algorithm compared to other [Formula omitted] quasi-norm based methods presented in previous literature. Sparsity finds applications in diverse areas such as statistics, machine learning, and signal processing. Computations over sparse structures are less complex compared to their dense counterparts and need less storage. This paper proposes a heuristic method for retrieving sparse approximate solutions of optimization problems via minimizing the $$\ell _{p}$$ ℓ p quasi-norm, where $$0<p<1$$ 0 < p < 1 . An iterative two-block algorithm for minimizing the $$\ell _{p}$$ ℓ p quasi-norm subject to convex constraints is proposed. The proposed algorithm requires solving for the roots of a scalar degree polynomial as opposed to applying a soft thresholding operator in the case of $$\ell _{1}$$ ℓ 1 norm minimization. The algorithm’s merit relies on its ability to solve the $$\ell _{p}$$ ℓ p quasi-norm minimization subject to any convex constraints set. For the specific case of constraints defined by differentiable functions with Lipschitz continuous gradient, a second, faster algorithm is proposed. Using a proximal gradient step, we mitigate the convex projection step and hence enhance the algorithm’s speed while proving its convergence. We present various applications where the proposed algorithm excels, namely, sparse signal reconstruction, system identification, and matrix completion. The results demonstrate the significant gains obtained by the proposed algorithm compared to other $$\ell _{p}$$ ℓ p quasi-norm based methods presented in previous literature. Sparsity finds applications in diverse areas such as statistics, machine learning, and signal processing. Computations over sparse structures are less complex compared to their dense counterparts and need less storage. This paper proposes a heuristic method for retrieving sparse approximate solutions of optimization problems via minimizing the ℓ p quasi-norm, where 0 < p < 1 . An iterative two-block algorithm for minimizing the ℓ p quasi-norm subject to convex constraints is proposed. The proposed algorithm requires solving for the roots of a scalar degree polynomial as opposed to applying a soft thresholding operator in the case of ℓ 1 norm minimization. The algorithm’s merit relies on its ability to solve the ℓ p quasi-norm minimization subject to any convex constraints set. For the specific case of constraints defined by differentiable functions with Lipschitz continuous gradient, a second, faster algorithm is proposed. Using a proximal gradient step, we mitigate the convex projection step and hence enhance the algorithm’s speed while proving its convergence. We present various applications where the proposed algorithm excels, namely, sparse signal reconstruction, system identification, and matrix completion. The results demonstrate the significant gains obtained by the proposed algorithm compared to other ℓ p quasi-norm based methods presented in previous literature. |
| ArticleNumber | 22 |
| Audience | Academic |
| Author | Ashour, M. E. Lagoa, Constantino M. Sleem, Omar M. Aybat, N. S. |
| Author_xml | – sequence: 1 givenname: Omar M. orcidid: 0000-0002-4994-0808 surname: Sleem fullname: Sleem, Omar M. email: oms46@psu.edu organization: Department of Electrical Engineering, Pennsylvania State University – sequence: 2 givenname: M. E. surname: Ashour fullname: Ashour, M. E. organization: Wireless R&D Department, Qualcomm Technologies, Inc – sequence: 3 givenname: N. S. surname: Aybat fullname: Aybat, N. S. organization: Department of Industrial and Manufacturing Engineering, Pennsylvania State University – sequence: 4 givenname: Constantino M. surname: Lagoa fullname: Lagoa, Constantino M. organization: Department of Electrical Engineering, Pennsylvania State University |
| BookMark | eNp9kUtv1TAQhSPUSvT1B1hFYp3isRM_2FUVlEpXYgNra-LHra8SO7VzF_DrcW9AIBZdWLbG5zuamXPZnMUUXdO8A3ILIPmHAoyzviO0HgDoO_6muQAuRcdBkrN_3m-by1IOhAycEnrR8N3SPh-xhC6mPLdziGEOP3ENKX5scdqnHNanucVoW1yWKZjTV7luzj1Oxd38vq-a758_fbv_0u2-Pjze3-0603O5dm7oBRgYjSEDgjXI7WhGxgZE0ZNBWGMEeKZGZz0yQi1hOPTEI_XEGDTsqnncfG3Cg15ymDH_0AmDPhVS3mvMazCT0xaQDaMYvfesdxKkot6iEr2gykv14vV-81pyej66supDOuZY29dUUQZCMcWq6nZT7bGahujTmrG2gtbNwdSt-1Drd0JWPYdBVUBugMmplOy8NmE9bamCYdJA9EtEeotI14j0KSLNK0r_Q_9M-CrENqhUcdy7_HeMV6hfyJ6lqQ |
| CitedBy_id | crossref_primary_10_1109_ACCESS_2024_3483908 crossref_primary_10_1016_j_dsp_2024_104520 |
| Cites_doi | 10.1109/TAC.2014.2313761 10.1007/s10915-018-0757-z 10.1137/110840364 10.1137/1038003 10.1109/TSP.2012.2208955 10.1109/TSP.2014.2309076 10.1137/S1052623497328987 10.1109/TIT.2006.871582 10.1137/100786721 10.1109/TSP.2010.2046900 10.1016/j.sigpro.2022.108730 10.1561/2400000003 10.1287/moor.1100.0449 10.1007/s10115-013-0713-z 10.1007/s10107-011-0484-9 10.1137/080716542 10.1186/s13634-022-00886-z 10.1007/s10107-011-0470-2 10.1109/TNNLS.2012.2197412 10.1016/j.acha.2012.07.004 10.1137/140998135 10.1007/BF01647331 10.1007/s10898-020-00955-3 10.1109/LSP.2007.898300 10.1137/060657704 10.1109/TIT.2004.834793 10.1088/1361-6420/ac274a 10.1016/S0167-6377(02)00231-6 10.1007/s10107-007-0170-0 10.1016/j.acha.2008.09.001 10.1109/TIT.2005.858979 10.1016/j.neucom.2018.05.073 10.1109/TIT.2005.862083 10.1109/JPROC.2010.2044010 10.1137/110853996 10.1109/TPAMI.2008.79 10.1007/s10107-013-0701-9 10.1109/78.258082 10.1137/120891009 10.1109/TSP.2017.2762286 10.23919/ACC.2004.1384521 10.1109/CDC.2009.5400177 10.1109/ISBI.2009.5193034 10.1109/ICASSP.2018.8462524 10.1561/9781601984616 10.1201/9781420035933 10.1109/ICASSP.2008.4518502 10.1109/ICASSP.2013.6638818 10.1109/ACC.2001.945730 10.1109/CDC.1999.830903 10.24963/ijcai.2017/462 10.1109/ICASSP.2008.4518498 10.1109/ICCV.2013.201 10.1137/1.9781611970791 10.1137/1.9780898718829 10.1109/ACC.2010.5531594 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2024 COPYRIGHT 2024 Springer The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s) 2024 – notice: COPYRIGHT 2024 Springer – notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | C6C AAYXX CITATION 3V. 7SC 7SP 7XB 8AL 8FD 8FE 8FG 8FK ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- L7M L~C L~D M0N P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI Q9U DOA |
| DOI | 10.1186/s13634-024-01114-6 |
| DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts Electronics & Communications Abstracts ProQuest Central (purchase pre-March 2016) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Technology collection ProQuest One ProQuest Central ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central Basic DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Collection ProQuest Computing ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition Electronics & Communications Abstracts ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
| DatabaseTitleList | Publicly Available Content Database CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1687-6180 |
| EndPage | 28 |
| ExternalDocumentID | oai_doaj_org_article_d1a35b7bfff34e81892fda974729f89c A781796159 10_1186_s13634_024_01114_6 |
| GrantInformation_xml | – fundername: National Science Foundation grantid: 1808266 funderid: http://dx.doi.org/10.13039/100000001 – fundername: Foundation for the National Institutes of Health grantid: R01 HL142732 funderid: http://dx.doi.org/10.13039/100000009 |
| GroupedDBID | -A0 .4S .DC 0R~ 29G 2WC 3V. 4.4 40G 5GY 5VS 6OB 8FE 8FG 8R4 8R5 AAFWJ AAJSJ AAKKN AAKPC ABEEZ ABUWG ACACY ACGFO ACGFS ACULB ADBBV ADINQ ADMLS AEGXH AENEX AFGXO AFKRA AFPKN AHBYD AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH ARAPS ARCSS AZQEC BAPOH BCNDV BENPR BGLVJ BPHCQ C24 C6C CCPQU DU5 DWQXO E3Z EBLON EBS EDO F5P GNUQQ GROUPED_DOAJ HCIFZ IAO ITC K6V K7- KQ8 M0N M~E OK1 P62 PIMPY PQQKQ PROAC Q2X RHU RHW RNS RSV SEG SOJ TUS U2A AASML AAYXX CITATION OVT 7SC 7SP 7XB 8AL 8FD 8FK JQ2 L7M L~C L~D PHGZM PHGZT PKEHL PQEST PQGLB PQUKI Q9U |
| ID | FETCH-LOGICAL-c468t-e5471c1bcc05a1dca6dbcb335aa74057dcc71f39bedfa302d03a540fa2f0ccac3 |
| IEDL.DBID | K7- |
| ISICitedReferencesCount | 3 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001157038500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1687-6180 1687-6172 |
| IngestDate | Fri Oct 03 12:52:25 EDT 2025 Sat Oct 11 06:11:18 EDT 2025 Mon Oct 20 17:11:23 EDT 2025 Tue Nov 18 22:26:22 EST 2025 Sat Nov 29 03:12:13 EST 2025 Fri Feb 21 02:40:19 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Alternating direction method of multipliers Sparsity Rank minimization System identification Compressed sensing Matrix completion Proximal gradient method |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c468t-e5471c1bcc05a1dca6dbcb335aa74057dcc71f39bedfa302d03a540fa2f0ccac3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-4994-0808 |
| OpenAccessLink | https://www.proquest.com/docview/2923179393?pq-origsite=%requestingapplication% |
| PQID | 2923179393 |
| PQPubID | 237299 |
| PageCount | 28 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_d1a35b7bfff34e81892fda974729f89c proquest_journals_2923179393 gale_infotracacademiconefile_A781796159 crossref_citationtrail_10_1186_s13634_024_01114_6 crossref_primary_10_1186_s13634_024_01114_6 springer_journals_10_1186_s13634_024_01114_6 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-12-01 |
| PublicationDateYYYYMMDD | 2024-12-01 |
| PublicationDate_xml | – month: 12 year: 2024 text: 2024-12-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Cham |
| PublicationPlace_xml | – name: Cham – name: New York |
| PublicationTitle | EURASIP journal on advances in signal processing |
| PublicationTitleAbbrev | EURASIP J. Adv. Signal Process |
| PublicationYear | 2024 |
| Publisher | Springer International Publishing Springer Springer Nature B.V SpringerOpen |
| Publisher_xml | – name: Springer International Publishing – name: Springer – name: Springer Nature B.V – name: SpringerOpen |
| References | Zhang, Zhang, Wang (CR22) 2021; 37 Luo, Feng, Guo, Zhang (CR24) 2022; 2022 Benidis, Feng, Palomar (CR52) 2018; 66 Nie, Wang, Huang, Ding (CR30) 2015; 42 CR37 CR36 CR32 Chartrand (CR9) 2007; 14 Ge, Jiang, Ye (CR53) 2011; 129 Zha, Zhang, Wu, Wang, Liu, Tang, Yuan (CR38) 2018; 311 Helmberg, Rendl (CR34) 2000; 10 Zeng, Lin, Wang, Xu (CR19) 2014; 62 Attouch, Bolte, Redont, Soubeyran (CR45) 2010; 35 Sznaier, Ayazoglu, Inanc (CR59) 2014; 59 Wright, Yang, Ganesh, Sastry, Ma (CR2) 2009; 31 CR44 CR41 Xu, Chang, Xu, Zhang (CR18) 2012; 23 Mirsky (CR39) 1975; 79 Candes, Tao (CR12) 2005; 51 Wang, Yin, Zeng (CR21) 2019; 78 Foucart, Lai (CR51) 2009; 26 Aybat, Iyengar (CR62) 2012; 22 Tropp, Wright (CR6) 2010; 98 Mohan, Fazel (CR57) 2012; 13 Li, Pong (CR20) 2015; 25 Bolte, Sabach, Teboulle (CR46) 2014; 146 CR17 CR16 Hu, Li, Meng, Yang (CR49) 2021; 79 CR14 Wang, Zhang (CR23) 2022; 201 CR58 CR13 CR11 CR55 CR10 CR54 CR50 Chartrand (CR31) 2012; 60 Vandenberghe, Boyd (CR1) 1996; 38 Beck, Teboulle (CR42) 2009; 2 Bahmani, Raj (CR33) 2013; 34 Candes, Romberg, Tao (CR3) 2006; 52 Lai, Xu, Yin (CR56) 2013; 51 CR29 CR28 Attouch, Bolte, Svaiter (CR43) 2013; 137 Tropp (CR8) 2004; 50 CR27 Fazel, Pong, Sun, Tseng (CR61) 2013; 34 CR26 Mallat, Zhang (CR7) 1993; 41 CR25 Mourad, Reilly (CR15) 2010; 58 Parikh, Boyd (CR40) 2014; 1 CR64 Donoho (CR4) 2006; 52 CR63 Tseng, Yun (CR48) 2009; 117 Beck, Teboulle (CR35) 2003; 31 CR60 Bruckstein, Donoho, Elad (CR5) 2009; 51 Razaviyayn, Hong, Luo (CR47) 2013; 23 1114_CR16 1114_CR17 H Attouch (1114_CR43) 2013; 137 P Tseng (1114_CR48) 2009; 117 L Vandenberghe (1114_CR1) 1996; 38 R Chartrand (1114_CR9) 2007; 14 1114_CR10 1114_CR54 1114_CR11 1114_CR55 D Ge (1114_CR53) 2011; 129 1114_CR14 1114_CR58 K Mohan (1114_CR57) 2012; 13 Z Xu (1114_CR18) 2012; 23 1114_CR13 J Bolte (1114_CR46) 2014; 146 AM Bruckstein (1114_CR5) 2009; 51 F Nie (1114_CR30) 2015; 42 1114_CR50 C Helmberg (1114_CR34) 2000; 10 K Benidis (1114_CR52) 2018; 66 1114_CR29 1114_CR27 1114_CR28 J Zhang (1114_CR22) 2021; 37 N Parikh (1114_CR40) 2014; 1 DL Donoho (1114_CR4) 2006; 52 NS Aybat (1114_CR62) 2012; 22 Y Wang (1114_CR21) 2019; 78 1114_CR63 S Bahmani (1114_CR33) 2013; 34 1114_CR64 1114_CR25 1114_CR26 S Foucart (1114_CR51) 2009; 26 1114_CR60 SG Mallat (1114_CR7) 1993; 41 R Chartrand (1114_CR31) 2012; 60 A Beck (1114_CR35) 2003; 31 EJ Candes (1114_CR12) 2005; 51 L Mirsky (1114_CR39) 1975; 79 H Attouch (1114_CR45) 2010; 35 JA Tropp (1114_CR6) 2010; 98 1114_CR32 G Li (1114_CR20) 2015; 25 1114_CR36 1114_CR37 N Mourad (1114_CR15) 2010; 58 A Beck (1114_CR42) 2009; 2 JA Tropp (1114_CR8) 2004; 50 J Wright (1114_CR2) 2009; 31 Z Zha (1114_CR38) 2018; 311 M-J Lai (1114_CR56) 2013; 51 Y Hu (1114_CR49) 2021; 79 J Zeng (1114_CR19) 2014; 62 W Wang (1114_CR23) 2022; 201 X Luo (1114_CR24) 2022; 2022 M Fazel (1114_CR61) 2013; 34 1114_CR44 1114_CR41 M Razaviyayn (1114_CR47) 2013; 23 M Sznaier (1114_CR59) 2014; 59 EJ Candes (1114_CR3) 2006; 52 |
| References_xml | – volume: 59 start-page: 2837 issue: 10 year: 2014 end-page: 2842 ident: CR59 article-title: Fast structured nuclear norm minimization with applications to set membership systems identification publication-title: IEEE Trans. Autom. Control doi: 10.1109/TAC.2014.2313761 – volume: 78 start-page: 29 issue: 1 year: 2019 end-page: 63 ident: CR21 article-title: Global convergence of ADMM in nonconvex nonsmooth optimization publication-title: J. Sci. Comput. doi: 10.1007/s10915-018-0757-z – volume: 51 start-page: 927 issue: 2 year: 2013 end-page: 957 ident: CR56 article-title: Improved iteratively reweighted least squares for unconstrained smoothed minimization publication-title: SIAM J. Numer. Anal. doi: 10.1137/110840364 – volume: 38 start-page: 49 issue: 1 year: 1996 end-page: 95 ident: CR1 article-title: Semidefinite programming publication-title: SIAM Rev. doi: 10.1137/1038003 – ident: CR16 – volume: 60 start-page: 5810 issue: 11 year: 2012 end-page: 5819 ident: CR31 article-title: Nonconvex splitting for regularized low-rank + sparse decomposition publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2012.2208955 – volume: 62 start-page: 2317 issue: 9 year: 2014 end-page: 2329 ident: CR19 article-title: regularization: convergence of iterative half thresholding algorithm publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2014.2309076 – ident: CR29 – ident: CR54 – volume: 10 start-page: 673 issue: 3 year: 2000 end-page: 696 ident: CR34 article-title: A spectral bundle method for semidefinite programming publication-title: SIAM J. Optim. doi: 10.1137/S1052623497328987 – ident: CR58 – ident: CR25 – volume: 52 start-page: 1289 issue: 4 year: 2006 end-page: 1306 ident: CR4 article-title: Compressed sensing publication-title: IEEE Trans. Inf. Theory doi: 10.1109/TIT.2006.871582 – volume: 22 start-page: 429 issue: 2 year: 2012 end-page: 459 ident: CR62 article-title: A first-order augmented Lagrangian method for compressed sensing publication-title: SIAM J. Optim. doi: 10.1137/100786721 – volume: 58 start-page: 3485 issue: 7 year: 2010 end-page: 3496 ident: CR15 article-title: Minimizing nonconvex functions for sparse vector reconstruction publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2010.2046900 – volume: 201 year: 2022 ident: CR23 article-title: Performance guarantees of regularized minimization for robust sparse recovery publication-title: Signal Process. doi: 10.1016/j.sigpro.2022.108730 – volume: 1 start-page: 127 issue: 3 year: 2014 end-page: 239 ident: CR40 article-title: Proximal algorithms publication-title: Found. Trends Optim. doi: 10.1561/2400000003 – volume: 35 start-page: 438 issue: 2 year: 2010 end-page: 457 ident: CR45 article-title: Proximal alternating minimization and projection methods for nonconvex problems: an approach based on the Kurdyka-Lojasiewicz inequality publication-title: Math. Oper. Res. doi: 10.1287/moor.1100.0449 – ident: CR50 – ident: CR11 – volume: 42 start-page: 525 issue: 3 year: 2015 end-page: 544 ident: CR30 article-title: Joint schatten -norm and norm robust matrix completion for missing value recovery publication-title: Knowl. Inf. Syst. doi: 10.1007/s10115-013-0713-z – volume: 137 start-page: 91 issue: 1 year: 2013 end-page: 129 ident: CR43 article-title: Convergence of descent methods for semi-algebraic and tame problems: proximal algorithms, forward-backward splitting, and regularized Gauss-Seidel methods publication-title: Math. Program. doi: 10.1007/s10107-011-0484-9 – ident: CR32 – volume: 2 start-page: 183 issue: 1 year: 2009 end-page: 202 ident: CR42 article-title: A fast iterative shrinkage-thresholding algorithm for linear inverse problems publication-title: SIAM J. Imag. Sci. doi: 10.1137/080716542 – volume: 2022 start-page: 1 issue: 1 year: 2022 end-page: 14 ident: CR24 article-title: Exact recovery of sparse signals with side information publication-title: EURASIP J. Adv. Signal Process. doi: 10.1186/s13634-022-00886-z – volume: 129 start-page: 285 issue: 2 year: 2011 end-page: 299 ident: CR53 article-title: A note on the complexity of minimization publication-title: Math. Program. doi: 10.1007/s10107-011-0470-2 – ident: CR60 – ident: CR36 – volume: 23 start-page: 1013 issue: 7 year: 2012 end-page: 1027 ident: CR18 article-title: regularization: a thresholding representation theory and a fast solver publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2012.2197412 – ident: CR64 – ident: CR26 – volume: 34 start-page: 366 issue: 3 year: 2013 end-page: 378 ident: CR33 article-title: A unifying analysis of projected gradient descent for -constrained least squares publication-title: Appl. Comput. Harmon. Anal. doi: 10.1016/j.acha.2012.07.004 – volume: 25 start-page: 2434 issue: 4 year: 2015 end-page: 2460 ident: CR20 article-title: Global convergence of splitting methods for nonconvex composite optimization publication-title: SIAM J. Optim. doi: 10.1137/140998135 – volume: 79 start-page: 303 issue: 4 year: 1975 end-page: 306 ident: CR39 article-title: A trace inequality of John von Neumann publication-title: Monatshefte für mathematik doi: 10.1007/BF01647331 – volume: 79 start-page: 853 issue: 4 year: 2021 end-page: 883 ident: CR49 article-title: Linear convergence of inexact descent method and inexact proximal gradient algorithms for lower-order regularization problems publication-title: J. Global Optim. doi: 10.1007/s10898-020-00955-3 – ident: CR14 – ident: CR37 – volume: 14 start-page: 707 issue: 10 year: 2007 end-page: 710 ident: CR9 article-title: Exact reconstruction of sparse signals via nonconvex minimization publication-title: IEEE Signal Process. Lett. doi: 10.1109/LSP.2007.898300 – volume: 51 start-page: 34 issue: 1 year: 2009 end-page: 81 ident: CR5 article-title: From sparse solutions of systems of equations to sparse modeling of signals and images publication-title: SIAM Rev. doi: 10.1137/060657704 – volume: 50 start-page: 2231 issue: 10 year: 2004 end-page: 2242 ident: CR8 article-title: Greed is good: algorithmic results for sparse approximation publication-title: IEEE Trans. Inf. Theory doi: 10.1109/TIT.2004.834793 – volume: 37 issue: 11 year: 2021 ident: CR22 article-title: Robust signal recovery for minimization via prior support information publication-title: Inverse Prob. doi: 10.1088/1361-6420/ac274a – volume: 31 start-page: 167 issue: 3 year: 2003 end-page: 175 ident: CR35 article-title: Mirror descent and nonlinear projected subgradient methods for convex optimization publication-title: Oper. Res. Lett. doi: 10.1016/S0167-6377(02)00231-6 – ident: CR10 – volume: 117 start-page: 387 issue: 1 year: 2009 end-page: 423 ident: CR48 article-title: A coordinate gradient descent method for nonsmooth separable minimization publication-title: Math. Program. doi: 10.1007/s10107-007-0170-0 – volume: 26 start-page: 395 issue: 3 year: 2009 end-page: 407 ident: CR51 article-title: Sparsest solutions of under-determined linear systems via -minimization for publication-title: Appl. Comput. Harmon. Anal. doi: 10.1016/j.acha.2008.09.001 – ident: CR63 – ident: CR27 – volume: 51 start-page: 4203 issue: 12 year: 2005 end-page: 4215 ident: CR12 article-title: Decoding by linear programming publication-title: IEEE Trans. Inf. Theory doi: 10.1109/TIT.2005.858979 – volume: 311 start-page: 209 year: 2018 end-page: 224 ident: CR38 article-title: Non-convex weighted nuclear norm-based ADMM framework for image restoration publication-title: Neurocomputing doi: 10.1016/j.neucom.2018.05.073 – ident: CR44 – volume: 13 start-page: 3441 issue: 110 year: 2012 end-page: 3473 ident: CR57 article-title: Iterative reweighted algorithms for matrix rank minimization publication-title: J. Mach. Learn. Res. – volume: 52 start-page: 489 issue: 2 year: 2006 end-page: 509 ident: CR3 article-title: Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information publication-title: IEEE Trans. Inf. Theory doi: 10.1109/TIT.2005.862083 – volume: 98 start-page: 948 issue: 6 year: 2010 end-page: 958 ident: CR6 article-title: Computational methods for sparse solution of linear inverse problems publication-title: Proc. IEEE doi: 10.1109/JPROC.2010.2044010 – ident: CR17 – ident: CR13 – volume: 34 start-page: 946 issue: 3 year: 2013 end-page: 977 ident: CR61 article-title: Hankel matrix rank minimization with applications to system identification and realization publication-title: SIAM J. Matrix Anal. Appl. doi: 10.1137/110853996 – volume: 31 start-page: 210 issue: 2 year: 2009 end-page: 227 ident: CR2 article-title: Robust face recognition via sparse representation publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2008.79 – volume: 146 start-page: 459 issue: 1 year: 2014 end-page: 494 ident: CR46 article-title: Proximal alternating linearized minimization for nonconvex and nonsmooth problems publication-title: Math. Program. doi: 10.1007/s10107-013-0701-9 – volume: 41 start-page: 3397 issue: 12 year: 1993 end-page: 3415 ident: CR7 article-title: Matching pursuits with time-frequency dictionaries publication-title: IEEE Trans. Signal Process. doi: 10.1109/78.258082 – ident: CR55 – ident: CR28 – ident: CR41 – volume: 23 start-page: 1126 issue: 2 year: 2013 end-page: 1153 ident: CR47 article-title: A unified convergence analysis of block successive minimization methods for nonsmooth optimization publication-title: SIAM J. Optim. doi: 10.1137/120891009 – volume: 66 start-page: 155 issue: 1 year: 2018 end-page: 170 ident: CR52 article-title: Sparse portfolios for high-dimensional financial index tracking publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2017.2762286 – volume: 26 start-page: 395 issue: 3 year: 2009 ident: 1114_CR51 publication-title: Appl. Comput. Harmon. Anal. doi: 10.1016/j.acha.2008.09.001 – volume: 37 issue: 11 year: 2021 ident: 1114_CR22 publication-title: Inverse Prob. doi: 10.1088/1361-6420/ac274a – ident: 1114_CR28 doi: 10.23919/ACC.2004.1384521 – volume: 66 start-page: 155 issue: 1 year: 2018 ident: 1114_CR52 publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2017.2762286 – ident: 1114_CR60 doi: 10.1109/CDC.2009.5400177 – volume: 25 start-page: 2434 issue: 4 year: 2015 ident: 1114_CR20 publication-title: SIAM J. Optim. doi: 10.1137/140998135 – volume: 62 start-page: 2317 issue: 9 year: 2014 ident: 1114_CR19 publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2014.2309076 – ident: 1114_CR14 doi: 10.1109/ISBI.2009.5193034 – volume: 201 year: 2022 ident: 1114_CR23 publication-title: Signal Process. doi: 10.1016/j.sigpro.2022.108730 – volume: 42 start-page: 525 issue: 3 year: 2015 ident: 1114_CR30 publication-title: Knowl. Inf. Syst. doi: 10.1007/s10115-013-0713-z – volume: 51 start-page: 34 issue: 1 year: 2009 ident: 1114_CR5 publication-title: SIAM Rev. doi: 10.1137/060657704 – ident: 1114_CR29 – ident: 1114_CR63 – ident: 1114_CR64 doi: 10.1109/ICASSP.2018.8462524 – ident: 1114_CR17 doi: 10.1561/9781601984616 – ident: 1114_CR44 – volume: 38 start-page: 49 issue: 1 year: 1996 ident: 1114_CR1 publication-title: SIAM Rev. doi: 10.1137/1038003 – volume: 1 start-page: 127 issue: 3 year: 2014 ident: 1114_CR40 publication-title: Found. Trends Optim. doi: 10.1561/2400000003 – volume: 51 start-page: 4203 issue: 12 year: 2005 ident: 1114_CR12 publication-title: IEEE Trans. Inf. Theory doi: 10.1109/TIT.2005.858979 – ident: 1114_CR11 doi: 10.1201/9781420035933 – volume: 50 start-page: 2231 issue: 10 year: 2004 ident: 1114_CR8 publication-title: IEEE Trans. Inf. Theory doi: 10.1109/TIT.2004.834793 – volume: 78 start-page: 29 issue: 1 year: 2019 ident: 1114_CR21 publication-title: J. Sci. Comput. doi: 10.1007/s10915-018-0757-z – ident: 1114_CR13 doi: 10.1109/ICASSP.2008.4518502 – volume: 52 start-page: 489 issue: 2 year: 2006 ident: 1114_CR3 publication-title: IEEE Trans. Inf. Theory doi: 10.1109/TIT.2005.862083 – ident: 1114_CR16 doi: 10.1109/ICASSP.2013.6638818 – volume: 311 start-page: 209 year: 2018 ident: 1114_CR38 publication-title: Neurocomputing doi: 10.1016/j.neucom.2018.05.073 – volume: 146 start-page: 459 issue: 1 year: 2014 ident: 1114_CR46 publication-title: Math. Program. doi: 10.1007/s10107-013-0701-9 – volume: 34 start-page: 946 issue: 3 year: 2013 ident: 1114_CR61 publication-title: SIAM J. Matrix Anal. Appl. doi: 10.1137/110853996 – ident: 1114_CR26 doi: 10.1109/ACC.2001.945730 – volume: 79 start-page: 853 issue: 4 year: 2021 ident: 1114_CR49 publication-title: J. Global Optim. doi: 10.1007/s10898-020-00955-3 – volume: 58 start-page: 3485 issue: 7 year: 2010 ident: 1114_CR15 publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2010.2046900 – ident: 1114_CR25 doi: 10.1109/CDC.1999.830903 – ident: 1114_CR55 – ident: 1114_CR41 doi: 10.24963/ijcai.2017/462 – volume: 52 start-page: 1289 issue: 4 year: 2006 ident: 1114_CR4 publication-title: IEEE Trans. Inf. Theory doi: 10.1109/TIT.2006.871582 – volume: 23 start-page: 1126 issue: 2 year: 2013 ident: 1114_CR47 publication-title: SIAM J. Optim. doi: 10.1137/120891009 – volume: 10 start-page: 673 issue: 3 year: 2000 ident: 1114_CR34 publication-title: SIAM J. Optim. doi: 10.1137/S1052623497328987 – volume: 13 start-page: 3441 issue: 110 year: 2012 ident: 1114_CR57 publication-title: J. Mach. Learn. Res. – volume: 117 start-page: 387 issue: 1 year: 2009 ident: 1114_CR48 publication-title: Math. Program. doi: 10.1007/s10107-007-0170-0 – volume: 59 start-page: 2837 issue: 10 year: 2014 ident: 1114_CR59 publication-title: IEEE Trans. Autom. Control doi: 10.1109/TAC.2014.2313761 – ident: 1114_CR10 doi: 10.1109/ICASSP.2008.4518498 – volume: 2022 start-page: 1 issue: 1 year: 2022 ident: 1114_CR24 publication-title: EURASIP J. Adv. Signal Process. doi: 10.1186/s13634-022-00886-z – volume: 22 start-page: 429 issue: 2 year: 2012 ident: 1114_CR62 publication-title: SIAM J. Optim. doi: 10.1137/100786721 – volume: 129 start-page: 285 issue: 2 year: 2011 ident: 1114_CR53 publication-title: Math. Program. doi: 10.1007/s10107-011-0470-2 – ident: 1114_CR27 – ident: 1114_CR32 doi: 10.1109/ICCV.2013.201 – ident: 1114_CR36 doi: 10.1137/1.9781611970791 – volume: 98 start-page: 948 issue: 6 year: 2010 ident: 1114_CR6 publication-title: Proc. IEEE doi: 10.1109/JPROC.2010.2044010 – ident: 1114_CR37 doi: 10.1137/1.9780898718829 – volume: 34 start-page: 366 issue: 3 year: 2013 ident: 1114_CR33 publication-title: Appl. Comput. Harmon. Anal. doi: 10.1016/j.acha.2012.07.004 – ident: 1114_CR54 – volume: 31 start-page: 210 issue: 2 year: 2009 ident: 1114_CR2 publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2008.79 – ident: 1114_CR58 doi: 10.1109/ACC.2010.5531594 – volume: 14 start-page: 707 issue: 10 year: 2007 ident: 1114_CR9 publication-title: IEEE Signal Process. Lett. doi: 10.1109/LSP.2007.898300 – volume: 41 start-page: 3397 issue: 12 year: 1993 ident: 1114_CR7 publication-title: IEEE Trans. Signal Process. doi: 10.1109/78.258082 – ident: 1114_CR50 – volume: 51 start-page: 927 issue: 2 year: 2013 ident: 1114_CR56 publication-title: SIAM J. Numer. Anal. doi: 10.1137/110840364 – volume: 23 start-page: 1013 issue: 7 year: 2012 ident: 1114_CR18 publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2012.2197412 – volume: 31 start-page: 167 issue: 3 year: 2003 ident: 1114_CR35 publication-title: Oper. Res. Lett. doi: 10.1016/S0167-6377(02)00231-6 – volume: 2 start-page: 183 issue: 1 year: 2009 ident: 1114_CR42 publication-title: SIAM J. Imag. Sci. doi: 10.1137/080716542 – volume: 60 start-page: 5810 issue: 11 year: 2012 ident: 1114_CR31 publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2012.2208955 – volume: 79 start-page: 303 issue: 4 year: 1975 ident: 1114_CR39 publication-title: Monatshefte für mathematik doi: 10.1007/BF01647331 – volume: 35 start-page: 438 issue: 2 year: 2010 ident: 1114_CR45 publication-title: Math. Oper. Res. doi: 10.1287/moor.1100.0449 – volume: 137 start-page: 91 issue: 1 year: 2013 ident: 1114_CR43 publication-title: Math. Program. doi: 10.1007/s10107-011-0484-9 |
| SSID | ssj0056202 |
| Score | 2.420533 |
| Snippet | Sparsity finds applications in diverse areas such as statistics, machine learning, and signal processing. Computations over sparse structures are less complex... Abstract Sparsity finds applications in diverse areas such as statistics, machine learning, and signal processing. Computations over sparse structures are less... |
| SourceID | doaj proquest gale crossref springer |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 22 |
| SubjectTerms | Algorithms Alternating direction method of multipliers Comparative analysis Compressed sensing Continuity (mathematics) Engineering Heuristic methods Iterative methods Machine learning Matrix completion Operators (mathematics) Optimization Polynomials Quantum Information Technology Rank minimization Signal processing Signal reconstruction Signal,Image and Speech Processing Sparsity Spintronics System identification |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07SwQxEA5yWGghPnF9sYVgoeE2m91kY3eKh4WIhYJdyFMPdD1vT3-_k32cJ6I2tnnAZCaZ-YYk3yB0qCBby5lNsCdZjgNgx9DkMLdGaUFMzo2ti03w6-vi_l7czJX6Cm_CGnrgRnF9SxTNNdfee5o5CC8i9VYFFJwKXwgTvC-gni6ZanwwBPXwbqf5IlOwfkUooxmGeIRDbfUMsy9hqGbr_-6Tv12O1jFnuIpWWrAYDxoh19CCK9fR8hyF4AZiV-P49U1VI1wC-owDU8hz-7XyNFZPDy-Q_D8-x6q08fxd9Sa6G17cnl_ithYCNhkrptjlEEUM0cYkuSKgSGa10ZTmSvGAuawxnHgqtLNe0SS1CVUAxrxKfQJGMnQL9cqX0m2jWAFmsylznFOTEWUh49KOO5cJahjRLEKkU400LVF4qFfxJOuEoWCyUacEdcpanRLmHM_mjBuajF9HnwWNz0YGiuu6AQwvW8PLvwwfoaNgLxkOIogHa2z-E8AiA6WVHPACnA0ANhGhvc6ksj2hlUwDsgXnJGiETjozf3b_LPzOfwi_i5bSsBvrdzF7qDedvLl9tGjep6NqclDv5Q84n_aQ priority: 102 providerName: Directory of Open Access Journals – databaseName: Springer Nature OA Free Journals dbid: C24 link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB5R6IEeWp7qAkU5VOJALeI4sePeKAL1gBCHInGz_KQrLVnYLPx-xk7CQ4hK9OqHZM_zG9kzA_BdY7RWcZeTQMuKRMBOcMgT4aw2ktpKWJeaTYizs_ryUp73SWHt8Nt9eJJMljqpdc0PWso4Kwn6FBL7o5eEf4ClitYyyvVRzHHo7C869PhnZ-vtfS9cUKrU_9oev3oYTf7m5Mv_nXQFPvf4MjvsBGIVFnyzBp-eVR1cB356k93e6XZMGgSsWSwuct1nY_7M9ORqOhvP_15nunHZ8-ftDbg4Of5z9Jv07ROILXk9J75Cx2OpsTavNEXac2esYazSWkSY5qwVNDBpvAua5YXLmUb8FnQRcuSrZZuw2Ewb_xUyjTDPFdwLwWxJtcMgzXjhfSmZ5dTwEdCBosr2tcVji4uJSjFGzVVHE4U0UYkmCvfsP-656Spr_HP1r8iox5WxKnYamM6uVK9kylHNKiNMCIGVHqGILILTMWIqZKilHcFeZLOKuovHwzt2KQh4yVgFSx2KGu0TYjw5gp1BElSv1K0qIhhGeybZCH4MnH-afvvwW-9bvg3LRRSe9GlmBxbnszv_DT7a-_m4ne0mYX8AzjD5Vg priority: 102 providerName: Springer Nature |
| Title | Lp quasi-norm minimization: algorithm and applications |
| URI | https://link.springer.com/article/10.1186/s13634-024-01114-6 https://www.proquest.com/docview/2923179393 https://doaj.org/article/d1a35b7bfff34e81892fda974729f89c |
| Volume | 2024 |
| WOSCitedRecordID | wos001157038500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1687-6180 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0056202 issn: 1687-6180 databaseCode: DOA dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVAVX databaseName: Springer Nature OA Free Journals customDbUrl: eissn: 1687-6180 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0056202 issn: 1687-6180 databaseCode: C24 dateStart: 20070101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RlgMcyltsKasckDiA1dhO7JgLaqtWIGAVIZAKF8vxo1Rqs9vNlt_P2EnaoopeuOTgl-x8Y883fswAvDJorZXC5STQoiSRsBNM8kQ6axpFbSmtS8Em5GxWHR2pethw64ZrleOamBZqN7dxj3yHRSaCwqT4-8U5iVGj4unqEEJjDTYoYzTK-SdJxpUYVXt_51BU6SkcGx_NVGKno1zwgqCGIjHaekHEX4op-e-_uUrfOC5NWujwwf_2_yFsDvwz2-0F5hHc8e1juH_NK-ETEJ8X2fmF6U5Ii4Q2i85HzobXmu8yc3qMra5-nWWmddn14--n8P3w4Nv-BzKEVyC2ENWK-BIVk6WNtXlpKGIjXGMbzktjZKRxzlpJA1eNd8HwnLmcG-R3wbCQI-6WP4P1dt7655AZpIGOCS8ltwU1Do24xkvvC8WtoI2YAB3_rbaD7_EYAuNUJxukErrHQyMeOuGhsc6byzqL3vPGraX3ImSXJaPX7JQwXx7rYRJqRw0vG9mEEHjhkaooFpyJFhVToVJ2Aq8j4DrObewejrF_ooCDjF6y9K6sEELkgGoC2yPKepj0nb6CeAJvRzm5yv5357dub-0F3GNRUNMlmm1YXy0v_Eu4a3-vTrrlFDb2Dmb11yms7bNimvYUpmka4Lcuf2J-_fFL_eMPHpcLug |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9wwEB5RWqnlQN9iC21zaNVDaxHbiZ1Uqir6QKDdrnqgEjfj-EGRILtsllb9U_xGxk4CVKjcOPTqxJad-TzzTeyZAXil0VvLhU2Jp1lOAmEn2OSItEZXJTW5NDYWm5DjcbG7W35fgNM-FiZcq-x1YlTUdmLCP_J1FpgIgqnkH6fHJFSNCqerfQmNFhZD9-c3umzNh-0vKN_XjG1-3fm8RbqqAsRkopgTl6M-NrQyJs01xSkJW5mK81xrGdiLNUZSz8vKWa95ymzKNdIar5lPcbmG47i34HbGCxly9Q8l6TU_Uon2jqMoYugd64N0CrHeUC54RtAiklDdPSPiL0MY6wVctQpXjmej1du8_799rwew3PHrZKPdEA9hwdWPYOlS1sXHIEbT5PhENwekRsKehOQqR1006vtEH-7jKuY_jxJd2-Ty8f4T-HEjE38Ki_WkdiuQaKS5lgknJTcZ1Rad1MpJ57KSG0ErMQDay1KZLrd6KPFxqKKPVQjVyl-h_FWUv8I-b8_7TNvMIte-_SlA5PzNkBU8Nkxm-6pTMspSzfNKVt57njmkYiXzVgePkZW-KM0A3gSAqaC7cHq4xjYEAxcZsoCpDVkgZJDjlgNY61GlOqXWqAtIDeBdj8uLx_-e_LPrR3sJd7d2vo3UaHs8XIV7LGySeGFoDRbnsxP3HO6YX_ODZvYibrcE9m4ar2e82WbN |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VghA98EZdKJADiANYG9uJnVSqUKGsqLZa9QBSb8bxo1Rqs9vNFsRf66_r2EnaooreeuDqxJYdf575Jp4HwBuN1loubEo8zXISCDvBJkekNboqqcmlsbHYhJxMir29cncJTvtYmOBW2cvEKKjt1IR_5EMWmAiCqeRD37lF7G6NPs6OSaggFW5a-3IaLUTG7s9vNN-aje0t3Ou3jI2-fPv8lXQVBojJRLEgLkfZbGhlTJpritMTtjIV57nWMjAZa4yknpeVs17zlNmUa6Q4XjOf4tINx3FvwW3Uwnk4Y2NJei2AtKL1dxRFDMNjfcBOIYYN5YJnBLUjCZXeMyL-UoqxdsBVDXHlqjZqwNGD__nbPYT7He9ONtuD8giWXP0YVi5lY3wCYmeWHJ_o5oDUSOSTkHTlqItSXU_04T6uYvHzKNG1TS5f-z-F7zcy8WewXE9rtwqJRvprmXBScpNRbdF4rZx0Liu5EbQSA6D9virT5VwPpT8OVbS9CqFaLCjEgopYUNjn_XmfWZtx5Nq3PwW4nL8ZsoXHhul8X3XCR1mqeV7JynvPM4cUrWTe6mBJstIXpRnAuwA2FWQaTg_X2IZm4CJDdjC1KQuED3LfcgBrPcJUJ-wadQGvAXzoMXrx-N-Tf379aK_hLsJU7WxPxi_gHgvnJfoRrcHyYn7iXsId82tx0MxfxZOXwI-bhusZu8Rvhw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Lp+quasi-norm+minimization%3A+algorithm+and+applications&rft.jtitle=EURASIP+journal+on+advances+in+signal+processing&rft.au=Sleem%2C+Omar+M&rft.au=Ashour%2C+M.+E&rft.au=Aybat%2C+N.+S&rft.au=Lagoa%2C+Constantino+M&rft.date=2024-12-01&rft.pub=Springer+Nature+B.V&rft.issn=1687-6172&rft.eissn=1687-6180&rft.volume=2024&rft.issue=1&rft.spage=22&rft_id=info:doi/10.1186%2Fs13634-024-01114-6&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1687-6180&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1687-6180&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1687-6180&client=summon |