Converging outer approximations to global attractors using semidefinite programming

This paper develops a method for obtaining guaranteed outer approximations for global attractors of continuous and discrete time nonlinear dynamical systems. The method is based on a hierarchy of semidefinite programming problems of increasing size with guaranteed convergence to the global attractor...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Automatica (Oxford) Jg. 134; S. 109900
Hauptverfasser: Schlosser, Corbinian, Korda, Milan
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier Ltd 01.12.2021
Elsevier
Schlagworte:
ISSN:0005-1098, 1873-2836
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract This paper develops a method for obtaining guaranteed outer approximations for global attractors of continuous and discrete time nonlinear dynamical systems. The method is based on a hierarchy of semidefinite programming problems of increasing size with guaranteed convergence to the global attractor. The approach taken follows an established line of reasoning, where we first characterize the global attractor via an infinite dimensional linear programming problem (LP) in the space of Borel measures. The dual to this LP is in the space of continuous functions and its feasible solutions provide guaranteed outer approximations to the global attractor. For systems with polynomial dynamics, a hierarchy of finite-dimensional sum-of-squares tightenings of the dual LP provides a sequence of outer approximations to the global attractor with guaranteed convergence in the sense of volume discrepancy tending to zero. The method is very simple to use and based purely on convex optimization. Numerical examples with the code available online demonstrate the method.
AbstractList This paper develops a method for obtaining guaranteed outer approximations for global attractors of continuous and discrete time nonlinear dynamical systems. The method is based on a hierarchy of semidefinite programming problems of increasing size with guaranteed convergence to the global attractor. The approach taken follows an established line of reasoning, where we first characterize the global attractor via an infinite dimensional linear programming problem (LP) in the space of Borel measures. The dual to this LP is in the space of continuous functions and its feasible solutions provide guaranteed outer approximations to the global attractor. For systems with polynomial dynamics, a hierarchy of finite-dimensional sum-of-squares tightenings of the dual LP provides a sequence of outer approximations to the global attractor with guaranteed convergence in the sense of volume discrepancy tending to zero. The method is very simple to use and based purely on convex optimization. Numerical examples with the code available online demonstrate the method.
ArticleNumber 109900
Author Schlosser, Corbinian
Korda, Milan
Author_xml – sequence: 1
  givenname: Corbinian
  surname: Schlosser
  fullname: Schlosser, Corbinian
  email: cschlosser@laas.fr
  organization: CNRS-LAAS, 7 avenue du colonel Roche, F-31400 Toulouse, France
– sequence: 2
  givenname: Milan
  surname: Korda
  fullname: Korda, Milan
  email: korda@laas.fr
  organization: CNRS-LAAS, 7 avenue du colonel Roche, F-31400 Toulouse, France
BackLink https://hal.science/hal-02709820$$DView record in HAL
BookMark eNqNkMFPwyAYxYmZidv0f-DqoRPoSunFZC7qTJZ4UM-E0q-VpS0LsEX_e6nVmHjRE-H73vvBezM06W0PCGFKFpRQfrVbqEOwnQpGqwUjjMZxURBygqZU5GnCRMonaEoIyZK4EWdo5v0uXpdUsCl6Wtv-CK4xfYPtIYDDar939s0MRNt7HCxuWluqFqsQnNLBOo8PftB76EwFtelNABxNjVNdFxfn6LRWrYeLr3OOXu5un9ebZPt4_7BebRO95CIkFa0zoVVZlarQnClQdV4Cr_Ka64xoAWJZMJEJKkQq8jznJKuoJqIuNbCMZ-kcXY7cV9XKvYtfdu_SKiM3q60cZoTlMTEjRxq116NWO-u9g1pqEz4jxlCmlZTIoU65kz91yqFOOdYZAeIX4PvFf1hvRivEMo4GnPTaQK-hMg50kJU1f0M-AJxzml0
CitedBy_id crossref_primary_10_1007_s00332_020_09658_1
crossref_primary_10_1109_TAC_2024_3412594
crossref_primary_10_1016_j_ejcon_2024_101088
crossref_primary_10_1007_s00332_023_09990_2
crossref_primary_10_1109_LCSYS_2024_3407610
crossref_primary_10_1109_LCSYS_2022_3180110
crossref_primary_10_1137_21M1466608
crossref_primary_10_1109_TAC_2023_3293014
crossref_primary_10_1109_TAC_2023_3275305
crossref_primary_10_3934_naco_2025011
Cites_doi 10.1137/070685051
10.1109/TAC.2013.2283095
10.1512/iumj.1993.42.42045
10.1080/10556780802699201
10.3934/dcdsb.2015.20.2291
10.1137/17M1121044
10.1088/1361-6544/ab018b
10.1137/130914565
10.1137/19M1305835
10.1109/CACSD.2004.1393890
10.1137/S1052623400366802
10.1137/0313003
10.1145/3282678.3282681
10.1109/TAC.2003.823000
10.1016/j.automatica.2015.05.015
10.1016/j.tcs.2008.09.025
10.1016/j.sysconle.2016.11.010
ContentType Journal Article
Copyright 2021
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2021
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
1XC
VOOES
DOI 10.1016/j.automatica.2021.109900
DatabaseName CrossRef
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
EISSN 1873-2836
ExternalDocumentID oai:HAL:hal-02709820v1
10_1016_j_automatica_2021_109900
S0005109821004234
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
23N
3R3
4.4
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
9JN
9JO
AAAKF
AAAKG
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
ABDEX
ABFNM
ABFRF
ABJNI
ABMAC
ABUCO
ABXDB
ABYKQ
ACBEA
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADIYS
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHPGS
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
APLSM
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HAMUX
HLZ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
K-O
KOM
LG9
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
RXW
SBC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SSB
SSD
SST
SSZ
T5K
T9H
TAE
TN5
VH1
WH7
WUQ
X6Y
XFK
XPP
ZMT
~G-
77I
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABUFD
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
1XC
VOOES
ID FETCH-LOGICAL-c468t-d1f58cabdba9c62aeaf7be6d7f6c50c8e849285818838777605d1c08fbce25653
ISICitedReferencesCount 13
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000704345200004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0005-1098
IngestDate Sat Oct 25 06:48:25 EDT 2025
Tue Nov 18 22:11:03 EST 2025
Sat Nov 29 07:00:00 EST 2025
Fri Feb 23 02:43:34 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Occupation measures
Semidefinite programming
Sum-of-squares
Infinite-dimensional linear programming
Outer approximations
Dynamical systems
Global attractor
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c468t-d1f58cabdba9c62aeaf7be6d7f6c50c8e849285818838777605d1c08fbce25653
ORCID 0000-0002-5755-8326
0000-0002-0251-9004
OpenAccessLink https://hal.science/hal-02709820
ParticipantIDs hal_primary_oai_HAL_hal_02709820v1
crossref_citationtrail_10_1016_j_automatica_2021_109900
crossref_primary_10_1016_j_automatica_2021_109900
elsevier_sciencedirect_doi_10_1016_j_automatica_2021_109900
PublicationCentury 2000
PublicationDate December 2021
2021-12-00
2021-12
PublicationDateYYYYMMDD 2021-12-01
PublicationDate_xml – month: 12
  year: 2021
  text: December 2021
PublicationDecade 2020
PublicationTitle Automatica (Oxford)
PublicationYear 2021
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Lasserre (b14) 2009
Goluskin (b5) 2004
Pólik, Terlaky, Zinchenko (b23) 2007
Magron, El Din (b18) 2018; 52
Zheng (b29) 2019
Goluskin, Fantuzzi (b6) 2019; 32
Korda (b9) 2019; 58
Parrilo (b21) 2000
Magron, Garoche, Henrion, Thirioux (b19) 2019; 57
Henrion, Korda (b7) 2014; 59
Korda, Henrion, Jones (b10) 2014; 52
Marx, Weisser, Henrion, Lasserre (b20) 2018
Ferrante, Gouaisbaut, Tarbouriech (b3) 2015; 58
Prajna, Parrilo, Rantzer (b24) 2004; 49
Henrion, Lasserre, Löfberg (b8) 2009; 24
Putinar (b25) 1993; 42
Schlosser, Korda (b28) 2020
Korda, Henrion, Jones (b11) 2017; 100
Rubio (b27) 1975; 13
Lasserre (b13) 2001; 11
Taipei, Taiwan.
Peyrl, Parrilo (b22) 2008; 409
Giesl, Hafstein (b4) 2015; 20
Robinson (b26) 2001
Dellnitz, Junge (b1) 2002; Vol. 2
Lasserre, Henrion, Prieur, Trélat (b15) 2008; 47
Korda, Henrion, Lasserre (b12) 2018
Lee (b16) 2003
Löfberg, J. (2004). YALMIP: A toolbox for modeling and optimization in MATLAB. In
Dumitrescu (b2) 2007
Zheng (10.1016/j.automatica.2021.109900_b29) 2019
Magron (10.1016/j.automatica.2021.109900_b18) 2018; 52
Robinson (10.1016/j.automatica.2021.109900_b26) 2001
Lasserre (10.1016/j.automatica.2021.109900_b13) 2001; 11
Lee (10.1016/j.automatica.2021.109900_b16) 2003
Rubio (10.1016/j.automatica.2021.109900_b27) 1975; 13
Dellnitz (10.1016/j.automatica.2021.109900_b1) 2002; Vol. 2
10.1016/j.automatica.2021.109900_b17
Ferrante (10.1016/j.automatica.2021.109900_b3) 2015; 58
Korda (10.1016/j.automatica.2021.109900_b9) 2019; 58
Schlosser (10.1016/j.automatica.2021.109900_b28) 2020
Lasserre (10.1016/j.automatica.2021.109900_b14) 2009
Goluskin (10.1016/j.automatica.2021.109900_b5) 2004
Korda (10.1016/j.automatica.2021.109900_b11) 2017; 100
Dumitrescu (10.1016/j.automatica.2021.109900_b2) 2007
Giesl (10.1016/j.automatica.2021.109900_b4) 2015; 20
Putinar (10.1016/j.automatica.2021.109900_b25) 1993; 42
Parrilo (10.1016/j.automatica.2021.109900_b21) 2000
Marx (10.1016/j.automatica.2021.109900_b20) 2018
Korda (10.1016/j.automatica.2021.109900_b12) 2018
Pólik (10.1016/j.automatica.2021.109900_b23) 2007
Henrion (10.1016/j.automatica.2021.109900_b8) 2009; 24
Korda (10.1016/j.automatica.2021.109900_b10) 2014; 52
Peyrl (10.1016/j.automatica.2021.109900_b22) 2008; 409
Goluskin (10.1016/j.automatica.2021.109900_b6) 2019; 32
Magron (10.1016/j.automatica.2021.109900_b19) 2019; 57
Henrion (10.1016/j.automatica.2021.109900_b7) 2014; 59
Lasserre (10.1016/j.automatica.2021.109900_b15) 2008; 47
Prajna (10.1016/j.automatica.2021.109900_b24) 2004; 49
References_xml – volume: 52
  start-page: 34
  year: 2018
  end-page: 37
  ident: b18
  article-title: RealCertify: A maple package for certifying non-negativity
  publication-title: ACM Communications in Computer Algebra
– year: 2018
  ident: b20
  article-title: A moment approach for entropy solutions to nonlinear hyperbolic PDEs
– volume: 100
  start-page: 1
  year: 2017
  end-page: 5
  ident: b11
  article-title: Convergence rates of moment-sum-of-squares hierarchies for optimal control problems
  publication-title: Systems & Control Letters
– volume: 59
  start-page: 297
  year: 2014
  end-page: 312
  ident: b7
  article-title: Convex computation of the region of attraction of polynomial control systems
  publication-title: IEEE Transactions on Automatic Control
– volume: 49
  start-page: 310
  year: 2004
  end-page: 314
  ident: b24
  article-title: Nonlinear control synthesis by convex optimization
  publication-title: IEEE Transactions on Automatic Control
– year: 2001
  ident: b26
  article-title: Infinite-dimensional dynamical systems. An introduction to dissipative parabolic PDEs and the theory of global attractors
– volume: 58
  start-page: 167
  year: 2015
  end-page: 172
  ident: b3
  article-title: Stabilization of continuous-time linear systems subject to input quantization
  publication-title: Automatica
– year: 2007
  ident: b2
  article-title: Positive trigonometric polynomials and signal processing applications. Vol. 103
– reference: Löfberg, J. (2004). YALMIP: A toolbox for modeling and optimization in MATLAB. In
– volume: 20
  start-page: 2291
  year: 2015
  end-page: 2331
  ident: b4
  article-title: Review on computational methods for Lyapunov functions
  publication-title: Discrete and Continuous Dynamical Systems. Series B
– year: 2004
  ident: b5
  article-title: Bounding extreme values on attractors using sum-of-squares optimization, with application to the Lorenz attractor
– year: 2007
  ident: b23
  article-title: SeDuMi: A package for conic optimization
  publication-title: IMA workshop on Optimization and Control
– volume: 52
  start-page: 2944
  year: 2014
  end-page: 2969
  ident: b10
  article-title: Convex computation of the maximum controlled invariant set for polynomial control systems
  publication-title: SIAM Journal on Control and Optimization
– volume: 24
  start-page: 761
  year: 2009
  end-page: 779
  ident: b8
  article-title: Gloptipoly 3: Moments, optimization and semidefinite programming
  publication-title: Optimization Methods & Software
– volume: 58
  start-page: 2871
  year: 2019
  end-page: 2899
  ident: b9
  article-title: Computing controlled invariant sets from data using convex optimization
  publication-title: SIAM Journal on Control and Optimization
– year: 2000
  ident: b21
  article-title: Structured semidefinite programs and semialgebraic geometry methods in robustness and optimiziation
– year: 2003
  ident: b16
  article-title: Introduction to smooth manifolds
– volume: 11
  start-page: 796
  year: 2001
  end-page: 817
  ident: b13
  article-title: Global optimization with polynomials and the problem of moments
  publication-title: SIAM Journal on Optimization
– volume: 13
  start-page: 28
  year: 1975
  end-page: 47
  ident: b27
  article-title: Generalized curves and extremal points
  publication-title: SIAM Journal on Control
– volume: 32
  start-page: 1705
  year: 2019
  ident: b6
  article-title: Bounds on mean energy in the Kuramoto–Sivashinsky equation computed using semidefinite programming
  publication-title: Nonlinearity
– year: 2018
  ident: b12
  article-title: Moments and convex optimization for analysis and control of nonlinear partial differential equations
– volume: Vol. 2
  start-page: 221
  year: 2002
  end-page: 264
  ident: b1
  article-title: Set oriented numerical methods for dynamical systems
  publication-title: Handbook of dynamical systems
– volume: 42
  start-page: 969
  year: 1993
  end-page: 984
  ident: b25
  article-title: Positive polynomials on compact semi-algebraic sets
  publication-title: Indiana University Mathematics Journal
– volume: 47
  start-page: 1643
  year: 2008
  end-page: 1666
  ident: b15
  article-title: Nonlinear optimal control via occupation measures and LMI relaxations
  publication-title: SIAM Journal on Control and Optimization
– volume: 409
  start-page: 269
  year: 2008
  end-page: 281
  ident: b22
  article-title: Computing sum of squares decompositions with rational coefficients
  publication-title: Theoretical Computer Science
– year: 2009
  ident: b14
  article-title: Moments, positive polynomials and their applications
– reference: . Taipei, Taiwan.
– year: 2019
  ident: b29
  article-title: Chordal sparsity in control and optimization of large-scale systems
– volume: 57
  start-page: 2799
  year: 2019
  end-page: 2820
  ident: b19
  article-title: Semidefinite approximations of reachable sets for discrete-time polynomial systems
  publication-title: SIAM Journal on Control and Optimization
– year: 2020
  ident: b28
  article-title: Sparse moment-sum-of-squares relaxations for nonlinear dynamical systems with guaranteed convergence
– volume: 47
  start-page: 1643
  year: 2008
  ident: 10.1016/j.automatica.2021.109900_b15
  article-title: Nonlinear optimal control via occupation measures and LMI relaxations
  publication-title: SIAM Journal on Control and Optimization
  doi: 10.1137/070685051
– volume: Vol. 2
  start-page: 221
  year: 2002
  ident: 10.1016/j.automatica.2021.109900_b1
  article-title: Set oriented numerical methods for dynamical systems
– year: 2018
  ident: 10.1016/j.automatica.2021.109900_b20
– year: 2019
  ident: 10.1016/j.automatica.2021.109900_b29
– volume: 59
  start-page: 297
  issue: 2
  year: 2014
  ident: 10.1016/j.automatica.2021.109900_b7
  article-title: Convex computation of the region of attraction of polynomial control systems
  publication-title: IEEE Transactions on Automatic Control
  doi: 10.1109/TAC.2013.2283095
– volume: 42
  start-page: 969
  year: 1993
  ident: 10.1016/j.automatica.2021.109900_b25
  article-title: Positive polynomials on compact semi-algebraic sets
  publication-title: Indiana University Mathematics Journal
  doi: 10.1512/iumj.1993.42.42045
– volume: 24
  start-page: 761
  year: 2009
  ident: 10.1016/j.automatica.2021.109900_b8
  article-title: Gloptipoly 3: Moments, optimization and semidefinite programming
  publication-title: Optimization Methods & Software
  doi: 10.1080/10556780802699201
– year: 2000
  ident: 10.1016/j.automatica.2021.109900_b21
– volume: 20
  start-page: 2291
  issue: 8
  year: 2015
  ident: 10.1016/j.automatica.2021.109900_b4
  article-title: Review on computational methods for Lyapunov functions
  publication-title: Discrete and Continuous Dynamical Systems. Series B
  doi: 10.3934/dcdsb.2015.20.2291
– volume: 57
  start-page: 2799
  issue: 4
  year: 2019
  ident: 10.1016/j.automatica.2021.109900_b19
  article-title: Semidefinite approximations of reachable sets for discrete-time polynomial systems
  publication-title: SIAM Journal on Control and Optimization
  doi: 10.1137/17M1121044
– volume: 32
  start-page: 1705
  issue: 5
  year: 2019
  ident: 10.1016/j.automatica.2021.109900_b6
  article-title: Bounds on mean energy in the Kuramoto–Sivashinsky equation computed using semidefinite programming
  publication-title: Nonlinearity
  doi: 10.1088/1361-6544/ab018b
– year: 2004
  ident: 10.1016/j.automatica.2021.109900_b5
– year: 2007
  ident: 10.1016/j.automatica.2021.109900_b2
– year: 2003
  ident: 10.1016/j.automatica.2021.109900_b16
– volume: 52
  start-page: 2944
  issue: 5
  year: 2014
  ident: 10.1016/j.automatica.2021.109900_b10
  article-title: Convex computation of the maximum controlled invariant set for polynomial control systems
  publication-title: SIAM Journal on Control and Optimization
  doi: 10.1137/130914565
– volume: 58
  start-page: 2871
  issue: 5
  year: 2019
  ident: 10.1016/j.automatica.2021.109900_b9
  article-title: Computing controlled invariant sets from data using convex optimization
  publication-title: SIAM Journal on Control and Optimization
  doi: 10.1137/19M1305835
– ident: 10.1016/j.automatica.2021.109900_b17
  doi: 10.1109/CACSD.2004.1393890
– year: 2001
  ident: 10.1016/j.automatica.2021.109900_b26
– volume: 11
  start-page: 796
  issue: 3
  year: 2001
  ident: 10.1016/j.automatica.2021.109900_b13
  article-title: Global optimization with polynomials and the problem of moments
  publication-title: SIAM Journal on Optimization
  doi: 10.1137/S1052623400366802
– year: 2020
  ident: 10.1016/j.automatica.2021.109900_b28
– year: 2018
  ident: 10.1016/j.automatica.2021.109900_b12
– volume: 13
  start-page: 28
  issue: 1
  year: 1975
  ident: 10.1016/j.automatica.2021.109900_b27
  article-title: Generalized curves and extremal points
  publication-title: SIAM Journal on Control
  doi: 10.1137/0313003
– year: 2007
  ident: 10.1016/j.automatica.2021.109900_b23
  article-title: SeDuMi: A package for conic optimization
– volume: 52
  start-page: 34
  issue: 2
  year: 2018
  ident: 10.1016/j.automatica.2021.109900_b18
  article-title: RealCertify: A maple package for certifying non-negativity
  publication-title: ACM Communications in Computer Algebra
  doi: 10.1145/3282678.3282681
– volume: 49
  start-page: 310
  issue: 2
  year: 2004
  ident: 10.1016/j.automatica.2021.109900_b24
  article-title: Nonlinear control synthesis by convex optimization
  publication-title: IEEE Transactions on Automatic Control
  doi: 10.1109/TAC.2003.823000
– volume: 58
  start-page: 167
  year: 2015
  ident: 10.1016/j.automatica.2021.109900_b3
  article-title: Stabilization of continuous-time linear systems subject to input quantization
  publication-title: Automatica
  doi: 10.1016/j.automatica.2015.05.015
– volume: 409
  start-page: 269
  issue: 2
  year: 2008
  ident: 10.1016/j.automatica.2021.109900_b22
  article-title: Computing sum of squares decompositions with rational coefficients
  publication-title: Theoretical Computer Science
  doi: 10.1016/j.tcs.2008.09.025
– year: 2009
  ident: 10.1016/j.automatica.2021.109900_b14
– volume: 100
  start-page: 1
  year: 2017
  ident: 10.1016/j.automatica.2021.109900_b11
  article-title: Convergence rates of moment-sum-of-squares hierarchies for optimal control problems
  publication-title: Systems & Control Letters
  doi: 10.1016/j.sysconle.2016.11.010
SSID ssj0004182
Score 2.4959197
Snippet This paper develops a method for obtaining guaranteed outer approximations for global attractors of continuous and discrete time nonlinear dynamical systems....
SourceID hal
crossref
elsevier
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 109900
SubjectTerms Dynamical Systems
Global attractor
Infinite-dimensional linear programming
Mathematics
Occupation measures
Optimization and Control
Outer approximations
Semidefinite programming
Sum-of-squares
Title Converging outer approximations to global attractors using semidefinite programming
URI https://dx.doi.org/10.1016/j.automatica.2021.109900
https://hal.science/hal-02709820
Volume 134
WOSCitedRecordID wos000704345200004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-2836
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004182
  issn: 0005-1098
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ba9swFBZruoftYXQ31m4tYuzVxZJvMnsKoSW7EAbtIG9GliWaktjFcUp-fo8uvrR0LBv0xRgRyXLO56Oj48_fQeiLlkALCp97JMwjLwxU7jGqQgjkAkV4CCue8k2xiWQ2Y_N5-suVS12bcgJJWbLtNr15UlNDGxhbfzr7D-buBoUGOAejwxHMDsedDD_RPPLa1h7S9RqsbPh2sXKkNwg2nQoIb5raldvZmJTBWq4WhVQLHYe2zK1Vu7a1UrWbpjIyr9wolW4tOb5LJ1yIq2WlX_GbDGxVw8Z7AMAf8GNu2fpL1-oyDpQM2ButF9XqpbZ6dOdFXU7S-kHzvs1_1EXbbMG1Jui46Z7qi5z2Xe6rYj9YrToOYUtPu876kTI9UmZH2kP7NIlScNb7429n8-_917KEWQ15dxeO32VZf4_P6k9By95Vm3434cjlAXrl9hF4bO3_Gj2T5Rv0cqAu-RZd9EjABgn4PhJwU2GLBNwjARsk4CES8AAJ79Dv87PLydRzNTQ8Ecas8QqiIiZ4XuQ8FTHlkqskl3GRqFhEvmCShSllEYRtLNDSkLC7LYjwmcqFhGg4Ct6jUVmV8gPCLBa-EGkRRzkNORM5OKFYkLCQEPRSER2ipP2TMuEE5nWdk2X2N1MdItL1vLEiKzv0-draIXPBog0CMwDaDr0_g-m6i2mN9en4Z6bbfJoAKKh_S47-Y1of0Yv-kfmERk29kcfoubhtFuv6xEHxDroUoAw
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Converging+outer+approximations+to+global+attractors+using+semidefinite+programming&rft.jtitle=Automatica+%28Oxford%29&rft.au=Schlosser%2C+Corbinian&rft.au=Korda%2C+Milan&rft.date=2021-12-01&rft.issn=0005-1098&rft.volume=134&rft.spage=109900&rft_id=info:doi/10.1016%2Fj.automatica.2021.109900&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_automatica_2021_109900
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0005-1098&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0005-1098&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0005-1098&client=summon