Ameliorated Fick’s law algorithm based multi-threshold medical image segmentation

Medical image segmentation is a critical and demanding step in medical image processing, which provides a solid foundation for subsequent medical image data extraction and analysis. Multi-threshold image segmentation, one of the most commonly used and specialized image segmentation techniques, limit...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:The Artificial intelligence review Ročník 57; číslo 11; s. 302
Hlavní autoři: Hu, Gang, Zhao, Feng, Hussien, Abdelazim G., Zhong, Jingyu, Houssein, Essam H.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Dordrecht Springer Netherlands 01.11.2024
Springer
Springer Nature B.V
Témata:
ISSN:1573-7462, 0269-2821, 1573-7462
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Medical image segmentation is a critical and demanding step in medical image processing, which provides a solid foundation for subsequent medical image data extraction and analysis. Multi-threshold image segmentation, one of the most commonly used and specialized image segmentation techniques, limits its application to medical images because it requires demanding computational performance and is difficult to produce satisfactory segmentation results. To overcome the above problems, an ameliorated Fick's law algorithm (MsFLA) for multi-threshold image segmentation is developed in this paper. First, an optimized sine–cosine strategy is introduced to extend the molecular diffusion process to alleviate the problem of easily falling into local optima, thus improving the convergence accuracy of the Fick's law algorithm (FLA). Secondly, the introduction of local minimal value avoidance enriches the individual molecular information and enhances the local search ability, thus improving computational accuracy. In addition, the optimal neighborhood learning strategy is added to ensure a more careful and reasonable reliance on the optimal solution, thus reducing the chance of convergence of a local solution. The efficient optimization capability of MsFLA is comprehensively validated by comparing MsFLA with the original FLA and other algorithms in 23 classical benchmark functions. Finally, MsFLA is applied to image segmentation of grayscale images of COVID-19 and brain and color images of Lung and Colon cancer histopathology by using Cross entropy to validate its segmentation capability. The experimental results show that the MsFLA obtains the best segmentation results in three medical image cases compared to other comparison algorithms, which indicates that MsFLA can effectively solve the multi-threshold medical image segmentation problem. Graphical abstract
AbstractList Medical image segmentation is a critical and demanding step in medical image processing, which provides a solid foundation for subsequent medical image data extraction and analysis. Multi-threshold image segmentation, one of the most commonly used and specialized image segmentation techniques, limits its application to medical images because it requires demanding computational performance and is difficult to produce satisfactory segmentation results. To overcome the above problems, an ameliorated Fick's law algorithm (MsFLA) for multi-threshold image segmentation is developed in this paper. First, an optimized sine-cosine strategy is introduced to extend the molecular diffusion process to alleviate the problem of easily falling into local optima, thus improving the convergence accuracy of the Fick's law algorithm (FLA). Secondly, the introduction of local minimal value avoidance enriches the individual molecular information and enhances the local search ability, thus improving computational accuracy. In addition, the optimal neighborhood learning strategy is added to ensure a more careful and reasonable reliance on the optimal solution, thus reducing the chance of convergence of a local solution. The efficient optimization capability of MsFLA is comprehensively validated by comparing MsFLA with the original FLA and other algorithms in 23 classical benchmark functions. Finally, MsFLA is applied to image segmentation of grayscale images of COVID-19 and brain and color images of Lung and Colon cancer histopathology by using Cross entropy to validate its segmentation capability. The experimental results show that the MsFLA obtains the best segmentation results in three medical image cases compared to other comparison algorithms, which indicates that MsFLA can effectively solve the multi-threshold medical image segmentation problem.
Medical image segmentation is a critical and demanding step in medical image processing, which provides a solid foundation for subsequent medical image data extraction and analysis. Multi-threshold image segmentation, one of the most commonly used and specialized image segmentation techniques, limits its application to medical images because it requires demanding computational performance and is difficult to produce satisfactory segmentation results. To overcome the above problems, an ameliorated Fick's law algorithm (MsFLA) for multi-threshold image segmentation is developed in this paper. First, an optimized sine-cosine strategy is introduced to extend the molecular diffusion process to alleviate the problem of easily falling into local optima, thus improving the convergence accuracy of the Fick's law algorithm (FLA). Secondly, the introduction of local minimal value avoidance enriches the individual molecular information and enhances the local search ability, thus improving computational accuracy. In addition, the optimal neighborhood learning strategy is added to ensure a more careful and reasonable reliance on the optimal solution, thus reducing the chance of convergence of a local solution. The efficient optimization capability of MsFLA is comprehensively validated by comparing MsFLA with the original FLA and other algorithms in 23 classical benchmark functions. Finally, MsFLA is applied to image segmentation of grayscale images of COVID-19 and brain and color images of Lung and Colon cancer histopathology by using Cross entropy to validate its segmentation capability. The experimental results show that the MsFLA obtains the best segmentation results in three medical image cases compared to other comparison algorithms, which indicates that MsFLA can effectively solve the multi-threshold medical image segmentation problem. Graphical abstract
Medical image segmentation is a critical and demanding step in medical image processing, which provides a solid foundation for subsequent medical image data extraction and analysis. Multi-threshold image segmentation, one of the most commonly used and specialized image segmentation techniques, limits its application to medical images because it requires demanding computational performance and is difficult to produce satisfactory segmentation results. To overcome the above problems, an ameliorated Fick's law algorithm (MsFLA) for multi-threshold image segmentation is developed in this paper. First, an optimized sine–cosine strategy is introduced to extend the molecular diffusion process to alleviate the problem of easily falling into local optima, thus improving the convergence accuracy of the Fick's law algorithm (FLA). Secondly, the introduction of local minimal value avoidance enriches the individual molecular information and enhances the local search ability, thus improving computational accuracy. In addition, the optimal neighborhood learning strategy is added to ensure a more careful and reasonable reliance on the optimal solution, thus reducing the chance of convergence of a local solution. The efficient optimization capability of MsFLA is comprehensively validated by comparing MsFLA with the original FLA and other algorithms in 23 classical benchmark functions. Finally, MsFLA is applied to image segmentation of grayscale images of COVID-19 and brain and color images of Lung and Colon cancer histopathology by using Cross entropy to validate its segmentation capability. The experimental results show that the MsFLA obtains the best segmentation results in three medical image cases compared to other comparison algorithms, which indicates that MsFLA can effectively solve the multi-threshold medical image segmentation problem. Graphical abstract
ArticleNumber 302
Audience Academic
Author Hussien, Abdelazim G.
Hu, Gang
Zhong, Jingyu
Houssein, Essam H.
Zhao, Feng
Author_xml – sequence: 1
  givenname: Gang
  surname: Hu
  fullname: Hu, Gang
  email: hugang@xaut.edu.cn
  organization: Department of Applied Mathematics, Xi’an University of Technology, School of Computer Science and Engineering, Xi’an University of Technology
– sequence: 2
  givenname: Feng
  surname: Zhao
  fullname: Zhao, Feng
  organization: Department of Applied Mathematics, Xi’an University of Technology
– sequence: 3
  givenname: Abdelazim G.
  surname: Hussien
  fullname: Hussien, Abdelazim G.
  organization: Department of Computer and Information Science, Linköping University, Faculty of Science, Fayoum University, Applied Science Research Center, Applied Science Private University, MEU Research Unit, Middle East University
– sequence: 4
  givenname: Jingyu
  surname: Zhong
  fullname: Zhong, Jingyu
  organization: Department of Applied Mathematics, Xi’an University of Technology
– sequence: 5
  givenname: Essam H.
  surname: Houssein
  fullname: Houssein, Essam H.
  organization: Faculty of Computers and Information, Minia University
BackLink https://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-208298$$DView record from Swedish Publication Index (Linköpings universitet)
BookMark eNp9kctu3SAURVGVSk3S_kBHljom5WWDh1d5NVKkDvqYIoyPfUmwuQWsKLP8Rn-vXxJSp0obVRED4LA22ufsA7Q3hxkQek_JESVEfkyUiIZhwgSmpKUtVq_QPq0lx7LU9_46v0EHKV0RQmom-D76spnAuxBNhr46c_b6193PVHlzUxk_hujydqo6k8rjtPjscN5GSNvgyx16Z42v3GRGqBKME8zZZBfmt-j1YHyCd4_7Ifp2dvr1-BO-_Hx-cby5xFY0KmPb2kY1NaV1B4yDhYbUrRW1oSAIMy2veQfAettJaqRQspdC1mYQahg4gOWHCK__phvYLZ3exeIl3upgnD5x3zc6xFF7t2hGFGtV4T-s_C6GHwukrK_CEudiUXNKlBCcUPZEjcaDdvMQcjR2csnqjSKtZIo2tFBH_6HK6mFytoQzuFL_R6BWgY0hpQiDtm4dVxE6rynRD0nqNUldktS_k9QPvtkz6Z9OXxTxx-EUeB4hPjX7guoeF3OyyA
CitedBy_id crossref_primary_10_1038_s41598_025_03124_2
crossref_primary_10_3390_cancers17050781
Cites_doi 10.1007/s00366-021-01545-x
10.1007/s11227-023-05227-x
10.1016/j.bspc.2022.104139
10.1109/TEVC.2018.2875430
10.1016/j.patcog.2012.12.002
10.1016/j.compbiomed.2022.106227
10.18280/ts.380409
10.1007/978-3-030-00665-5_37
10.1109/TPAMI.2010.161
10.23919/CSMS.2021.0018
10.1016/j.bspc.2022.104511
10.5566/ias.1865
10.1007/s10462-023-10498-0
10.1007/s10462-021-10086-0
10.1016/j.knosys.2021.107761
10.1016/j.eswa.2022.119021
10.1109/ICNN.1995.488968
10.1016/j.eswa.2021.115651
10.1016/j.eswa.2022.116924
10.1016/j.eswa.2022.118267
10.1007/s00366-021-01479-4
10.1016/j.eswa.2022.117118
10.1016/j.patcog.2012.09.015
10.1007/s11042-018-7034-x
10.1016/j.compbiomed.2021.105015
10.1016/j.asoc.2023.110130
10.1016/j.compbiomed.2022.106075
10.1016/j.knosys.2015.12.022
10.1016/j.eswa.2019.07.037
10.1016/j.compbiomed.2022.106404
10.1007/978-981-13-1595-4_9
10.1016/j.knosys.2014.05.004
10.1016/j.compbiomed.2022.105680
10.1016/j.bspc.2023.104893
10.1016/j.compbiomed.2021.105137
10.1016/j.knosys.2022.110146
10.1016/j.bspc.2023.104592
10.1016/j.compbiomed.2022.105618
10.1016/j.advengsoft.2013.12.007
10.1016/j.aei.2023.102210
10.1016/j.compbiomed.2021.105179
10.3390/math11102369
10.1016/j.bspc.2021.103401
10.1016/j.eswa.2021.115637
10.4108/eai.12-4-2021.169184
10.1016/j.cma.2022.114570
10.23919/CSMS.2021.0010
10.1016/j.cma.2022.114901
10.1016/j.cviu.2014.04.010
10.1016/j.eswa.2023.120058
10.1007/s10462-022-10157-w
10.1016/j.neucom.2014.02.020
10.1016/j.advengsoft.2017.07.002
10.1016/j.compbiomed.2021.105206
10.1016/j.engappai.2022.104960
10.1023/A:1008202821328
10.1515/mt-2023-0235
10.1016/j.eswa.2021.116145
10.1109/TIP.2010.2044965
10.1016/j.eswa.2020.114159
10.1016/j.eswa.2021.114841
10.1016/j.knosys.2021.107638
10.1016/j.eswa.2020.113428
10.1109/4235.585893
10.1109/JIOT.2021.3051060
10.1016/j.cma.2020.113609
10.1016/j.advengsoft.2016.01.008
10.1016/j.cma.2021.114194
10.1016/j.compbiomed.2021.105181
10.1016/j.knosys.2020.105570
ContentType Journal Article
Copyright The Author(s) 2024
COPYRIGHT 2024 Springer
Copyright Springer Nature B.V. Nov 2024
Copyright_xml – notice: The Author(s) 2024
– notice: COPYRIGHT 2024 Springer
– notice: Copyright Springer Nature B.V. Nov 2024
DBID C6C
AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
8AL
8AO
8FD
8FE
8FG
8FK
8FL
ABUWG
AFKRA
ALSLI
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
CNYFK
DWQXO
E3H
F2A
FRNLG
F~G
GNUQQ
HCIFZ
JQ2
K60
K6~
K7-
L.-
L7M
L~C
L~D
M0C
M0N
M1O
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PRQQA
PSYQQ
Q9U
ABXSW
ADTPV
AOWAS
D8T
DG8
ZZAVC
DOI 10.1007/s10462-024-10919-8
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni Edition)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Social Science Premium Collection
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology collection
ProQuest One Community College
Library & information science collection.
ProQuest Central
Library & Information Sciences Abstracts (LISA)
Library & Information Science Abstracts (LISA)
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Library Science Database
AAdvanced Technologies & Aerospace Database (subscription)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Business (UW System Shared)
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Social Sciences
ProQuest One Psychology
ProQuest Central Basic
SWEPUB Linköpings universitet full text
SwePub
SwePub Articles
SWEPUB Freely available online
SWEPUB Linköpings universitet
SwePub Articles full text
DatabaseTitle CrossRef
ProQuest Business Collection (Alumni Edition)
ProQuest One Psychology
Computer Science Database
ProQuest Central Student
Library and Information Science Abstracts (LISA)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
ABI/INFORM Complete
ProQuest One Applied & Life Sciences
Library & Information Science Collection
ProQuest Central (New)
Advanced Technologies & Aerospace Collection
Business Premium Collection
Social Science Premium Collection
ABI/INFORM Global
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest Business Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ABI/INFORM Global (Corporate)
ProQuest One Business
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Pharma Collection
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest Library Science
ProQuest Central Korea
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
ProQuest Computing
ProQuest One Social Sciences
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Business (Alumni)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList

CrossRef

ProQuest Business Collection (Alumni Edition)

Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
Law
EISSN 1573-7462
ExternalDocumentID oai_DiVA_org_liu_208298
A809728161
10_1007_s10462_024_10919_8
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: Grant No. 51875454
  funderid: http://dx.doi.org/10.13039/501100001809
GroupedDBID -4Z
-59
-5G
-BR
-EM
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
1N0
203
23N
2J2
2JN
2JY
2KG
2LR
2~H
30V
4.4
406
408
409
40D
40E
5GY
5VS
67Z
6J9
6NX
77K
7WY
8FL
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AAHNG
AAIAL
AAJKR
AAJSJ
AAKKN
AANZL
AARTL
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABEEZ
ABFTD
ABFTV
ABHLI
ABHQN
ABIVO
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABWNU
ABXPI
ACACY
ACGFS
ACHSB
ACHXU
ACIHN
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACREN
ACSNA
ACULB
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEAQA
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGXO
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIIXL
AILAN
AITGF
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALSLI
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BENPR
BGNMA
C24
C6C
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
EBLON
EBS
EDO
EIOEI
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FNLPD
FRRFC
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GXS
HCIFZ
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IAO
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6~
KDC
KOV
LLZTM
M1O
M4Y
MA-
N9A
NB0
NPVJJ
NQJWS
NU0
O93
O9G
O9I
O9J
OAM
P19
P9O
PF0
PT5
QOK
QOS
R89
R9I
RHV
RNS
ROL
RPX
RSV
S16
S27
S3B
SAP
SCO
SDH
SDM
SHX
SISQX
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
VC2
W23
W48
WH7
WK8
YLTOR
Z45
Z5O
Z7R
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8R
Z8S
Z8T
Z8U
Z8W
Z92
ZMTXR
~A9
~EX
77I
8AO
8FE
8FG
AAFWJ
AASML
AAYXX
ABDBE
ABFSG
ABUWG
ACSTC
AEZWR
AFFHD
AFHIU
AFKRA
AHPBZ
AHWEU
AIXLP
AYFIA
AZQEC
BEZIV
BGLVJ
BPHCQ
CCPQU
CITATION
CNYFK
DWQXO
FRNLG
GNUQQ
ICD
K6V
K7-
M0C
MK~
P62
PHGZM
PHGZT
PQBIZ
PQBZA
PQGLB
PQQKQ
PROAC
PRQQA
PSYQQ
Q2X
3V.
7SC
7XB
8AL
8FD
8FK
E3H
F2A
JQ2
L.-
L7M
L~C
L~D
M0N
PKEHL
PQEST
PQUKI
PRINS
Q9U
-Y2
1SB
2.D
28-
2P1
2VQ
5QI
AAOBN
AARHV
AAYTO
ABJNI
ABQSL
ABXSW
ACBXY
ADHKG
ADTPV
AEBTG
AEFIE
AEKMD
AFEXP
AFFNX
AFGCZ
AGGDS
AGJBK
AGQPQ
AJBLW
AOWAS
BBWZM
BDATZ
CAG
COF
D8T
DG8
EJD
FINBP
FSGXE
H13
HF~
IHE
KOW
LAK
N2Q
NDZJH
O9-
OVD
R4E
RNI
RZC
RZE
RZK
S1Z
S26
S28
SCJ
SCLPG
T16
TEORI
UZXMN
VFIZW
ZZAVC
ID FETCH-LOGICAL-c468t-c9c6865115be23ece6059c45a1e402a9353bee2dcb71a7487d7475af48ff3eec3
IEDL.DBID M0C
ISICitedReferencesCount 4
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001319551800002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1573-7462
0269-2821
IngestDate Tue Nov 04 16:57:47 EST 2025
Thu Nov 13 23:21:39 EST 2025
Sat Nov 29 13:45:34 EST 2025
Sat Nov 29 10:28:27 EST 2025
Sat Nov 29 02:43:29 EST 2025
Tue Nov 18 22:36:42 EST 2025
Fri Feb 21 02:37:23 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords Multi-threshold image segmentation
Cross entropy
Optimal neighborhood learning
Optimized sine cosine strategy
Local minimum avoidance
Medical image segmentation
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c468t-c9c6865115be23ece6059c45a1e402a9353bee2dcb71a7487d7475af48ff3eec3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://link.springer.com/10.1007/s10462-024-10919-8
PQID 3108443012
PQPubID 36790
ParticipantIDs swepub_primary_oai_DiVA_org_liu_208298
proquest_journals_3108443012
gale_infotracmisc_A809728161
gale_infotracacademiconefile_A809728161
crossref_citationtrail_10_1007_s10462_024_10919_8
crossref_primary_10_1007_s10462_024_10919_8
springer_journals_10_1007_s10462_024_10919_8
PublicationCentury 2000
PublicationDate 2024-11-01
PublicationDateYYYYMMDD 2024-11-01
PublicationDate_xml – month: 11
  year: 2024
  text: 2024-11-01
  day: 01
PublicationDecade 2020
PublicationPlace Dordrecht
PublicationPlace_xml – name: Dordrecht
PublicationSubtitle An International Science and Engineering Journal
PublicationTitle The Artificial intelligence review
PublicationTitleAbbrev Artif Intell Rev
PublicationYear 2024
Publisher Springer Netherlands
Springer
Springer Nature B.V
Publisher_xml – name: Springer Netherlands
– name: Springer
– name: Springer Nature B.V
References Mignotte (CR41) 2010; 19
Su, Zhao, Yu, Heidari, Zhang, Chen, Li, Pan, Quan (CR58) 2022; 142
Houssein, Emam, Ali (CR22) 2021; 185
Houssein, Helmy, Oliva, Elngar, Shaban (CR23) 2021; 167
Abdel-Basset, Mohamed, AbdelAziz, Abouhawwash (CR2) 2022; 190
Arbeláez, Maire, Fowlkes, Malik (CR7) 2011; 33
Abdel-Basset, Mohamed, Abouhawwash (CR4) 2022; 55
Kumari, Prakash, Prasad (CR31) 2020; 11
Xing (CR67) 2020; 194
Ramesh, Kumar, Swapna, Datta, Rajest (CR49) 2021; 7
Xing, Zhou, Zhao, Chen, Heidari (CR68) 2023; 82
Hu, Gui, Heidari, Cai, Liang, Chen, Pan (CR26) 2022; 237
Hao, Huang, Heidari, Xu, Chen, Althobaiti, Mansour, Chen (CR18) 2023; 80
Zhao, Wang, Mirjalili (CR75) 2022; 388
Yu, Wu (CR69) 2022; 209
Abualigah, Diabat, Mirjalili, Abd Elaziz, Gandomi (CR5) 2021; 376
Zhang, Liu, Ye, Heidari, Liang, Chen, Pan (CR71) 2022
Zhao, Wang, Heidari, Chen, He, Xu (CR74) 2021; 139
Meng, Chen, Yin, Chen (CR40) 2014; 67
Shubham, Bhandari (CR53) 2019; 78
Sasibhushana Rao, Vimala Kumari, Prabhakara Rao, Bansal, Das, Nagar, Deep, Ojha (CR51) 2019
Too, Liang, Chen (CR60) 2022; 38
Mirjalili, Lewis (CR44) 2016; 95
Singh, Mittal, Nayyar, Singh, Singh (CR55) 2023; 213
Mirjalili, Gandomi, Mirjalili, Saremi, Faris, Mirjalili (CR43) 2017; 114
Casas-Ordaz, Oliva, Navarro, Ramos-Michel, Pérez-Cisneros (CR8) 2023; 79
Emam, Houssein, Ghoniem (CR14) 2023; 152
Dabass, Vashisth, Vig (CR13) 2022; 147
Kumari, Sasibhushana Rao, Prabhakara Rao, Satapathy, Tavares, Bhateja, Mohanty (CR34) 2018
Peng, Zhang, Zhang (CR48) 2013; 46
Chen, Cai, Heidari, Chen, He, Escorcia-Gutierrez, Mansour (CR9) 2023; 85
Wang, Bei, Song, Zhang, Zhang (CR61) 2023; 137
Xia, Yang, Zhou, Chen, Zhang, Liu, Heidari, Chen, Pan (CR66) 2022; 141
Ma, Yue (CR38) 2022; 113
Chen, Ge, Wan, Deng, Chen, Zou (CR10) 2022; 200
Han, Han, Chen, Li, Sang, Liu, Pan, Nojima (CR17) 2021; 1
Kumari, Sasibhushana Rao, Prabhakara Rao (CR32) 2018; 37
Kumari, Sasibhushana Rao, Prabhakara Rao (CR33) 2021; 18
Su, Zhao, Elmannai, Heidari, Bourouis, Wu, Cai, Gui, Chen (CR57) 2022; 146
Wolpert, Macready (CR63) 1997; 1
Oliva, Cuevas, Pajares, Zaldivar, Osuna (CR47) 2014; 139
Liu, Zhan, Gao, Zhang, Kwong, Zhang (CR37) 2019; 23
Kennedy, Eberhart (CR29) 1995; 1944
Mirjalili, Mirjalili, Lewis (CR45) 2014; 69
Hu, Zhong, Du, Wei (CR28) 2022; 394
Hashim, Mostafa, Hussien, Mirjalili, Sallam (CR19) 2023; 260
Zhao, Di, Cao, Tang, Jonrinaldi (CR73) 2021; 1
Zheng, Ji, Ma, Hu (CR76) 2023; 11
Mirjalili (CR42) 2016; 96
Xia, Liu, Huang (CR64) 2021; 11
Agushaka, Ezugwu, Abualigah (CR6) 2022; 391
Hu, Guo, Wei, Abualigah (CR27) 2023; 58
Mehta, Yildiz, Sait, Yildiz (CR39) 2023; 65
Tarkhaneh, Shen (CR59) 2019; 138
Kumari, Srikanth, Prakash, Rao (CR35) 2020; 14
Abdel-Basset, Mohamed, Abouhawwash (CR3) 2022; 55
Hu, Du, Wang, Wei (CR25) 2022; 235
Rodríguez-Esparza, Zanella-Calzada, Oliva, Heidari, Zaldivar, Pérez-Cisneros, Foong (CR50) 2020; 155
Xia, Wang, Yang, Li, Liang, Chen, Heidari, Turabieh, Mafarja, Pan (CR65) 2022; 143
Zhang, Chen, Lin (CR70) 2021; 8
Moreno, Surya Prasath, Proença, Palaniappan (CR46) 2014; 125
Han, Feng, Baciu (CR16) 2013; 46
Kullback (CR30) 1968
Sasibhushana Rao, Vimala Kumari, Prabhakara Rao, Pandian, Fernando, Baig, Shi (CR52) 2019
Chen, Huang, Heidari, Sun, Lv, Gui, Liang, Gu, Chen, Li, Chen (CR11) 2022; 142
Gollu, Sravani, Prakash, Srikanth (CR15) 2021; 38
Houssein, Helmy, Oliva, Jangir, Premkumar, Elngar, Shaban (CR24) 2022; 73
Singh, Bose (CR54) 2021; 185
Hou, Li, Mafarja, Heidari, Liu, Jin, Zhou, Chen, Cai, Li (CR20) 2023; 82
Chopra, Mohsin Ansari (CR12) 2022; 198
Zhang, Yang, Lou, Wang, Sun (CR72) 2023; 224
Abd Elaziz, Lu, He (CR1) 2021; 175
Liu, Li, Jia, Qi, Abualigah (CR36) 2023; 56
Storn, Price (CR56) 1997; 11
Wei, Liu, Kuang, Li, Xu, Liang (CR62) 2022; 151
Houssein, Abdelkareem, Emam, Hameed, Younan (CR21) 2022; 149
XF Liu (10919_CR37) 2019; 23
L Hou (10919_CR20) 2023; 82
G Ma (10919_CR38) 2022; 113
E Rodríguez-Esparza (10919_CR50) 2020; 155
GV Kumari (10919_CR35) 2020; 14
J Xia (10919_CR66) 2022; 141
H Su (10919_CR58) 2022; 142
FA Hashim (10919_CR19) 2023; 260
S Kullback (10919_CR30) 1968
X Han (10919_CR17) 2021; 1
M Zhang (10919_CR70) 2021; 8
N Chopra (10919_CR12) 2022; 198
G Sasibhushana Rao (10919_CR51) 2019
M Abdel-Basset (10919_CR4) 2022; 55
H Zhang (10919_CR71) 2022
GV Kumari (10919_CR32) 2018; 37
J Chen (10919_CR9) 2023; 85
S Mirjalili (10919_CR44) 2016; 95
A-B Meng (10919_CR40) 2014; 67
M Abd Elaziz (10919_CR1) 2021; 175
J Wang (10919_CR61) 2023; 137
X Chen (10919_CR11) 2022; 142
M Abdel-Basset (10919_CR2) 2022; 190
S Shubham (10919_CR53) 2019; 78
S Zhao (10919_CR74) 2021; 139
A Casas-Ordaz (10919_CR8) 2023; 79
L Abualigah (10919_CR5) 2021; 376
GV Kumari (10919_CR31) 2020; 11
P Arbeláez (10919_CR7) 2011; 33
X Yu (10919_CR69) 2022; 209
EH Houssein (10919_CR22) 2021; 185
G Hu (10919_CR25) 2022; 235
S Singh (10919_CR55) 2023; 213
M Dabass (10919_CR13) 2022; 147
Z Xing (10919_CR67) 2020; 194
KKD Ramesh (10919_CR49) 2021; 7
GV Kumari (10919_CR34) 2018
P Singh (10919_CR54) 2021; 185
EH Houssein (10919_CR23) 2021; 167
S Mirjalili (10919_CR43) 2017; 114
VK Gollu (10919_CR15) 2021; 38
Q Liu (10919_CR36) 2023; 56
Y Han (10919_CR16) 2013; 46
J Zheng (10919_CR76) 2023; 11
P Mehta (10919_CR39) 2023; 65
GV Kumari (10919_CR33) 2021; 18
B Peng (10919_CR48) 2013; 46
J Hu (10919_CR26) 2022; 237
Z Wei (10919_CR62) 2022; 151
F Zhao (10919_CR73) 2021; 1
S Hao (10919_CR18) 2023; 80
J Too (10919_CR60) 2022; 38
S Mirjalili (10919_CR45) 2014; 69
X Xia (10919_CR64) 2021; 11
EH Houssein (10919_CR24) 2022; 73
MM Emam (10919_CR14) 2023; 152
JO Agushaka (10919_CR6) 2022; 391
D Chen (10919_CR10) 2022; 200
R Storn (10919_CR56) 1997; 11
EH Houssein (10919_CR21) 2022; 149
S Mirjalili (10919_CR42) 2016; 96
P Zhang (10919_CR72) 2023; 224
M Abdel-Basset (10919_CR3) 2022; 55
J Xing (10919_CR68) 2023; 82
H Su (10919_CR57) 2022; 146
G Hu (10919_CR28) 2022; 394
G Sasibhushana Rao (10919_CR52) 2019
W Zhao (10919_CR75) 2022; 388
M Mignotte (10919_CR41) 2010; 19
J Xia (10919_CR65) 2022; 143
O Tarkhaneh (10919_CR59) 2019; 138
G Hu (10919_CR27) 2023; 58
D Oliva (10919_CR47) 2014; 139
DH Wolpert (10919_CR63) 1997; 1
J Kennedy (10919_CR29) 1995; 1944
JC Moreno (10919_CR46) 2014; 125
References_xml – volume: 11
  start-page: 1306
  issue: 4
  year: 2021
  end-page: 1311
  ident: CR64
  article-title: The use of artificial intelligence based magnifying image segmentation algorithm combined with endoscopy in early diagnosis and nursing of esophageal cancer patients
  publication-title: J Med Imaging Health Inf
– year: 2022
  ident: CR71
  article-title: Differential evolution-assisted salp swarm algorithm with chaotic structure for real-world problems
  publication-title: Eng Comput
  doi: 10.1007/s00366-021-01545-x
– volume: 79
  start-page: 17247
  year: 2023
  end-page: 17354
  ident: CR8
  article-title: An improved opposition-based Runge Kutta optimizer for multilevel image thresholding
  publication-title: J Supercomput
  doi: 10.1007/s11227-023-05227-x
– year: 1968
  ident: CR30
  article-title: Information theory and statistics
  publication-title: Courier corporation
– volume: 80
  start-page: 104139
  year: 2023
  ident: CR18
  article-title: Performance optimization of water cycle algorithm for multilevel lupus nephritis image segmentation
  publication-title: Biomed Signal Process Control
  doi: 10.1016/j.bspc.2022.104139
– volume: 23
  start-page: 587
  year: 2019
  end-page: 602
  ident: CR37
  article-title: Coevolutionary particle swarm optimization with bottleneck objective learning strategy for many-objective optimization
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/TEVC.2018.2875430
– volume: 46
  start-page: 1971
  year: 2013
  end-page: 1984
  ident: CR16
  article-title: Variational and PCA based natural image segmentation
  publication-title: Pattern Recogn
  doi: 10.1016/j.patcog.2012.12.002
– volume: 151
  start-page: 106227
  year: 2022
  ident: CR62
  article-title: An efficient multi-threshold image segmentation for skin cancer using boosting whale optimizer
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2022.106227
– volume: 38
  start-page: 993
  issue: 4
  year: 2021
  end-page: 1006
  ident: CR15
  article-title: Pipeline of optimization techniques for multi-level thresholding in medical image compression using 2D histogram
  publication-title: Traitement Du Signal
  doi: 10.18280/ts.380409
– start-page: 355
  year: 2019
  end-page: 365
  ident: CR52
  article-title: New random noise denoising method for biomedical image processing applications
  publication-title: Proceedings of the international conference on ISMAC in computational vision and bio-engineering 2018 (ISMAC-CVB)
  doi: 10.1007/978-3-030-00665-5_37
– volume: 33
  start-page: 898
  year: 2011
  end-page: 916
  ident: CR7
  article-title: Contour detection and hierarchical image segmentation
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2010.161
– volume: 1
  start-page: 198
  year: 2021
  end-page: 217
  ident: CR17
  article-title: Distributed flow shop scheduling with sequence-dependent setup times using an improved iterated greedy algorithm
  publication-title: Complex Syst Model Simul
  doi: 10.23919/CSMS.2021.0018
– volume: 82
  start-page: 104511
  year: 2023
  ident: CR20
  article-title: Image segmentation of Intracerebral hemorrhage patients based on enhanced hunger games search optimizer
  publication-title: Biomed Signal Process Control
  doi: 10.1016/j.bspc.2022.104511
– volume: 37
  start-page: 249
  issue: 3
  year: 2018
  end-page: 275
  ident: CR32
  article-title: New bacteria foraging and particle swarm hybrid algorithm for medical image compression
  publication-title: Image Anal Stereology
  doi: 10.5566/ias.1865
– volume: 56
  start-page: 159
  year: 2023
  end-page: 216
  ident: CR36
  article-title: A chimp-inspired remora optimization algorithm for multilevel thresholding image segmentation using cross entropy
  publication-title: Artif Intell Rev
  doi: 10.1007/s10462-023-10498-0
– volume: 55
  start-page: 3315
  year: 2022
  end-page: 3367
  ident: CR3
  article-title: Hybrid marine predators algorithm for image segmentation: analysis and validations
  publication-title: Artif Intell Rev
  doi: 10.1007/s10462-021-10086-0
– volume: 237
  start-page: 107761
  year: 2022
  ident: CR26
  article-title: Dispersed foraging slime mould algorithm: continuous and binary variants for global optimization and wrapper-based feature selection
  publication-title: Knowl Based Syst
  doi: 10.1016/j.knosys.2021.107761
– volume: 213
  start-page: 119021
  year: 2023
  ident: CR55
  article-title: A hybrid transient search naked mole-rat optimizer for image segmentation using multilevel thresholding
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2022.119021
– volume: 1944
  start-page: 1942
  year: 1995
  end-page: 1948
  ident: CR29
  article-title: Particle swarm optimization
  publication-title: Proc ICNN’95 Int Conf Neural Netw
  doi: 10.1109/ICNN.1995.488968
– volume: 185
  start-page: 115651
  year: 2021
  ident: CR22
  article-title: An efficient multilevel thresholding segmentation method for thermography breast cancer imaging based on improved chimp optimization algorithm
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2021.115651
– volume: 198
  start-page: 116924
  year: 2022
  ident: CR12
  article-title: Golden jackal optimization: a novel nature-inspired optimizer for engineering applications
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2022.116924
– volume: 209
  start-page: 118267
  year: 2022
  ident: CR69
  article-title: Ensemble grey wolf optimizer and its application for image segmentation
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2022.118267
– volume: 38
  start-page: 4457
  year: 2022
  end-page: 4478
  ident: CR60
  article-title: Memory-based Harris hawk optimization with learning agents: a feature selection approach
  publication-title: Eng Comput
  doi: 10.1007/s00366-021-01479-4
– volume: 200
  start-page: 117118
  year: 2022
  ident: CR10
  article-title: Poplar optimization algorithm: a new meta-heuristic optimization technique for numerical optimization and image segmentation
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2022.117118
– volume: 46
  start-page: 1020
  year: 2013
  end-page: 1038
  ident: CR48
  article-title: A survey of graph theoretical approaches to image segmentation
  publication-title: Pattern Recogn
  doi: 10.1016/j.patcog.2012.09.015
– volume: 78
  start-page: 17197
  year: 2019
  end-page: 17238
  ident: CR53
  article-title: A generalized Masi entropy based efficient multilevel thresholding method for color image segmentation
  publication-title: Multimed Tools Appl
  doi: 10.1007/s11042-018-7034-x
– volume: 139
  start-page: 105015
  year: 2021
  ident: CR74
  article-title: Performance optimization of salp swarm algorithm for multi-threshold image segmentation: comprehensive study of breast cancer microscopy
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2021.105015
– volume: 137
  start-page: 110130
  year: 2023
  ident: CR61
  article-title: A whale optimization algorithm with combined mutation and removing similarity for global optimization and multilevel thresholding image segmentation
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2023.110130
– volume: 149
  start-page: 106075
  year: 2022
  ident: CR21
  article-title: An efficient image segmentation method for skin cancer imaging using improved golden jackal optimization algorithm
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2022.106075
– volume: 96
  start-page: 120
  year: 2016
  end-page: 133
  ident: CR42
  article-title: SCA: a sine cosine algorithm for solving optimization problems
  publication-title: Knowl Based Syst
  doi: 10.1016/j.knosys.2015.12.022
– volume: 138
  start-page: 112820
  year: 2019
  ident: CR59
  article-title: An adaptive differential evolution algorithm to optimal multi-level thresholding for MRI brain image segmentation
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2019.07.037
– volume: 152
  start-page: 106404
  year: 2023
  ident: CR14
  article-title: A modified reptile search algorithm for global optimization and image segmentation: case study brain MRI images
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2022.106404
– start-page: 107
  year: 2019
  end-page: 119
  ident: CR51
  article-title: Image compression using neural network for biomedical applications
  publication-title: Soft computing for problem solving
  doi: 10.1007/978-981-13-1595-4_9
– volume: 67
  start-page: 218
  year: 2014
  end-page: 229
  ident: CR40
  article-title: Crisscross optimization algorithm and its application
  publication-title: Knowl Based Syst
  doi: 10.1016/j.knosys.2014.05.004
– volume: 147
  start-page: 105680
  year: 2022
  ident: CR13
  article-title: A convolution neural network with multi-level convolutional and attention learning for classification of cancer grades and tissue structures in colon histopathological images
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2022.105680
– volume: 85
  start-page: 104893
  year: 2023
  ident: CR9
  article-title: Multi-threshold image segmentation based on an improved differential evolution: Case study of thyroid papillary carcinoma
  publication-title: Biomed Signal Process Control
  doi: 10.1016/j.bspc.2023.104893
– start-page: 437
  year: 2018
  end-page: 445
  ident: CR34
  article-title: High-density noise removal algorithm for brain image analysis
  publication-title: Information and decision sciences
– volume: 141
  start-page: 105137
  year: 2022
  ident: CR66
  article-title: Evolving kernel extreme learning machine for medical diagnosis via a disperse foraging sine cosine algorithm
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2021.105137
– volume: 260
  start-page: 110146
  year: 2023
  ident: CR19
  article-title: Fick’s law algorithm: a physical law-based algorithm for numerical optimization
  publication-title: Knowl Based Syst
  doi: 10.1016/j.knosys.2022.110146
– volume: 82
  start-page: 104592
  year: 2023
  ident: CR68
  article-title: Elite levy spreading differential evolution via ABC shrink-wrap for multi-threshold segmentation of breast cancer images
  publication-title: Biomed Signal Process Control
  doi: 10.1016/j.bspc.2023.104592
– volume: 146
  start-page: 105618
  year: 2022
  ident: CR57
  article-title: Multilevel threshold image segmentation for COVID-19 chest radiography: A framework using horizontal and vertical multiverse optimization
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2022.105618
– volume: 69
  start-page: 46
  year: 2014
  end-page: 61
  ident: CR45
  article-title: Grey wolf optimizer
  publication-title: Adv Eng Softw
  doi: 10.1016/j.advengsoft.2013.12.007
– volume: 58
  start-page: 102210
  year: 2023
  ident: CR27
  article-title: Genghis Khan shark optimizer: a novel nature-inspired algorithm for engineering optimization
  publication-title: Adv Eng Inform
  doi: 10.1016/j.aei.2023.102210
– volume: 142
  start-page: 105179
  year: 2022
  ident: CR11
  article-title: An efficient multilevel thresholding image segmentation method based on the slime mould algorithm with bee foraging mechanism: a real case with lupus nephritis images
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2021.105179
– volume: 11
  start-page: 2369
  year: 2023
  ident: CR76
  article-title: Construction of local-shape-controlled quartic generalized Said-Ball model
  publication-title: Mathematics
  doi: 10.3390/math11102369
– volume: 73
  start-page: 103401
  year: 2022
  ident: CR24
  article-title: An efficient multi-thresholding based COVID-19 CT images segmentation approach using an improved equilibrium optimizer
  publication-title: Biomed Signal Process Control
  doi: 10.1016/j.bspc.2021.103401
– volume: 185
  start-page: 115637
  year: 2021
  ident: CR54
  article-title: A quantum-clustering optimization method for COVID-19 CT scan image segmentation
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2021.115637
– volume: 7
  issue: 27
  year: 2021
  ident: CR49
  article-title: A review of medical image segmentation algorithms
  publication-title: EAI Endorsed Trans Pervasive Health Technol
  doi: 10.4108/eai.12-4-2021.169184
– volume: 391
  start-page: 114570
  year: 2022
  ident: CR6
  article-title: Dwarf Mongoose optimization algorithm
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2022.114570
– volume: 1
  start-page: 91
  year: 2021
  end-page: 108
  ident: CR73
  article-title: A novel cooperative multi-stage hyper-heuristic for combination optimization problems
  publication-title: Complex Syst Model Simul
  doi: 10.23919/CSMS.2021.0010
– volume: 394
  start-page: 114901
  year: 2022
  ident: CR28
  article-title: An enhanced hybrid arithmetic optimization algorithm for engineering applications
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2022.114901
– volume: 125
  start-page: 237
  year: 2014
  end-page: 250
  ident: CR46
  article-title: Fast and globally convex multiphase active contours for brain MRI segmentation
  publication-title: Comput vis Image Underst
  doi: 10.1016/j.cviu.2014.04.010
– volume: 224
  start-page: 120058
  year: 2023
  ident: CR72
  article-title: Aptenodytes Forsteri optimization algorithm based on adaptive perturbation of oscillation and mutation operation for image multi-threshold segmentation
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2023.120058
– volume: 55
  start-page: 6389
  year: 2022
  end-page: 6459
  ident: CR4
  article-title: A new fusion of whale optimizer algorithm with Kapur’s entropy for multi-threshold image segmentation: analysis and validations
  publication-title: Artif Intell Rev
  doi: 10.1007/s10462-022-10157-w
– volume: 18
  start-page: 171
  issue: 2
  year: 2021
  end-page: 192
  ident: CR33
  article-title: Flower pollination-based K-means algorithm for medical image compression
  publication-title: Int J Adv Intell Paradigms
– volume: 139
  start-page: 357
  year: 2014
  end-page: 381
  ident: CR47
  article-title: A multilevel thresholding algorithm using electromagnetism optimization
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2014.02.020
– volume: 114
  start-page: 163
  year: 2017
  end-page: 191
  ident: CR43
  article-title: Salp Swarm algorithm: a bio-inspired optimizer for engineering design problems
  publication-title: Adv Eng Softw
  doi: 10.1016/j.advengsoft.2017.07.002
– volume: 11
  start-page: 1185
  issue: 3
  year: 2020
  end-page: 1193
  ident: CR31
  article-title: Image compression using clustering techniques for bio medical applications
  publication-title: Int J Emerg Technol
– volume: 143
  start-page: 105206
  year: 2022
  ident: CR65
  article-title: Performance optimization of support vector machine with oppositional grasshopper optimization for acute appendicitis diagnosis
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2021.105206
– volume: 113
  start-page: 104960
  year: 2022
  ident: CR38
  article-title: An improved whale optimization algorithm based on multilevel threshold image segmentation using the Otsu method
  publication-title: Eng Appl Artif Intell
  doi: 10.1016/j.engappai.2022.104960
– volume: 11
  start-page: 341
  year: 1997
  end-page: 359
  ident: CR56
  article-title: Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces
  publication-title: J Global Optim
  doi: 10.1023/A:1008202821328
– volume: 65
  start-page: 1817
  year: 2023
  end-page: 1825
  ident: CR39
  article-title: A novel hybrid Fick’s law algorithm-quasi oppositional based learning algorithm for solving constrained mechanical design problems
  publication-title: Mater Test
  doi: 10.1515/mt-2023-0235
– volume: 190
  start-page: 116145
  year: 2022
  ident: CR2
  article-title: HWOA: a hybrid whale optimization algorithm with a novel local minima avoidance method for multi-level thresholding color image segmentation
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2021.116145
– volume: 19
  start-page: 1610
  year: 2010
  end-page: 1624
  ident: CR41
  article-title: A label field fusion bayesian model and its penalized maximum rand estimator for image segmentation
  publication-title: IEEE Trans Image Process
  doi: 10.1109/TIP.2010.2044965
– volume: 167
  start-page: 114159
  year: 2021
  ident: CR23
  article-title: A novel black widow optimization algorithm for multilevel thresholding image segmentation
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2020.114159
– volume: 175
  start-page: 114841
  year: 2021
  ident: CR1
  article-title: A multi-leader whale optimization algorithm for global optimization and image segmentation
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2021.114841
– volume: 235
  start-page: 107638
  year: 2022
  ident: CR25
  article-title: An enhanced black widow optimization algorithm for feature selection
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2021.107638
– volume: 14
  start-page: 628
  issue: 7
  year: 2020
  end-page: 636
  ident: CR35
  article-title: Performance analysis of clustering techniques for image segmentation
  publication-title: J Xidian Univ
– volume: 155
  start-page: 113428
  year: 2020
  ident: CR50
  article-title: An efficient Harris hawks-inspired image segmentation method
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2020.113428
– volume: 1
  start-page: 67
  year: 1997
  end-page: 82
  ident: CR63
  article-title: No free lunch theorems for optimization
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/4235.585893
– volume: 8
  start-page: 10830
  year: 2021
  end-page: 10842
  ident: CR70
  article-title: A privacy-preserving optimization of neighborhood-based recommendation for medical-aided diagnosis and treatment
  publication-title: IEEE Internet Things J
  doi: 10.1109/JIOT.2021.3051060
– volume: 376
  start-page: 113609
  year: 2021
  ident: CR5
  article-title: The arithmetic optimization algorithm
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2020.113609
– volume: 95
  start-page: 51
  year: 2016
  end-page: 67
  ident: CR44
  article-title: The whale optimization algorithm
  publication-title: Adv Eng Softw
  doi: 10.1016/j.advengsoft.2016.01.008
– volume: 388
  start-page: 114194
  year: 2022
  ident: CR75
  article-title: Artificial hummingbird algorithm: a new bio-inspired optimizer with its engineering applications
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2021.114194
– volume: 142
  start-page: 105181
  year: 2022
  ident: CR58
  article-title: Horizontal and vertical search artificial bee colony for image segmentation of COVID-19 X-ray images
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2021.105181
– volume: 194
  start-page: 105570
  year: 2020
  ident: CR67
  article-title: An improved emperor penguin optimization based multilevel thresholding for color image segmentation
  publication-title: Knowl Based Syst
  doi: 10.1016/j.knosys.2020.105570
– volume: 147
  start-page: 105680
  year: 2022
  ident: 10919_CR13
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2022.105680
– volume-title: Courier corporation
  year: 1968
  ident: 10919_CR30
– volume: 38
  start-page: 4457
  year: 2022
  ident: 10919_CR60
  publication-title: Eng Comput
  doi: 10.1007/s00366-021-01479-4
– volume: 388
  start-page: 114194
  year: 2022
  ident: 10919_CR75
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2021.114194
– volume: 198
  start-page: 116924
  year: 2022
  ident: 10919_CR12
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2022.116924
– volume: 155
  start-page: 113428
  year: 2020
  ident: 10919_CR50
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2020.113428
– volume: 185
  start-page: 115637
  year: 2021
  ident: 10919_CR54
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2021.115637
– volume: 125
  start-page: 237
  year: 2014
  ident: 10919_CR46
  publication-title: Comput vis Image Underst
  doi: 10.1016/j.cviu.2014.04.010
– volume: 82
  start-page: 104592
  year: 2023
  ident: 10919_CR68
  publication-title: Biomed Signal Process Control
  doi: 10.1016/j.bspc.2023.104592
– volume: 190
  start-page: 116145
  year: 2022
  ident: 10919_CR2
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2021.116145
– volume: 194
  start-page: 105570
  year: 2020
  ident: 10919_CR67
  publication-title: Knowl Based Syst
  doi: 10.1016/j.knosys.2020.105570
– volume: 200
  start-page: 117118
  year: 2022
  ident: 10919_CR10
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2022.117118
– volume: 146
  start-page: 105618
  year: 2022
  ident: 10919_CR57
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2022.105618
– volume: 55
  start-page: 6389
  year: 2022
  ident: 10919_CR4
  publication-title: Artif Intell Rev
  doi: 10.1007/s10462-022-10157-w
– volume: 82
  start-page: 104511
  year: 2023
  ident: 10919_CR20
  publication-title: Biomed Signal Process Control
  doi: 10.1016/j.bspc.2022.104511
– volume: 235
  start-page: 107638
  year: 2022
  ident: 10919_CR25
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2021.107638
– volume: 65
  start-page: 1817
  year: 2023
  ident: 10919_CR39
  publication-title: Mater Test
  doi: 10.1515/mt-2023-0235
– volume: 11
  start-page: 1306
  issue: 4
  year: 2021
  ident: 10919_CR64
  publication-title: J Med Imaging Health Inf
– volume: 46
  start-page: 1971
  year: 2013
  ident: 10919_CR16
  publication-title: Pattern Recogn
  doi: 10.1016/j.patcog.2012.12.002
– volume: 213
  start-page: 119021
  year: 2023
  ident: 10919_CR55
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2022.119021
– volume: 18
  start-page: 171
  issue: 2
  year: 2021
  ident: 10919_CR33
  publication-title: Int J Adv Intell Paradigms
– volume: 376
  start-page: 113609
  year: 2021
  ident: 10919_CR5
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2020.113609
– volume: 96
  start-page: 120
  year: 2016
  ident: 10919_CR42
  publication-title: Knowl Based Syst
  doi: 10.1016/j.knosys.2015.12.022
– volume: 391
  start-page: 114570
  year: 2022
  ident: 10919_CR6
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2022.114570
– volume: 394
  start-page: 114901
  year: 2022
  ident: 10919_CR28
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2022.114901
– volume: 37
  start-page: 249
  issue: 3
  year: 2018
  ident: 10919_CR32
  publication-title: Image Anal Stereology
  doi: 10.5566/ias.1865
– volume: 11
  start-page: 2369
  year: 2023
  ident: 10919_CR76
  publication-title: Mathematics
  doi: 10.3390/math11102369
– volume: 33
  start-page: 898
  year: 2011
  ident: 10919_CR7
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2010.161
– volume: 1
  start-page: 91
  year: 2021
  ident: 10919_CR73
  publication-title: Complex Syst Model Simul
  doi: 10.23919/CSMS.2021.0010
– volume: 260
  start-page: 110146
  year: 2023
  ident: 10919_CR19
  publication-title: Knowl Based Syst
  doi: 10.1016/j.knosys.2022.110146
– volume: 1944
  start-page: 1942
  year: 1995
  ident: 10919_CR29
  publication-title: Proc ICNN’95 Int Conf Neural Netw
  doi: 10.1109/ICNN.1995.488968
– volume: 167
  start-page: 114159
  year: 2021
  ident: 10919_CR23
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2020.114159
– start-page: 437
  volume-title: Information and decision sciences
  year: 2018
  ident: 10919_CR34
– volume: 139
  start-page: 357
  year: 2014
  ident: 10919_CR47
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2014.02.020
– volume: 78
  start-page: 17197
  year: 2019
  ident: 10919_CR53
  publication-title: Multimed Tools Appl
  doi: 10.1007/s11042-018-7034-x
– volume: 58
  start-page: 102210
  year: 2023
  ident: 10919_CR27
  publication-title: Adv Eng Inform
  doi: 10.1016/j.aei.2023.102210
– volume: 46
  start-page: 1020
  year: 2013
  ident: 10919_CR48
  publication-title: Pattern Recogn
  doi: 10.1016/j.patcog.2012.09.015
– volume: 56
  start-page: 159
  year: 2023
  ident: 10919_CR36
  publication-title: Artif Intell Rev
  doi: 10.1007/s10462-023-10498-0
– volume: 7
  issue: 27
  year: 2021
  ident: 10919_CR49
  publication-title: EAI Endorsed Trans Pervasive Health Technol
  doi: 10.4108/eai.12-4-2021.169184
– volume: 69
  start-page: 46
  year: 2014
  ident: 10919_CR45
  publication-title: Adv Eng Softw
  doi: 10.1016/j.advengsoft.2013.12.007
– volume: 185
  start-page: 115651
  year: 2021
  ident: 10919_CR22
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2021.115651
– volume: 224
  start-page: 120058
  year: 2023
  ident: 10919_CR72
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2023.120058
– volume: 95
  start-page: 51
  year: 2016
  ident: 10919_CR44
  publication-title: Adv Eng Softw
  doi: 10.1016/j.advengsoft.2016.01.008
– volume: 38
  start-page: 993
  issue: 4
  year: 2021
  ident: 10919_CR15
  publication-title: Traitement Du Signal
  doi: 10.18280/ts.380409
– volume: 8
  start-page: 10830
  year: 2021
  ident: 10919_CR70
  publication-title: IEEE Internet Things J
  doi: 10.1109/JIOT.2021.3051060
– volume: 85
  start-page: 104893
  year: 2023
  ident: 10919_CR9
  publication-title: Biomed Signal Process Control
  doi: 10.1016/j.bspc.2023.104893
– volume: 152
  start-page: 106404
  year: 2023
  ident: 10919_CR14
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2022.106404
– volume: 80
  start-page: 104139
  year: 2023
  ident: 10919_CR18
  publication-title: Biomed Signal Process Control
  doi: 10.1016/j.bspc.2022.104139
– start-page: 107
  volume-title: Soft computing for problem solving
  year: 2019
  ident: 10919_CR51
  doi: 10.1007/978-981-13-1595-4_9
– volume: 143
  start-page: 105206
  year: 2022
  ident: 10919_CR65
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2021.105206
– volume: 23
  start-page: 587
  year: 2019
  ident: 10919_CR37
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/TEVC.2018.2875430
– volume: 175
  start-page: 114841
  year: 2021
  ident: 10919_CR1
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2021.114841
– volume: 11
  start-page: 1185
  issue: 3
  year: 2020
  ident: 10919_CR31
  publication-title: Int J Emerg Technol
– volume: 1
  start-page: 67
  year: 1997
  ident: 10919_CR63
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/4235.585893
– volume: 14
  start-page: 628
  issue: 7
  year: 2020
  ident: 10919_CR35
  publication-title: J Xidian Univ
– volume: 79
  start-page: 17247
  year: 2023
  ident: 10919_CR8
  publication-title: J Supercomput
  doi: 10.1007/s11227-023-05227-x
– volume: 151
  start-page: 106227
  year: 2022
  ident: 10919_CR62
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2022.106227
– year: 2022
  ident: 10919_CR71
  publication-title: Eng Comput
  doi: 10.1007/s00366-021-01545-x
– volume: 113
  start-page: 104960
  year: 2022
  ident: 10919_CR38
  publication-title: Eng Appl Artif Intell
  doi: 10.1016/j.engappai.2022.104960
– volume: 138
  start-page: 112820
  year: 2019
  ident: 10919_CR59
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2019.07.037
– volume: 19
  start-page: 1610
  year: 2010
  ident: 10919_CR41
  publication-title: IEEE Trans Image Process
  doi: 10.1109/TIP.2010.2044965
– volume: 1
  start-page: 198
  year: 2021
  ident: 10919_CR17
  publication-title: Complex Syst Model Simul
  doi: 10.23919/CSMS.2021.0018
– volume: 209
  start-page: 118267
  year: 2022
  ident: 10919_CR69
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2022.118267
– volume: 55
  start-page: 3315
  year: 2022
  ident: 10919_CR3
  publication-title: Artif Intell Rev
  doi: 10.1007/s10462-021-10086-0
– volume: 142
  start-page: 105181
  year: 2022
  ident: 10919_CR58
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2021.105181
– volume: 139
  start-page: 105015
  year: 2021
  ident: 10919_CR74
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2021.105015
– volume: 149
  start-page: 106075
  year: 2022
  ident: 10919_CR21
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2022.106075
– volume: 11
  start-page: 341
  year: 1997
  ident: 10919_CR56
  publication-title: J Global Optim
  doi: 10.1023/A:1008202821328
– volume: 237
  start-page: 107761
  year: 2022
  ident: 10919_CR26
  publication-title: Knowl Based Syst
  doi: 10.1016/j.knosys.2021.107761
– start-page: 355
  volume-title: Proceedings of the international conference on ISMAC in computational vision and bio-engineering 2018 (ISMAC-CVB)
  year: 2019
  ident: 10919_CR52
  doi: 10.1007/978-3-030-00665-5_37
– volume: 142
  start-page: 105179
  year: 2022
  ident: 10919_CR11
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2021.105179
– volume: 73
  start-page: 103401
  year: 2022
  ident: 10919_CR24
  publication-title: Biomed Signal Process Control
  doi: 10.1016/j.bspc.2021.103401
– volume: 114
  start-page: 163
  year: 2017
  ident: 10919_CR43
  publication-title: Adv Eng Softw
  doi: 10.1016/j.advengsoft.2017.07.002
– volume: 141
  start-page: 105137
  year: 2022
  ident: 10919_CR66
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2021.105137
– volume: 67
  start-page: 218
  year: 2014
  ident: 10919_CR40
  publication-title: Knowl Based Syst
  doi: 10.1016/j.knosys.2014.05.004
– volume: 137
  start-page: 110130
  year: 2023
  ident: 10919_CR61
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2023.110130
SSID ssj0005243
Score 2.4051108
Snippet Medical image segmentation is a critical and demanding step in medical image processing, which provides a solid foundation for subsequent medical image data...
SourceID swepub
proquest
gale
crossref
springer
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 302
SubjectTerms Accuracy
Algorithms
Artificial Intelligence
Brain
Cancer
Colon cancer
Color imagery
Colorectal cancer
Computer Science
Convergence
COVID-19
Data processing
Diffusion
Entropy
Entropy (Information theory)
Extraction
Image processing
Image segmentation
Imagery
Information dissemination
Law
Laws, regulations and rules
Learning strategies
Lung cancer
Machine learning
Medical imaging
Medical imaging equipment
Molecular diffusion
Neighborhoods
Optimization
Segmentation
Thresholds
SummonAdditionalLinks – databaseName: Springer Nature OA Free Journals
  dbid: C24
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5B4cCF8hQLBfmA4ACWmsT22sdVYcWpQuKh3izHGS8RyS7apPTav8Hf45cwzjrbboUqwdkPOeN5xvPNALwsjJfuUAfufKm4CIeGO1E5TsZOYi517JY0NJuYHh_rkxPzMYHCujHbfXySHDT1JbCbUDknm8JjMUvD9U24JTNtYiLfUcQ4bBM7RJHgMX9ft2OCririSy-iV6qHDhZnvv9_Z70Hd5OHyWYblrgPN3D5APbH7g0sCfND-DRrsYkAffI52bz233-f_-pY486Yaxardd1_a1m0cRUbkg55T7fexccq1m4ed1jdkjJiHS7aBGBaPoIv8_efjz7w1GKBe6F0z73xSityumSJeYEeKboxXkiXIQWWzhSyKBHzypfTzE0puKko_JAuCB1CgeiLx7C3XC3xCTCTBROUV0IiWcYgSqPKqZKIIa9MWakJZCPVrU_1x2MbjMZeVE6OVLNENTtQzeoJvNmu-bGpvnHt7NfxMm0UTdrZu4QwoPPFIld2pmOtIk0-7gQOdmaSSPnd4ZEdbBLpzpIfrIUgfZhP4O146xfD1x3r1YaNtp8QS3q_q7_O7Gq9sE19avOIcNZP_23fZ3AnHzgs_g86gL1-fYrP4bb_2dfd-sUgE38AeSkG7Q
  priority: 102
  providerName: Springer Nature
Title Ameliorated Fick’s law algorithm based multi-threshold medical image segmentation
URI https://link.springer.com/article/10.1007/s10462-024-10919-8
https://www.proquest.com/docview/3108443012
https://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-208298
Volume 57
WOSCitedRecordID wos001319551800002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: ABI/INFORM Collection
  customDbUrl:
  eissn: 1573-7462
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005243
  issn: 0269-2821
  databaseCode: 7WY
  dateStart: 20240101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/abicomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ABI/INFORM Global
  customDbUrl:
  eissn: 1573-7462
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005243
  issn: 0269-2821
  databaseCode: M0C
  dateStart: 20240101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/abiglobal
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1573-7462
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005243
  issn: 0269-2821
  databaseCode: P5Z
  dateStart: 20240101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1573-7462
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005243
  issn: 0269-2821
  databaseCode: K7-
  dateStart: 20240101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Library Science Database
  customDbUrl:
  eissn: 1573-7462
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005243
  issn: 0269-2821
  databaseCode: M1O
  dateStart: 20240101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/libraryscience
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1573-7462
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005243
  issn: 0269-2821
  databaseCode: BENPR
  dateStart: 20240101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: Springer Journals New Starts & Take-Overs Collection
  customDbUrl:
  eissn: 1573-7462
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005243
  issn: 0269-2821
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: Springer Nature OA Free Journals
  customDbUrl:
  eissn: 1573-7462
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005243
  issn: 0269-2821
  databaseCode: C24
  dateStart: 20240101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpR1Nb9Mw1KIbBy4MBmgdo_IBwQEsmsR27BMqZRUSUKoNxuBiOY5TojXtaDJ25W_w9_glPCfOuu7QCxdLURzH1vv2-0LoaSQN032REW0STmjWl0TTVBMQdsyGTLhuSXWziXg8FqencuIv3EofVtnyxJpRpwvj7shfgRoiKAV0DF-f_ySua5TzrvoWGh207TQbF9L3sT-8FuLRRM2FXBIwLQKfNONT5ygPCUgo4kpjSiLWBNNN9nzNT3qjpmgth0Y7_3uCe-iu10DxoEGZ--iWne-inba7A_bEvos6H_TlA3Q8KOzMpfGDZopHuTn7-_tPiWf6EuvZFFavfhTYScIU16GJpALcKJ1LCxeNCwjnBbAsXNpp4dOc5g_Rl9Hh5-E74hsxEEO5qIiRhgsOqhlLbBhZY8EGkoYyHVgwP7WMWJRYG6YmiQMdgwmUgpHCdEZFlkXWmugR2pov5nYPYRlkMuOGU2ZBfmY0kTyJObM2C1OZpLyLghYKyvgq5a5Zxkyt6is7yCmAnKohp0QXvbj65ryp0bFx9nMHXOUIGFY22uchwP5cKSw1EK6ikQBNuIsO1mYC4Zn11y2clSf8Uq2A3EUvW5RZvd60rWcNWl0dwRX-fpufDNRiOVWz_EKFLg9a7G_-7WN0J6yx2t0SHaCtanlhn6Db5leVl8se6sRfv_XQ9pvD8eQInoYhhfF9THo15bgx-ATjhH2H8ej45B_sVhuK
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbhMxFL1qCxJsKBQQgQJe8FiARcfj8dgLhCJK1CohQqKg7ozH4wkjJknJpETs-A1-go_iS7ieR9N0kV0XrMfjscfH9x4_7rkAT0JlI7MnM2psIijP9hQ1PDUUnV3kWCR9tqQq2UQ8HMrjY_VhA_60sTD-WmVrEytDnU6t3yN_hTREco5wZG9OvlOfNcqfrrYpNGpY9N3PBS7ZyteH-zi-TxnrvTt6e0CbrALUciHn1CorpECeESWOhc46JPTK8sgEDtdSRoVRmDjHUpvEgYmRz6fIuCOTcZlloXM2xHo34QoPZeznVT-m566U1Lf0mFAUlzJBE6TThOpxwSh6ROqlOBWVK47wojs4dy57QcO08nu97f_tj92EGw3DJt16StyCDTfZge02ewVpjNkObA7M4jZ87I5d4WUKkHmTXm6__f31uySFWRBTjLA3869j4j19Sqqrl3SO2C_9kR0Z10dcJB-jSSalG42bMK7JHfh0KR28C1uT6cTdA6KCTGXCCh455AcZT5RIYhE5l7FUJanoQNCOuraNCrtPBlLopX60R4pGpOgKKVp24MXZOye1Bsna0s89mLQ3UFizNU2cBbbPS33prvSKTRKZfgd2V0qiYbGrj1tc6cawlXoJqg68bCG6fLyuWc9qGJ91wQub7-efu3o6G-kiP9XMx3nL--s_-xiuHRy9H-jB4bD_AK6zakb5HbFd2JrPTt1DuGp_zPNy9qiamwS-XDa0_wHQV3IV
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB61BSEuFAqIhQI-8DiA1cZJHPuA0IplRdVqtRIPVVyM4zhLRLJbNikrbvwN_go_h1_COI9ut4e99cA5TyefZ76xZ74BeOJLE-p9kVJtYk6DdF9SHSSaorMLLQuF65ZUN5uIRiNxfCzHG_Cnq4VxaZWdTawNdTIzbo18D2mICAKEI9tL27SI8WD4-uQ7dR2k3E5r106jgcih_bnA8K18dTDAf_2UseHbD2_e0bbDADUBFxU10nDBkXOEsWW-NRbJvTRBqD2LcZWWfujH1rLExJGnI-T2CbLvUKeBSFPfWuPjfTfhSoQxpksnHIefz6WXNBl7jEuKYY3XFuy0ZXsBZxS9I3WynJKKFad40TWc26O9oGda-8Dh9v_89W7CjZZ5k34zVW7Bhp3uwHbX1YK0Rm4HNo_04ja87xc2d_IFyMjJMDPf_v76XZJcL4jOJzia6mtBHANISJ2SSSucE6XbyiNFs_VFsgJNNSntpGjLu6Z34OOlDPAubE1nU3sPiPRSmXLDg9Aib0iDWPI44qG1KUtknPAeeB0ClGnV2V2TkFwtdaUdahSiRtWoUaIHL86uOWm0Sdae_dwBSznDhXc2uq2_wPdzEmCqL5ySk8AIoAe7K2eiwTGrhzuMqdbglWoJsB687OC6PLzutZ41kD4bghM8H2Sf-mo2n6g8O1XM1X-L--sf-xiuIaLV0cHo8AFcZ_Xkcgtlu7BVzU_tQ7hqflRZOX9UT1MCXy4b2f8AN8l7OQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ameliorated+Fick%E2%80%99s+law+algorithm+based+multi-threshold+medical+image+segmentation&rft.jtitle=The+Artificial+intelligence+review&rft.date=2024-11-01&rft.pub=Springer+Nature+B.V&rft.issn=0269-2821&rft.eissn=1573-7462&rft.volume=57&rft.issue=11&rft.spage=302&rft_id=info:doi/10.1007%2Fs10462-024-10919-8&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1573-7462&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1573-7462&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1573-7462&client=summon