Ameliorated Fick’s law algorithm based multi-threshold medical image segmentation
Medical image segmentation is a critical and demanding step in medical image processing, which provides a solid foundation for subsequent medical image data extraction and analysis. Multi-threshold image segmentation, one of the most commonly used and specialized image segmentation techniques, limit...
Uloženo v:
| Vydáno v: | The Artificial intelligence review Ročník 57; číslo 11; s. 302 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Dordrecht
Springer Netherlands
01.11.2024
Springer Springer Nature B.V |
| Témata: | |
| ISSN: | 1573-7462, 0269-2821, 1573-7462 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Medical image segmentation is a critical and demanding step in medical image processing, which provides a solid foundation for subsequent medical image data extraction and analysis. Multi-threshold image segmentation, one of the most commonly used and specialized image segmentation techniques, limits its application to medical images because it requires demanding computational performance and is difficult to produce satisfactory segmentation results. To overcome the above problems, an ameliorated Fick's law algorithm (MsFLA) for multi-threshold image segmentation is developed in this paper. First, an optimized sine–cosine strategy is introduced to extend the molecular diffusion process to alleviate the problem of easily falling into local optima, thus improving the convergence accuracy of the Fick's law algorithm (FLA). Secondly, the introduction of local minimal value avoidance enriches the individual molecular information and enhances the local search ability, thus improving computational accuracy. In addition, the optimal neighborhood learning strategy is added to ensure a more careful and reasonable reliance on the optimal solution, thus reducing the chance of convergence of a local solution. The efficient optimization capability of MsFLA is comprehensively validated by comparing MsFLA with the original FLA and other algorithms in 23 classical benchmark functions. Finally, MsFLA is applied to image segmentation of grayscale images of COVID-19 and brain and color images of Lung and Colon cancer histopathology by using Cross entropy to validate its segmentation capability. The experimental results show that the MsFLA obtains the best segmentation results in three medical image cases compared to other comparison algorithms, which indicates that MsFLA can effectively solve the multi-threshold medical image segmentation problem.
Graphical abstract |
|---|---|
| AbstractList | Medical image segmentation is a critical and demanding step in medical image processing, which provides a solid foundation for subsequent medical image data extraction and analysis. Multi-threshold image segmentation, one of the most commonly used and specialized image segmentation techniques, limits its application to medical images because it requires demanding computational performance and is difficult to produce satisfactory segmentation results. To overcome the above problems, an ameliorated Fick's law algorithm (MsFLA) for multi-threshold image segmentation is developed in this paper. First, an optimized sine-cosine strategy is introduced to extend the molecular diffusion process to alleviate the problem of easily falling into local optima, thus improving the convergence accuracy of the Fick's law algorithm (FLA). Secondly, the introduction of local minimal value avoidance enriches the individual molecular information and enhances the local search ability, thus improving computational accuracy. In addition, the optimal neighborhood learning strategy is added to ensure a more careful and reasonable reliance on the optimal solution, thus reducing the chance of convergence of a local solution. The efficient optimization capability of MsFLA is comprehensively validated by comparing MsFLA with the original FLA and other algorithms in 23 classical benchmark functions. Finally, MsFLA is applied to image segmentation of grayscale images of COVID-19 and brain and color images of Lung and Colon cancer histopathology by using Cross entropy to validate its segmentation capability. The experimental results show that the MsFLA obtains the best segmentation results in three medical image cases compared to other comparison algorithms, which indicates that MsFLA can effectively solve the multi-threshold medical image segmentation problem. Medical image segmentation is a critical and demanding step in medical image processing, which provides a solid foundation for subsequent medical image data extraction and analysis. Multi-threshold image segmentation, one of the most commonly used and specialized image segmentation techniques, limits its application to medical images because it requires demanding computational performance and is difficult to produce satisfactory segmentation results. To overcome the above problems, an ameliorated Fick's law algorithm (MsFLA) for multi-threshold image segmentation is developed in this paper. First, an optimized sine-cosine strategy is introduced to extend the molecular diffusion process to alleviate the problem of easily falling into local optima, thus improving the convergence accuracy of the Fick's law algorithm (FLA). Secondly, the introduction of local minimal value avoidance enriches the individual molecular information and enhances the local search ability, thus improving computational accuracy. In addition, the optimal neighborhood learning strategy is added to ensure a more careful and reasonable reliance on the optimal solution, thus reducing the chance of convergence of a local solution. The efficient optimization capability of MsFLA is comprehensively validated by comparing MsFLA with the original FLA and other algorithms in 23 classical benchmark functions. Finally, MsFLA is applied to image segmentation of grayscale images of COVID-19 and brain and color images of Lung and Colon cancer histopathology by using Cross entropy to validate its segmentation capability. The experimental results show that the MsFLA obtains the best segmentation results in three medical image cases compared to other comparison algorithms, which indicates that MsFLA can effectively solve the multi-threshold medical image segmentation problem. Graphical abstract Medical image segmentation is a critical and demanding step in medical image processing, which provides a solid foundation for subsequent medical image data extraction and analysis. Multi-threshold image segmentation, one of the most commonly used and specialized image segmentation techniques, limits its application to medical images because it requires demanding computational performance and is difficult to produce satisfactory segmentation results. To overcome the above problems, an ameliorated Fick's law algorithm (MsFLA) for multi-threshold image segmentation is developed in this paper. First, an optimized sine–cosine strategy is introduced to extend the molecular diffusion process to alleviate the problem of easily falling into local optima, thus improving the convergence accuracy of the Fick's law algorithm (FLA). Secondly, the introduction of local minimal value avoidance enriches the individual molecular information and enhances the local search ability, thus improving computational accuracy. In addition, the optimal neighborhood learning strategy is added to ensure a more careful and reasonable reliance on the optimal solution, thus reducing the chance of convergence of a local solution. The efficient optimization capability of MsFLA is comprehensively validated by comparing MsFLA with the original FLA and other algorithms in 23 classical benchmark functions. Finally, MsFLA is applied to image segmentation of grayscale images of COVID-19 and brain and color images of Lung and Colon cancer histopathology by using Cross entropy to validate its segmentation capability. The experimental results show that the MsFLA obtains the best segmentation results in three medical image cases compared to other comparison algorithms, which indicates that MsFLA can effectively solve the multi-threshold medical image segmentation problem. Graphical abstract |
| ArticleNumber | 302 |
| Audience | Academic |
| Author | Hussien, Abdelazim G. Hu, Gang Zhong, Jingyu Houssein, Essam H. Zhao, Feng |
| Author_xml | – sequence: 1 givenname: Gang surname: Hu fullname: Hu, Gang email: hugang@xaut.edu.cn organization: Department of Applied Mathematics, Xi’an University of Technology, School of Computer Science and Engineering, Xi’an University of Technology – sequence: 2 givenname: Feng surname: Zhao fullname: Zhao, Feng organization: Department of Applied Mathematics, Xi’an University of Technology – sequence: 3 givenname: Abdelazim G. surname: Hussien fullname: Hussien, Abdelazim G. organization: Department of Computer and Information Science, Linköping University, Faculty of Science, Fayoum University, Applied Science Research Center, Applied Science Private University, MEU Research Unit, Middle East University – sequence: 4 givenname: Jingyu surname: Zhong fullname: Zhong, Jingyu organization: Department of Applied Mathematics, Xi’an University of Technology – sequence: 5 givenname: Essam H. surname: Houssein fullname: Houssein, Essam H. organization: Faculty of Computers and Information, Minia University |
| BackLink | https://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-208298$$DView record from Swedish Publication Index (Linköpings universitet) |
| BookMark | eNp9kctu3SAURVGVSk3S_kBHljom5WWDh1d5NVKkDvqYIoyPfUmwuQWsKLP8Rn-vXxJSp0obVRED4LA22ufsA7Q3hxkQek_JESVEfkyUiIZhwgSmpKUtVq_QPq0lx7LU9_46v0EHKV0RQmom-D76spnAuxBNhr46c_b6193PVHlzUxk_hujydqo6k8rjtPjscN5GSNvgyx16Z42v3GRGqBKME8zZZBfmt-j1YHyCd4_7Ifp2dvr1-BO-_Hx-cby5xFY0KmPb2kY1NaV1B4yDhYbUrRW1oSAIMy2veQfAettJaqRQspdC1mYQahg4gOWHCK__phvYLZ3exeIl3upgnD5x3zc6xFF7t2hGFGtV4T-s_C6GHwukrK_CEudiUXNKlBCcUPZEjcaDdvMQcjR2csnqjSKtZIo2tFBH_6HK6mFytoQzuFL_R6BWgY0hpQiDtm4dVxE6rynRD0nqNUldktS_k9QPvtkz6Z9OXxTxx-EUeB4hPjX7guoeF3OyyA |
| CitedBy_id | crossref_primary_10_1038_s41598_025_03124_2 crossref_primary_10_3390_cancers17050781 |
| Cites_doi | 10.1007/s00366-021-01545-x 10.1007/s11227-023-05227-x 10.1016/j.bspc.2022.104139 10.1109/TEVC.2018.2875430 10.1016/j.patcog.2012.12.002 10.1016/j.compbiomed.2022.106227 10.18280/ts.380409 10.1007/978-3-030-00665-5_37 10.1109/TPAMI.2010.161 10.23919/CSMS.2021.0018 10.1016/j.bspc.2022.104511 10.5566/ias.1865 10.1007/s10462-023-10498-0 10.1007/s10462-021-10086-0 10.1016/j.knosys.2021.107761 10.1016/j.eswa.2022.119021 10.1109/ICNN.1995.488968 10.1016/j.eswa.2021.115651 10.1016/j.eswa.2022.116924 10.1016/j.eswa.2022.118267 10.1007/s00366-021-01479-4 10.1016/j.eswa.2022.117118 10.1016/j.patcog.2012.09.015 10.1007/s11042-018-7034-x 10.1016/j.compbiomed.2021.105015 10.1016/j.asoc.2023.110130 10.1016/j.compbiomed.2022.106075 10.1016/j.knosys.2015.12.022 10.1016/j.eswa.2019.07.037 10.1016/j.compbiomed.2022.106404 10.1007/978-981-13-1595-4_9 10.1016/j.knosys.2014.05.004 10.1016/j.compbiomed.2022.105680 10.1016/j.bspc.2023.104893 10.1016/j.compbiomed.2021.105137 10.1016/j.knosys.2022.110146 10.1016/j.bspc.2023.104592 10.1016/j.compbiomed.2022.105618 10.1016/j.advengsoft.2013.12.007 10.1016/j.aei.2023.102210 10.1016/j.compbiomed.2021.105179 10.3390/math11102369 10.1016/j.bspc.2021.103401 10.1016/j.eswa.2021.115637 10.4108/eai.12-4-2021.169184 10.1016/j.cma.2022.114570 10.23919/CSMS.2021.0010 10.1016/j.cma.2022.114901 10.1016/j.cviu.2014.04.010 10.1016/j.eswa.2023.120058 10.1007/s10462-022-10157-w 10.1016/j.neucom.2014.02.020 10.1016/j.advengsoft.2017.07.002 10.1016/j.compbiomed.2021.105206 10.1016/j.engappai.2022.104960 10.1023/A:1008202821328 10.1515/mt-2023-0235 10.1016/j.eswa.2021.116145 10.1109/TIP.2010.2044965 10.1016/j.eswa.2020.114159 10.1016/j.eswa.2021.114841 10.1016/j.knosys.2021.107638 10.1016/j.eswa.2020.113428 10.1109/4235.585893 10.1109/JIOT.2021.3051060 10.1016/j.cma.2020.113609 10.1016/j.advengsoft.2016.01.008 10.1016/j.cma.2021.114194 10.1016/j.compbiomed.2021.105181 10.1016/j.knosys.2020.105570 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2024 COPYRIGHT 2024 Springer Copyright Springer Nature B.V. Nov 2024 |
| Copyright_xml | – notice: The Author(s) 2024 – notice: COPYRIGHT 2024 Springer – notice: Copyright Springer Nature B.V. Nov 2024 |
| DBID | C6C AAYXX CITATION 3V. 7SC 7WY 7WZ 7XB 87Z 8AL 8AO 8FD 8FE 8FG 8FK 8FL ABUWG AFKRA ALSLI ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU CNYFK DWQXO E3H F2A FRNLG F~G GNUQQ HCIFZ JQ2 K60 K6~ K7- L.- L7M L~C L~D M0C M0N M1O P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PRINS PRQQA PSYQQ Q9U ABXSW ADTPV AOWAS D8T DG8 ZZAVC |
| DOI | 10.1007/s10462-024-10919-8 |
| DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni Edition) ProQuest Central (Alumni) ProQuest Central UK/Ireland Social Science Premium Collection Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Business Premium Collection Technology collection ProQuest One Community College Library & information science collection. ProQuest Central Library & Information Sciences Abstracts (LISA) Library & Information Science Abstracts (LISA) Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ABI/INFORM Professional Advanced Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global Computing Database Library Science Database AAdvanced Technologies & Aerospace Database (subscription) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Business (UW System Shared) ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Social Sciences ProQuest One Psychology ProQuest Central Basic SWEPUB Linköpings universitet full text SwePub SwePub Articles SWEPUB Freely available online SWEPUB Linköpings universitet SwePub Articles full text |
| DatabaseTitle | CrossRef ProQuest Business Collection (Alumni Edition) ProQuest One Psychology Computer Science Database ProQuest Central Student Library and Information Science Abstracts (LISA) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China ABI/INFORM Complete ProQuest One Applied & Life Sciences Library & Information Science Collection ProQuest Central (New) Advanced Technologies & Aerospace Collection Business Premium Collection Social Science Premium Collection ABI/INFORM Global ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest Business Collection ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ABI/INFORM Global (Corporate) ProQuest One Business Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Pharma Collection ProQuest Central ABI/INFORM Professional Advanced ProQuest Library Science ProQuest Central Korea Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) ProQuest Computing ProQuest One Social Sciences ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Business (Alumni) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
| DatabaseTitleList | CrossRef ProQuest Business Collection (Alumni Edition) |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science Law |
| EISSN | 1573-7462 |
| ExternalDocumentID | oai_DiVA_org_liu_208298 A809728161 10_1007_s10462_024_10919_8 |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: Grant No. 51875454 funderid: http://dx.doi.org/10.13039/501100001809 |
| GroupedDBID | -4Z -59 -5G -BR -EM -~C .4S .86 .DC .VR 06D 0R~ 0VY 1N0 203 23N 2J2 2JN 2JY 2KG 2LR 2~H 30V 4.4 406 408 409 40D 40E 5GY 5VS 67Z 6J9 6NX 77K 7WY 8FL 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AAHNG AAIAL AAJKR AAJSJ AAKKN AANZL AARTL AATVU AAUYE AAWCG AAYIU AAYQN AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABEEZ ABFTD ABFTV ABHLI ABHQN ABIVO ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABWNU ABXPI ACACY ACGFS ACHSB ACHXU ACIHN ACKNC ACMDZ ACMLO ACOKC ACOMO ACREN ACSNA ACULB ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEAQA AEFQL AEGAL AEGNC AEJHL AEJRE AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFGXO AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIIXL AILAN AITGF AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALSLI ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BENPR BGNMA C24 C6C CS3 CSCUP DDRTE DL5 DNIVK DPUIP EBLON EBS EDO EIOEI ESBYG FEDTE FERAY FFXSO FIGPU FNLPD FRRFC FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GXS HCIFZ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IAO IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6~ KDC KOV LLZTM M1O M4Y MA- N9A NB0 NPVJJ NQJWS NU0 O93 O9G O9I O9J OAM P19 P9O PF0 PT5 QOK QOS R89 R9I RHV RNS ROL RPX RSV S16 S27 S3B SAP SCO SDH SDM SHX SISQX SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX VC2 W23 W48 WH7 WK8 YLTOR Z45 Z5O Z7R Z7X Z7Y Z7Z Z81 Z83 Z86 Z88 Z8M Z8N Z8R Z8S Z8T Z8U Z8W Z92 ZMTXR ~A9 ~EX 77I 8AO 8FE 8FG AAFWJ AASML AAYXX ABDBE ABFSG ABUWG ACSTC AEZWR AFFHD AFHIU AFKRA AHPBZ AHWEU AIXLP AYFIA AZQEC BEZIV BGLVJ BPHCQ CCPQU CITATION CNYFK DWQXO FRNLG GNUQQ ICD K6V K7- M0C MK~ P62 PHGZM PHGZT PQBIZ PQBZA PQGLB PQQKQ PROAC PRQQA PSYQQ Q2X 3V. 7SC 7XB 8AL 8FD 8FK E3H F2A JQ2 L.- L7M L~C L~D M0N PKEHL PQEST PQUKI PRINS Q9U -Y2 1SB 2.D 28- 2P1 2VQ 5QI AAOBN AARHV AAYTO ABJNI ABQSL ABXSW ACBXY ADHKG ADTPV AEBTG AEFIE AEKMD AFEXP AFFNX AFGCZ AGGDS AGJBK AGQPQ AJBLW AOWAS BBWZM BDATZ CAG COF D8T DG8 EJD FINBP FSGXE H13 HF~ IHE KOW LAK N2Q NDZJH O9- OVD R4E RNI RZC RZE RZK S1Z S26 S28 SCJ SCLPG T16 TEORI UZXMN VFIZW ZZAVC |
| ID | FETCH-LOGICAL-c468t-c9c6865115be23ece6059c45a1e402a9353bee2dcb71a7487d7475af48ff3eec3 |
| IEDL.DBID | M0C |
| ISICitedReferencesCount | 4 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001319551800002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1573-7462 0269-2821 |
| IngestDate | Tue Nov 04 16:57:47 EST 2025 Thu Nov 13 23:21:39 EST 2025 Sat Nov 29 13:45:34 EST 2025 Sat Nov 29 10:28:27 EST 2025 Sat Nov 29 02:43:29 EST 2025 Tue Nov 18 22:36:42 EST 2025 Fri Feb 21 02:37:23 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 11 |
| Keywords | Multi-threshold image segmentation Cross entropy Optimal neighborhood learning Optimized sine cosine strategy Local minimum avoidance Medical image segmentation |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c468t-c9c6865115be23ece6059c45a1e402a9353bee2dcb71a7487d7475af48ff3eec3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| OpenAccessLink | https://link.springer.com/10.1007/s10462-024-10919-8 |
| PQID | 3108443012 |
| PQPubID | 36790 |
| ParticipantIDs | swepub_primary_oai_DiVA_org_liu_208298 proquest_journals_3108443012 gale_infotracmisc_A809728161 gale_infotracacademiconefile_A809728161 crossref_citationtrail_10_1007_s10462_024_10919_8 crossref_primary_10_1007_s10462_024_10919_8 springer_journals_10_1007_s10462_024_10919_8 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-11-01 |
| PublicationDateYYYYMMDD | 2024-11-01 |
| PublicationDate_xml | – month: 11 year: 2024 text: 2024-11-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Dordrecht |
| PublicationPlace_xml | – name: Dordrecht |
| PublicationSubtitle | An International Science and Engineering Journal |
| PublicationTitle | The Artificial intelligence review |
| PublicationTitleAbbrev | Artif Intell Rev |
| PublicationYear | 2024 |
| Publisher | Springer Netherlands Springer Springer Nature B.V |
| Publisher_xml | – name: Springer Netherlands – name: Springer – name: Springer Nature B.V |
| References | Mignotte (CR41) 2010; 19 Su, Zhao, Yu, Heidari, Zhang, Chen, Li, Pan, Quan (CR58) 2022; 142 Houssein, Emam, Ali (CR22) 2021; 185 Houssein, Helmy, Oliva, Elngar, Shaban (CR23) 2021; 167 Abdel-Basset, Mohamed, AbdelAziz, Abouhawwash (CR2) 2022; 190 Arbeláez, Maire, Fowlkes, Malik (CR7) 2011; 33 Abdel-Basset, Mohamed, Abouhawwash (CR4) 2022; 55 Kumari, Prakash, Prasad (CR31) 2020; 11 Xing (CR67) 2020; 194 Ramesh, Kumar, Swapna, Datta, Rajest (CR49) 2021; 7 Xing, Zhou, Zhao, Chen, Heidari (CR68) 2023; 82 Hu, Gui, Heidari, Cai, Liang, Chen, Pan (CR26) 2022; 237 Hao, Huang, Heidari, Xu, Chen, Althobaiti, Mansour, Chen (CR18) 2023; 80 Zhao, Wang, Mirjalili (CR75) 2022; 388 Yu, Wu (CR69) 2022; 209 Abualigah, Diabat, Mirjalili, Abd Elaziz, Gandomi (CR5) 2021; 376 Zhang, Liu, Ye, Heidari, Liang, Chen, Pan (CR71) 2022 Zhao, Wang, Heidari, Chen, He, Xu (CR74) 2021; 139 Meng, Chen, Yin, Chen (CR40) 2014; 67 Shubham, Bhandari (CR53) 2019; 78 Sasibhushana Rao, Vimala Kumari, Prabhakara Rao, Bansal, Das, Nagar, Deep, Ojha (CR51) 2019 Too, Liang, Chen (CR60) 2022; 38 Mirjalili, Lewis (CR44) 2016; 95 Singh, Mittal, Nayyar, Singh, Singh (CR55) 2023; 213 Mirjalili, Gandomi, Mirjalili, Saremi, Faris, Mirjalili (CR43) 2017; 114 Casas-Ordaz, Oliva, Navarro, Ramos-Michel, Pérez-Cisneros (CR8) 2023; 79 Emam, Houssein, Ghoniem (CR14) 2023; 152 Dabass, Vashisth, Vig (CR13) 2022; 147 Kumari, Sasibhushana Rao, Prabhakara Rao, Satapathy, Tavares, Bhateja, Mohanty (CR34) 2018 Peng, Zhang, Zhang (CR48) 2013; 46 Chen, Cai, Heidari, Chen, He, Escorcia-Gutierrez, Mansour (CR9) 2023; 85 Wang, Bei, Song, Zhang, Zhang (CR61) 2023; 137 Xia, Yang, Zhou, Chen, Zhang, Liu, Heidari, Chen, Pan (CR66) 2022; 141 Ma, Yue (CR38) 2022; 113 Chen, Ge, Wan, Deng, Chen, Zou (CR10) 2022; 200 Han, Han, Chen, Li, Sang, Liu, Pan, Nojima (CR17) 2021; 1 Kumari, Sasibhushana Rao, Prabhakara Rao (CR32) 2018; 37 Kumari, Sasibhushana Rao, Prabhakara Rao (CR33) 2021; 18 Su, Zhao, Elmannai, Heidari, Bourouis, Wu, Cai, Gui, Chen (CR57) 2022; 146 Wolpert, Macready (CR63) 1997; 1 Oliva, Cuevas, Pajares, Zaldivar, Osuna (CR47) 2014; 139 Liu, Zhan, Gao, Zhang, Kwong, Zhang (CR37) 2019; 23 Kennedy, Eberhart (CR29) 1995; 1944 Mirjalili, Mirjalili, Lewis (CR45) 2014; 69 Hu, Zhong, Du, Wei (CR28) 2022; 394 Hashim, Mostafa, Hussien, Mirjalili, Sallam (CR19) 2023; 260 Zhao, Di, Cao, Tang, Jonrinaldi (CR73) 2021; 1 Zheng, Ji, Ma, Hu (CR76) 2023; 11 Mirjalili (CR42) 2016; 96 Xia, Liu, Huang (CR64) 2021; 11 Agushaka, Ezugwu, Abualigah (CR6) 2022; 391 Hu, Guo, Wei, Abualigah (CR27) 2023; 58 Mehta, Yildiz, Sait, Yildiz (CR39) 2023; 65 Tarkhaneh, Shen (CR59) 2019; 138 Kumari, Srikanth, Prakash, Rao (CR35) 2020; 14 Abdel-Basset, Mohamed, Abouhawwash (CR3) 2022; 55 Hu, Du, Wang, Wei (CR25) 2022; 235 Rodríguez-Esparza, Zanella-Calzada, Oliva, Heidari, Zaldivar, Pérez-Cisneros, Foong (CR50) 2020; 155 Xia, Wang, Yang, Li, Liang, Chen, Heidari, Turabieh, Mafarja, Pan (CR65) 2022; 143 Zhang, Chen, Lin (CR70) 2021; 8 Moreno, Surya Prasath, Proença, Palaniappan (CR46) 2014; 125 Han, Feng, Baciu (CR16) 2013; 46 Kullback (CR30) 1968 Sasibhushana Rao, Vimala Kumari, Prabhakara Rao, Pandian, Fernando, Baig, Shi (CR52) 2019 Chen, Huang, Heidari, Sun, Lv, Gui, Liang, Gu, Chen, Li, Chen (CR11) 2022; 142 Gollu, Sravani, Prakash, Srikanth (CR15) 2021; 38 Houssein, Helmy, Oliva, Jangir, Premkumar, Elngar, Shaban (CR24) 2022; 73 Singh, Bose (CR54) 2021; 185 Hou, Li, Mafarja, Heidari, Liu, Jin, Zhou, Chen, Cai, Li (CR20) 2023; 82 Chopra, Mohsin Ansari (CR12) 2022; 198 Zhang, Yang, Lou, Wang, Sun (CR72) 2023; 224 Abd Elaziz, Lu, He (CR1) 2021; 175 Liu, Li, Jia, Qi, Abualigah (CR36) 2023; 56 Storn, Price (CR56) 1997; 11 Wei, Liu, Kuang, Li, Xu, Liang (CR62) 2022; 151 Houssein, Abdelkareem, Emam, Hameed, Younan (CR21) 2022; 149 XF Liu (10919_CR37) 2019; 23 L Hou (10919_CR20) 2023; 82 G Ma (10919_CR38) 2022; 113 E Rodríguez-Esparza (10919_CR50) 2020; 155 GV Kumari (10919_CR35) 2020; 14 J Xia (10919_CR66) 2022; 141 H Su (10919_CR58) 2022; 142 FA Hashim (10919_CR19) 2023; 260 S Kullback (10919_CR30) 1968 X Han (10919_CR17) 2021; 1 M Zhang (10919_CR70) 2021; 8 N Chopra (10919_CR12) 2022; 198 G Sasibhushana Rao (10919_CR51) 2019 M Abdel-Basset (10919_CR4) 2022; 55 H Zhang (10919_CR71) 2022 GV Kumari (10919_CR32) 2018; 37 J Chen (10919_CR9) 2023; 85 S Mirjalili (10919_CR44) 2016; 95 A-B Meng (10919_CR40) 2014; 67 M Abd Elaziz (10919_CR1) 2021; 175 J Wang (10919_CR61) 2023; 137 X Chen (10919_CR11) 2022; 142 M Abdel-Basset (10919_CR2) 2022; 190 S Shubham (10919_CR53) 2019; 78 S Zhao (10919_CR74) 2021; 139 A Casas-Ordaz (10919_CR8) 2023; 79 L Abualigah (10919_CR5) 2021; 376 GV Kumari (10919_CR31) 2020; 11 P Arbeláez (10919_CR7) 2011; 33 X Yu (10919_CR69) 2022; 209 EH Houssein (10919_CR22) 2021; 185 G Hu (10919_CR25) 2022; 235 S Singh (10919_CR55) 2023; 213 M Dabass (10919_CR13) 2022; 147 Z Xing (10919_CR67) 2020; 194 KKD Ramesh (10919_CR49) 2021; 7 GV Kumari (10919_CR34) 2018 P Singh (10919_CR54) 2021; 185 EH Houssein (10919_CR23) 2021; 167 S Mirjalili (10919_CR43) 2017; 114 VK Gollu (10919_CR15) 2021; 38 Q Liu (10919_CR36) 2023; 56 Y Han (10919_CR16) 2013; 46 J Zheng (10919_CR76) 2023; 11 P Mehta (10919_CR39) 2023; 65 GV Kumari (10919_CR33) 2021; 18 B Peng (10919_CR48) 2013; 46 J Hu (10919_CR26) 2022; 237 Z Wei (10919_CR62) 2022; 151 F Zhao (10919_CR73) 2021; 1 S Hao (10919_CR18) 2023; 80 J Too (10919_CR60) 2022; 38 S Mirjalili (10919_CR45) 2014; 69 X Xia (10919_CR64) 2021; 11 EH Houssein (10919_CR24) 2022; 73 MM Emam (10919_CR14) 2023; 152 JO Agushaka (10919_CR6) 2022; 391 D Chen (10919_CR10) 2022; 200 R Storn (10919_CR56) 1997; 11 EH Houssein (10919_CR21) 2022; 149 S Mirjalili (10919_CR42) 2016; 96 P Zhang (10919_CR72) 2023; 224 M Abdel-Basset (10919_CR3) 2022; 55 J Xing (10919_CR68) 2023; 82 H Su (10919_CR57) 2022; 146 G Hu (10919_CR28) 2022; 394 G Sasibhushana Rao (10919_CR52) 2019 W Zhao (10919_CR75) 2022; 388 M Mignotte (10919_CR41) 2010; 19 J Xia (10919_CR65) 2022; 143 O Tarkhaneh (10919_CR59) 2019; 138 G Hu (10919_CR27) 2023; 58 D Oliva (10919_CR47) 2014; 139 DH Wolpert (10919_CR63) 1997; 1 J Kennedy (10919_CR29) 1995; 1944 JC Moreno (10919_CR46) 2014; 125 |
| References_xml | – volume: 11 start-page: 1306 issue: 4 year: 2021 end-page: 1311 ident: CR64 article-title: The use of artificial intelligence based magnifying image segmentation algorithm combined with endoscopy in early diagnosis and nursing of esophageal cancer patients publication-title: J Med Imaging Health Inf – year: 2022 ident: CR71 article-title: Differential evolution-assisted salp swarm algorithm with chaotic structure for real-world problems publication-title: Eng Comput doi: 10.1007/s00366-021-01545-x – volume: 79 start-page: 17247 year: 2023 end-page: 17354 ident: CR8 article-title: An improved opposition-based Runge Kutta optimizer for multilevel image thresholding publication-title: J Supercomput doi: 10.1007/s11227-023-05227-x – year: 1968 ident: CR30 article-title: Information theory and statistics publication-title: Courier corporation – volume: 80 start-page: 104139 year: 2023 ident: CR18 article-title: Performance optimization of water cycle algorithm for multilevel lupus nephritis image segmentation publication-title: Biomed Signal Process Control doi: 10.1016/j.bspc.2022.104139 – volume: 23 start-page: 587 year: 2019 end-page: 602 ident: CR37 article-title: Coevolutionary particle swarm optimization with bottleneck objective learning strategy for many-objective optimization publication-title: IEEE Trans Evol Comput doi: 10.1109/TEVC.2018.2875430 – volume: 46 start-page: 1971 year: 2013 end-page: 1984 ident: CR16 article-title: Variational and PCA based natural image segmentation publication-title: Pattern Recogn doi: 10.1016/j.patcog.2012.12.002 – volume: 151 start-page: 106227 year: 2022 ident: CR62 article-title: An efficient multi-threshold image segmentation for skin cancer using boosting whale optimizer publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2022.106227 – volume: 38 start-page: 993 issue: 4 year: 2021 end-page: 1006 ident: CR15 article-title: Pipeline of optimization techniques for multi-level thresholding in medical image compression using 2D histogram publication-title: Traitement Du Signal doi: 10.18280/ts.380409 – start-page: 355 year: 2019 end-page: 365 ident: CR52 article-title: New random noise denoising method for biomedical image processing applications publication-title: Proceedings of the international conference on ISMAC in computational vision and bio-engineering 2018 (ISMAC-CVB) doi: 10.1007/978-3-030-00665-5_37 – volume: 33 start-page: 898 year: 2011 end-page: 916 ident: CR7 article-title: Contour detection and hierarchical image segmentation publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2010.161 – volume: 1 start-page: 198 year: 2021 end-page: 217 ident: CR17 article-title: Distributed flow shop scheduling with sequence-dependent setup times using an improved iterated greedy algorithm publication-title: Complex Syst Model Simul doi: 10.23919/CSMS.2021.0018 – volume: 82 start-page: 104511 year: 2023 ident: CR20 article-title: Image segmentation of Intracerebral hemorrhage patients based on enhanced hunger games search optimizer publication-title: Biomed Signal Process Control doi: 10.1016/j.bspc.2022.104511 – volume: 37 start-page: 249 issue: 3 year: 2018 end-page: 275 ident: CR32 article-title: New bacteria foraging and particle swarm hybrid algorithm for medical image compression publication-title: Image Anal Stereology doi: 10.5566/ias.1865 – volume: 56 start-page: 159 year: 2023 end-page: 216 ident: CR36 article-title: A chimp-inspired remora optimization algorithm for multilevel thresholding image segmentation using cross entropy publication-title: Artif Intell Rev doi: 10.1007/s10462-023-10498-0 – volume: 55 start-page: 3315 year: 2022 end-page: 3367 ident: CR3 article-title: Hybrid marine predators algorithm for image segmentation: analysis and validations publication-title: Artif Intell Rev doi: 10.1007/s10462-021-10086-0 – volume: 237 start-page: 107761 year: 2022 ident: CR26 article-title: Dispersed foraging slime mould algorithm: continuous and binary variants for global optimization and wrapper-based feature selection publication-title: Knowl Based Syst doi: 10.1016/j.knosys.2021.107761 – volume: 213 start-page: 119021 year: 2023 ident: CR55 article-title: A hybrid transient search naked mole-rat optimizer for image segmentation using multilevel thresholding publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2022.119021 – volume: 1944 start-page: 1942 year: 1995 end-page: 1948 ident: CR29 article-title: Particle swarm optimization publication-title: Proc ICNN’95 Int Conf Neural Netw doi: 10.1109/ICNN.1995.488968 – volume: 185 start-page: 115651 year: 2021 ident: CR22 article-title: An efficient multilevel thresholding segmentation method for thermography breast cancer imaging based on improved chimp optimization algorithm publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2021.115651 – volume: 198 start-page: 116924 year: 2022 ident: CR12 article-title: Golden jackal optimization: a novel nature-inspired optimizer for engineering applications publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2022.116924 – volume: 209 start-page: 118267 year: 2022 ident: CR69 article-title: Ensemble grey wolf optimizer and its application for image segmentation publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2022.118267 – volume: 38 start-page: 4457 year: 2022 end-page: 4478 ident: CR60 article-title: Memory-based Harris hawk optimization with learning agents: a feature selection approach publication-title: Eng Comput doi: 10.1007/s00366-021-01479-4 – volume: 200 start-page: 117118 year: 2022 ident: CR10 article-title: Poplar optimization algorithm: a new meta-heuristic optimization technique for numerical optimization and image segmentation publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2022.117118 – volume: 46 start-page: 1020 year: 2013 end-page: 1038 ident: CR48 article-title: A survey of graph theoretical approaches to image segmentation publication-title: Pattern Recogn doi: 10.1016/j.patcog.2012.09.015 – volume: 78 start-page: 17197 year: 2019 end-page: 17238 ident: CR53 article-title: A generalized Masi entropy based efficient multilevel thresholding method for color image segmentation publication-title: Multimed Tools Appl doi: 10.1007/s11042-018-7034-x – volume: 139 start-page: 105015 year: 2021 ident: CR74 article-title: Performance optimization of salp swarm algorithm for multi-threshold image segmentation: comprehensive study of breast cancer microscopy publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2021.105015 – volume: 137 start-page: 110130 year: 2023 ident: CR61 article-title: A whale optimization algorithm with combined mutation and removing similarity for global optimization and multilevel thresholding image segmentation publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2023.110130 – volume: 149 start-page: 106075 year: 2022 ident: CR21 article-title: An efficient image segmentation method for skin cancer imaging using improved golden jackal optimization algorithm publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2022.106075 – volume: 96 start-page: 120 year: 2016 end-page: 133 ident: CR42 article-title: SCA: a sine cosine algorithm for solving optimization problems publication-title: Knowl Based Syst doi: 10.1016/j.knosys.2015.12.022 – volume: 138 start-page: 112820 year: 2019 ident: CR59 article-title: An adaptive differential evolution algorithm to optimal multi-level thresholding for MRI brain image segmentation publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2019.07.037 – volume: 152 start-page: 106404 year: 2023 ident: CR14 article-title: A modified reptile search algorithm for global optimization and image segmentation: case study brain MRI images publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2022.106404 – start-page: 107 year: 2019 end-page: 119 ident: CR51 article-title: Image compression using neural network for biomedical applications publication-title: Soft computing for problem solving doi: 10.1007/978-981-13-1595-4_9 – volume: 67 start-page: 218 year: 2014 end-page: 229 ident: CR40 article-title: Crisscross optimization algorithm and its application publication-title: Knowl Based Syst doi: 10.1016/j.knosys.2014.05.004 – volume: 147 start-page: 105680 year: 2022 ident: CR13 article-title: A convolution neural network with multi-level convolutional and attention learning for classification of cancer grades and tissue structures in colon histopathological images publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2022.105680 – volume: 85 start-page: 104893 year: 2023 ident: CR9 article-title: Multi-threshold image segmentation based on an improved differential evolution: Case study of thyroid papillary carcinoma publication-title: Biomed Signal Process Control doi: 10.1016/j.bspc.2023.104893 – start-page: 437 year: 2018 end-page: 445 ident: CR34 article-title: High-density noise removal algorithm for brain image analysis publication-title: Information and decision sciences – volume: 141 start-page: 105137 year: 2022 ident: CR66 article-title: Evolving kernel extreme learning machine for medical diagnosis via a disperse foraging sine cosine algorithm publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2021.105137 – volume: 260 start-page: 110146 year: 2023 ident: CR19 article-title: Fick’s law algorithm: a physical law-based algorithm for numerical optimization publication-title: Knowl Based Syst doi: 10.1016/j.knosys.2022.110146 – volume: 82 start-page: 104592 year: 2023 ident: CR68 article-title: Elite levy spreading differential evolution via ABC shrink-wrap for multi-threshold segmentation of breast cancer images publication-title: Biomed Signal Process Control doi: 10.1016/j.bspc.2023.104592 – volume: 146 start-page: 105618 year: 2022 ident: CR57 article-title: Multilevel threshold image segmentation for COVID-19 chest radiography: A framework using horizontal and vertical multiverse optimization publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2022.105618 – volume: 69 start-page: 46 year: 2014 end-page: 61 ident: CR45 article-title: Grey wolf optimizer publication-title: Adv Eng Softw doi: 10.1016/j.advengsoft.2013.12.007 – volume: 58 start-page: 102210 year: 2023 ident: CR27 article-title: Genghis Khan shark optimizer: a novel nature-inspired algorithm for engineering optimization publication-title: Adv Eng Inform doi: 10.1016/j.aei.2023.102210 – volume: 142 start-page: 105179 year: 2022 ident: CR11 article-title: An efficient multilevel thresholding image segmentation method based on the slime mould algorithm with bee foraging mechanism: a real case with lupus nephritis images publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2021.105179 – volume: 11 start-page: 2369 year: 2023 ident: CR76 article-title: Construction of local-shape-controlled quartic generalized Said-Ball model publication-title: Mathematics doi: 10.3390/math11102369 – volume: 73 start-page: 103401 year: 2022 ident: CR24 article-title: An efficient multi-thresholding based COVID-19 CT images segmentation approach using an improved equilibrium optimizer publication-title: Biomed Signal Process Control doi: 10.1016/j.bspc.2021.103401 – volume: 185 start-page: 115637 year: 2021 ident: CR54 article-title: A quantum-clustering optimization method for COVID-19 CT scan image segmentation publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2021.115637 – volume: 7 issue: 27 year: 2021 ident: CR49 article-title: A review of medical image segmentation algorithms publication-title: EAI Endorsed Trans Pervasive Health Technol doi: 10.4108/eai.12-4-2021.169184 – volume: 391 start-page: 114570 year: 2022 ident: CR6 article-title: Dwarf Mongoose optimization algorithm publication-title: Comput Methods Appl Mech Eng doi: 10.1016/j.cma.2022.114570 – volume: 1 start-page: 91 year: 2021 end-page: 108 ident: CR73 article-title: A novel cooperative multi-stage hyper-heuristic for combination optimization problems publication-title: Complex Syst Model Simul doi: 10.23919/CSMS.2021.0010 – volume: 394 start-page: 114901 year: 2022 ident: CR28 article-title: An enhanced hybrid arithmetic optimization algorithm for engineering applications publication-title: Comput Methods Appl Mech Eng doi: 10.1016/j.cma.2022.114901 – volume: 125 start-page: 237 year: 2014 end-page: 250 ident: CR46 article-title: Fast and globally convex multiphase active contours for brain MRI segmentation publication-title: Comput vis Image Underst doi: 10.1016/j.cviu.2014.04.010 – volume: 224 start-page: 120058 year: 2023 ident: CR72 article-title: Aptenodytes Forsteri optimization algorithm based on adaptive perturbation of oscillation and mutation operation for image multi-threshold segmentation publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2023.120058 – volume: 55 start-page: 6389 year: 2022 end-page: 6459 ident: CR4 article-title: A new fusion of whale optimizer algorithm with Kapur’s entropy for multi-threshold image segmentation: analysis and validations publication-title: Artif Intell Rev doi: 10.1007/s10462-022-10157-w – volume: 18 start-page: 171 issue: 2 year: 2021 end-page: 192 ident: CR33 article-title: Flower pollination-based K-means algorithm for medical image compression publication-title: Int J Adv Intell Paradigms – volume: 139 start-page: 357 year: 2014 end-page: 381 ident: CR47 article-title: A multilevel thresholding algorithm using electromagnetism optimization publication-title: Neurocomputing doi: 10.1016/j.neucom.2014.02.020 – volume: 114 start-page: 163 year: 2017 end-page: 191 ident: CR43 article-title: Salp Swarm algorithm: a bio-inspired optimizer for engineering design problems publication-title: Adv Eng Softw doi: 10.1016/j.advengsoft.2017.07.002 – volume: 11 start-page: 1185 issue: 3 year: 2020 end-page: 1193 ident: CR31 article-title: Image compression using clustering techniques for bio medical applications publication-title: Int J Emerg Technol – volume: 143 start-page: 105206 year: 2022 ident: CR65 article-title: Performance optimization of support vector machine with oppositional grasshopper optimization for acute appendicitis diagnosis publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2021.105206 – volume: 113 start-page: 104960 year: 2022 ident: CR38 article-title: An improved whale optimization algorithm based on multilevel threshold image segmentation using the Otsu method publication-title: Eng Appl Artif Intell doi: 10.1016/j.engappai.2022.104960 – volume: 11 start-page: 341 year: 1997 end-page: 359 ident: CR56 article-title: Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces publication-title: J Global Optim doi: 10.1023/A:1008202821328 – volume: 65 start-page: 1817 year: 2023 end-page: 1825 ident: CR39 article-title: A novel hybrid Fick’s law algorithm-quasi oppositional based learning algorithm for solving constrained mechanical design problems publication-title: Mater Test doi: 10.1515/mt-2023-0235 – volume: 190 start-page: 116145 year: 2022 ident: CR2 article-title: HWOA: a hybrid whale optimization algorithm with a novel local minima avoidance method for multi-level thresholding color image segmentation publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2021.116145 – volume: 19 start-page: 1610 year: 2010 end-page: 1624 ident: CR41 article-title: A label field fusion bayesian model and its penalized maximum rand estimator for image segmentation publication-title: IEEE Trans Image Process doi: 10.1109/TIP.2010.2044965 – volume: 167 start-page: 114159 year: 2021 ident: CR23 article-title: A novel black widow optimization algorithm for multilevel thresholding image segmentation publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2020.114159 – volume: 175 start-page: 114841 year: 2021 ident: CR1 article-title: A multi-leader whale optimization algorithm for global optimization and image segmentation publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2021.114841 – volume: 235 start-page: 107638 year: 2022 ident: CR25 article-title: An enhanced black widow optimization algorithm for feature selection publication-title: Knowl-Based Syst doi: 10.1016/j.knosys.2021.107638 – volume: 14 start-page: 628 issue: 7 year: 2020 end-page: 636 ident: CR35 article-title: Performance analysis of clustering techniques for image segmentation publication-title: J Xidian Univ – volume: 155 start-page: 113428 year: 2020 ident: CR50 article-title: An efficient Harris hawks-inspired image segmentation method publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2020.113428 – volume: 1 start-page: 67 year: 1997 end-page: 82 ident: CR63 article-title: No free lunch theorems for optimization publication-title: IEEE Trans Evol Comput doi: 10.1109/4235.585893 – volume: 8 start-page: 10830 year: 2021 end-page: 10842 ident: CR70 article-title: A privacy-preserving optimization of neighborhood-based recommendation for medical-aided diagnosis and treatment publication-title: IEEE Internet Things J doi: 10.1109/JIOT.2021.3051060 – volume: 376 start-page: 113609 year: 2021 ident: CR5 article-title: The arithmetic optimization algorithm publication-title: Comput Methods Appl Mech Eng doi: 10.1016/j.cma.2020.113609 – volume: 95 start-page: 51 year: 2016 end-page: 67 ident: CR44 article-title: The whale optimization algorithm publication-title: Adv Eng Softw doi: 10.1016/j.advengsoft.2016.01.008 – volume: 388 start-page: 114194 year: 2022 ident: CR75 article-title: Artificial hummingbird algorithm: a new bio-inspired optimizer with its engineering applications publication-title: Comput Methods Appl Mech Eng doi: 10.1016/j.cma.2021.114194 – volume: 142 start-page: 105181 year: 2022 ident: CR58 article-title: Horizontal and vertical search artificial bee colony for image segmentation of COVID-19 X-ray images publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2021.105181 – volume: 194 start-page: 105570 year: 2020 ident: CR67 article-title: An improved emperor penguin optimization based multilevel thresholding for color image segmentation publication-title: Knowl Based Syst doi: 10.1016/j.knosys.2020.105570 – volume: 147 start-page: 105680 year: 2022 ident: 10919_CR13 publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2022.105680 – volume-title: Courier corporation year: 1968 ident: 10919_CR30 – volume: 38 start-page: 4457 year: 2022 ident: 10919_CR60 publication-title: Eng Comput doi: 10.1007/s00366-021-01479-4 – volume: 388 start-page: 114194 year: 2022 ident: 10919_CR75 publication-title: Comput Methods Appl Mech Eng doi: 10.1016/j.cma.2021.114194 – volume: 198 start-page: 116924 year: 2022 ident: 10919_CR12 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2022.116924 – volume: 155 start-page: 113428 year: 2020 ident: 10919_CR50 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2020.113428 – volume: 185 start-page: 115637 year: 2021 ident: 10919_CR54 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2021.115637 – volume: 125 start-page: 237 year: 2014 ident: 10919_CR46 publication-title: Comput vis Image Underst doi: 10.1016/j.cviu.2014.04.010 – volume: 82 start-page: 104592 year: 2023 ident: 10919_CR68 publication-title: Biomed Signal Process Control doi: 10.1016/j.bspc.2023.104592 – volume: 190 start-page: 116145 year: 2022 ident: 10919_CR2 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2021.116145 – volume: 194 start-page: 105570 year: 2020 ident: 10919_CR67 publication-title: Knowl Based Syst doi: 10.1016/j.knosys.2020.105570 – volume: 200 start-page: 117118 year: 2022 ident: 10919_CR10 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2022.117118 – volume: 146 start-page: 105618 year: 2022 ident: 10919_CR57 publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2022.105618 – volume: 55 start-page: 6389 year: 2022 ident: 10919_CR4 publication-title: Artif Intell Rev doi: 10.1007/s10462-022-10157-w – volume: 82 start-page: 104511 year: 2023 ident: 10919_CR20 publication-title: Biomed Signal Process Control doi: 10.1016/j.bspc.2022.104511 – volume: 235 start-page: 107638 year: 2022 ident: 10919_CR25 publication-title: Knowl-Based Syst doi: 10.1016/j.knosys.2021.107638 – volume: 65 start-page: 1817 year: 2023 ident: 10919_CR39 publication-title: Mater Test doi: 10.1515/mt-2023-0235 – volume: 11 start-page: 1306 issue: 4 year: 2021 ident: 10919_CR64 publication-title: J Med Imaging Health Inf – volume: 46 start-page: 1971 year: 2013 ident: 10919_CR16 publication-title: Pattern Recogn doi: 10.1016/j.patcog.2012.12.002 – volume: 213 start-page: 119021 year: 2023 ident: 10919_CR55 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2022.119021 – volume: 18 start-page: 171 issue: 2 year: 2021 ident: 10919_CR33 publication-title: Int J Adv Intell Paradigms – volume: 376 start-page: 113609 year: 2021 ident: 10919_CR5 publication-title: Comput Methods Appl Mech Eng doi: 10.1016/j.cma.2020.113609 – volume: 96 start-page: 120 year: 2016 ident: 10919_CR42 publication-title: Knowl Based Syst doi: 10.1016/j.knosys.2015.12.022 – volume: 391 start-page: 114570 year: 2022 ident: 10919_CR6 publication-title: Comput Methods Appl Mech Eng doi: 10.1016/j.cma.2022.114570 – volume: 394 start-page: 114901 year: 2022 ident: 10919_CR28 publication-title: Comput Methods Appl Mech Eng doi: 10.1016/j.cma.2022.114901 – volume: 37 start-page: 249 issue: 3 year: 2018 ident: 10919_CR32 publication-title: Image Anal Stereology doi: 10.5566/ias.1865 – volume: 11 start-page: 2369 year: 2023 ident: 10919_CR76 publication-title: Mathematics doi: 10.3390/math11102369 – volume: 33 start-page: 898 year: 2011 ident: 10919_CR7 publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2010.161 – volume: 1 start-page: 91 year: 2021 ident: 10919_CR73 publication-title: Complex Syst Model Simul doi: 10.23919/CSMS.2021.0010 – volume: 260 start-page: 110146 year: 2023 ident: 10919_CR19 publication-title: Knowl Based Syst doi: 10.1016/j.knosys.2022.110146 – volume: 1944 start-page: 1942 year: 1995 ident: 10919_CR29 publication-title: Proc ICNN’95 Int Conf Neural Netw doi: 10.1109/ICNN.1995.488968 – volume: 167 start-page: 114159 year: 2021 ident: 10919_CR23 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2020.114159 – start-page: 437 volume-title: Information and decision sciences year: 2018 ident: 10919_CR34 – volume: 139 start-page: 357 year: 2014 ident: 10919_CR47 publication-title: Neurocomputing doi: 10.1016/j.neucom.2014.02.020 – volume: 78 start-page: 17197 year: 2019 ident: 10919_CR53 publication-title: Multimed Tools Appl doi: 10.1007/s11042-018-7034-x – volume: 58 start-page: 102210 year: 2023 ident: 10919_CR27 publication-title: Adv Eng Inform doi: 10.1016/j.aei.2023.102210 – volume: 46 start-page: 1020 year: 2013 ident: 10919_CR48 publication-title: Pattern Recogn doi: 10.1016/j.patcog.2012.09.015 – volume: 56 start-page: 159 year: 2023 ident: 10919_CR36 publication-title: Artif Intell Rev doi: 10.1007/s10462-023-10498-0 – volume: 7 issue: 27 year: 2021 ident: 10919_CR49 publication-title: EAI Endorsed Trans Pervasive Health Technol doi: 10.4108/eai.12-4-2021.169184 – volume: 69 start-page: 46 year: 2014 ident: 10919_CR45 publication-title: Adv Eng Softw doi: 10.1016/j.advengsoft.2013.12.007 – volume: 185 start-page: 115651 year: 2021 ident: 10919_CR22 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2021.115651 – volume: 224 start-page: 120058 year: 2023 ident: 10919_CR72 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2023.120058 – volume: 95 start-page: 51 year: 2016 ident: 10919_CR44 publication-title: Adv Eng Softw doi: 10.1016/j.advengsoft.2016.01.008 – volume: 38 start-page: 993 issue: 4 year: 2021 ident: 10919_CR15 publication-title: Traitement Du Signal doi: 10.18280/ts.380409 – volume: 8 start-page: 10830 year: 2021 ident: 10919_CR70 publication-title: IEEE Internet Things J doi: 10.1109/JIOT.2021.3051060 – volume: 85 start-page: 104893 year: 2023 ident: 10919_CR9 publication-title: Biomed Signal Process Control doi: 10.1016/j.bspc.2023.104893 – volume: 152 start-page: 106404 year: 2023 ident: 10919_CR14 publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2022.106404 – volume: 80 start-page: 104139 year: 2023 ident: 10919_CR18 publication-title: Biomed Signal Process Control doi: 10.1016/j.bspc.2022.104139 – start-page: 107 volume-title: Soft computing for problem solving year: 2019 ident: 10919_CR51 doi: 10.1007/978-981-13-1595-4_9 – volume: 143 start-page: 105206 year: 2022 ident: 10919_CR65 publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2021.105206 – volume: 23 start-page: 587 year: 2019 ident: 10919_CR37 publication-title: IEEE Trans Evol Comput doi: 10.1109/TEVC.2018.2875430 – volume: 175 start-page: 114841 year: 2021 ident: 10919_CR1 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2021.114841 – volume: 11 start-page: 1185 issue: 3 year: 2020 ident: 10919_CR31 publication-title: Int J Emerg Technol – volume: 1 start-page: 67 year: 1997 ident: 10919_CR63 publication-title: IEEE Trans Evol Comput doi: 10.1109/4235.585893 – volume: 14 start-page: 628 issue: 7 year: 2020 ident: 10919_CR35 publication-title: J Xidian Univ – volume: 79 start-page: 17247 year: 2023 ident: 10919_CR8 publication-title: J Supercomput doi: 10.1007/s11227-023-05227-x – volume: 151 start-page: 106227 year: 2022 ident: 10919_CR62 publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2022.106227 – year: 2022 ident: 10919_CR71 publication-title: Eng Comput doi: 10.1007/s00366-021-01545-x – volume: 113 start-page: 104960 year: 2022 ident: 10919_CR38 publication-title: Eng Appl Artif Intell doi: 10.1016/j.engappai.2022.104960 – volume: 138 start-page: 112820 year: 2019 ident: 10919_CR59 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2019.07.037 – volume: 19 start-page: 1610 year: 2010 ident: 10919_CR41 publication-title: IEEE Trans Image Process doi: 10.1109/TIP.2010.2044965 – volume: 1 start-page: 198 year: 2021 ident: 10919_CR17 publication-title: Complex Syst Model Simul doi: 10.23919/CSMS.2021.0018 – volume: 209 start-page: 118267 year: 2022 ident: 10919_CR69 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2022.118267 – volume: 55 start-page: 3315 year: 2022 ident: 10919_CR3 publication-title: Artif Intell Rev doi: 10.1007/s10462-021-10086-0 – volume: 142 start-page: 105181 year: 2022 ident: 10919_CR58 publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2021.105181 – volume: 139 start-page: 105015 year: 2021 ident: 10919_CR74 publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2021.105015 – volume: 149 start-page: 106075 year: 2022 ident: 10919_CR21 publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2022.106075 – volume: 11 start-page: 341 year: 1997 ident: 10919_CR56 publication-title: J Global Optim doi: 10.1023/A:1008202821328 – volume: 237 start-page: 107761 year: 2022 ident: 10919_CR26 publication-title: Knowl Based Syst doi: 10.1016/j.knosys.2021.107761 – start-page: 355 volume-title: Proceedings of the international conference on ISMAC in computational vision and bio-engineering 2018 (ISMAC-CVB) year: 2019 ident: 10919_CR52 doi: 10.1007/978-3-030-00665-5_37 – volume: 142 start-page: 105179 year: 2022 ident: 10919_CR11 publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2021.105179 – volume: 73 start-page: 103401 year: 2022 ident: 10919_CR24 publication-title: Biomed Signal Process Control doi: 10.1016/j.bspc.2021.103401 – volume: 114 start-page: 163 year: 2017 ident: 10919_CR43 publication-title: Adv Eng Softw doi: 10.1016/j.advengsoft.2017.07.002 – volume: 141 start-page: 105137 year: 2022 ident: 10919_CR66 publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2021.105137 – volume: 67 start-page: 218 year: 2014 ident: 10919_CR40 publication-title: Knowl Based Syst doi: 10.1016/j.knosys.2014.05.004 – volume: 137 start-page: 110130 year: 2023 ident: 10919_CR61 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2023.110130 |
| SSID | ssj0005243 |
| Score | 2.4051108 |
| Snippet | Medical image segmentation is a critical and demanding step in medical image processing, which provides a solid foundation for subsequent medical image data... |
| SourceID | swepub proquest gale crossref springer |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 302 |
| SubjectTerms | Accuracy Algorithms Artificial Intelligence Brain Cancer Colon cancer Color imagery Colorectal cancer Computer Science Convergence COVID-19 Data processing Diffusion Entropy Entropy (Information theory) Extraction Image processing Image segmentation Imagery Information dissemination Law Laws, regulations and rules Learning strategies Lung cancer Machine learning Medical imaging Medical imaging equipment Molecular diffusion Neighborhoods Optimization Segmentation Thresholds |
| SummonAdditionalLinks | – databaseName: Springer Nature OA Free Journals dbid: C24 link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5B4cCF8hQLBfmA4ACWmsT22sdVYcWpQuKh3izHGS8RyS7apPTav8Hf45cwzjrbboUqwdkPOeN5xvPNALwsjJfuUAfufKm4CIeGO1E5TsZOYi517JY0NJuYHh_rkxPzMYHCujHbfXySHDT1JbCbUDknm8JjMUvD9U24JTNtYiLfUcQ4bBM7RJHgMX9ft2OCririSy-iV6qHDhZnvv9_Z70Hd5OHyWYblrgPN3D5APbH7g0sCfND-DRrsYkAffI52bz233-f_-pY486Yaxardd1_a1m0cRUbkg55T7fexccq1m4ed1jdkjJiHS7aBGBaPoIv8_efjz7w1GKBe6F0z73xSityumSJeYEeKboxXkiXIQWWzhSyKBHzypfTzE0puKko_JAuCB1CgeiLx7C3XC3xCTCTBROUV0IiWcYgSqPKqZKIIa9MWakJZCPVrU_1x2MbjMZeVE6OVLNENTtQzeoJvNmu-bGpvnHt7NfxMm0UTdrZu4QwoPPFIld2pmOtIk0-7gQOdmaSSPnd4ZEdbBLpzpIfrIUgfZhP4O146xfD1x3r1YaNtp8QS3q_q7_O7Gq9sE19avOIcNZP_23fZ3AnHzgs_g86gL1-fYrP4bb_2dfd-sUgE38AeSkG7Q priority: 102 providerName: Springer Nature |
| Title | Ameliorated Fick’s law algorithm based multi-threshold medical image segmentation |
| URI | https://link.springer.com/article/10.1007/s10462-024-10919-8 https://www.proquest.com/docview/3108443012 https://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-208298 |
| Volume | 57 |
| WOSCitedRecordID | wos001319551800002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: ABI/INFORM Collection customDbUrl: eissn: 1573-7462 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0005243 issn: 0269-2821 databaseCode: 7WY dateStart: 20240101 isFulltext: true titleUrlDefault: https://www.proquest.com/abicomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ABI/INFORM Global customDbUrl: eissn: 1573-7462 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0005243 issn: 0269-2821 databaseCode: M0C dateStart: 20240101 isFulltext: true titleUrlDefault: https://search.proquest.com/abiglobal providerName: ProQuest – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1573-7462 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0005243 issn: 0269-2821 databaseCode: P5Z dateStart: 20240101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 1573-7462 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0005243 issn: 0269-2821 databaseCode: K7- dateStart: 20240101 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: Library Science Database customDbUrl: eissn: 1573-7462 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0005243 issn: 0269-2821 databaseCode: M1O dateStart: 20240101 isFulltext: true titleUrlDefault: https://search.proquest.com/libraryscience providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1573-7462 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0005243 issn: 0269-2821 databaseCode: BENPR dateStart: 20240101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAVX databaseName: Springer Journals New Starts & Take-Overs Collection customDbUrl: eissn: 1573-7462 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0005243 issn: 0269-2821 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature – providerCode: PRVAVX databaseName: Springer Nature OA Free Journals customDbUrl: eissn: 1573-7462 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0005243 issn: 0269-2821 databaseCode: C24 dateStart: 20240101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpR1Nb9Mw1KIbBy4MBmgdo_IBwQEsmsR27BMqZRUSUKoNxuBiOY5TojXtaDJ25W_w9_glPCfOuu7QCxdLURzH1vv2-0LoaSQN032REW0STmjWl0TTVBMQdsyGTLhuSXWziXg8FqencuIv3EofVtnyxJpRpwvj7shfgRoiKAV0DF-f_ySua5TzrvoWGh207TQbF9L3sT-8FuLRRM2FXBIwLQKfNONT5ygPCUgo4kpjSiLWBNNN9nzNT3qjpmgth0Y7_3uCe-iu10DxoEGZ--iWne-inba7A_bEvos6H_TlA3Q8KOzMpfGDZopHuTn7-_tPiWf6EuvZFFavfhTYScIU16GJpALcKJ1LCxeNCwjnBbAsXNpp4dOc5g_Rl9Hh5-E74hsxEEO5qIiRhgsOqhlLbBhZY8EGkoYyHVgwP7WMWJRYG6YmiQMdgwmUgpHCdEZFlkXWmugR2pov5nYPYRlkMuOGU2ZBfmY0kTyJObM2C1OZpLyLghYKyvgq5a5Zxkyt6is7yCmAnKohp0QXvbj65ryp0bFx9nMHXOUIGFY22uchwP5cKSw1EK6ikQBNuIsO1mYC4Zn11y2clSf8Uq2A3EUvW5RZvd60rWcNWl0dwRX-fpufDNRiOVWz_EKFLg9a7G_-7WN0J6yx2t0SHaCtanlhn6Db5leVl8se6sRfv_XQ9pvD8eQInoYhhfF9THo15bgx-ATjhH2H8ej45B_sVhuK |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbhMxFL1qCxJsKBQQgQJe8FiARcfj8dgLhCJK1CohQqKg7ozH4wkjJknJpETs-A1-go_iS7ieR9N0kV0XrMfjscfH9x4_7rkAT0JlI7MnM2psIijP9hQ1PDUUnV3kWCR9tqQq2UQ8HMrjY_VhA_60sTD-WmVrEytDnU6t3yN_hTREco5wZG9OvlOfNcqfrrYpNGpY9N3PBS7ZyteH-zi-TxnrvTt6e0CbrALUciHn1CorpECeESWOhc46JPTK8sgEDtdSRoVRmDjHUpvEgYmRz6fIuCOTcZlloXM2xHo34QoPZeznVT-m566U1Lf0mFAUlzJBE6TThOpxwSh6ROqlOBWVK47wojs4dy57QcO08nu97f_tj92EGw3DJt16StyCDTfZge02ewVpjNkObA7M4jZ87I5d4WUKkHmTXm6__f31uySFWRBTjLA3869j4j19Sqqrl3SO2C_9kR0Z10dcJB-jSSalG42bMK7JHfh0KR28C1uT6cTdA6KCTGXCCh455AcZT5RIYhE5l7FUJanoQNCOuraNCrtPBlLopX60R4pGpOgKKVp24MXZOye1Bsna0s89mLQ3UFizNU2cBbbPS33prvSKTRKZfgd2V0qiYbGrj1tc6cawlXoJqg68bCG6fLyuWc9qGJ91wQub7-efu3o6G-kiP9XMx3nL--s_-xiuHRy9H-jB4bD_AK6zakb5HbFd2JrPTt1DuGp_zPNy9qiamwS-XDa0_wHQV3IV |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB61BSEuFAqIhQI-8DiA1cZJHPuA0IplRdVqtRIPVVyM4zhLRLJbNikrbvwN_go_h1_COI9ut4e99cA5TyefZ76xZ74BeOJLE-p9kVJtYk6DdF9SHSSaorMLLQuF65ZUN5uIRiNxfCzHG_Cnq4VxaZWdTawNdTIzbo18D2mICAKEI9tL27SI8WD4-uQ7dR2k3E5r106jgcih_bnA8K18dTDAf_2UseHbD2_e0bbDADUBFxU10nDBkXOEsWW-NRbJvTRBqD2LcZWWfujH1rLExJGnI-T2CbLvUKeBSFPfWuPjfTfhSoQxpksnHIefz6WXNBl7jEuKYY3XFuy0ZXsBZxS9I3WynJKKFad40TWc26O9oGda-8Dh9v_89W7CjZZ5k34zVW7Bhp3uwHbX1YK0Rm4HNo_04ja87xc2d_IFyMjJMDPf_v76XZJcL4jOJzia6mtBHANISJ2SSSucE6XbyiNFs_VFsgJNNSntpGjLu6Z34OOlDPAubE1nU3sPiPRSmXLDg9Aib0iDWPI44qG1KUtknPAeeB0ClGnV2V2TkFwtdaUdahSiRtWoUaIHL86uOWm0Sdae_dwBSznDhXc2uq2_wPdzEmCqL5ySk8AIoAe7K2eiwTGrhzuMqdbglWoJsB687OC6PLzutZ41kD4bghM8H2Sf-mo2n6g8O1XM1X-L--sf-xiuIaLV0cHo8AFcZ_Xkcgtlu7BVzU_tQ7hqflRZOX9UT1MCXy4b2f8AN8l7OQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ameliorated+Fick%E2%80%99s+law+algorithm+based+multi-threshold+medical+image+segmentation&rft.jtitle=The+Artificial+intelligence+review&rft.date=2024-11-01&rft.pub=Springer+Nature+B.V&rft.issn=0269-2821&rft.eissn=1573-7462&rft.volume=57&rft.issue=11&rft.spage=302&rft_id=info:doi/10.1007%2Fs10462-024-10919-8&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1573-7462&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1573-7462&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1573-7462&client=summon |