Combinatorial targeting of FGF and ErbB receptors blocks growth and metastatic spread of breast cancer models
Introduction Targeting receptor tyrosine kinases (RTKs) with kinase inhibitors is a clinically validated anti-cancer approach. However, blocking one signaling pathway is often not sufficient to cause tumor regression and the effectiveness of individual inhibitors is often short-lived. As alterations...
Uloženo v:
| Vydáno v: | Breast cancer research : BCR Ročník 15; číslo 1; s. R8 |
|---|---|
| Hlavní autoři: | , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
London
BioMed Central
23.01.2013
|
| Témata: | |
| ISSN: | 1465-542X, 1465-5411, 1465-542X |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Introduction
Targeting receptor tyrosine kinases (RTKs) with kinase inhibitors is a clinically validated anti-cancer approach. However, blocking one signaling pathway is often not sufficient to cause tumor regression and the effectiveness of individual inhibitors is often short-lived. As alterations in fibroblast growth factor receptor (FGFR) activity have been implicated in breast cancer, we examined in breast cancer models with autocrine FGFR activity the impact of targeting FGFRs in vivo with a selective kinase inhibitor in combination with an inhibitor of PI3K/mTOR or with a pan-ErbB inhibitor.
Methods
Using 4T1 or 67NR models of basal-like breast cancer, tumor growth was measured in mice treated with an FGFR inhibitor (dovitinib/TKI258), a PI3K/mTOR inhibitor (NVP-BEZ235) or a pan-ErbB inhibitor (AEE788) individually or in combination. To uncover mechanisms underlying inhibitor action, signaling pathway activity was examined in tumor lysates and transcriptome analysis carried out to identify pathways upregulated by FGFR inhibition. Anti-phosphotyrosine receptor antibody arrays (P-Tyr RTK) were also used to screen 4T1 tumors.
Results
The combination of dovitinib + NVP-BEZ235 causes tumor stasis and strong down-regulation of the FRS2/Erk and PI3K/Akt/mTOR signaling pathways. P-Tyr RTK arrays identified high levels of P-EGFR and P-ErbB2 in 4T1 tumors. Testing AEE788 in the tumor models revealed that the combination of dovitinib + AEE788 resulted in blockade of the PI3K/Akt/mTOR pathway, prolonged tumor stasis and in the 4T1 model, a significant decrease in lung metastasis. The results show that
in vivo
these breast cancer models become dependent upon co-activation of FGFR and ErbB receptors for PI3K pathway activity.
Conclusions
The work presented here shows that in the breast cancer models examined, the combination of dovitinib + NVP-BEZ235 or dovitinib + AEE788 results in strong inhibition of tumor growth and a block in metastatic spread. Only these combinations strongly down-regulate the FGFR/FRS2/Erk and PI3K/Akt/mTOR signaling pathways. The resultant decrease in mitosis and increase in apoptosis was consistently stronger in the dovitinib + AEE788 treatment-group, suggesting that targeting ErbB receptors has broader downstream effects compared to targeting only PI3K/mTOR. Considering that sub-classes of human breast tumors co-express ErbB receptors and FGFRs, these results have implications for targeted therapy. |
|---|---|
| AbstractList | Targeting receptor tyrosine kinases (RTKs) with kinase inhibitors is a clinically validated anti-cancer approach. However, blocking one signaling pathway is often not sufficient to cause tumor regression and the effectiveness of individual inhibitors is often short-lived. As alterations in fibroblast growth factor receptor (FGFR) activity have been implicated in breast cancer, we examined in breast cancer models with autocrine FGFR activity the impact of targeting FGFRs in vivo with a selective kinase inhibitor in combination with an inhibitor of PI3K/mTOR or with a pan-ErbB inhibitor.INTRODUCTIONTargeting receptor tyrosine kinases (RTKs) with kinase inhibitors is a clinically validated anti-cancer approach. However, blocking one signaling pathway is often not sufficient to cause tumor regression and the effectiveness of individual inhibitors is often short-lived. As alterations in fibroblast growth factor receptor (FGFR) activity have been implicated in breast cancer, we examined in breast cancer models with autocrine FGFR activity the impact of targeting FGFRs in vivo with a selective kinase inhibitor in combination with an inhibitor of PI3K/mTOR or with a pan-ErbB inhibitor.Using 4T1 or 67NR models of basal-like breast cancer, tumor growth was measured in mice treated with an FGFR inhibitor (dovitinib/TKI258), a PI3K/mTOR inhibitor (NVP-BEZ235) or a pan-ErbB inhibitor (AEE788) individually or in combination. To uncover mechanisms underlying inhibitor action, signaling pathway activity was examined in tumor lysates and transcriptome analysis carried out to identify pathways upregulated by FGFR inhibition. Anti-phosphotyrosine receptor antibody arrays (P-Tyr RTK) were also used to screen 4T1 tumors.METHODSUsing 4T1 or 67NR models of basal-like breast cancer, tumor growth was measured in mice treated with an FGFR inhibitor (dovitinib/TKI258), a PI3K/mTOR inhibitor (NVP-BEZ235) or a pan-ErbB inhibitor (AEE788) individually or in combination. To uncover mechanisms underlying inhibitor action, signaling pathway activity was examined in tumor lysates and transcriptome analysis carried out to identify pathways upregulated by FGFR inhibition. Anti-phosphotyrosine receptor antibody arrays (P-Tyr RTK) were also used to screen 4T1 tumors.The combination of dovitinib + NVP-BEZ235 causes tumor stasis and strong down-regulation of the FRS2/Erk and PI3K/Akt/mTOR signaling pathways. P-Tyr RTK arrays identified high levels of P-EGFR and P-ErbB2 in 4T1 tumors. Testing AEE788 in the tumor models revealed that the combination of dovitinib + AEE788 resulted in blockade of the PI3K/Akt/mTOR pathway, prolonged tumor stasis and in the 4T1 model, a significant decrease in lung metastasis. The results show that in vivo these breast cancer models become dependent upon co-activation of FGFR and ErbB receptors for PI3K pathway activity.RESULTSThe combination of dovitinib + NVP-BEZ235 causes tumor stasis and strong down-regulation of the FRS2/Erk and PI3K/Akt/mTOR signaling pathways. P-Tyr RTK arrays identified high levels of P-EGFR and P-ErbB2 in 4T1 tumors. Testing AEE788 in the tumor models revealed that the combination of dovitinib + AEE788 resulted in blockade of the PI3K/Akt/mTOR pathway, prolonged tumor stasis and in the 4T1 model, a significant decrease in lung metastasis. The results show that in vivo these breast cancer models become dependent upon co-activation of FGFR and ErbB receptors for PI3K pathway activity.The work presented here shows that in the breast cancer models examined, the combination of dovitinib + NVP-BEZ235 or dovitinib + AEE788 results in strong inhibition of tumor growth and a block in metastatic spread. Only these combinations strongly down-regulate the FGFR/FRS2/Erk and PI3K/Akt/mTOR signaling pathways. The resultant decrease in mitosis and increase in apoptosis was consistently stronger in the dovitinib + AEE788 treatment-group, suggesting that targeting ErbB receptors has broader downstream effects compared to targeting only PI3K/mTOR. Considering that sub-classes of human breast tumors co-express ErbB receptors and FGFRs, these results have implications for targeted therapy.CONCLUSIONSThe work presented here shows that in the breast cancer models examined, the combination of dovitinib + NVP-BEZ235 or dovitinib + AEE788 results in strong inhibition of tumor growth and a block in metastatic spread. Only these combinations strongly down-regulate the FGFR/FRS2/Erk and PI3K/Akt/mTOR signaling pathways. The resultant decrease in mitosis and increase in apoptosis was consistently stronger in the dovitinib + AEE788 treatment-group, suggesting that targeting ErbB receptors has broader downstream effects compared to targeting only PI3K/mTOR. Considering that sub-classes of human breast tumors co-express ErbB receptors and FGFRs, these results have implications for targeted therapy. Targeting receptor tyrosine kinases (RTKs) with kinase inhibitors is a clinically validated anti-cancer approach. However, blocking one signaling pathway is often not sufficient to cause tumor regression and the effectiveness of individual inhibitors is often short-lived. As alterations in fibroblast growth factor receptor (FGFR) activity have been implicated in breast cancer, we examined in breast cancer models with autocrine FGFR activity the impact of targeting FGFRs in vivo with a selective kinase inhibitor in combination with an inhibitor of PI3K/mTOR or with a pan-ErbB inhibitor. Using 4T1 or 67NR models of basal-like breast cancer, tumor growth was measured in mice treated with an FGFR inhibitor (dovitinib/TKI258), a PI3K/mTOR inhibitor (NVP-BEZ235) or a pan-ErbB inhibitor (AEE788) individually or in combination. To uncover mechanisms underlying inhibitor action, signaling pathway activity was examined in tumor lysates and transcriptome analysis carried out to identify pathways upregulated by FGFR inhibition. Anti-phosphotyrosine receptor antibody arrays (P-Tyr RTK) were also used to screen 4T1 tumors. The combination of dovitinib + NVP-BEZ235 causes tumor stasis and strong down-regulation of the FRS2/Erk and PI3K/Akt/mTOR signaling pathways. P-Tyr RTK arrays identified high levels of P-EGFR and P-ErbB2 in 4T1 tumors. Testing AEE788 in the tumor models revealed that the combination of dovitinib + AEE788 resulted in blockade of the PI3K/Akt/mTOR pathway, prolonged tumor stasis and in the 4T1 model, a significant decrease in lung metastasis. The results show that in vivo these breast cancer models become dependent upon co-activation of FGFR and ErbB receptors for PI3K pathway activity. The work presented here shows that in the breast cancer models examined, the combination of dovitinib + NVP-BEZ235 or dovitinib + AEE788 results in strong inhibition of tumor growth and a block in metastatic spread. Only these combinations strongly down-regulate the FGFR/FRS2/Erk and PI3K/Akt/mTOR signaling pathways. The resultant decrease in mitosis and increase in apoptosis was consistently stronger in the dovitinib + AEE788 treatment-group, suggesting that targeting ErbB receptors has broader downstream effects compared to targeting only PI3K/mTOR. Considering that sub-classes of human breast tumors co-express ErbB receptors and FGFRs, these results have implications for targeted therapy. Introduction Targeting receptor tyrosine kinases (RTKs) with kinase inhibitors is a clinically validated anti-cancer approach. However, blocking one signaling pathway is often not sufficient to cause tumor regression and the effectiveness of individual inhibitors is often short-lived. As alterations in fibroblast growth factor receptor (FGFR) activity have been implicated in breast cancer, we examined in breast cancer models with autocrine FGFR activity the impact of targeting FGFRs in vivo with a selective kinase inhibitor in combination with an inhibitor of PI3K/mTOR or with a pan-ErbB inhibitor. Methods Using 4T1 or 67NR models of basal-like breast cancer, tumor growth was measured in mice treated with an FGFR inhibitor (dovitinib/TKI258), a PI3K/mTOR inhibitor (NVP-BEZ235) or a pan-ErbB inhibitor (AEE788) individually or in combination. To uncover mechanisms underlying inhibitor action, signaling pathway activity was examined in tumor lysates and transcriptome analysis carried out to identify pathways upregulated by FGFR inhibition. Anti-phosphotyrosine receptor antibody arrays (P-Tyr RTK) were also used to screen 4T1 tumors. Results The combination of dovitinib + NVP-BEZ235 causes tumor stasis and strong down-regulation of the FRS2/Erk and PI3K/Akt/mTOR signaling pathways. P-Tyr RTK arrays identified high levels of P-EGFR and P-ErbB2 in 4T1 tumors. Testing AEE788 in the tumor models revealed that the combination of dovitinib + AEE788 resulted in blockade of the PI3K/Akt/mTOR pathway, prolonged tumor stasis and in the 4T1 model, a significant decrease in lung metastasis. The results show that in vivo these breast cancer models become dependent upon co-activation of FGFR and ErbB receptors for PI3K pathway activity. Conclusions The work presented here shows that in the breast cancer models examined, the combination of dovitinib + NVP-BEZ235 or dovitinib + AEE788 results in strong inhibition of tumor growth and a block in metastatic spread. Only these combinations strongly down-regulate the FGFR/FRS2/Erk and PI3K/Akt/mTOR signaling pathways. The resultant decrease in mitosis and increase in apoptosis was consistently stronger in the dovitinib + AEE788 treatment-group, suggesting that targeting ErbB receptors has broader downstream effects compared to targeting only PI3K/mTOR. Considering that sub-classes of human breast tumors co-express ErbB receptors and FGFRs, these results have implications for targeted therapy. |
| ArticleNumber | R8 |
| Author | Issa, Amine Wiemann, Stefan Gill, Jason W Heideman, Marinus R Dey, Julien H Hynes, Nancy E Sahin, Ozgur |
| AuthorAffiliation | 1 Mechanisms of Cancer, Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, Basel 4058, Switzerland 3 Current address: Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston TX 77030, USA 4 University of Basel, Petersplatz 1, Basel 4003, Switzerland 5 Current address: Nestlé Research Center, Vers-chez-les-Blanc, 1000 Lausanne 26, Switzerland 2 Division of Molecular Genome analysis, German Cancer Research Center, Im Neuenheimer Feld 580, Heidelberg 69120, Germany |
| AuthorAffiliation_xml | – name: 4 University of Basel, Petersplatz 1, Basel 4003, Switzerland – name: 3 Current address: Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston TX 77030, USA – name: 5 Current address: Nestlé Research Center, Vers-chez-les-Blanc, 1000 Lausanne 26, Switzerland – name: 2 Division of Molecular Genome analysis, German Cancer Research Center, Im Neuenheimer Feld 580, Heidelberg 69120, Germany – name: 1 Mechanisms of Cancer, Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, Basel 4058, Switzerland |
| Author_xml | – sequence: 1 givenname: Amine surname: Issa fullname: Issa, Amine organization: Mechanisms of Cancer, Friedrich Miescher Institute for Biomedical Research – sequence: 2 givenname: Jason W surname: Gill fullname: Gill, Jason W organization: Mechanisms of Cancer, Friedrich Miescher Institute for Biomedical Research – sequence: 3 givenname: Marinus R surname: Heideman fullname: Heideman, Marinus R organization: Mechanisms of Cancer, Friedrich Miescher Institute for Biomedical Research – sequence: 4 givenname: Ozgur surname: Sahin fullname: Sahin, Ozgur organization: Division of Molecular Genome analysis, German Cancer Research Center, Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center – sequence: 5 givenname: Stefan surname: Wiemann fullname: Wiemann, Stefan organization: Division of Molecular Genome analysis, German Cancer Research Center – sequence: 6 givenname: Julien H surname: Dey fullname: Dey, Julien H organization: Mechanisms of Cancer, Friedrich Miescher Institute for Biomedical Research, University of Basel, Nestlé Research Center – sequence: 7 givenname: Nancy E surname: Hynes fullname: Hynes, Nancy E email: nancy.hynes@fmi.ch organization: Mechanisms of Cancer, Friedrich Miescher Institute for Biomedical Research, University of Basel |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/23343422$$D View this record in MEDLINE/PubMed |
| BookMark | eNplkUFvEzEQhS1URNuA-AfIN3pZWNvreH1BgqgpSJV6KRI3yzueTV127WA7VPx7HJqiQk8z0nx-z3rvlByFGJCQ16x9x1i_fD9AEkLpZ-SEdUvZyI5_O3q0H5PTnG_blqle9i_IMReiEx3nJ2RexXnwwZaYvJ1osWmDxYcNjSNdX6ypDY6ep-ETTQi4rVSmwxThe6abFO_KzR9gxmJzscUDzduE1u1fD3XJhYINgInO0eGUX5Lno50yvjrMBfm6Pr9efW4ury6-rD5eNtAt-9KgcNq1wBXrhZbcIreCtcLCyEFLOUpQPaDWzGqnO3DaKtWNoLB3DlUnxYJ8uNfd7oYZHWAoyU5mm_xs0y8TrTf_XoK_MZv404il4n21WpCzg0CKP3aYi5l9BpwmGzDusmGyE1rXBHVF3zz2-mvykHEFmnsAUsw54WjA78OKe2s_GdaafYfm0GHl3_7HP0g-JQ-_rKnXzjCZ27hLoSb7BP0NLgur1w |
| CitedBy_id | crossref_primary_10_1158_1078_0432_CCR_16_2287 crossref_primary_10_1073_pnas_1816410116 crossref_primary_10_1016_j_jsbmb_2021_105979 crossref_primary_10_1016_j_yexmp_2014_06_011 crossref_primary_10_1038_s41419_024_06637_2 crossref_primary_10_1186_s13058_015_0649_1 crossref_primary_10_4161_15384101_2014_995050 crossref_primary_10_1007_s10549_016_3737_8 crossref_primary_10_1158_0008_5472_CAN_13_2469 crossref_primary_10_1186_s13058_017_0807_8 crossref_primary_10_1016_j_ctrv_2016_03_015 crossref_primary_10_2217_fon_14_208 crossref_primary_10_2147_CMAR_S286275 crossref_primary_10_1177_1533034614568753 crossref_primary_10_3389_fcell_2020_00415 crossref_primary_10_1007_s13277_015_4334_x crossref_primary_10_1111_cas_13415 crossref_primary_10_1586_17446651_2013_811910 crossref_primary_10_1016_j_tranon_2020_100856 crossref_primary_10_1093_annonc_mdt419 crossref_primary_10_2217_bmt_14_15 crossref_primary_10_1038_onc_2016_427 crossref_primary_10_1586_14737140_2015_961429 crossref_primary_10_3390_cancers11050718 crossref_primary_10_1371_journal_pone_0126483 crossref_primary_10_3390_biology13110920 crossref_primary_10_1007_s10549_015_3301_y crossref_primary_10_1517_14728222_2014_898064 crossref_primary_10_3389_fonc_2022_1019025 crossref_primary_10_3390_cells7070076 crossref_primary_10_3892_ol_2020_11858 crossref_primary_10_1038_onc_2013_310 crossref_primary_10_1080_13543784_2017_1287173 crossref_primary_10_1007_s10123_023_00348_y crossref_primary_10_15252_embj_2020107182 crossref_primary_10_1016_j_saa_2025_126602 crossref_primary_10_1007_s10549_013_2829_y crossref_primary_10_1177_1758835920940948 crossref_primary_10_3390_cancers12103029 crossref_primary_10_1002_1878_0261_12076 crossref_primary_10_1098_rsob_210373 crossref_primary_10_1155_2019_2024648 crossref_primary_10_1073_pnas_1403438111 crossref_primary_10_4103_IJPM_IJPM_87_20 crossref_primary_10_1038_s41598_017_11751_7 crossref_primary_10_1158_1078_0432_CCR_14_2329 crossref_primary_10_1016_j_jbo_2019_100232 crossref_primary_10_1038_s43018_024_00882_2 crossref_primary_10_1016_j_biocel_2013_09_017 crossref_primary_10_1073_pnas_1611532113 crossref_primary_10_1186_bcr3623 |
| Cites_doi | 10.1158/0008-5472.CAN-09-4479 10.1074/jbc.M404252200 10.1038/sj.onc.1202392 10.1158/1078-0432.CCR-04-2129 10.1038/nrclinonc.2011.177 10.1371/journal.pone.0014117 10.1021/jm2006222 10.1038/nrc2780 10.1128/MCB.18.9.5042 10.1038/onc.2010.626 10.1158/0008-5472.CAN-03-3681 10.1158/0008-5472.CAN-08-1044 10.1073/pnas.1537685100 10.1016/j.bbrc.2011.03.002 10.1038/nature11017 10.1093/nar/gkn923 10.1038/nrc1477 10.1038/sj.onc.1207816 10.1158/0008-5472.CAN-06-4685 10.1038/nrc1609 10.1126/scitranslmed.3001539 10.1158/0008-5472.CAN-10-0918 10.1016/j.cell.2010.06.011 10.1126/scitranslmed.3000389 10.1016/j.ccr.2010.10.031 10.1038/nature11412 10.1038/nature11249 10.1016/S1535-6108(02)00097-1 10.1128/MCB.20.9.3210-3223.2000 10.1093/nar/gkq973 10.1186/bcr1665 10.1126/science.1142946 10.1158/2159-8290.CD-11-0106 10.1158/1535-7163.MCT-08-0017 10.1158/1078-0432.CCR-04-1665 |
| ContentType | Journal Article |
| Copyright | Issa et al.; licensee BioMed Central Ltd. 2013 Copyright © 2013 Issa et al.; licensee BioMed Central Ltd. 2013 Issa et al.; licensee BioMed Central Ltd. |
| Copyright_xml | – notice: Issa et al.; licensee BioMed Central Ltd. 2013 – notice: Copyright © 2013 Issa et al.; licensee BioMed Central Ltd. 2013 Issa et al.; licensee BioMed Central Ltd. |
| DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
| DOI | 10.1186/bcr3379 |
| DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Anatomy & Physiology |
| EISSN | 1465-542X |
| EndPage | R8 |
| ExternalDocumentID | PMC3672810 23343422 10_1186_bcr3379 |
| Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
| GroupedDBID | --- 04C 0R~ 23N 2WC 4.4 53G 5GY 5VS 6J9 AAFWJ AAJSJ AASML AAWTL ACGFO ACGFS ACJQM ACMJI ACPRK ADBBV ADFRT ADUKV AENEX AFPKN AHBYD AHMBA AHSBF ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIAM AOIJS BAPOH BAWUL BCNDV BFQNJ BMC BMSDO C6C CS3 DIK DU5 E3Z EBD EBLON EBS EIHBH EJD F5P GROUPED_DOAJ GX1 HYE HZ~ IAO ICW IHR INH INR ITC KQ8 O5R O5S O9- OK1 P2P PGMZT PQQKQ RBZ ROL RPM RSV SBL SOJ TR2 U2A WOQ AAYXX CITATION ACRMQ ADINQ ALIPV C24 CGR CUY CVF ECM EIF NPM 7X8 5PM |
| ID | FETCH-LOGICAL-c468t-e3d9d0c27183952ae2a3103acf2c955f5c78ce991a9d94cd9a774fc7e8dde7453 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 62 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000320158100017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1465-542X 1465-5411 |
| IngestDate | Thu Aug 21 18:09:20 EDT 2025 Fri Sep 05 09:30:37 EDT 2025 Thu Jan 02 22:14:33 EST 2025 Tue Nov 18 22:35:11 EST 2025 Sat Nov 29 03:59:29 EST 2025 Sat Sep 06 07:25:04 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | ErbB Receptor Fibroblast Growth Factor Receptor Inhibitor Fibroblast Growth Factor Receptor 67NR Cell Circulate Tumor Cell |
| Language | English |
| License | This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c468t-e3d9d0c27183952ae2a3103acf2c955f5c78ce991a9d94cd9a774fc7e8dde7453 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | https://link.springer.com/10.1186/bcr3379 |
| PMID | 23343422 |
| PQID | 1543994229 |
| PQPubID | 23479 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3672810 proquest_miscellaneous_1543994229 pubmed_primary_23343422 crossref_citationtrail_10_1186_bcr3379 crossref_primary_10_1186_bcr3379 springer_journals_10_1186_bcr3379 |
| PublicationCentury | 2000 |
| PublicationDate | 20130123 |
| PublicationDateYYYYMMDD | 2013-01-23 |
| PublicationDate_xml | – month: 1 year: 2013 text: 20130123 day: 23 |
| PublicationDecade | 2010 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationTitle | Breast cancer research : BCR |
| PublicationTitleAbbrev | Breast Cancer Res |
| PublicationTitleAlternate | Breast Cancer Res |
| PublicationYear | 2013 |
| Publisher | BioMed Central |
| Publisher_xml | – name: BioMed Central |
| References | HA Lane (3187_CR27) 2000; 20 SK Marsh (3187_CR38) 1999; 18 SM Maira (3187_CR10) 2008; 7 MA Olayioye (3187_CR17) 1998; 18 JM Wood (3187_CR32) 2000; 60 V Theodorou (3187_CR37) 2004; 23 NE Hynes (3187_CR2) 2005; 5 P Traxler (3187_CR11) 2004; 64 PJ Stephens (3187_CR13) 2012; 486 CR Schnell (3187_CR31) 2008; 68 DB Agus (3187_CR26) 2002; 2 D Szklarczyk (3187_CR15) 2011; 39 HM Stern (3187_CR3) 2012; 4 S Chandarlapaty (3187_CR24) 2011; 19 DN Amin (3187_CR22) 2010; 2 MA Lemmon (3187_CR1) 2010; 141 SH Lee (3187_CR8) 2005; 11 CL Arteaga (3187_CR20) 2012; 9 YW Park (3187_CR21) 2005; 11 KE Ware (3187_CR34) 2010; 5 AC Faber (3187_CR29) 2011; 1 N Turner (3187_CR6) 2010; 10 TR Wilson (3187_CR23) 2012; 487 MM Mueller (3187_CR18) 2004; 4 P Sini (3187_CR30) 2008; 68 V Serra (3187_CR25) 2011; 30 JM Stommel (3187_CR33) 2007; 318 S Elbauomy Elsheikh (3187_CR4) 2007; 9 NE Hynes (3187_CR5) 2010; 70 W Huang da (3187_CR16) 2009; 37 CJ Aslakson (3187_CR7) 1992; 52 JH Dey (3187_CR9) 2010; 70 Cancer Genome Atlas Network (3187_CR12) 2012; 490 BA Pulaski (3187_CR14) 2001 AB Motoyama (3187_CR28) 2002; 62 K Azuma (3187_CR36) 2011; 407 M Koziczak (3187_CR35) 2004; 279 V Guagnano (3187_CR39) 2011; 54 T Holbro (3187_CR19) 2003; 100 12853564 - Proc Natl Acad Sci U S A. 2003 Jul 22;100(15):8933-8 9710588 - Mol Cell Biol. 1998 Sep;18(9):5042-51 20570901 - Cancer Res. 2010 Jul 1;70(13):5199-202 10757805 - Mol Cell Biol. 2000 May;20(9):3210-23 18606717 - Mol Cancer Ther. 2008 Jul;7(7):1851-63 10023681 - Oncogene. 1999 Jan 28;18(4):1053-60 20602996 - Cell. 2010 Jun 25;141(7):1117-34 15756022 - Clin Cancer Res. 2005 Mar 1;11(5):1963-73 22763448 - Nature. 2012 Jul 26;487(7408):505-9 18701483 - Cancer Res. 2008 Aug 15;68(16):6598-607 21215704 - Cancer Cell. 2011 Jan 18;19(1):58-71 22145099 - Cancer Discov. 2011 Sep;1(4):352-65 19033363 - Nucleic Acids Res. 2009 Jan;37(1):1-13 15864276 - Nat Rev Cancer. 2005 May;5(5):341-54 21936542 - J Med Chem. 2011 Oct 27;54(20):7066-83 22124364 - Nat Rev Clin Oncol. 2012 Jan;9(1):16-32 21278786 - Oncogene. 2011 Jun 2;30(22):2547-57 17872411 - Science. 2007 Oct 12;318(5848):287-90 10786682 - Cancer Res. 2000 Apr 15;60(8):2178-89 1540948 - Cancer Res. 1992 Mar 15;52(6):1399-405 15377668 - J Biol Chem. 2004 Nov 26;279(48):50004-11 12036928 - Cancer Res. 2002 Jun 1;62(11):3151-8 15208658 - Oncogene. 2004 Aug 12;23(36):6047-55 15897558 - Clin Cancer Res. 2005 May 15;11(10):3633-41 15516957 - Nat Rev Cancer. 2004 Nov;4(11):839-49 20371474 - Sci Transl Med. 2010 Jan 27;2(16):16ra7 18316624 - Cancer Res. 2008 Mar 1;68(5):1581-92 15256466 - Cancer Res. 2004 Jul 15;64(14):4931-41 22722201 - Nature. 2012 Jun 21;486(7403):400-4 17397528 - Breast Cancer Res. 2007;9(2):R23 21152424 - PLoS One. 2010;5(11):e14117 12204533 - Cancer Cell. 2002 Aug;2(2):127-37 20460524 - Cancer Res. 2010 May 15;70(10):4151-62 23000897 - Nature. 2012 Oct 4;490(7418):61-70 21377448 - Biochem Biophys Res Commun. 2011 Apr 1;407(1):219-24 21045058 - Nucleic Acids Res. 2011 Jan;39(Database issue):D561-8 20094046 - Nat Rev Cancer. 2010 Feb;10(2):116-29 18432775 - Curr Protoc Immunol. 2001 May;Chapter 20:Unit 20.2 22461643 - Sci Transl Med. 2012 Mar 28;4(127):127rv2 |
| References_xml | – volume: 70 start-page: 4151 year: 2010 ident: 3187_CR9 publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-09-4479 – volume: 52 start-page: 1399 year: 1992 ident: 3187_CR7 publication-title: Cancer Res – volume: 279 start-page: 50004 year: 2004 ident: 3187_CR35 publication-title: J Biol Chem doi: 10.1074/jbc.M404252200 – volume: 62 start-page: 3151 year: 2002 ident: 3187_CR28 publication-title: Cancer Res – volume: 18 start-page: 1053 year: 1999 ident: 3187_CR38 publication-title: Oncogene doi: 10.1038/sj.onc.1202392 – volume: 11 start-page: 3633 year: 2005 ident: 3187_CR8 publication-title: Clin Cancer Res doi: 10.1158/1078-0432.CCR-04-2129 – volume: 9 start-page: 16 year: 2012 ident: 3187_CR20 publication-title: Nat Rev Clin Oncol doi: 10.1038/nrclinonc.2011.177 – volume: 5 start-page: e14117 year: 2010 ident: 3187_CR34 publication-title: PLoS One doi: 10.1371/journal.pone.0014117 – volume: 54 start-page: 7066 year: 2011 ident: 3187_CR39 publication-title: J Med Chem doi: 10.1021/jm2006222 – volume: 10 start-page: 116 year: 2010 ident: 3187_CR6 publication-title: Nat Rev Cancer doi: 10.1038/nrc2780 – volume: 18 start-page: 5042 year: 1998 ident: 3187_CR17 publication-title: Mol Cell Biol doi: 10.1128/MCB.18.9.5042 – volume: 30 start-page: 2547 year: 2011 ident: 3187_CR25 publication-title: Oncogene doi: 10.1038/onc.2010.626 – volume: 64 start-page: 4931 year: 2004 ident: 3187_CR11 publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-03-3681 – volume: 68 start-page: 6598 year: 2008 ident: 3187_CR31 publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-08-1044 – volume: 100 start-page: 8933 year: 2003 ident: 3187_CR19 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1537685100 – volume: 407 start-page: 219 year: 2011 ident: 3187_CR36 publication-title: Biochem Biophys Res Commun doi: 10.1016/j.bbrc.2011.03.002 – volume: 486 start-page: 400 year: 2012 ident: 3187_CR13 publication-title: Nature doi: 10.1038/nature11017 – volume-title: Curr Protoc Immunol year: 2001 ident: 3187_CR14 – volume: 37 start-page: 1 year: 2009 ident: 3187_CR16 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkn923 – volume: 4 start-page: 839 year: 2004 ident: 3187_CR18 publication-title: Nat Rev Cancer doi: 10.1038/nrc1477 – volume: 23 start-page: 6047 year: 2004 ident: 3187_CR37 publication-title: Oncogene doi: 10.1038/sj.onc.1207816 – volume: 68 start-page: 1581 year: 2008 ident: 3187_CR30 publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-06-4685 – volume: 60 start-page: 2178 year: 2000 ident: 3187_CR32 publication-title: Cancer Res – volume: 5 start-page: 341 year: 2005 ident: 3187_CR2 publication-title: Nat Rev Cancer doi: 10.1038/nrc1609 – volume: 4 start-page: 127rv122 year: 2012 ident: 3187_CR3 publication-title: Sci Transl Med doi: 10.1126/scitranslmed.3001539 – volume: 70 start-page: 5199 year: 2010 ident: 3187_CR5 publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-10-0918 – volume: 141 start-page: 1117 year: 2010 ident: 3187_CR1 publication-title: Cell doi: 10.1016/j.cell.2010.06.011 – volume: 2 start-page: 16ra17 year: 2010 ident: 3187_CR22 publication-title: Sci Transl Med doi: 10.1126/scitranslmed.3000389 – volume: 19 start-page: 58 year: 2011 ident: 3187_CR24 publication-title: Cancer Cell doi: 10.1016/j.ccr.2010.10.031 – volume: 490 start-page: 61 year: 2012 ident: 3187_CR12 publication-title: Nature doi: 10.1038/nature11412 – volume: 487 start-page: 505 year: 2012 ident: 3187_CR23 publication-title: Nature doi: 10.1038/nature11249 – volume: 2 start-page: 127 year: 2002 ident: 3187_CR26 publication-title: Cancer Cell doi: 10.1016/S1535-6108(02)00097-1 – volume: 20 start-page: 3210 year: 2000 ident: 3187_CR27 publication-title: Mol Cell Biol doi: 10.1128/MCB.20.9.3210-3223.2000 – volume: 39 start-page: D561 year: 2011 ident: 3187_CR15 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkq973 – volume: 9 start-page: R23 year: 2007 ident: 3187_CR4 publication-title: Breast Cancer Res doi: 10.1186/bcr1665 – volume: 318 start-page: 287 year: 2007 ident: 3187_CR33 publication-title: Science doi: 10.1126/science.1142946 – volume: 1 start-page: 352 year: 2011 ident: 3187_CR29 publication-title: Cancer Discov doi: 10.1158/2159-8290.CD-11-0106 – volume: 7 start-page: 1851 year: 2008 ident: 3187_CR10 publication-title: Mol Cancer Ther doi: 10.1158/1535-7163.MCT-08-0017 – volume: 11 start-page: 1963 year: 2005 ident: 3187_CR21 publication-title: Clin Cancer Res doi: 10.1158/1078-0432.CCR-04-1665 – reference: 15516957 - Nat Rev Cancer. 2004 Nov;4(11):839-49 – reference: 18432775 - Curr Protoc Immunol. 2001 May;Chapter 20:Unit 20.2 – reference: 1540948 - Cancer Res. 1992 Mar 15;52(6):1399-405 – reference: 21215704 - Cancer Cell. 2011 Jan 18;19(1):58-71 – reference: 12036928 - Cancer Res. 2002 Jun 1;62(11):3151-8 – reference: 12853564 - Proc Natl Acad Sci U S A. 2003 Jul 22;100(15):8933-8 – reference: 22124364 - Nat Rev Clin Oncol. 2012 Jan;9(1):16-32 – reference: 21278786 - Oncogene. 2011 Jun 2;30(22):2547-57 – reference: 10786682 - Cancer Res. 2000 Apr 15;60(8):2178-89 – reference: 17872411 - Science. 2007 Oct 12;318(5848):287-90 – reference: 10757805 - Mol Cell Biol. 2000 May;20(9):3210-23 – reference: 17397528 - Breast Cancer Res. 2007;9(2):R23 – reference: 22145099 - Cancer Discov. 2011 Sep;1(4):352-65 – reference: 15756022 - Clin Cancer Res. 2005 Mar 1;11(5):1963-73 – reference: 23000897 - Nature. 2012 Oct 4;490(7418):61-70 – reference: 22722201 - Nature. 2012 Jun 21;486(7403):400-4 – reference: 20371474 - Sci Transl Med. 2010 Jan 27;2(16):16ra7 – reference: 15256466 - Cancer Res. 2004 Jul 15;64(14):4931-41 – reference: 18701483 - Cancer Res. 2008 Aug 15;68(16):6598-607 – reference: 20602996 - Cell. 2010 Jun 25;141(7):1117-34 – reference: 12204533 - Cancer Cell. 2002 Aug;2(2):127-37 – reference: 18606717 - Mol Cancer Ther. 2008 Jul;7(7):1851-63 – reference: 15864276 - Nat Rev Cancer. 2005 May;5(5):341-54 – reference: 21045058 - Nucleic Acids Res. 2011 Jan;39(Database issue):D561-8 – reference: 19033363 - Nucleic Acids Res. 2009 Jan;37(1):1-13 – reference: 20094046 - Nat Rev Cancer. 2010 Feb;10(2):116-29 – reference: 21936542 - J Med Chem. 2011 Oct 27;54(20):7066-83 – reference: 20460524 - Cancer Res. 2010 May 15;70(10):4151-62 – reference: 10023681 - Oncogene. 1999 Jan 28;18(4):1053-60 – reference: 9710588 - Mol Cell Biol. 1998 Sep;18(9):5042-51 – reference: 20570901 - Cancer Res. 2010 Jul 1;70(13):5199-202 – reference: 22461643 - Sci Transl Med. 2012 Mar 28;4(127):127rv2 – reference: 18316624 - Cancer Res. 2008 Mar 1;68(5):1581-92 – reference: 15208658 - Oncogene. 2004 Aug 12;23(36):6047-55 – reference: 15377668 - J Biol Chem. 2004 Nov 26;279(48):50004-11 – reference: 15897558 - Clin Cancer Res. 2005 May 15;11(10):3633-41 – reference: 21377448 - Biochem Biophys Res Commun. 2011 Apr 1;407(1):219-24 – reference: 21152424 - PLoS One. 2010;5(11):e14117 – reference: 22763448 - Nature. 2012 Jul 26;487(7408):505-9 |
| SSID | ssj0017858 |
| Score | 2.3147974 |
| Snippet | Introduction
Targeting receptor tyrosine kinases (RTKs) with kinase inhibitors is a clinically validated anti-cancer approach. However, blocking one signaling... Targeting receptor tyrosine kinases (RTKs) with kinase inhibitors is a clinically validated anti-cancer approach. However, blocking one signaling pathway is... |
| SourceID | pubmedcentral proquest pubmed crossref springer |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | R8 |
| SubjectTerms | Animals Biomedical and Life Sciences Biomedicine Breast Neoplasms - drug therapy Breast Neoplasms - genetics Breast Neoplasms - pathology Cancer Research Cell Proliferation - drug effects ErbB Receptors - antagonists & inhibitors ErbB Receptors - genetics Female Gene Expression Regulation, Neoplastic - drug effects Humans Imidazoles - administration & dosage Mice Molecular Targeted Therapy Oncology Phosphatidylinositol 3-Kinases - administration & dosage Phosphatidylinositol 3-Kinases - genetics Protein Kinase Inhibitors - administration & dosage Proto-Oncogene Proteins c-akt - genetics Purines - administration & dosage Quinolines - administration & dosage Receptors, Fibroblast Growth Factor - antagonists & inhibitors Receptors, Fibroblast Growth Factor - genetics Research Article Signal Transduction - drug effects Surgical Oncology TOR Serine-Threonine Kinases - genetics Xenograft Model Antitumor Assays |
| Title | Combinatorial targeting of FGF and ErbB receptors blocks growth and metastatic spread of breast cancer models |
| URI | https://link.springer.com/article/10.1186/bcr3379 https://www.ncbi.nlm.nih.gov/pubmed/23343422 https://www.proquest.com/docview/1543994229 https://pubmed.ncbi.nlm.nih.gov/PMC3672810 |
| Volume | 15 |
| WOSCitedRecordID | wos000320158100017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVADU databaseName: Open Access: BioMedCentral Open Access Titles customDbUrl: eissn: 1465-542X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017858 issn: 1465-542X databaseCode: RBZ dateStart: 19990101 isFulltext: true titleUrlDefault: https://www.biomedcentral.com/search/ providerName: BioMedCentral – providerCode: PRVAON databaseName: DAOJ: Directory of Open Access Journals customDbUrl: eissn: 1465-542X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017858 issn: 1465-542X databaseCode: DOA dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVAVX databaseName: SpringerLink Journals customDbUrl: eissn: 1465-542X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017858 issn: 1465-542X databaseCode: RSV dateStart: 19991201 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB71gRAXWloeS-nKSKi3iI3txM6xRV24tKrKQysukT1x2hVstkpSJP49YydZsd0LXHLxJHEyD3_jGc8AvItj46wxRWQyJAdFcxlZGceR0hNDRrNUTnfNJtTlpZ7Nsqu-WHQzZLsPIclgqYNa6_S9xVoIlW3DLq1x2uvg9edvq4CB0onuzsT-Tby-2GwgyM1EyAfR0LDITPf-Y3r78LRHkuy0Y_0z2HLVARyeVuRFL36zExZyO8Om-QE8vuhD6IewIAtA3rD3tUn0WJcJTi9iy5JNP06ZqQp2XtszRqbQ3flePMzSgvejYTfksbe3gWDhWuOPIs2R0TRJTPzd1ue3twy9HNUstNhpnsPX6fmXD5-ivudChDLVbeREkRUT5Mojp4Qbx43vRGaw5JglSZmg0ugIVJqsyCQWmSH8WCKxlOykkol4ATvVsnKvgBH2KayTVimHEhNtifPCd8PiyFNr9QhOBubk2Bck930xfubBMdFp3v_TEbAV4V1Xg2OT5O3A3Zz0wwc9TOWW901OEJEwmOScaF523F49hAshBQ2NQK3JwYrA195eH6nmt6EGt0jpS-IJvXeQhrxX_ubh3F7_A80RPOGhz0YccfEGdtr63h3DI_zVzpt6DNtqpsdhu4Cu12ffx0H4_wAJ7gWk |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5BQcCFR1tgeRoJ9RZ1Yzuxc2yrLkW0KwQF9RbZE6ddtZutkhSJf8_YSVZs9wLnTGInMx5_kxnPB_Axjo2zxhSRyZACFM1lZGUcR0qPDTnNUjndkU2o6VSfnWVf-2bRzVDtPqQkg6cOy1qnuxZrIVR2F-5J2qZ89d637z-XCQOlE92dif1beHWzWUOQ64WQt7KhYZOZPPmP6T2Fxz2SZHud6p_BHVdtwtZeRVH0_DfbYaG2M_w034QHJ30KfQvm5AEoGvaxNpke6yrBaSC2KNnk04SZqmCHtd1n5ArdtefiYZY2vMuGnVPE3l4EgblrjT-KNENG0yQz8XdbX9_eMvR2VLNAsdNsw4_J4enBUdRzLkQoU91GThRZMUauPHJKuHHceCYygyXHLEnKBJVGR6DSZEUmscgM4ccSSaXkJ5VMxHPYqBaVewmMsE9hnbRKOZSYaEuaF54NiyNPrdUj2BmUk2PfkNzzYlzlITDRad5_0xGwpeB114NjXeTDoN2c1odPepjKLW6anCAiYTDJOcm86LS9fAgXQgq6NAK1YgdLAd97e_VKNbsIPbhFSm8Sj2ncwRryfvE3t-f26h9k3sPDo9OT4_z48_TLa3jEA-dGHHHxBjba-sa9hfv4q5019btg9n8A6ngFnA |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VgqpeeLQ8lqeRUG9RN7YTO8cCDSBgVYmHeovsiUNXdLOrJEXi3zN2khXbvSDOmcROZjz-JjOeD-BVHBtnjSkjkyEFKJrLyMo4jpSeGnKalXK6J5tQs5k-P8_OdiAZz8KEavcxJdmfafBdmurueFVW_RLX6bHFRgiV3YCb0jMF-SD9y_d18kDpRPfnY_8W3tx4ttDkdlHktcxo2HDyO_851btwe0CY7KQ3iXuw4-oDODypKbpe_GZHLNR8hp_pB7D3eUitH8KCPANFyT4GJ5NkfYU4DcqWFcvf5czUJTtt7GtGLtKtPEcPs7QR_mzZD4rku4sgsHCd8UeU5shoymQ-_m7r6947ht6-Ghaod9r78C0__frmfTRwMUQoU91FTpRZOUWuPKJKuHHceIYygxXHLEmqBJVGR2DTZGUmscwM4coKSdXkP5VMxAPYrZe1ewSMMFFpnbRKOZSYaEsWITxLFkeeWqsncDQqqsChUbnny7gsQsCi02L4phNga8FV35tjW-TlqOmC1o1PhpjaLa_agqAjYTPJOck87DW_fggXQgq6NAG1YRNrAd-Te_NKPb8IvblFSm8ST2nc0TKKwSm01-f2-B9kXsDe2du8-PRh9vEJ7PNAxRFHXDyF3a65cs_gFv7q5m3zPKyAP_U8DoA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Combinatorial+targeting+of+FGF+and+ErbB+receptors+blocks+growth+and+metastatic+spread+of+breast+cancer+models&rft.jtitle=Breast+cancer+research+%3A+BCR&rft.au=Issa%2C+Amine&rft.au=Gill%2C+Jason+W&rft.au=Heideman%2C+Marinus+R&rft.au=Sahin%2C+Ozgur&rft.date=2013-01-23&rft.pub=BioMed+Central&rft.eissn=1465-542X&rft.volume=15&rft.issue=1&rft_id=info:doi/10.1186%2Fbcr3379&rft.externalDocID=10_1186_bcr3379 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1465-542X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1465-542X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1465-542X&client=summon |