Combinatorial targeting of FGF and ErbB receptors blocks growth and metastatic spread of breast cancer models

Introduction Targeting receptor tyrosine kinases (RTKs) with kinase inhibitors is a clinically validated anti-cancer approach. However, blocking one signaling pathway is often not sufficient to cause tumor regression and the effectiveness of individual inhibitors is often short-lived. As alterations...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Breast cancer research : BCR Jg. 15; H. 1; S. R8
Hauptverfasser: Issa, Amine, Gill, Jason W, Heideman, Marinus R, Sahin, Ozgur, Wiemann, Stefan, Dey, Julien H, Hynes, Nancy E
Format: Journal Article
Sprache:Englisch
Veröffentlicht: London BioMed Central 23.01.2013
Schlagworte:
ISSN:1465-542X, 1465-5411, 1465-542X
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Introduction Targeting receptor tyrosine kinases (RTKs) with kinase inhibitors is a clinically validated anti-cancer approach. However, blocking one signaling pathway is often not sufficient to cause tumor regression and the effectiveness of individual inhibitors is often short-lived. As alterations in fibroblast growth factor receptor (FGFR) activity have been implicated in breast cancer, we examined in breast cancer models with autocrine FGFR activity the impact of targeting FGFRs in vivo with a selective kinase inhibitor in combination with an inhibitor of PI3K/mTOR or with a pan-ErbB inhibitor. Methods Using 4T1 or 67NR models of basal-like breast cancer, tumor growth was measured in mice treated with an FGFR inhibitor (dovitinib/TKI258), a PI3K/mTOR inhibitor (NVP-BEZ235) or a pan-ErbB inhibitor (AEE788) individually or in combination. To uncover mechanisms underlying inhibitor action, signaling pathway activity was examined in tumor lysates and transcriptome analysis carried out to identify pathways upregulated by FGFR inhibition. Anti-phosphotyrosine receptor antibody arrays (P-Tyr RTK) were also used to screen 4T1 tumors. Results The combination of dovitinib + NVP-BEZ235 causes tumor stasis and strong down-regulation of the FRS2/Erk and PI3K/Akt/mTOR signaling pathways. P-Tyr RTK arrays identified high levels of P-EGFR and P-ErbB2 in 4T1 tumors. Testing AEE788 in the tumor models revealed that the combination of dovitinib + AEE788 resulted in blockade of the PI3K/Akt/mTOR pathway, prolonged tumor stasis and in the 4T1 model, a significant decrease in lung metastasis. The results show that in vivo these breast cancer models become dependent upon co-activation of FGFR and ErbB receptors for PI3K pathway activity. Conclusions The work presented here shows that in the breast cancer models examined, the combination of dovitinib + NVP-BEZ235 or dovitinib + AEE788 results in strong inhibition of tumor growth and a block in metastatic spread. Only these combinations strongly down-regulate the FGFR/FRS2/Erk and PI3K/Akt/mTOR signaling pathways. The resultant decrease in mitosis and increase in apoptosis was consistently stronger in the dovitinib + AEE788 treatment-group, suggesting that targeting ErbB receptors has broader downstream effects compared to targeting only PI3K/mTOR. Considering that sub-classes of human breast tumors co-express ErbB receptors and FGFRs, these results have implications for targeted therapy.
AbstractList Targeting receptor tyrosine kinases (RTKs) with kinase inhibitors is a clinically validated anti-cancer approach. However, blocking one signaling pathway is often not sufficient to cause tumor regression and the effectiveness of individual inhibitors is often short-lived. As alterations in fibroblast growth factor receptor (FGFR) activity have been implicated in breast cancer, we examined in breast cancer models with autocrine FGFR activity the impact of targeting FGFRs in vivo with a selective kinase inhibitor in combination with an inhibitor of PI3K/mTOR or with a pan-ErbB inhibitor.INTRODUCTIONTargeting receptor tyrosine kinases (RTKs) with kinase inhibitors is a clinically validated anti-cancer approach. However, blocking one signaling pathway is often not sufficient to cause tumor regression and the effectiveness of individual inhibitors is often short-lived. As alterations in fibroblast growth factor receptor (FGFR) activity have been implicated in breast cancer, we examined in breast cancer models with autocrine FGFR activity the impact of targeting FGFRs in vivo with a selective kinase inhibitor in combination with an inhibitor of PI3K/mTOR or with a pan-ErbB inhibitor.Using 4T1 or 67NR models of basal-like breast cancer, tumor growth was measured in mice treated with an FGFR inhibitor (dovitinib/TKI258), a PI3K/mTOR inhibitor (NVP-BEZ235) or a pan-ErbB inhibitor (AEE788) individually or in combination. To uncover mechanisms underlying inhibitor action, signaling pathway activity was examined in tumor lysates and transcriptome analysis carried out to identify pathways upregulated by FGFR inhibition. Anti-phosphotyrosine receptor antibody arrays (P-Tyr RTK) were also used to screen 4T1 tumors.METHODSUsing 4T1 or 67NR models of basal-like breast cancer, tumor growth was measured in mice treated with an FGFR inhibitor (dovitinib/TKI258), a PI3K/mTOR inhibitor (NVP-BEZ235) or a pan-ErbB inhibitor (AEE788) individually or in combination. To uncover mechanisms underlying inhibitor action, signaling pathway activity was examined in tumor lysates and transcriptome analysis carried out to identify pathways upregulated by FGFR inhibition. Anti-phosphotyrosine receptor antibody arrays (P-Tyr RTK) were also used to screen 4T1 tumors.The combination of dovitinib + NVP-BEZ235 causes tumor stasis and strong down-regulation of the FRS2/Erk and PI3K/Akt/mTOR signaling pathways. P-Tyr RTK arrays identified high levels of P-EGFR and P-ErbB2 in 4T1 tumors. Testing AEE788 in the tumor models revealed that the combination of dovitinib + AEE788 resulted in blockade of the PI3K/Akt/mTOR pathway, prolonged tumor stasis and in the 4T1 model, a significant decrease in lung metastasis. The results show that in vivo these breast cancer models become dependent upon co-activation of FGFR and ErbB receptors for PI3K pathway activity.RESULTSThe combination of dovitinib + NVP-BEZ235 causes tumor stasis and strong down-regulation of the FRS2/Erk and PI3K/Akt/mTOR signaling pathways. P-Tyr RTK arrays identified high levels of P-EGFR and P-ErbB2 in 4T1 tumors. Testing AEE788 in the tumor models revealed that the combination of dovitinib + AEE788 resulted in blockade of the PI3K/Akt/mTOR pathway, prolonged tumor stasis and in the 4T1 model, a significant decrease in lung metastasis. The results show that in vivo these breast cancer models become dependent upon co-activation of FGFR and ErbB receptors for PI3K pathway activity.The work presented here shows that in the breast cancer models examined, the combination of dovitinib + NVP-BEZ235 or dovitinib + AEE788 results in strong inhibition of tumor growth and a block in metastatic spread. Only these combinations strongly down-regulate the FGFR/FRS2/Erk and PI3K/Akt/mTOR signaling pathways. The resultant decrease in mitosis and increase in apoptosis was consistently stronger in the dovitinib + AEE788 treatment-group, suggesting that targeting ErbB receptors has broader downstream effects compared to targeting only PI3K/mTOR. Considering that sub-classes of human breast tumors co-express ErbB receptors and FGFRs, these results have implications for targeted therapy.CONCLUSIONSThe work presented here shows that in the breast cancer models examined, the combination of dovitinib + NVP-BEZ235 or dovitinib + AEE788 results in strong inhibition of tumor growth and a block in metastatic spread. Only these combinations strongly down-regulate the FGFR/FRS2/Erk and PI3K/Akt/mTOR signaling pathways. The resultant decrease in mitosis and increase in apoptosis was consistently stronger in the dovitinib + AEE788 treatment-group, suggesting that targeting ErbB receptors has broader downstream effects compared to targeting only PI3K/mTOR. Considering that sub-classes of human breast tumors co-express ErbB receptors and FGFRs, these results have implications for targeted therapy.
Targeting receptor tyrosine kinases (RTKs) with kinase inhibitors is a clinically validated anti-cancer approach. However, blocking one signaling pathway is often not sufficient to cause tumor regression and the effectiveness of individual inhibitors is often short-lived. As alterations in fibroblast growth factor receptor (FGFR) activity have been implicated in breast cancer, we examined in breast cancer models with autocrine FGFR activity the impact of targeting FGFRs in vivo with a selective kinase inhibitor in combination with an inhibitor of PI3K/mTOR or with a pan-ErbB inhibitor. Using 4T1 or 67NR models of basal-like breast cancer, tumor growth was measured in mice treated with an FGFR inhibitor (dovitinib/TKI258), a PI3K/mTOR inhibitor (NVP-BEZ235) or a pan-ErbB inhibitor (AEE788) individually or in combination. To uncover mechanisms underlying inhibitor action, signaling pathway activity was examined in tumor lysates and transcriptome analysis carried out to identify pathways upregulated by FGFR inhibition. Anti-phosphotyrosine receptor antibody arrays (P-Tyr RTK) were also used to screen 4T1 tumors. The combination of dovitinib + NVP-BEZ235 causes tumor stasis and strong down-regulation of the FRS2/Erk and PI3K/Akt/mTOR signaling pathways. P-Tyr RTK arrays identified high levels of P-EGFR and P-ErbB2 in 4T1 tumors. Testing AEE788 in the tumor models revealed that the combination of dovitinib + AEE788 resulted in blockade of the PI3K/Akt/mTOR pathway, prolonged tumor stasis and in the 4T1 model, a significant decrease in lung metastasis. The results show that in vivo these breast cancer models become dependent upon co-activation of FGFR and ErbB receptors for PI3K pathway activity. The work presented here shows that in the breast cancer models examined, the combination of dovitinib + NVP-BEZ235 or dovitinib + AEE788 results in strong inhibition of tumor growth and a block in metastatic spread. Only these combinations strongly down-regulate the FGFR/FRS2/Erk and PI3K/Akt/mTOR signaling pathways. The resultant decrease in mitosis and increase in apoptosis was consistently stronger in the dovitinib + AEE788 treatment-group, suggesting that targeting ErbB receptors has broader downstream effects compared to targeting only PI3K/mTOR. Considering that sub-classes of human breast tumors co-express ErbB receptors and FGFRs, these results have implications for targeted therapy.
Introduction Targeting receptor tyrosine kinases (RTKs) with kinase inhibitors is a clinically validated anti-cancer approach. However, blocking one signaling pathway is often not sufficient to cause tumor regression and the effectiveness of individual inhibitors is often short-lived. As alterations in fibroblast growth factor receptor (FGFR) activity have been implicated in breast cancer, we examined in breast cancer models with autocrine FGFR activity the impact of targeting FGFRs in vivo with a selective kinase inhibitor in combination with an inhibitor of PI3K/mTOR or with a pan-ErbB inhibitor. Methods Using 4T1 or 67NR models of basal-like breast cancer, tumor growth was measured in mice treated with an FGFR inhibitor (dovitinib/TKI258), a PI3K/mTOR inhibitor (NVP-BEZ235) or a pan-ErbB inhibitor (AEE788) individually or in combination. To uncover mechanisms underlying inhibitor action, signaling pathway activity was examined in tumor lysates and transcriptome analysis carried out to identify pathways upregulated by FGFR inhibition. Anti-phosphotyrosine receptor antibody arrays (P-Tyr RTK) were also used to screen 4T1 tumors. Results The combination of dovitinib + NVP-BEZ235 causes tumor stasis and strong down-regulation of the FRS2/Erk and PI3K/Akt/mTOR signaling pathways. P-Tyr RTK arrays identified high levels of P-EGFR and P-ErbB2 in 4T1 tumors. Testing AEE788 in the tumor models revealed that the combination of dovitinib + AEE788 resulted in blockade of the PI3K/Akt/mTOR pathway, prolonged tumor stasis and in the 4T1 model, a significant decrease in lung metastasis. The results show that in vivo these breast cancer models become dependent upon co-activation of FGFR and ErbB receptors for PI3K pathway activity. Conclusions The work presented here shows that in the breast cancer models examined, the combination of dovitinib + NVP-BEZ235 or dovitinib + AEE788 results in strong inhibition of tumor growth and a block in metastatic spread. Only these combinations strongly down-regulate the FGFR/FRS2/Erk and PI3K/Akt/mTOR signaling pathways. The resultant decrease in mitosis and increase in apoptosis was consistently stronger in the dovitinib + AEE788 treatment-group, suggesting that targeting ErbB receptors has broader downstream effects compared to targeting only PI3K/mTOR. Considering that sub-classes of human breast tumors co-express ErbB receptors and FGFRs, these results have implications for targeted therapy.
ArticleNumber R8
Author Issa, Amine
Wiemann, Stefan
Gill, Jason W
Heideman, Marinus R
Dey, Julien H
Hynes, Nancy E
Sahin, Ozgur
AuthorAffiliation 1 Mechanisms of Cancer, Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, Basel 4058, Switzerland
3 Current address: Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston TX 77030, USA
4 University of Basel, Petersplatz 1, Basel 4003, Switzerland
5 Current address: Nestlé Research Center, Vers-chez-les-Blanc, 1000 Lausanne 26, Switzerland
2 Division of Molecular Genome analysis, German Cancer Research Center, Im Neuenheimer Feld 580, Heidelberg 69120, Germany
AuthorAffiliation_xml – name: 4 University of Basel, Petersplatz 1, Basel 4003, Switzerland
– name: 3 Current address: Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston TX 77030, USA
– name: 5 Current address: Nestlé Research Center, Vers-chez-les-Blanc, 1000 Lausanne 26, Switzerland
– name: 2 Division of Molecular Genome analysis, German Cancer Research Center, Im Neuenheimer Feld 580, Heidelberg 69120, Germany
– name: 1 Mechanisms of Cancer, Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, Basel 4058, Switzerland
Author_xml – sequence: 1
  givenname: Amine
  surname: Issa
  fullname: Issa, Amine
  organization: Mechanisms of Cancer, Friedrich Miescher Institute for Biomedical Research
– sequence: 2
  givenname: Jason W
  surname: Gill
  fullname: Gill, Jason W
  organization: Mechanisms of Cancer, Friedrich Miescher Institute for Biomedical Research
– sequence: 3
  givenname: Marinus R
  surname: Heideman
  fullname: Heideman, Marinus R
  organization: Mechanisms of Cancer, Friedrich Miescher Institute for Biomedical Research
– sequence: 4
  givenname: Ozgur
  surname: Sahin
  fullname: Sahin, Ozgur
  organization: Division of Molecular Genome analysis, German Cancer Research Center, Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center
– sequence: 5
  givenname: Stefan
  surname: Wiemann
  fullname: Wiemann, Stefan
  organization: Division of Molecular Genome analysis, German Cancer Research Center
– sequence: 6
  givenname: Julien H
  surname: Dey
  fullname: Dey, Julien H
  organization: Mechanisms of Cancer, Friedrich Miescher Institute for Biomedical Research, University of Basel, Nestlé Research Center
– sequence: 7
  givenname: Nancy E
  surname: Hynes
  fullname: Hynes, Nancy E
  email: nancy.hynes@fmi.ch
  organization: Mechanisms of Cancer, Friedrich Miescher Institute for Biomedical Research, University of Basel
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23343422$$D View this record in MEDLINE/PubMed
BookMark eNplkUFvEzEQhS1URNuA-AfIN3pZWNvreH1BgqgpSJV6KRI3yzueTV127WA7VPx7HJqiQk8z0nx-z3rvlByFGJCQ16x9x1i_fD9AEkLpZ-SEdUvZyI5_O3q0H5PTnG_blqle9i_IMReiEx3nJ2RexXnwwZaYvJ1osWmDxYcNjSNdX6ypDY6ep-ETTQi4rVSmwxThe6abFO_KzR9gxmJzscUDzduE1u1fD3XJhYINgInO0eGUX5Lno50yvjrMBfm6Pr9efW4ury6-rD5eNtAt-9KgcNq1wBXrhZbcIreCtcLCyEFLOUpQPaDWzGqnO3DaKtWNoLB3DlUnxYJ8uNfd7oYZHWAoyU5mm_xs0y8TrTf_XoK_MZv404il4n21WpCzg0CKP3aYi5l9BpwmGzDusmGyE1rXBHVF3zz2-mvykHEFmnsAUsw54WjA78OKe2s_GdaafYfm0GHl3_7HP0g-JQ-_rKnXzjCZ27hLoSb7BP0NLgur1w
CitedBy_id crossref_primary_10_1158_1078_0432_CCR_16_2287
crossref_primary_10_1073_pnas_1816410116
crossref_primary_10_1016_j_jsbmb_2021_105979
crossref_primary_10_1016_j_yexmp_2014_06_011
crossref_primary_10_1038_s41419_024_06637_2
crossref_primary_10_1186_s13058_015_0649_1
crossref_primary_10_4161_15384101_2014_995050
crossref_primary_10_1007_s10549_016_3737_8
crossref_primary_10_1158_0008_5472_CAN_13_2469
crossref_primary_10_1186_s13058_017_0807_8
crossref_primary_10_1016_j_ctrv_2016_03_015
crossref_primary_10_2217_fon_14_208
crossref_primary_10_2147_CMAR_S286275
crossref_primary_10_1177_1533034614568753
crossref_primary_10_3389_fcell_2020_00415
crossref_primary_10_1007_s13277_015_4334_x
crossref_primary_10_1111_cas_13415
crossref_primary_10_1586_17446651_2013_811910
crossref_primary_10_1016_j_tranon_2020_100856
crossref_primary_10_1093_annonc_mdt419
crossref_primary_10_2217_bmt_14_15
crossref_primary_10_1038_onc_2016_427
crossref_primary_10_1586_14737140_2015_961429
crossref_primary_10_3390_cancers11050718
crossref_primary_10_1371_journal_pone_0126483
crossref_primary_10_3390_biology13110920
crossref_primary_10_1007_s10549_015_3301_y
crossref_primary_10_1517_14728222_2014_898064
crossref_primary_10_3389_fonc_2022_1019025
crossref_primary_10_3390_cells7070076
crossref_primary_10_3892_ol_2020_11858
crossref_primary_10_1038_onc_2013_310
crossref_primary_10_1080_13543784_2017_1287173
crossref_primary_10_1007_s10123_023_00348_y
crossref_primary_10_15252_embj_2020107182
crossref_primary_10_1016_j_saa_2025_126602
crossref_primary_10_1007_s10549_013_2829_y
crossref_primary_10_1177_1758835920940948
crossref_primary_10_3390_cancers12103029
crossref_primary_10_1002_1878_0261_12076
crossref_primary_10_1098_rsob_210373
crossref_primary_10_1155_2019_2024648
crossref_primary_10_1073_pnas_1403438111
crossref_primary_10_4103_IJPM_IJPM_87_20
crossref_primary_10_1038_s41598_017_11751_7
crossref_primary_10_1158_1078_0432_CCR_14_2329
crossref_primary_10_1016_j_jbo_2019_100232
crossref_primary_10_1038_s43018_024_00882_2
crossref_primary_10_1016_j_biocel_2013_09_017
crossref_primary_10_1073_pnas_1611532113
crossref_primary_10_1186_bcr3623
Cites_doi 10.1158/0008-5472.CAN-09-4479
10.1074/jbc.M404252200
10.1038/sj.onc.1202392
10.1158/1078-0432.CCR-04-2129
10.1038/nrclinonc.2011.177
10.1371/journal.pone.0014117
10.1021/jm2006222
10.1038/nrc2780
10.1128/MCB.18.9.5042
10.1038/onc.2010.626
10.1158/0008-5472.CAN-03-3681
10.1158/0008-5472.CAN-08-1044
10.1073/pnas.1537685100
10.1016/j.bbrc.2011.03.002
10.1038/nature11017
10.1093/nar/gkn923
10.1038/nrc1477
10.1038/sj.onc.1207816
10.1158/0008-5472.CAN-06-4685
10.1038/nrc1609
10.1126/scitranslmed.3001539
10.1158/0008-5472.CAN-10-0918
10.1016/j.cell.2010.06.011
10.1126/scitranslmed.3000389
10.1016/j.ccr.2010.10.031
10.1038/nature11412
10.1038/nature11249
10.1016/S1535-6108(02)00097-1
10.1128/MCB.20.9.3210-3223.2000
10.1093/nar/gkq973
10.1186/bcr1665
10.1126/science.1142946
10.1158/2159-8290.CD-11-0106
10.1158/1535-7163.MCT-08-0017
10.1158/1078-0432.CCR-04-1665
ContentType Journal Article
Copyright Issa et al.; licensee BioMed Central Ltd. 2013
Copyright © 2013 Issa et al.; licensee BioMed Central Ltd. 2013 Issa et al.; licensee BioMed Central Ltd.
Copyright_xml – notice: Issa et al.; licensee BioMed Central Ltd. 2013
– notice: Copyright © 2013 Issa et al.; licensee BioMed Central Ltd. 2013 Issa et al.; licensee BioMed Central Ltd.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1186/bcr3379
DatabaseName Springer Nature OA Free Journals (WRLC)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
EISSN 1465-542X
EndPage R8
ExternalDocumentID PMC3672810
23343422
10_1186_bcr3379
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GroupedDBID ---
04C
0R~
23N
2WC
4.4
53G
5GY
5VS
6J9
AAFWJ
AAJSJ
AASML
AAWTL
ACGFO
ACGFS
ACJQM
ACMJI
ACPRK
ADBBV
ADFRT
ADUKV
AENEX
AFPKN
AHBYD
AHMBA
AHSBF
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIAM
AOIJS
BAPOH
BAWUL
BCNDV
BFQNJ
BMC
BMSDO
C6C
CS3
DIK
DU5
E3Z
EBD
EBLON
EBS
EIHBH
EJD
F5P
GROUPED_DOAJ
GX1
HYE
HZ~
IAO
ICW
IHR
INH
INR
ITC
KQ8
O5R
O5S
O9-
OK1
P2P
PGMZT
PQQKQ
RBZ
ROL
RPM
RSV
SBL
SOJ
TR2
U2A
WOQ
AAYXX
CITATION
ACRMQ
ADINQ
ALIPV
C24
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c468t-e3d9d0c27183952ae2a3103acf2c955f5c78ce991a9d94cd9a774fc7e8dde7453
IEDL.DBID RSV
ISICitedReferencesCount 62
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000320158100017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1465-542X
1465-5411
IngestDate Thu Aug 21 18:09:20 EDT 2025
Fri Sep 05 09:30:37 EDT 2025
Thu Jan 02 22:14:33 EST 2025
Tue Nov 18 22:35:11 EST 2025
Sat Nov 29 03:59:29 EST 2025
Sat Sep 06 07:25:04 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords ErbB Receptor
Fibroblast Growth Factor Receptor Inhibitor
Fibroblast Growth Factor Receptor
67NR Cell
Circulate Tumor Cell
Language English
License This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c468t-e3d9d0c27183952ae2a3103acf2c955f5c78ce991a9d94cd9a774fc7e8dde7453
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://link.springer.com/10.1186/bcr3379
PMID 23343422
PQID 1543994229
PQPubID 23479
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3672810
proquest_miscellaneous_1543994229
pubmed_primary_23343422
crossref_citationtrail_10_1186_bcr3379
crossref_primary_10_1186_bcr3379
springer_journals_10_1186_bcr3379
PublicationCentury 2000
PublicationDate 20130123
PublicationDateYYYYMMDD 2013-01-23
PublicationDate_xml – month: 1
  year: 2013
  text: 20130123
  day: 23
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Breast cancer research : BCR
PublicationTitleAbbrev Breast Cancer Res
PublicationTitleAlternate Breast Cancer Res
PublicationYear 2013
Publisher BioMed Central
Publisher_xml – name: BioMed Central
References HA Lane (3187_CR27) 2000; 20
SK Marsh (3187_CR38) 1999; 18
SM Maira (3187_CR10) 2008; 7
MA Olayioye (3187_CR17) 1998; 18
JM Wood (3187_CR32) 2000; 60
V Theodorou (3187_CR37) 2004; 23
NE Hynes (3187_CR2) 2005; 5
P Traxler (3187_CR11) 2004; 64
PJ Stephens (3187_CR13) 2012; 486
CR Schnell (3187_CR31) 2008; 68
DB Agus (3187_CR26) 2002; 2
D Szklarczyk (3187_CR15) 2011; 39
HM Stern (3187_CR3) 2012; 4
S Chandarlapaty (3187_CR24) 2011; 19
DN Amin (3187_CR22) 2010; 2
MA Lemmon (3187_CR1) 2010; 141
SH Lee (3187_CR8) 2005; 11
CL Arteaga (3187_CR20) 2012; 9
YW Park (3187_CR21) 2005; 11
KE Ware (3187_CR34) 2010; 5
AC Faber (3187_CR29) 2011; 1
N Turner (3187_CR6) 2010; 10
TR Wilson (3187_CR23) 2012; 487
MM Mueller (3187_CR18) 2004; 4
P Sini (3187_CR30) 2008; 68
V Serra (3187_CR25) 2011; 30
JM Stommel (3187_CR33) 2007; 318
S Elbauomy Elsheikh (3187_CR4) 2007; 9
NE Hynes (3187_CR5) 2010; 70
W Huang da (3187_CR16) 2009; 37
CJ Aslakson (3187_CR7) 1992; 52
JH Dey (3187_CR9) 2010; 70
Cancer Genome Atlas Network (3187_CR12) 2012; 490
BA Pulaski (3187_CR14) 2001
AB Motoyama (3187_CR28) 2002; 62
K Azuma (3187_CR36) 2011; 407
M Koziczak (3187_CR35) 2004; 279
V Guagnano (3187_CR39) 2011; 54
T Holbro (3187_CR19) 2003; 100
12853564 - Proc Natl Acad Sci U S A. 2003 Jul 22;100(15):8933-8
9710588 - Mol Cell Biol. 1998 Sep;18(9):5042-51
20570901 - Cancer Res. 2010 Jul 1;70(13):5199-202
10757805 - Mol Cell Biol. 2000 May;20(9):3210-23
18606717 - Mol Cancer Ther. 2008 Jul;7(7):1851-63
10023681 - Oncogene. 1999 Jan 28;18(4):1053-60
20602996 - Cell. 2010 Jun 25;141(7):1117-34
15756022 - Clin Cancer Res. 2005 Mar 1;11(5):1963-73
22763448 - Nature. 2012 Jul 26;487(7408):505-9
18701483 - Cancer Res. 2008 Aug 15;68(16):6598-607
21215704 - Cancer Cell. 2011 Jan 18;19(1):58-71
22145099 - Cancer Discov. 2011 Sep;1(4):352-65
19033363 - Nucleic Acids Res. 2009 Jan;37(1):1-13
15864276 - Nat Rev Cancer. 2005 May;5(5):341-54
21936542 - J Med Chem. 2011 Oct 27;54(20):7066-83
22124364 - Nat Rev Clin Oncol. 2012 Jan;9(1):16-32
21278786 - Oncogene. 2011 Jun 2;30(22):2547-57
17872411 - Science. 2007 Oct 12;318(5848):287-90
10786682 - Cancer Res. 2000 Apr 15;60(8):2178-89
1540948 - Cancer Res. 1992 Mar 15;52(6):1399-405
15377668 - J Biol Chem. 2004 Nov 26;279(48):50004-11
12036928 - Cancer Res. 2002 Jun 1;62(11):3151-8
15208658 - Oncogene. 2004 Aug 12;23(36):6047-55
15897558 - Clin Cancer Res. 2005 May 15;11(10):3633-41
15516957 - Nat Rev Cancer. 2004 Nov;4(11):839-49
20371474 - Sci Transl Med. 2010 Jan 27;2(16):16ra7
18316624 - Cancer Res. 2008 Mar 1;68(5):1581-92
15256466 - Cancer Res. 2004 Jul 15;64(14):4931-41
22722201 - Nature. 2012 Jun 21;486(7403):400-4
17397528 - Breast Cancer Res. 2007;9(2):R23
21152424 - PLoS One. 2010;5(11):e14117
12204533 - Cancer Cell. 2002 Aug;2(2):127-37
20460524 - Cancer Res. 2010 May 15;70(10):4151-62
23000897 - Nature. 2012 Oct 4;490(7418):61-70
21377448 - Biochem Biophys Res Commun. 2011 Apr 1;407(1):219-24
21045058 - Nucleic Acids Res. 2011 Jan;39(Database issue):D561-8
20094046 - Nat Rev Cancer. 2010 Feb;10(2):116-29
18432775 - Curr Protoc Immunol. 2001 May;Chapter 20:Unit 20.2
22461643 - Sci Transl Med. 2012 Mar 28;4(127):127rv2
References_xml – volume: 70
  start-page: 4151
  year: 2010
  ident: 3187_CR9
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-09-4479
– volume: 52
  start-page: 1399
  year: 1992
  ident: 3187_CR7
  publication-title: Cancer Res
– volume: 279
  start-page: 50004
  year: 2004
  ident: 3187_CR35
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M404252200
– volume: 62
  start-page: 3151
  year: 2002
  ident: 3187_CR28
  publication-title: Cancer Res
– volume: 18
  start-page: 1053
  year: 1999
  ident: 3187_CR38
  publication-title: Oncogene
  doi: 10.1038/sj.onc.1202392
– volume: 11
  start-page: 3633
  year: 2005
  ident: 3187_CR8
  publication-title: Clin Cancer Res
  doi: 10.1158/1078-0432.CCR-04-2129
– volume: 9
  start-page: 16
  year: 2012
  ident: 3187_CR20
  publication-title: Nat Rev Clin Oncol
  doi: 10.1038/nrclinonc.2011.177
– volume: 5
  start-page: e14117
  year: 2010
  ident: 3187_CR34
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0014117
– volume: 54
  start-page: 7066
  year: 2011
  ident: 3187_CR39
  publication-title: J Med Chem
  doi: 10.1021/jm2006222
– volume: 10
  start-page: 116
  year: 2010
  ident: 3187_CR6
  publication-title: Nat Rev Cancer
  doi: 10.1038/nrc2780
– volume: 18
  start-page: 5042
  year: 1998
  ident: 3187_CR17
  publication-title: Mol Cell Biol
  doi: 10.1128/MCB.18.9.5042
– volume: 30
  start-page: 2547
  year: 2011
  ident: 3187_CR25
  publication-title: Oncogene
  doi: 10.1038/onc.2010.626
– volume: 64
  start-page: 4931
  year: 2004
  ident: 3187_CR11
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-03-3681
– volume: 68
  start-page: 6598
  year: 2008
  ident: 3187_CR31
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-08-1044
– volume: 100
  start-page: 8933
  year: 2003
  ident: 3187_CR19
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1537685100
– volume: 407
  start-page: 219
  year: 2011
  ident: 3187_CR36
  publication-title: Biochem Biophys Res Commun
  doi: 10.1016/j.bbrc.2011.03.002
– volume: 486
  start-page: 400
  year: 2012
  ident: 3187_CR13
  publication-title: Nature
  doi: 10.1038/nature11017
– volume-title: Curr Protoc Immunol
  year: 2001
  ident: 3187_CR14
– volume: 37
  start-page: 1
  year: 2009
  ident: 3187_CR16
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkn923
– volume: 4
  start-page: 839
  year: 2004
  ident: 3187_CR18
  publication-title: Nat Rev Cancer
  doi: 10.1038/nrc1477
– volume: 23
  start-page: 6047
  year: 2004
  ident: 3187_CR37
  publication-title: Oncogene
  doi: 10.1038/sj.onc.1207816
– volume: 68
  start-page: 1581
  year: 2008
  ident: 3187_CR30
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-06-4685
– volume: 60
  start-page: 2178
  year: 2000
  ident: 3187_CR32
  publication-title: Cancer Res
– volume: 5
  start-page: 341
  year: 2005
  ident: 3187_CR2
  publication-title: Nat Rev Cancer
  doi: 10.1038/nrc1609
– volume: 4
  start-page: 127rv122
  year: 2012
  ident: 3187_CR3
  publication-title: Sci Transl Med
  doi: 10.1126/scitranslmed.3001539
– volume: 70
  start-page: 5199
  year: 2010
  ident: 3187_CR5
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-10-0918
– volume: 141
  start-page: 1117
  year: 2010
  ident: 3187_CR1
  publication-title: Cell
  doi: 10.1016/j.cell.2010.06.011
– volume: 2
  start-page: 16ra17
  year: 2010
  ident: 3187_CR22
  publication-title: Sci Transl Med
  doi: 10.1126/scitranslmed.3000389
– volume: 19
  start-page: 58
  year: 2011
  ident: 3187_CR24
  publication-title: Cancer Cell
  doi: 10.1016/j.ccr.2010.10.031
– volume: 490
  start-page: 61
  year: 2012
  ident: 3187_CR12
  publication-title: Nature
  doi: 10.1038/nature11412
– volume: 487
  start-page: 505
  year: 2012
  ident: 3187_CR23
  publication-title: Nature
  doi: 10.1038/nature11249
– volume: 2
  start-page: 127
  year: 2002
  ident: 3187_CR26
  publication-title: Cancer Cell
  doi: 10.1016/S1535-6108(02)00097-1
– volume: 20
  start-page: 3210
  year: 2000
  ident: 3187_CR27
  publication-title: Mol Cell Biol
  doi: 10.1128/MCB.20.9.3210-3223.2000
– volume: 39
  start-page: D561
  year: 2011
  ident: 3187_CR15
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkq973
– volume: 9
  start-page: R23
  year: 2007
  ident: 3187_CR4
  publication-title: Breast Cancer Res
  doi: 10.1186/bcr1665
– volume: 318
  start-page: 287
  year: 2007
  ident: 3187_CR33
  publication-title: Science
  doi: 10.1126/science.1142946
– volume: 1
  start-page: 352
  year: 2011
  ident: 3187_CR29
  publication-title: Cancer Discov
  doi: 10.1158/2159-8290.CD-11-0106
– volume: 7
  start-page: 1851
  year: 2008
  ident: 3187_CR10
  publication-title: Mol Cancer Ther
  doi: 10.1158/1535-7163.MCT-08-0017
– volume: 11
  start-page: 1963
  year: 2005
  ident: 3187_CR21
  publication-title: Clin Cancer Res
  doi: 10.1158/1078-0432.CCR-04-1665
– reference: 15516957 - Nat Rev Cancer. 2004 Nov;4(11):839-49
– reference: 18432775 - Curr Protoc Immunol. 2001 May;Chapter 20:Unit 20.2
– reference: 1540948 - Cancer Res. 1992 Mar 15;52(6):1399-405
– reference: 21215704 - Cancer Cell. 2011 Jan 18;19(1):58-71
– reference: 12036928 - Cancer Res. 2002 Jun 1;62(11):3151-8
– reference: 12853564 - Proc Natl Acad Sci U S A. 2003 Jul 22;100(15):8933-8
– reference: 22124364 - Nat Rev Clin Oncol. 2012 Jan;9(1):16-32
– reference: 21278786 - Oncogene. 2011 Jun 2;30(22):2547-57
– reference: 10786682 - Cancer Res. 2000 Apr 15;60(8):2178-89
– reference: 17872411 - Science. 2007 Oct 12;318(5848):287-90
– reference: 10757805 - Mol Cell Biol. 2000 May;20(9):3210-23
– reference: 17397528 - Breast Cancer Res. 2007;9(2):R23
– reference: 22145099 - Cancer Discov. 2011 Sep;1(4):352-65
– reference: 15756022 - Clin Cancer Res. 2005 Mar 1;11(5):1963-73
– reference: 23000897 - Nature. 2012 Oct 4;490(7418):61-70
– reference: 22722201 - Nature. 2012 Jun 21;486(7403):400-4
– reference: 20371474 - Sci Transl Med. 2010 Jan 27;2(16):16ra7
– reference: 15256466 - Cancer Res. 2004 Jul 15;64(14):4931-41
– reference: 18701483 - Cancer Res. 2008 Aug 15;68(16):6598-607
– reference: 20602996 - Cell. 2010 Jun 25;141(7):1117-34
– reference: 12204533 - Cancer Cell. 2002 Aug;2(2):127-37
– reference: 18606717 - Mol Cancer Ther. 2008 Jul;7(7):1851-63
– reference: 15864276 - Nat Rev Cancer. 2005 May;5(5):341-54
– reference: 21045058 - Nucleic Acids Res. 2011 Jan;39(Database issue):D561-8
– reference: 19033363 - Nucleic Acids Res. 2009 Jan;37(1):1-13
– reference: 20094046 - Nat Rev Cancer. 2010 Feb;10(2):116-29
– reference: 21936542 - J Med Chem. 2011 Oct 27;54(20):7066-83
– reference: 20460524 - Cancer Res. 2010 May 15;70(10):4151-62
– reference: 10023681 - Oncogene. 1999 Jan 28;18(4):1053-60
– reference: 9710588 - Mol Cell Biol. 1998 Sep;18(9):5042-51
– reference: 20570901 - Cancer Res. 2010 Jul 1;70(13):5199-202
– reference: 22461643 - Sci Transl Med. 2012 Mar 28;4(127):127rv2
– reference: 18316624 - Cancer Res. 2008 Mar 1;68(5):1581-92
– reference: 15208658 - Oncogene. 2004 Aug 12;23(36):6047-55
– reference: 15377668 - J Biol Chem. 2004 Nov 26;279(48):50004-11
– reference: 15897558 - Clin Cancer Res. 2005 May 15;11(10):3633-41
– reference: 21377448 - Biochem Biophys Res Commun. 2011 Apr 1;407(1):219-24
– reference: 21152424 - PLoS One. 2010;5(11):e14117
– reference: 22763448 - Nature. 2012 Jul 26;487(7408):505-9
SSID ssj0017858
Score 2.3147974
Snippet Introduction Targeting receptor tyrosine kinases (RTKs) with kinase inhibitors is a clinically validated anti-cancer approach. However, blocking one signaling...
Targeting receptor tyrosine kinases (RTKs) with kinase inhibitors is a clinically validated anti-cancer approach. However, blocking one signaling pathway is...
SourceID pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage R8
SubjectTerms Animals
Biomedical and Life Sciences
Biomedicine
Breast Neoplasms - drug therapy
Breast Neoplasms - genetics
Breast Neoplasms - pathology
Cancer Research
Cell Proliferation - drug effects
ErbB Receptors - antagonists & inhibitors
ErbB Receptors - genetics
Female
Gene Expression Regulation, Neoplastic - drug effects
Humans
Imidazoles - administration & dosage
Mice
Molecular Targeted Therapy
Oncology
Phosphatidylinositol 3-Kinases - administration & dosage
Phosphatidylinositol 3-Kinases - genetics
Protein Kinase Inhibitors - administration & dosage
Proto-Oncogene Proteins c-akt - genetics
Purines - administration & dosage
Quinolines - administration & dosage
Receptors, Fibroblast Growth Factor - antagonists & inhibitors
Receptors, Fibroblast Growth Factor - genetics
Research Article
Signal Transduction - drug effects
Surgical Oncology
TOR Serine-Threonine Kinases - genetics
Xenograft Model Antitumor Assays
Title Combinatorial targeting of FGF and ErbB receptors blocks growth and metastatic spread of breast cancer models
URI https://link.springer.com/article/10.1186/bcr3379
https://www.ncbi.nlm.nih.gov/pubmed/23343422
https://www.proquest.com/docview/1543994229
https://pubmed.ncbi.nlm.nih.gov/PMC3672810
Volume 15
WOSCitedRecordID wos000320158100017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVADU
  databaseName: BioMed Central Open Access Free
  customDbUrl:
  eissn: 1465-542X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017858
  issn: 1465-542X
  databaseCode: RBZ
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://www.biomedcentral.com/search/
  providerName: BioMedCentral
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1465-542X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017858
  issn: 1465-542X
  databaseCode: DOA
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVAVX
  databaseName: Springer LINK
  customDbUrl:
  eissn: 1465-542X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017858
  issn: 1465-542X
  databaseCode: RSV
  dateStart: 19991201
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB4VWlVcSgulbKErI1Xcou76ETtHqNj20KKKPrTqJfIrsKKbRUmoxL9n7CQrlr20l1w8SZzM53l4xjMA75WloZ87T6hwo4QXY5cYRFZiUBVZkSICdDwo_EWen6vpNPvWFYuu-2z3PiQZJXVc1ir9YGzFmMw24CnqOBXW4MX3X8uAgVRCtWdiHxKvKps1C3I9EfJRNDQqmcn2f0zvJbzoLEly0rL-FTzx5Q7snpToRc_vyDGJuZ1x03wHnn_tQui7MEcJgN5w8LUReqTNBMcXkUVBJp8mRJeOnFXmlKAo9DehFw8xqPCua3KJHntzFQnmvtHhKNLMEpwmwiTcbUJ-e0NswFFFYoud-jX8nJz9-Pg56XouJJanqkk8c5kbWSqD5SSo9lSHTmTaFtRmQhTCSmU9GpU6cxm3LtNoPxZWeoVyUnLB9mCzXJR-H0ghhEHxwLmzBlVgaqwe6axw6PqOVUFHAzjumZPbriB56IvxJ4-OiUrz7p8OgCwJb9oaHOskRz13c1wfIeihS7-4rXM0EdEG45QizZuW28uHUMY4w6EByBUcLAlC7e3VkXJ2FWtws1RSNcZvOOrRkHeLv348t7f_QHMAWzT22RgnlB3CZlPd-nfwzP5tZnU1hA05VcO4XYDXi9Pfwwj-ex4eBQ4
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9NAEB6VgoALlJZHSqFbCfVmkezDuz4W1LSINEJQUG_WvkwjiFPZLhL_vrNrO2qaC5x3bK89387D8wJ4pywN89x5QoUbJrwYucQgshKDqsiKFBGgY6HwRE6n6uIi-9I1i677bPc-JBkldTzWKn1vbMWYzO7BfY5qKmTvff32YxkwkEqotib2NvGqslmzINcTIe9EQ6OSGT_9j-1twZPOkiRHLeufwYYvt2HnqEQvev6XHJKY2xl_mm_Dw7MuhL4Dc5QA6A0HXxuhR9pMcHwQWRRkfDImunTkuDIfCIpCfxVm8RCDCu9XTX6ix95cRoK5b3QoRZpZgttEmISrTchvb4gNOKpIHLFTP4fv4-Pzj6dJN3MhsTxVTeKZy9zQUhksJ0G1pzpMItO2oDYTohBWKuvRqNSZy7h1mUb7sbDSK5STkgv2AjbLRelfASmEMCgeOHfWoApMjdVDnRUOXd-RKuhwAIc9c3LbNSQPczF-59ExUWnefdMBkCXhVduDY53koOdujucjBD106RfXdY4mItpgnFKkedlye3kTyhhnuDQAuYKDJUHovb26Us4uYw9ulkqqRvgOBz0a8u7w13f3tvsPNPvw6PT8bJJPPk0_v4bHNM7cGCWU7cFmU137N_DA_mlmdfU2wv4GAjsFBg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Jb9NAFH4qBVVcKLQsoSxTCfVmNZnFMz62pQZEiSqxqDdrPAuNIE5ku0j8e96M7Yg0F8R5XpKJ55u3-C0fwBtlaOBz5wkVdpxwP7FJichKSjRFRqSIAB0bhS_kdKqurrLLLRBDL0ysdh9Skl1PQ5jSVLXHS-u7K67S49LUjMnsDtzlgSkoBOmfv62SB1IJ1fXH_i28bng2vMnNoshbmdFocPLd_9zqQ3jQe5jkpIPEI9hy1R7sn1QYXc9_kyMSaz7jy_Q92PnUp9b3YY6aAaPkEIMjJElXIY4_Shae5O9yoitLzuvylKCKdMvA0UNKNIQ_GvIdI_n2OgrMXatDi9LMENwywid8ugx17y0xAV81idQ7zWP4mp9_OXuf9FwMieGpahPHbGbHhsrgUQmqHdWBoUwbT00mhBdGKuPQ2dSZzbixmUa_0hvpFOpPyQV7AtvVonLPgHghSlQbnFtTomlMS6PHOvMWQ-KJ8nQ8gqPhoArTDyoPfBk_ixiwqLTon-kIyEpw2c3m2BQ5HE66wHsTkiG6coubpkDXEX0zTinKPO1OfvUllDHOcGkEcg0TK4Ewk3t9pZpdx9ncLJVUTfA_HA7IKHql0Nze2_N_kHkNO5dv8-Liw_TjAdynkYpjklD2Arbb-sa9hHvmVztr6lfxBvwBAKUN6g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Combinatorial+targeting+of+FGF+and+ErbB+receptors+blocks+growth+and+metastatic+spread+of+breast+cancer+models&rft.jtitle=Breast+cancer+research+%3A+BCR&rft.au=Issa%2C+Amine&rft.au=Gill%2C+Jason+W&rft.au=Heideman%2C+Marinus+R&rft.au=Sahin%2C+Ozgur&rft.date=2013-01-23&rft.issn=1465-542X&rft.eissn=1465-542X&rft.volume=15&rft.issue=1&rft.spage=R8&rft_id=info:doi/10.1186%2Fbcr3379&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1465-542X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1465-542X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1465-542X&client=summon