Use of computational fluid dynamics deposition modeling in respiratory drug delivery

Introduction: Respiratory drug delivery is a surprisingly complex process with a number of physical and biological challenges. Computational fluid dynamics (CFD) is a scientific simulation technique that is capable of providing spatially and temporally resolved predictions of many aspects related to...

Full description

Saved in:
Bibliographic Details
Published in:Expert opinion on drug delivery Vol. 16; no. 1; pp. 7 - 26
Main Authors: Longest, P. Worth, Bass, Karl, Dutta, Rabijit, Rani, Vijaya, Thomas, Morgan L., El-Achwah, Ahmad, Hindle, Michael
Format: Journal Article
Language:English
Published: England Taylor & Francis 02.01.2019
Subjects:
ISSN:1742-5247, 1744-7593, 1744-7593
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Introduction: Respiratory drug delivery is a surprisingly complex process with a number of physical and biological challenges. Computational fluid dynamics (CFD) is a scientific simulation technique that is capable of providing spatially and temporally resolved predictions of many aspects related to respiratory drug delivery from initial aerosol formation through respiratory cellular drug absorption. Areas covered: This review article focuses on CFD-based deposition modeling applied to pharmaceutical aerosols. Areas covered include the development of new complete-airway CFD deposition models and the application of these models to develop a next-generation of respiratory drug delivery strategies. Expert opinion: Complete-airway deposition modeling is a valuable research tool that can improve our understanding of pharmaceutical aerosol delivery and is already supporting medical hypotheses, such as the expected under-treatment of the small airways in asthma. These complete-airway models are also being used to advance next-generation aerosol delivery strategies, like controlled condensational growth. We envision future applications of CFD deposition modeling to reduce the need for human subject testing in developing new devices and formulations, to help establish bioequivalence for the accelerated approval of generic inhalers, and to provide valuable new insights related to drug dissolution and clearance leading to microdosimetry maps of drug absorption.
AbstractList Respiratory drug delivery is a surprisingly complex process with a number of physical and biological challenges. Computational fluid dynamics (CFD) is a scientific simulation technique that is capable of providing spatially and temporally resolved predictions of many aspects related to respiratory drug delivery from initial aerosol formation through respiratory cellular drug absorption. This review article focuses on CFD-based deposition modeling applied to pharmaceutical aerosols. Areas covered include the development of new complete-airway CFD deposition models and the application of these models to develop a next-generation of respiratory drug delivery strategies. Complete-airway deposition modeling is a valuable research tool that can improve our understanding of pharmaceutical aerosol delivery and is already supporting medical hypotheses, such as the expected under-treatment of the small airways in asthma. These complete-airway models are also being used to advance next-generation aerosol delivery strategies, like controlled condensational growth. We envision future applications of CFD deposition modeling to reduce the need for human subject testing in developing new devices and formulations, to help establish bioequivalence for the accelerated approval of generic inhalers, and to provide valuable new insights related to drug dissolution and clearance leading to microdosimetry maps of drug absorption.
Introduction: Respiratory drug delivery is a surprisingly complex process with a number of physical and biological challenges. Computational fluid dynamics (CFD) is a scientific simulation technique that is capable of providing spatially and temporally resolved predictions of many aspects related to respiratory drug delivery from initial aerosol formation through respiratory cellular drug absorption. Areas covered: This review article focuses on CFD-based deposition modeling applied to pharmaceutical aerosols. Areas covered include the development of new complete-airway CFD deposition models and the application of these models to develop a next-generation of respiratory drug delivery strategies. Expert opinion: Complete-airway deposition modeling is a valuable research tool that can improve our understanding of pharmaceutical aerosol delivery and is already supporting medical hypotheses, such as the expected under-treatment of the small airways in asthma. These complete-airway models are also being used to advance next-generation aerosol delivery strategies, like controlled condensational growth. We envision future applications of CFD deposition modeling to reduce the need for human subject testing in developing new devices and formulations, to help establish bioequivalence for the accelerated approval of generic inhalers, and to provide valuable new insights related to drug dissolution and clearance leading to microdosimetry maps of drug absorption.
Respiratory drug delivery is a surprisingly complex process with a number of physical and biological challenges. Computational fluid dynamics (CFD) is a scientific simulation technique that is capable of providing spatially and temporally resolved predictions of many aspects related to respiratory drug delivery from initial aerosol formation through respiratory cellular drug absorption.INTRODUCTIONRespiratory drug delivery is a surprisingly complex process with a number of physical and biological challenges. Computational fluid dynamics (CFD) is a scientific simulation technique that is capable of providing spatially and temporally resolved predictions of many aspects related to respiratory drug delivery from initial aerosol formation through respiratory cellular drug absorption.This review article focuses on CFD-based deposition modeling applied to pharmaceutical aerosols. Areas covered include the development of new complete-airway CFD deposition models and the application of these models to develop a next-generation of respiratory drug delivery strategies.AREAS COVEREDThis review article focuses on CFD-based deposition modeling applied to pharmaceutical aerosols. Areas covered include the development of new complete-airway CFD deposition models and the application of these models to develop a next-generation of respiratory drug delivery strategies.Complete-airway deposition modeling is a valuable research tool that can improve our understanding of pharmaceutical aerosol delivery and is already supporting medical hypotheses, such as the expected under-treatment of the small airways in asthma. These complete-airway models are also being used to advance next-generation aerosol delivery strategies, like controlled condensational growth. We envision future applications of CFD deposition modeling to reduce the need for human subject testing in developing new devices and formulations, to help establish bioequivalence for the accelerated approval of generic inhalers, and to provide valuable new insights related to drug dissolution and clearance leading to microdosimetry maps of drug absorption.EXPERT OPINIONComplete-airway deposition modeling is a valuable research tool that can improve our understanding of pharmaceutical aerosol delivery and is already supporting medical hypotheses, such as the expected under-treatment of the small airways in asthma. These complete-airway models are also being used to advance next-generation aerosol delivery strategies, like controlled condensational growth. We envision future applications of CFD deposition modeling to reduce the need for human subject testing in developing new devices and formulations, to help establish bioequivalence for the accelerated approval of generic inhalers, and to provide valuable new insights related to drug dissolution and clearance leading to microdosimetry maps of drug absorption.
Author Rani, Vijaya
Dutta, Rabijit
Longest, P. Worth
El-Achwah, Ahmad
Thomas, Morgan L.
Hindle, Michael
Bass, Karl
AuthorAffiliation 1 Department of Mechanical and Nuclear Engineering, Virginia Commonwealth University, Richmond, VA, USA
2 Department of Pharmaceutics, Virginia Commonwealth University, Richmond, VA, USA
AuthorAffiliation_xml – name: 2 Department of Pharmaceutics, Virginia Commonwealth University, Richmond, VA, USA
– name: 1 Department of Mechanical and Nuclear Engineering, Virginia Commonwealth University, Richmond, VA, USA
Author_xml – sequence: 1
  givenname: P. Worth
  surname: Longest
  fullname: Longest, P. Worth
  email: pwlongest@vcu.edu
  organization: Department of Pharmaceutics, Virginia Commonwealth University
– sequence: 2
  givenname: Karl
  surname: Bass
  fullname: Bass, Karl
  organization: Department of Mechanical and Nuclear Engineering, Virginia Commonwealth University
– sequence: 3
  givenname: Rabijit
  surname: Dutta
  fullname: Dutta, Rabijit
  organization: Department of Mechanical and Nuclear Engineering, Virginia Commonwealth University
– sequence: 4
  givenname: Vijaya
  surname: Rani
  fullname: Rani, Vijaya
  organization: Department of Mechanical and Nuclear Engineering, Virginia Commonwealth University
– sequence: 5
  givenname: Morgan L.
  surname: Thomas
  fullname: Thomas, Morgan L.
  organization: Department of Mechanical and Nuclear Engineering, Virginia Commonwealth University
– sequence: 6
  givenname: Ahmad
  surname: El-Achwah
  fullname: El-Achwah, Ahmad
  organization: Department of Mechanical and Nuclear Engineering, Virginia Commonwealth University
– sequence: 7
  givenname: Michael
  surname: Hindle
  fullname: Hindle, Michael
  organization: Department of Pharmaceutics, Virginia Commonwealth University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30463458$$D View this record in MEDLINE/PubMed
BookMark eNqFUUtrFTEUDqViH_oTlCzd3GvemSCIUnwUCm7adchMkttIJhmTmZb598547xV1UTcnh3wvON8FOE05OQBeYbTFqEFvsWSEEya3BGG1xZzjRvITcL78s43kip7-2slmJZ2Bi1q_I0SFRPg5OKOICcp4cw5u76qD2cMu98M0mjHkZCL0cQoW2jmZPnQVWjfkGlYM9tm6GNIOhgSLq0MoZsxlhrZMO7hCD67ML8Azb2J1Lw_vJbj7_On26uvm5tuX66uPN5uOiWZcJhVYtFwJTw1rWoqZ8KaVvlWUq442nDTIKGmQQUri1kgpLKOWcMyJd5Jegvd732Fqe2c7l8Zioh5K6E2ZdTZB_42kcK93-UELThRRq8Gbg0HJPyZXR92H2rkYTXJ5qppgqQhpFMcL9fWfWb9DjqdcCO_2hK7kWovzugv7gy7RIWqM9FqcPhan1-L0obhFzf9RHwP-p_uw14Xkc-nNYy7R6tHMMRdfTOpC1fRpi597p7B7
CitedBy_id crossref_primary_10_3390_powders4030020
crossref_primary_10_1016_j_resp_2020_103468
crossref_primary_10_1016_j_compbiomed_2019_103595
crossref_primary_10_1016_j_rmed_2023_107210
crossref_primary_10_1016_j_xphs_2023_08_009
crossref_primary_10_3389_fceng_2022_1086031
crossref_primary_10_3390_pharmaceutics13071051
crossref_primary_10_1002_psp4_12889
crossref_primary_10_1080_17425247_2022_2026922
crossref_primary_10_1016_j_powtec_2022_117817
crossref_primary_10_1016_j_ijpharm_2025_125209
crossref_primary_10_1002_ppsc_202400004
crossref_primary_10_1186_s12931_020_01585_9
crossref_primary_10_3390_pharmaceutics13020189
crossref_primary_10_1016_j_addr_2022_114341
crossref_primary_10_1016_j_cobme_2019_11_003
crossref_primary_10_1016_j_addr_2021_113895
crossref_primary_10_1080_02786826_2021_1932715
crossref_primary_10_1016_j_ijpharm_2024_124660
crossref_primary_10_1080_17425247_2022_2112570
crossref_primary_10_3390_pharmaceutics16101304
crossref_primary_10_1016_j_addr_2022_114461
crossref_primary_10_1016_j_resp_2022_103986
crossref_primary_10_3390_diagnostics14171979
crossref_primary_10_1016_j_jaerosci_2021_105770
crossref_primary_10_3390_ph15010061
crossref_primary_10_1038_s41598_025_16822_8
crossref_primary_10_1080_02786826_2021_2011830
crossref_primary_10_1002_psp4_12413
crossref_primary_10_1016_j_jaerosci_2021_105899
crossref_primary_10_1016_j_jhazmat_2021_125856
crossref_primary_10_1016_j_ijpharm_2022_122219
crossref_primary_10_1115_1_4069657
crossref_primary_10_1146_annurev_fluid_031424_103721
crossref_primary_10_1208_s12249_024_02987_4
crossref_primary_10_1016_j_addr_2023_114831
crossref_primary_10_1088_1752_7163_acfe32
crossref_primary_10_1016_j_jaerosci_2025_106593
crossref_primary_10_1080_17425247_2021_1853702
crossref_primary_10_4155_fmc_2021_0081
crossref_primary_10_1016_j_cmpb_2022_107094
crossref_primary_10_1089_jamp_2024_0005
crossref_primary_10_1007_s10237_021_01518_5
crossref_primary_10_1080_17460441_2024_2319049
crossref_primary_10_1016_j_clinbiomech_2020_105138
crossref_primary_10_1152_japplphysiol_00028_2020
crossref_primary_10_1080_10255842_2024_2324881
crossref_primary_10_1089_jamp_2022_0049
crossref_primary_10_1016_j_addr_2020_09_007
crossref_primary_10_1146_annurev_chembioeng_082223_105117
crossref_primary_10_3390_ani11082431
crossref_primary_10_1016_j_jaerosci_2022_106098
crossref_primary_10_1016_j_jaerosci_2019_05_006
crossref_primary_10_1038_s41598_023_36176_3
crossref_primary_10_1055_s_0042_1743289
crossref_primary_10_1016_j_cej_2024_156742
crossref_primary_10_1016_j_drudis_2024_103954
crossref_primary_10_1007_s11095_022_03180_7
crossref_primary_10_1016_j_jaerosci_2023_106262
crossref_primary_10_1115_1_4069231
crossref_primary_10_1016_j_compbiomed_2025_110449
crossref_primary_10_1007_s40430_021_02871_3
crossref_primary_10_1016_j_euromechflu_2025_204258
crossref_primary_10_3390_computation12070134
crossref_primary_10_4209_aaqr_2020_04_0185
crossref_primary_10_1016_j_powtec_2023_118760
crossref_primary_10_1016_j_molliq_2023_123888
crossref_primary_10_1080_17425247_2023_2175814
crossref_primary_10_1016_j_jaerosci_2020_105692
crossref_primary_10_1016_j_ijpharm_2022_122118
crossref_primary_10_1016_j_copbio_2021_10_017
crossref_primary_10_1061_JHTRBP_HZENG_1532
crossref_primary_10_1016_j_euromechflu_2024_01_003
crossref_primary_10_3389_fmed_2023_1065072
crossref_primary_10_52711_0974_360X_2023_00228
crossref_primary_10_1016_j_jbiomech_2024_112126
crossref_primary_10_1016_j_jaerosci_2024_106471
crossref_primary_10_1016_j_ijpharm_2021_121321
crossref_primary_10_1007_s11095_025_03906_3
crossref_primary_10_1016_j_ces_2022_118407
crossref_primary_10_1146_annurev_bioeng_110122_010848
crossref_primary_10_3390_fluids9010027
Cites_doi 10.1089/jam.2006.19.290
10.1152/japplphysiol.00391.2005
10.1183/09031936.00113606
10.1007/s10439-011-0503-2
10.4187/respcare.04137
10.1016/j.ejps.2017.09.033
10.1016/j.jaerosci.2008.07.011
10.1093/jac/dkx293
10.1080/02786826.2016.1254721
10.1089/jamp.2014.1204
10.1080/02786820119122
10.1186/s12911-017-0561-y
10.4187/respcare.03537
10.1080/08958370701513014
10.1016/j.rmed.2014.06.004
10.1089/jam.2006.19.268
10.1089/jamp.2008.0739
10.1016/j.compbiomed.2016.10.025
10.1016/j.addr.2011.10.004
10.1016/j.xphs.2016.03.033
10.1098/rsos.170873
10.1080/02786826.2014.887829
10.1016/j.jaerosci.2008.03.008
10.1152/japplphysiol.01117.2014
10.1089/jamp.2018.1454
10.1007/s10439-008-9583-z
10.1006/taap.1993.1152
10.1016/j.rmed.2005.09.027
10.1007/s11095-015-1695-1
10.4187/respcare.02568
10.1007/s12650-010-0043-0
10.1080/02786826.2011.566592
10.1007/BF02462290
10.1016/j.jaerosci.2014.09.003
10.1080/02786826.2017.1413489
10.4209/aaqr.2018.02.0058
10.1089/jamp.2012.0997
10.1080/02786820902950887
10.1115/1.3049481
10.1089/jam.2006.19.473
10.1016/j.jaerosci.2006.01.011
10.1016/S1078-5337(05)70030-7
10.1111/j.2042-7158.2012.01476.x
10.1016/j.jbiomech.2007.12.019
10.1016/j.addr.2011.05.009
10.1089/jam.1989.2.285
10.1007/s11095-010-0078-x
10.1080/13547500902965286
10.1089/jamp.2015.1281
10.1089/jam.2006.0617
10.4187/respcare.02903
10.1016/j.ijpharm.2013.01.003
10.1089/0894268041457129
10.1016/j.ejps.2017.10.030
10.1152/japplphysiol.00520.2004
10.1089/jamp.2011.0905
10.1080/08958370600748653
10.1006/taap.1998.8407
10.1089/jamp.2013.1077
10.1007/s10439-012-0603-7
10.1089/jamp.2014.1158
10.1159/000343629
10.1080/02786826.2013.784393
10.1089/jamp.2008.0708
10.1115/1.3005339
10.1089/jamp.2015.1215
10.1089/jamp.2013.1075
10.1152/japplphysiol.01233.2007
10.1115/1.2768109
10.1080/02786826.2012.708799
10.1016/j.resp.2007.02.006
10.1002/wsbm.1234
10.1089/jamp.2016.1343
10.1089/jamp.2012.1006
10.1016/j.jbiomech.2006.01.006
10.1016/j.rmed.2016.05.006
10.1115/1.4024630
10.1089/jam.1996.9.329
10.1016/j.jaerosci.2017.10.001
10.1007/s11095-010-0165-z
10.1002/cnm.2873
10.1164/arrd.1983.128.1.1
10.7150/thno.11107
10.1007/BF02460796
10.1016/j.jaerosci.2004.03.003
10.1089/jamp.2013.1064
10.1089/jamp.2010.0849
10.1007/s11095-011-0596-1
10.1148/radiol.10100322
10.1089/jam.2007.0554
10.1016/j.compbiomed.2015.03.032
10.1016/j.ijmultiphaseflow.2015.01.006
10.1016/j.jbiomech.2015.11.026
10.1002/jps.23775
10.1089/jamp.2007.0645
10.1016/j.ejps.2013.04.011
10.1016/j.jaerosci.2012.04.006
10.1007/s11095-017-2210-7
10.1007/s10494-017-9835-9
10.1007/s11095-013-1165-6
10.1016/j.jaerosci.2012.03.001
10.1016/j.jaerosci.2003.12.006
10.1080/02786820701777440
10.1016/j.compbiomed.2016.10.020
10.1016/j.jaerosci.2013.01.008
10.4187/aarc0537
10.1016/j.compfluid.2007.05.001
10.1016/j.medengphy.2006.05.012
10.1007/s11095-014-1466-4
10.1016/j.addr.2014.08.013
10.1016/j.jaerosci.2003.09.002
10.1007/s10439-013-0759-9
10.1159/000347120
10.1007/s11095-010-0070-5
10.1016/j.jaerosci.2011.07.005
10.1063/1.3247170
10.1007/s11095-012-0691-y
10.1385/CBB:35:3:233
10.1016/0021-8502(86)90035-2
10.1007/s10439-013-0954-8
10.1164/rccm.200410-1414OC
10.1002/ar.1091900202
10.1016/j.jaerosci.2017.03.004
10.1385/CBB:35:3:245
10.1016/j.jaerosci.2004.08.006
10.1089/jamp.2012.0975
10.1016/0021-8502(94)00113-D
10.1016/S0021-8502(98)00043-3
10.1007/s11095-015-1837-5
10.1016/0021-8502(90)90121-D
10.4187/respcare.03579
10.1517/17425247.2013.753053
10.1378/chest.113.4.957
10.1016/j.resp.2008.07.002
10.1089/jamp.2012.0995
10.1016/j.jaerosci.2007.10.001
10.1080/02786826.2010.517578
10.1016/j.compfluid.2017.02.008
10.1080/02786820701607027
10.1183/09031936.05.00132404
10.1089/jam.2006.19.533
10.1089/jamp.2012.0989
10.1016/j.jaerosci.2017.07.004
10.1115/1.4038896
10.1089/jamp.2015.1252
10.1016/j.jbiomech.2007.07.009
10.1080/02786826.2010.488256
10.1114/1.1289457
10.1016/j.jcp.2012.12.007
10.1016/j.medengphy.2015.05.014
10.1016/j.jfluidstructs.2015.07.006
10.1115/1.4031693
10.1089/jamp.2010.0836
10.1080/027868200303939
10.1208/s12248-009-9121-4
10.1201/9781482234213
10.1371/journal.pone.0104682
10.1016/j.jaerosci.2010.04.006
10.1016/0021-8502(93)90045-B
10.3109/08958378.2011.644351
10.1007/s10439-015-1318-3
10.1371/journal.pone.0118454
10.1007/s10439-014-1074-9
10.1164/rccm.200403-408OC
10.1183/09031936.00072511
10.1016/j.jaerosci.2014.08.003
10.1016/j.xphs.2015.11.027
10.1016/j.jaerosci.2018.02.007
10.1002/(SICI)1099-0496(199605)21:5<301::AID-PPUL5>3.0.CO;2-P
10.3109/07853890.2011.585656
10.1007/s11095-013-1123-3
10.1088/0031-9155/30/6/004
10.1016/j.jaerosci.2010.12.004
10.1089/jamp.2008.0692
10.1016/j.addr.2006.07.012
10.1046/j.0021-8782.2001.00018.x
10.4187/respcare.03606
10.1111/all.12062
10.1016/S0021-8502(03)00381-1
10.1080/02786826.2014.954029
10.1016/j.jaerosci.2007.03.010
10.1016/j.medengphy.2010.08.012
10.1007/s10439-010-0223-z
10.2147/IJN.S102138
10.1007/s10439-012-0616-2
10.1007/s11095-013-1001-z
10.1115/1.429636
10.1007/s10439-013-0955-7
10.2147/COPD.S21917
10.1016/j.ijheatmasstransfer.2016.12.057
10.1002/jps.22168
10.1080/02786820300932
10.1016/j.ijheatmasstransfer.2008.04.037
ContentType Journal Article
Copyright 2018 Informa UK Limited, trading as Taylor & Francis Group 2018
Copyright_xml – notice: 2018 Informa UK Limited, trading as Taylor & Francis Group 2018
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1080/17425247.2019.1551875
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Pharmacy, Therapeutics, & Pharmacology
EISSN 1744-7593
EndPage 26
ExternalDocumentID PMC6529297
30463458
10_1080_17425247_2019_1551875
1551875
Genre Review
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: Eunice Kennedy Shriver National Institute of Child Health and Human Development
  grantid: R01HD087339
  funderid: 10.13039/100009633
– fundername: National Heart, Lung, and Blood Institute
  grantid: R01HL139673
  funderid: 10.13039/100000050
– fundername: NICHD NIH HHS
  grantid: R01 HD087339
– fundername: NHLBI NIH HHS
  grantid: R01 HL139673
– fundername: NHLBI NIH HHS
  grantid: R01 HL107333
GroupedDBID ---
00X
03L
0R~
29G
4.4
53G
5GY
AAMIU
AAOUU
ABEIZ
ABJNI
ABLIJ
ABLKL
ABXYU
ACGFS
ACIEZ
ADCVX
ADRBQ
AECIN
AENEX
AEOZL
AFRVT
AGDLA
AGMLL
AIJEM
AIRBT
AIYSM
AKBVH
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQTUD
BABNJ
BLEHA
CCCUG
CS3
DKSSO
DU5
EBS
EJD
F5P
H13
HZ~
KRBQP
KSSTO
KWAYT
KYCEM
LJTGL
M4Z
O9-
P2P
RNANH
TASJS
TBQAZ
TDBHL
TERGH
TFDNU
TFL
TFW
TUROJ
TZHSB
V1S
~1N
AAYXX
CITATION
AAPWH
ABBAB
ABJYH
ADTOD
AGMHR
CAZVN
CGR
CUY
CVF
DASJU
DAWQK
ECM
EIF
EMOBN
M44
NPM
7X8
5PM
ID FETCH-LOGICAL-c468t-c43616b596f3a48b3146fab7fb9359c385280a97a0a0971ba776d43d25152fe73
IEDL.DBID TFW
ISICitedReferencesCount 91
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000454649700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1742-5247
1744-7593
IngestDate Tue Nov 04 02:01:24 EST 2025
Thu Sep 04 20:04:11 EDT 2025
Mon Jul 21 05:57:07 EDT 2025
Sat Nov 29 06:32:41 EST 2025
Tue Nov 18 22:00:34 EST 2025
Mon Oct 20 23:49:09 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords inhalers
whole-lung CFD modeling
aerosol deposition
Pharmaceutical aerosols
complete-airway modeling
airway models
CFD simulations
aerosol dosimetry
bioequivalence
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c468t-c43616b596f3a48b3146fab7fb9359c385280a97a0a0971ba776d43d25152fe73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/6529297
PMID 30463458
PQID 2179228951
PQPubID 23479
PageCount 20
ParticipantIDs proquest_miscellaneous_2179228951
crossref_citationtrail_10_1080_17425247_2019_1551875
pubmed_primary_30463458
informaworld_taylorfrancis_310_1080_17425247_2019_1551875
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6529297
crossref_primary_10_1080_17425247_2019_1551875
PublicationCentury 2000
PublicationDate 2019-01-02
PublicationDateYYYYMMDD 2019-01-02
PublicationDate_xml – month: 01
  year: 2019
  text: 2019-01-02
  day: 02
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Expert opinion on drug delivery
PublicationTitleAlternate Expert Opin Drug Deliv
PublicationYear 2019
Publisher Taylor & Francis
Publisher_xml – name: Taylor & Francis
References CIT0110
Kolanjiyil AV (CIT0111) 2013; 135
CIT0113
CIT0115
CIT0114
CIT0117
CIT0116
CIT0119
CIT0118
CIT0120
CIT0122
CIT0121
CIT0003
CIT0124
CIT0002
CIT0123
CIT0005
CIT0126
CIT0004
CIT0125
CIT0007
CIT0128
CIT0006
CIT0127
CIT0009
CIT0008
CIT0129
CIT0010
CIT0131
CIT0130
CIT0012
CIT0133
CIT0011
CIT0132
Longest PW (CIT0192) 2018; 1
CIT0014
CIT0135
CIT0013
CIT0134
CIT0016
CIT0137
CIT0015
CIT0136
CIT0018
CIT0139
CIT0017
CIT0138
CIT0019
CIT0140
CIT0021
CIT0142
CIT0020
CIT0141
CIT0023
CIT0022
CIT0143
Longest PW (CIT0086) 2008
CIT0025
CIT0146
CIT0024
CIT0145
CIT0027
CIT0148
CIT0026
CIT0147
CIT0029
CIT0028
CIT0201
CIT0200
CIT0203
CIT0202
CIT0205
CIT0204
CIT0207
CIT0206
Xi J (CIT0076) 2018
Srivastav VK (CIT0166) 2014; 7
CIT0100
CIT0109
CIT0101
CIT0104
CIT0103
CIT0105
CIT0108
CIT0107
CIT0072
CIT0193
CIT0071
CIT0074
CIT0195
CIT0073
CIT0194
CIT0197
CIT0075
CIT0196
CIT0078
CIT0199
CIT0077
CIT0198
CIT0070
ICRP (CIT0106) 1994; 66
CIT0191
CIT0190
CIT0079
Longest PW (CIT0181) 2016; 2016
CIT0083
CIT0082
CIT0085
Ari A (CIT0149) 2010; 55
CIT0084
CIT0087
CIT0089
CIT0088
CIT0081
CIT0080
Phalen RF (CIT0102) 1983; 128
CIT0094
CIT0093
CIT0096
CIT0095
CIT0098
CIT0097
CIT0099
CIT0090
CIT0092
CIT0091
CIT0030
CIT0151
CIT0150
CIT0032
CIT0153
CIT0031
CIT0152
CIT0155
CIT0033
CIT0154
CIT0036
CIT0157
CIT0035
CIT0156
CIT0038
CIT0159
CIT0037
CIT0158
CIT0039
CIT0160
CIT0041
CIT0162
CIT0040
CIT0161
CIT0043
CIT0164
CIT0042
CIT0163
CIT0045
CIT0044
CIT0165
CIT0047
CIT0168
CIT0046
CIT0167
CIT0049
CIT0048
CIT0169
CIT0050
Kolanjiyil AV (CIT0112) 2013; 135
CIT0171
CIT0170
CIT0052
CIT0173
CIT0051
CIT0172
CIT0054
CIT0175
CIT0053
CIT0174
CIT0056
CIT0177
CIT0055
CIT0176
Olsson B (CIT0188) 2010; 2010
CIT0058
CIT0179
CIT0057
CIT0178
CIT0059
CIT0061
CIT0182
CIT0060
CIT0063
CIT0184
CIT0062
CIT0183
CIT0065
CIT0186
CIT0064
CIT0185
CIT0067
CIT0066
CIT0187
Fink JB (CIT0144) 2004; 49
Tannehill JC (CIT0034) 1997
Finlay WH. (CIT0001) 2001
CIT0180
CIT0069
CIT0068
CIT0189
References_xml – ident: CIT0054
  doi: 10.1089/jam.2006.19.290
– ident: CIT0121
  doi: 10.1152/japplphysiol.00391.2005
– ident: CIT0205
  doi: 10.1183/09031936.00113606
– ident: CIT0067
  doi: 10.1007/s10439-011-0503-2
– ident: CIT0148
  doi: 10.4187/respcare.04137
– ident: CIT0073
  doi: 10.1016/j.ejps.2017.09.033
– ident: CIT0203
  doi: 10.1016/j.jaerosci.2008.07.011
– ident: CIT0057
  doi: 10.1093/jac/dkx293
– ident: CIT0195
  doi: 10.1080/02786826.2016.1254721
– ident: CIT0163
  doi: 10.1089/jamp.2014.1204
– ident: CIT0020
  doi: 10.1080/02786820119122
– ident: CIT0164
  doi: 10.1186/s12911-017-0561-y
– ident: CIT0207
  doi: 10.4187/respcare.03537
– ident: CIT0019
  doi: 10.1080/08958370701513014
– ident: CIT0146
  doi: 10.1016/j.rmed.2014.06.004
– ident: CIT0024
  doi: 10.1089/jam.2006.19.268
– ident: CIT0084
  doi: 10.1089/jamp.2008.0739
– ident: CIT0115
  doi: 10.1016/j.compbiomed.2016.10.025
– ident: CIT0052
  doi: 10.1016/j.addr.2011.10.004
– ident: CIT0177
  doi: 10.1016/j.xphs.2016.03.033
– ident: CIT0125
  doi: 10.1098/rsos.170873
– ident: CIT0191
  doi: 10.1080/02786826.2014.887829
– ident: CIT0002
  doi: 10.1016/j.jaerosci.2008.03.008
– start-page: 151
  volume-title: Proceedings of respiratory drug delivery 2008
  year: 2008
  ident: CIT0086
– ident: CIT0070
  doi: 10.1152/japplphysiol.01117.2014
– ident: CIT0012
  doi: 10.1089/jamp.2018.1454
– ident: CIT0059
  doi: 10.1007/s10439-008-9583-z
– ident: CIT0038
  doi: 10.1006/taap.1993.1152
– ident: CIT0194
  doi: 10.1016/j.rmed.2005.09.027
– ident: CIT0098
  doi: 10.1007/s11095-015-1695-1
– ident: CIT0153
  doi: 10.4187/respcare.02568
– ident: CIT0030
  doi: 10.1007/s12650-010-0043-0
– ident: CIT0131
  doi: 10.1080/02786826.2011.566592
– ident: CIT0021
  doi: 10.1007/BF02462290
– ident: CIT0056
  doi: 10.1016/j.jaerosci.2014.09.003
– ident: CIT0204
  doi: 10.1080/02786826.2017.1413489
– ident: CIT0159
  doi: 10.4209/aaqr.2018.02.0058
– ident: CIT0133
  doi: 10.1089/jamp.2012.0997
– ident: CIT0155
  doi: 10.1080/02786820902950887
– ident: CIT0043
  doi: 10.1115/1.3049481
– ident: CIT0198
  doi: 10.1089/jam.2006.19.473
– volume: 55
  start-page: 845
  issue: 7
  year: 2010
  ident: CIT0149
  publication-title: Respir Care
– ident: CIT0042
  doi: 10.1016/j.jaerosci.2006.01.011
– ident: CIT0143
  doi: 10.1016/S1078-5337(05)70030-7
– volume: 49
  start-page: 653
  issue: 6
  year: 2004
  ident: CIT0144
  publication-title: Respir Care
– ident: CIT0130
  doi: 10.1111/j.2042-7158.2012.01476.x
– ident: CIT0060
  doi: 10.1016/j.jbiomech.2007.12.019
– ident: CIT0016
  doi: 10.1016/j.addr.2011.05.009
– ident: CIT0200
  doi: 10.1089/jam.1989.2.285
– ident: CIT0126
  doi: 10.1007/s11095-010-0078-x
– ident: CIT0026
  doi: 10.1080/13547500902965286
– ident: CIT0097
  doi: 10.1089/jamp.2015.1281
– ident: CIT0063
  doi: 10.1089/jam.2006.0617
– ident: CIT0140
  doi: 10.4187/respcare.02903
– ident: CIT0190
  doi: 10.1016/j.ijpharm.2013.01.003
– volume: 135
  start-page: 12
  issue: 12
  year: 2013
  ident: CIT0111
  publication-title: J Biomech Eng Trans ASME
– ident: CIT0147
  doi: 10.1089/0894268041457129
– ident: CIT0176
  doi: 10.1016/j.ejps.2017.10.030
– ident: CIT0109
  doi: 10.1152/japplphysiol.00520.2004
– ident: CIT0184
  doi: 10.1089/jamp.2011.0905
– ident: CIT0089
  doi: 10.1080/08958370600748653
– ident: CIT0178
  doi: 10.1006/taap.1998.8407
– ident: CIT0157
  doi: 10.1089/jamp.2013.1077
– ident: CIT0152
  doi: 10.1007/s10439-012-0603-7
– ident: CIT0141
  doi: 10.1089/jamp.2014.1158
– ident: CIT0183
  doi: 10.1159/000343629
– ident: CIT0022
  doi: 10.1080/02786826.2013.784393
– ident: CIT0027
  doi: 10.1089/jamp.2008.0708
– ident: CIT0110
  doi: 10.1115/1.3005339
– ident: CIT0079
  doi: 10.1089/jamp.2015.1215
– ident: CIT0151
  doi: 10.1089/jamp.2013.1075
– ident: CIT0041
  doi: 10.1152/japplphysiol.01233.2007
– ident: CIT0069
  doi: 10.1115/1.2768109
– ident: CIT0028
  doi: 10.1080/02786826.2012.708799
– ident: CIT0046
  doi: 10.1016/j.resp.2007.02.006
– ident: CIT0058
  doi: 10.1002/wsbm.1234
– ident: CIT0142
  doi: 10.1089/jamp.2016.1343
– ident: CIT0139
  doi: 10.1089/jamp.2012.1006
– ident: CIT0088
  doi: 10.1016/j.jbiomech.2006.01.006
– ident: CIT0004
  doi: 10.1016/j.rmed.2016.05.006
– ident: CIT0096
  doi: 10.1115/1.4024630
– ident: CIT0037
  doi: 10.1089/jam.1996.9.329
– ident: CIT0114
  doi: 10.1016/j.jaerosci.2017.10.001
– ident: CIT0128
  doi: 10.1007/s11095-010-0165-z
– ident: CIT0206
  doi: 10.1002/cnm.2873
– volume: 128
  start-page: S1
  year: 1983
  ident: CIT0102
  publication-title: Am Rev Respir Dis
  doi: 10.1164/arrd.1983.128.1.1
– ident: CIT0167
  doi: 10.7150/thno.11107
– ident: CIT0101
  doi: 10.1007/BF02460796
– ident: CIT0201
  doi: 10.1016/j.jaerosci.2004.03.003
– ident: CIT0169
  doi: 10.1089/jamp.2013.1064
– ident: CIT0135
  doi: 10.1089/jamp.2010.0849
– ident: CIT0189
  doi: 10.1007/s11095-011-0596-1
– ident: CIT0161
  doi: 10.1148/radiol.10100322
– ident: CIT0065
  doi: 10.1089/jam.2007.0554
– volume: 7
  start-page: 345
  issue: 2
  year: 2014
  ident: CIT0166
  publication-title: J Appl Fluid Mech
– ident: CIT0074
  doi: 10.1016/j.compbiomed.2015.03.032
– ident: CIT0049
  doi: 10.1016/j.ijmultiphaseflow.2015.01.006
– ident: CIT0071
  doi: 10.1016/j.jbiomech.2015.11.026
– ident: CIT0185
  doi: 10.1002/jps.23775
– ident: CIT0018
  doi: 10.1089/jamp.2007.0645
– ident: CIT0187
  doi: 10.1016/j.ejps.2013.04.011
– ident: CIT0023
  doi: 10.1016/j.jaerosci.2012.04.006
– ident: CIT0014
  doi: 10.1007/s11095-017-2210-7
– ident: CIT0050
  doi: 10.1007/s10494-017-9835-9
– ident: CIT0193
  doi: 10.1007/s11095-013-1165-6
– ident: CIT0033
  doi: 10.1016/j.jaerosci.2012.03.001
– ident: CIT0093
  doi: 10.1016/j.jaerosci.2003.12.006
– ident: CIT0064
  doi: 10.1080/02786820701777440
– ident: CIT0113
  doi: 10.1016/j.compbiomed.2016.10.020
– volume-title: Computational fluid mechanics and heat transfer
  year: 1997
  ident: CIT0034
– ident: CIT0090
  doi: 10.1016/j.jaerosci.2013.01.008
– ident: CIT0007
  doi: 10.4187/aarc0537
– ident: CIT0108
  doi: 10.1016/j.compfluid.2007.05.001
– ident: CIT0107
  doi: 10.1016/j.medengphy.2006.05.012
– ident: CIT0158
  doi: 10.1007/s11095-014-1466-4
– ident: CIT0006
  doi: 10.1016/j.addr.2014.08.013
– ident: CIT0031
  doi: 10.1016/j.jaerosci.2003.09.002
– ident: CIT0134
  doi: 10.1007/s10439-013-0759-9
– ident: CIT0162
  doi: 10.1159/000347120
– ident: CIT0015
  doi: 10.1007/s11095-010-0070-5
– ident: CIT0055
  doi: 10.1016/j.jaerosci.2011.07.005
– ident: CIT0047
  doi: 10.1063/1.3247170
– ident: CIT0013
  doi: 10.1007/s11095-012-0691-y
– ident: CIT0165
  doi: 10.1385/CBB:35:3:233
– ident: CIT0199
  doi: 10.1016/0021-8502(86)90035-2
– ident: CIT0172
  doi: 10.1007/s10439-013-0954-8
– ident: CIT0003
  doi: 10.1164/rccm.200410-1414OC
– ident: CIT0103
  doi: 10.1002/ar.1091900202
– ident: CIT0116
  doi: 10.1016/j.jaerosci.2017.03.004
– ident: CIT0040
  doi: 10.1385/CBB:35:3:245
– ident: CIT0062
  doi: 10.1016/j.jaerosci.2004.08.006
– ident: CIT0011
  doi: 10.1089/jamp.2012.0975
– ident: CIT0100
  doi: 10.1016/0021-8502(94)00113-D
– ident: CIT0066
  doi: 10.1016/S0021-8502(98)00043-3
– ident: CIT0179
  doi: 10.1007/s11095-015-1837-5
– ident: CIT0025
  doi: 10.1016/0021-8502(90)90121-D
– ident: CIT0008
  doi: 10.4187/respcare.03579
– ident: CIT0053
  doi: 10.1517/17425247.2013.753053
– ident: CIT0099
  doi: 10.1378/chest.113.4.957
– ident: CIT0061
  doi: 10.1016/j.resp.2008.07.002
– ident: CIT0083
  doi: 10.1089/jamp.2012.0995
– ident: CIT0087
  doi: 10.1016/j.jaerosci.2007.10.001
– ident: CIT0044
  doi: 10.1080/02786826.2010.517578
– ident: CIT0068
  doi: 10.1016/j.compfluid.2017.02.008
– ident: CIT0017
  doi: 10.1089/jam.1989.2.285
– ident: CIT0082
  doi: 10.1080/02786820701607027
– ident: CIT0005
  doi: 10.1183/09031936.05.00132404
– ident: CIT0156
  doi: 10.1089/jam.2006.19.533
– ident: CIT0080
  doi: 10.1089/jamp.2012.0989
– ident: CIT0075
  doi: 10.1016/j.jaerosci.2017.07.004
– ident: CIT0173
  doi: 10.1115/1.4038896
– ident: CIT0180
  doi: 10.1089/jamp.2015.1252
– ident: CIT0160
  doi: 10.1016/j.jbiomech.2007.07.009
– ident: CIT0202
  doi: 10.1080/02786826.2010.488256
– volume: 1
  start-page: 123
  year: 2018
  ident: CIT0192
  publication-title: Respir Drug Delivery
– volume-title: The mechanics of inhaled pharmaceutical aerosols
  year: 2001
  ident: CIT0001
– ident: CIT0120
  doi: 10.1114/1.1289457
– ident: CIT0119
  doi: 10.1016/j.jcp.2012.12.007
– ident: CIT0196
  doi: 10.1016/j.medengphy.2015.05.014
– volume: 66
  volume-title: Human respiratory tract model for radiological protection
  year: 1994
  ident: CIT0106
– volume: 2010
  start-page: 225
  year: 2010
  ident: CIT0188
  publication-title: Respir Drug Delivery
– ident: CIT0078
  doi: 10.1016/j.jfluidstructs.2015.07.006
– ident: CIT0051
  doi: 10.1115/1.4031693
– ident: CIT0009
  doi: 10.1089/jamp.2010.0836
– ident: CIT0029
  doi: 10.1080/027868200303939
– ident: CIT0197
  doi: 10.1208/s12248-009-9121-4
– ident: CIT0035
  doi: 10.1201/9781482234213
– ident: CIT0168
  doi: 10.1371/journal.pone.0104682
– ident: CIT0129
  doi: 10.1016/j.jaerosci.2010.04.006
– ident: CIT0036
  doi: 10.1016/0021-8502(93)90045-B
– ident: CIT0122
  doi: 10.3109/08958378.2011.644351
– ident: CIT0117
  doi: 10.1007/s10439-015-1318-3
– volume: 2016
  start-page: 175
  issue: 1
  year: 2016
  ident: CIT0181
  publication-title: Respir Drug Delivery
– ident: CIT0175
  doi: 10.1371/journal.pone.0118454
– ident: CIT0118
  doi: 10.1007/s10439-014-1074-9
– ident: CIT0182
  doi: 10.1164/rccm.200403-408OC
– ident: CIT0170
  doi: 10.1183/09031936.00072511
– ident: CIT0136
  doi: 10.1016/j.jaerosci.2014.08.003
– ident: CIT0095
  doi: 10.1016/j.xphs.2015.11.027
– ident: CIT0092
  doi: 10.1016/j.jaerosci.2018.02.007
– volume: 135
  start-page: 11
  issue: 12
  year: 2013
  ident: CIT0112
  publication-title: J Biomech Eng Trans ASME
– ident: CIT0145
  doi: 10.1002/(SICI)1099-0496(199605)21:5<301::AID-PPUL5>3.0.CO;2-P
– ident: CIT0123
  doi: 10.3109/07853890.2011.585656
– ident: CIT0137
  doi: 10.1007/s11095-013-1123-3
– ident: CIT0105
  doi: 10.1088/0031-9155/30/6/004
– ident: CIT0154
  doi: 10.1016/j.jaerosci.2010.12.004
– ident: CIT0085
  doi: 10.1089/jamp.2008.0692
– ident: CIT0010
  doi: 10.1016/j.addr.2006.07.012
– ident: CIT0104
  doi: 10.1046/j.0021-8782.2001.00018.x
– ident: CIT0150
  doi: 10.4187/respcare.03606
– ident: CIT0124
  doi: 10.1111/all.12062
– ident: CIT0081
  doi: 10.1016/S0021-8502(03)00381-1
– start-page: 1757482X1879189
  year: 2018
  ident: CIT0076
  publication-title: J Comput Multiphase Flows
– ident: CIT0138
  doi: 10.1080/02786826.2014.954029
– ident: CIT0048
  doi: 10.1016/j.jaerosci.2007.03.010
– ident: CIT0045
  doi: 10.1016/j.medengphy.2010.08.012
– ident: CIT0094
  doi: 10.1007/s10439-010-0223-z
– ident: CIT0072
  doi: 10.2147/IJN.S102138
– ident: CIT0132
  doi: 10.1007/s10439-012-0616-2
– ident: CIT0186
  doi: 10.1007/s11095-013-1001-z
– ident: CIT0039
  doi: 10.1115/1.429636
– ident: CIT0174
  doi: 10.1007/s10439-013-0955-7
– ident: CIT0171
  doi: 10.2147/COPD.S21917
– ident: CIT0077
  doi: 10.1016/j.ijheatmasstransfer.2016.12.057
– ident: CIT0127
  doi: 10.1002/jps.22168
– ident: CIT0091
  doi: 10.1080/02786820300932
– ident: CIT0032
  doi: 10.1016/j.ijheatmasstransfer.2008.04.037
SSID ssj0036701
Score 2.5143795
SecondaryResourceType review_article
Snippet Introduction: Respiratory drug delivery is a surprisingly complex process with a number of physical and biological challenges. Computational fluid dynamics...
Respiratory drug delivery is a surprisingly complex process with a number of physical and biological challenges. Computational fluid dynamics (CFD) is a...
SourceID pubmedcentral
proquest
pubmed
crossref
informaworld
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 7
SubjectTerms Administration, Inhalation
aerosol deposition
aerosol dosimetry
Aerosols - administration & dosage
airway models
Asthma - drug therapy
bioequivalence
CFD simulations
complete-airway modeling
Computer Simulation
Drug Compounding
Drug Delivery Systems - methods
Humans
Hydrodynamics
inhalers
Models, Biological
Nebulizers and Vaporizers
Pharmaceutical aerosols
Therapeutic Equivalency
whole-lung CFD modeling
Title Use of computational fluid dynamics deposition modeling in respiratory drug delivery
URI https://www.tandfonline.com/doi/abs/10.1080/17425247.2019.1551875
https://www.ncbi.nlm.nih.gov/pubmed/30463458
https://www.proquest.com/docview/2179228951
https://pubmed.ncbi.nlm.nih.gov/PMC6529297
Volume 16
WOSCitedRecordID wos000454649700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAWR
  databaseName: Taylor & Francis Journals Complete
  customDbUrl:
  eissn: 1744-7593
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0036701
  issn: 1742-5247
  databaseCode: TFW
  dateStart: 20041101
  isFulltext: true
  titleUrlDefault: https://www.tandfonline.com
  providerName: Taylor & Francis
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwED4BYmDh_SiPykioE4E87NgZEaJiqjq0olvk-AGVqhQ1LVL_PbaTtBSBOsASKUpsOc7d-c6--z6AmyAiKtRSeyzj3MOUS2MHCfcCIWJJNdGUY0c2QTsdNhgk3SqbsKjSKm0MrUugCGerrXLzrKgz4u6NEx2SEFObmJXcOUwxasvMzdJvOQx67ZfaFlt0sqAsibQhF6Z1Dc9vvaysTivYpT95oN8TKb-sTO29f_imfdit3FL0UMrRAWyo_BBa3RLXen6LessyreIWtVB3iXg9P4Jev1BorJFwFBHV9iLSo9lQIllS3hdIqjpBDDn6HbNmomGOJsuzfiQns1dkHxn9mh9Dv_3Ue3z2KroGT-CYTc01ioM4I0msI45ZFhkjrHlGdWarf0XESMh8nlDucwtclXFKY4kjaTwsEmpFoxPYyse5OgPkB9IYB18lxvnBItNcYKa16dxXEgtOGoDr35SKCsvcUmqM0qCCPK3nM7XzmVbz2YC7RbP3EsxjXYPkqwykU7eLokvKkzRa0_a6FpjUqKw9h-G5Gs-K1ESBSWgCXRI04LQUoMVwHIIbJqwBdEW0Fi9YOPDVJ_nwzcGCxyQ0vi49_8OYL2DH3rotpvAStqaTmbqCbfExHRaTJmzSAWs6BfsEgyEigA
linkProvider Taylor & Francis
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3LT9swGP-0sUnjAoPxKDDwpKknUvKw4-SIEBUTrOoh1XqzHD-gEkpR0yL1v8d2kj7QJg7skotjy3G-t7_v9wH8DCKiQi21l-Sce5hyaeQg4V4gRCypJppy7JpN0F4vGQ7T1VoYm1ZpfWhdAUU4WW2Z2wajm5S4C2NFhyTE1GZmpR0HKkbJR_hEjK61VJ51_zTS2OKTBVVRpHW6MG2qeP61zJp-WkMv_ZsN-jqVckU3dbf_x1d9ha3aMkWXFSntwAdV7EK7X0Fbz89RtqzUKs9RG_WXoNfzb5ANSoXGGgnXJaKOMCL9OBtJJKuu9yWSqskRQ64Dj1GbaFSgyfK6H8nJ7B7ZIcNi8z0YdK-zqxuv7tjgCRwnU_OM4iDOSRrriOMkj4wc1jynOrcFwCJKSJj4PKXc5xa7KueUxhJH0hhZJNSKRvuwUYwLdQjID6SRD75Kjf2DRa65wInWZnFfSSw4aQFu_hMTNZy57arxyIIa9bQ5T2bPk9Xn2YLOYtpThefx1oR0lQjY1AVSdNX1hEVvzP3RUAwzXGuvYnihxrOSGUcwDY2vS4IWHFQUtNiOA3HDJGkBXaOtxQsWEXx9pBg9OGTwmITG3KVH79jzGXy5yX7fsbtfvdtj2LRDLuIUnsDGdDJT3-GzeJ6Oysmp47MX-zAlww
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Nb9MwFH8aG0Jc9gFsdGNgJNTTsuXDjpMjgkVDTFUPrejNcvyxVarSqkmQ-t9jO0m7IlAPcMnFseU47z2_Z7_3-wF8CiKiQi21l-Sce5hyaewg4V4gRCypJppy7Mgm6GCQTCbpsM0mLNu0ShtD6wYowtlqq9wLqbuMuBvjRIckxNQmZqXXDlOMkmdwYFzn2MZfo-xHZ4wtPFnQ1ETamAvTrojnb8NsbU9b4KV_ckF_z6R8sjVlR__ho47hsPVL0edGkE5gTxWvoD9sgK1XV2i0qdMqr1AfDTeQ16vXMBqXCs01Eo4joj1fRHpWTyWSDed9iaTqMsSQ498xmyaaFmi5uexHclk_INtkFGz1BsbZ7ejLndfyNXgCx0llnlEcxDlJYx1xnOSRscKa51TntvxXRAkJE5-nlPvcIlflnNJY4kgaF4uEWtHoFPaLeaHeAvIDaayDr1Lj_WCRay5worUZ3FcSC056gLvfxEQLZm45NWYsaDFPu_Vkdj1Zu549uF53WzRoHrs6pE9lgFXuGEU3nCcs2tH3YycwzOisvYjhhZrXJTNhYBqaSJcEPThrBGg9HQfhhknSA7olWusXLB74dksxfXS44DEJjbNLz_9hzh_gxfBrxu6_Db5fwEvb4o6bwnewXy1rdQnPxc9qWi7fOy37BWWCJHQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Use+of+computational+fluid+dynamics+deposition+modeling+in+respiratory+drug+delivery&rft.jtitle=Expert+opinion+on+drug+delivery&rft.au=Longest%2C+P.+Worth&rft.au=Bass%2C+Karl&rft.au=Dutta%2C+Rabijit&rft.au=Rani%2C+Vijaya&rft.date=2019-01-02&rft.pub=Taylor+%26+Francis&rft.issn=1742-5247&rft.eissn=1744-7593&rft.volume=16&rft.issue=1&rft.spage=7&rft.epage=26&rft_id=info:doi/10.1080%2F17425247.2019.1551875&rft.externalDocID=1551875
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1742-5247&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1742-5247&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1742-5247&client=summon