Use of computational fluid dynamics deposition modeling in respiratory drug delivery
Introduction: Respiratory drug delivery is a surprisingly complex process with a number of physical and biological challenges. Computational fluid dynamics (CFD) is a scientific simulation technique that is capable of providing spatially and temporally resolved predictions of many aspects related to...
Uloženo v:
| Vydáno v: | Expert opinion on drug delivery Ročník 16; číslo 1; s. 7 - 26 |
|---|---|
| Hlavní autoři: | , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
England
Taylor & Francis
02.01.2019
|
| Témata: | |
| ISSN: | 1742-5247, 1744-7593, 1744-7593 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Introduction: Respiratory drug delivery is a surprisingly complex process with a number of physical and biological challenges. Computational fluid dynamics (CFD) is a scientific simulation technique that is capable of providing spatially and temporally resolved predictions of many aspects related to respiratory drug delivery from initial aerosol formation through respiratory cellular drug absorption.
Areas covered: This review article focuses on CFD-based deposition modeling applied to pharmaceutical aerosols. Areas covered include the development of new complete-airway CFD deposition models and the application of these models to develop a next-generation of respiratory drug delivery strategies.
Expert opinion: Complete-airway deposition modeling is a valuable research tool that can improve our understanding of pharmaceutical aerosol delivery and is already supporting medical hypotheses, such as the expected under-treatment of the small airways in asthma. These complete-airway models are also being used to advance next-generation aerosol delivery strategies, like controlled condensational growth. We envision future applications of CFD deposition modeling to reduce the need for human subject testing in developing new devices and formulations, to help establish bioequivalence for the accelerated approval of generic inhalers, and to provide valuable new insights related to drug dissolution and clearance leading to microdosimetry maps of drug absorption. |
|---|---|
| AbstractList | Respiratory drug delivery is a surprisingly complex process with a number of physical and biological challenges. Computational fluid dynamics (CFD) is a scientific simulation technique that is capable of providing spatially and temporally resolved predictions of many aspects related to respiratory drug delivery from initial aerosol formation through respiratory cellular drug absorption.
This review article focuses on CFD-based deposition modeling applied to pharmaceutical aerosols. Areas covered include the development of new complete-airway CFD deposition models and the application of these models to develop a next-generation of respiratory drug delivery strategies.
Complete-airway deposition modeling is a valuable research tool that can improve our understanding of pharmaceutical aerosol delivery and is already supporting medical hypotheses, such as the expected under-treatment of the small airways in asthma. These complete-airway models are also being used to advance next-generation aerosol delivery strategies, like controlled condensational growth. We envision future applications of CFD deposition modeling to reduce the need for human subject testing in developing new devices and formulations, to help establish bioequivalence for the accelerated approval of generic inhalers, and to provide valuable new insights related to drug dissolution and clearance leading to microdosimetry maps of drug absorption. Introduction: Respiratory drug delivery is a surprisingly complex process with a number of physical and biological challenges. Computational fluid dynamics (CFD) is a scientific simulation technique that is capable of providing spatially and temporally resolved predictions of many aspects related to respiratory drug delivery from initial aerosol formation through respiratory cellular drug absorption. Areas covered: This review article focuses on CFD-based deposition modeling applied to pharmaceutical aerosols. Areas covered include the development of new complete-airway CFD deposition models and the application of these models to develop a next-generation of respiratory drug delivery strategies. Expert opinion: Complete-airway deposition modeling is a valuable research tool that can improve our understanding of pharmaceutical aerosol delivery and is already supporting medical hypotheses, such as the expected under-treatment of the small airways in asthma. These complete-airway models are also being used to advance next-generation aerosol delivery strategies, like controlled condensational growth. We envision future applications of CFD deposition modeling to reduce the need for human subject testing in developing new devices and formulations, to help establish bioequivalence for the accelerated approval of generic inhalers, and to provide valuable new insights related to drug dissolution and clearance leading to microdosimetry maps of drug absorption. Respiratory drug delivery is a surprisingly complex process with a number of physical and biological challenges. Computational fluid dynamics (CFD) is a scientific simulation technique that is capable of providing spatially and temporally resolved predictions of many aspects related to respiratory drug delivery from initial aerosol formation through respiratory cellular drug absorption.INTRODUCTIONRespiratory drug delivery is a surprisingly complex process with a number of physical and biological challenges. Computational fluid dynamics (CFD) is a scientific simulation technique that is capable of providing spatially and temporally resolved predictions of many aspects related to respiratory drug delivery from initial aerosol formation through respiratory cellular drug absorption.This review article focuses on CFD-based deposition modeling applied to pharmaceutical aerosols. Areas covered include the development of new complete-airway CFD deposition models and the application of these models to develop a next-generation of respiratory drug delivery strategies.AREAS COVEREDThis review article focuses on CFD-based deposition modeling applied to pharmaceutical aerosols. Areas covered include the development of new complete-airway CFD deposition models and the application of these models to develop a next-generation of respiratory drug delivery strategies.Complete-airway deposition modeling is a valuable research tool that can improve our understanding of pharmaceutical aerosol delivery and is already supporting medical hypotheses, such as the expected under-treatment of the small airways in asthma. These complete-airway models are also being used to advance next-generation aerosol delivery strategies, like controlled condensational growth. We envision future applications of CFD deposition modeling to reduce the need for human subject testing in developing new devices and formulations, to help establish bioequivalence for the accelerated approval of generic inhalers, and to provide valuable new insights related to drug dissolution and clearance leading to microdosimetry maps of drug absorption.EXPERT OPINIONComplete-airway deposition modeling is a valuable research tool that can improve our understanding of pharmaceutical aerosol delivery and is already supporting medical hypotheses, such as the expected under-treatment of the small airways in asthma. These complete-airway models are also being used to advance next-generation aerosol delivery strategies, like controlled condensational growth. We envision future applications of CFD deposition modeling to reduce the need for human subject testing in developing new devices and formulations, to help establish bioequivalence for the accelerated approval of generic inhalers, and to provide valuable new insights related to drug dissolution and clearance leading to microdosimetry maps of drug absorption. |
| Author | Rani, Vijaya Dutta, Rabijit Longest, P. Worth El-Achwah, Ahmad Thomas, Morgan L. Hindle, Michael Bass, Karl |
| AuthorAffiliation | 1 Department of Mechanical and Nuclear Engineering, Virginia Commonwealth University, Richmond, VA, USA 2 Department of Pharmaceutics, Virginia Commonwealth University, Richmond, VA, USA |
| AuthorAffiliation_xml | – name: 2 Department of Pharmaceutics, Virginia Commonwealth University, Richmond, VA, USA – name: 1 Department of Mechanical and Nuclear Engineering, Virginia Commonwealth University, Richmond, VA, USA |
| Author_xml | – sequence: 1 givenname: P. Worth surname: Longest fullname: Longest, P. Worth email: pwlongest@vcu.edu organization: Department of Pharmaceutics, Virginia Commonwealth University – sequence: 2 givenname: Karl surname: Bass fullname: Bass, Karl organization: Department of Mechanical and Nuclear Engineering, Virginia Commonwealth University – sequence: 3 givenname: Rabijit surname: Dutta fullname: Dutta, Rabijit organization: Department of Mechanical and Nuclear Engineering, Virginia Commonwealth University – sequence: 4 givenname: Vijaya surname: Rani fullname: Rani, Vijaya organization: Department of Mechanical and Nuclear Engineering, Virginia Commonwealth University – sequence: 5 givenname: Morgan L. surname: Thomas fullname: Thomas, Morgan L. organization: Department of Mechanical and Nuclear Engineering, Virginia Commonwealth University – sequence: 6 givenname: Ahmad surname: El-Achwah fullname: El-Achwah, Ahmad organization: Department of Mechanical and Nuclear Engineering, Virginia Commonwealth University – sequence: 7 givenname: Michael surname: Hindle fullname: Hindle, Michael organization: Department of Pharmaceutics, Virginia Commonwealth University |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30463458$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFUUtrFTEUDqViH_oTlCzd3GvemSCIUnwUCm7adchMkttIJhmTmZb598547xV1UTcnh3wvON8FOE05OQBeYbTFqEFvsWSEEya3BGG1xZzjRvITcL78s43kip7-2slmJZ2Bi1q_I0SFRPg5OKOICcp4cw5u76qD2cMu98M0mjHkZCL0cQoW2jmZPnQVWjfkGlYM9tm6GNIOhgSLq0MoZsxlhrZMO7hCD67ML8Azb2J1Lw_vJbj7_On26uvm5tuX66uPN5uOiWZcJhVYtFwJTw1rWoqZ8KaVvlWUq442nDTIKGmQQUri1kgpLKOWcMyJd5Jegvd732Fqe2c7l8Zioh5K6E2ZdTZB_42kcK93-UELThRRq8Gbg0HJPyZXR92H2rkYTXJ5qppgqQhpFMcL9fWfWb9DjqdcCO_2hK7kWovzugv7gy7RIWqM9FqcPhan1-L0obhFzf9RHwP-p_uw14Xkc-nNYy7R6tHMMRdfTOpC1fRpi597p7B7 |
| CitedBy_id | crossref_primary_10_3390_powders4030020 crossref_primary_10_1016_j_resp_2020_103468 crossref_primary_10_1016_j_compbiomed_2019_103595 crossref_primary_10_1016_j_rmed_2023_107210 crossref_primary_10_1016_j_xphs_2023_08_009 crossref_primary_10_3389_fceng_2022_1086031 crossref_primary_10_3390_pharmaceutics13071051 crossref_primary_10_1002_psp4_12889 crossref_primary_10_1080_17425247_2022_2026922 crossref_primary_10_1016_j_powtec_2022_117817 crossref_primary_10_1016_j_ijpharm_2025_125209 crossref_primary_10_1002_ppsc_202400004 crossref_primary_10_1186_s12931_020_01585_9 crossref_primary_10_3390_pharmaceutics13020189 crossref_primary_10_1016_j_addr_2022_114341 crossref_primary_10_1016_j_cobme_2019_11_003 crossref_primary_10_1016_j_addr_2021_113895 crossref_primary_10_1080_02786826_2021_1932715 crossref_primary_10_1016_j_ijpharm_2024_124660 crossref_primary_10_1080_17425247_2022_2112570 crossref_primary_10_3390_pharmaceutics16101304 crossref_primary_10_1016_j_addr_2022_114461 crossref_primary_10_1016_j_resp_2022_103986 crossref_primary_10_3390_diagnostics14171979 crossref_primary_10_1016_j_jaerosci_2021_105770 crossref_primary_10_3390_ph15010061 crossref_primary_10_1038_s41598_025_16822_8 crossref_primary_10_1080_02786826_2021_2011830 crossref_primary_10_1002_psp4_12413 crossref_primary_10_1016_j_jaerosci_2021_105899 crossref_primary_10_1016_j_jhazmat_2021_125856 crossref_primary_10_1016_j_ijpharm_2022_122219 crossref_primary_10_1115_1_4069657 crossref_primary_10_1146_annurev_fluid_031424_103721 crossref_primary_10_1208_s12249_024_02987_4 crossref_primary_10_1016_j_addr_2023_114831 crossref_primary_10_1088_1752_7163_acfe32 crossref_primary_10_1016_j_jaerosci_2025_106593 crossref_primary_10_1080_17425247_2021_1853702 crossref_primary_10_4155_fmc_2021_0081 crossref_primary_10_1016_j_cmpb_2022_107094 crossref_primary_10_1089_jamp_2024_0005 crossref_primary_10_1007_s10237_021_01518_5 crossref_primary_10_1080_17460441_2024_2319049 crossref_primary_10_1016_j_clinbiomech_2020_105138 crossref_primary_10_1152_japplphysiol_00028_2020 crossref_primary_10_1080_10255842_2024_2324881 crossref_primary_10_1089_jamp_2022_0049 crossref_primary_10_1016_j_addr_2020_09_007 crossref_primary_10_1146_annurev_chembioeng_082223_105117 crossref_primary_10_3390_ani11082431 crossref_primary_10_1016_j_jaerosci_2022_106098 crossref_primary_10_1016_j_jaerosci_2019_05_006 crossref_primary_10_1038_s41598_023_36176_3 crossref_primary_10_1055_s_0042_1743289 crossref_primary_10_1016_j_cej_2024_156742 crossref_primary_10_1016_j_drudis_2024_103954 crossref_primary_10_1007_s11095_022_03180_7 crossref_primary_10_1016_j_jaerosci_2023_106262 crossref_primary_10_1115_1_4069231 crossref_primary_10_1016_j_compbiomed_2025_110449 crossref_primary_10_1007_s40430_021_02871_3 crossref_primary_10_1016_j_euromechflu_2025_204258 crossref_primary_10_3390_computation12070134 crossref_primary_10_4209_aaqr_2020_04_0185 crossref_primary_10_1016_j_powtec_2023_118760 crossref_primary_10_1016_j_molliq_2023_123888 crossref_primary_10_1080_17425247_2023_2175814 crossref_primary_10_1016_j_jaerosci_2020_105692 crossref_primary_10_1016_j_ijpharm_2022_122118 crossref_primary_10_1016_j_copbio_2021_10_017 crossref_primary_10_1061_JHTRBP_HZENG_1532 crossref_primary_10_1016_j_euromechflu_2024_01_003 crossref_primary_10_3389_fmed_2023_1065072 crossref_primary_10_52711_0974_360X_2023_00228 crossref_primary_10_1016_j_jbiomech_2024_112126 crossref_primary_10_1016_j_jaerosci_2024_106471 crossref_primary_10_1016_j_ijpharm_2021_121321 crossref_primary_10_1007_s11095_025_03906_3 crossref_primary_10_1016_j_ces_2022_118407 crossref_primary_10_1146_annurev_bioeng_110122_010848 crossref_primary_10_3390_fluids9010027 |
| Cites_doi | 10.1089/jam.2006.19.290 10.1152/japplphysiol.00391.2005 10.1183/09031936.00113606 10.1007/s10439-011-0503-2 10.4187/respcare.04137 10.1016/j.ejps.2017.09.033 10.1016/j.jaerosci.2008.07.011 10.1093/jac/dkx293 10.1080/02786826.2016.1254721 10.1089/jamp.2014.1204 10.1080/02786820119122 10.1186/s12911-017-0561-y 10.4187/respcare.03537 10.1080/08958370701513014 10.1016/j.rmed.2014.06.004 10.1089/jam.2006.19.268 10.1089/jamp.2008.0739 10.1016/j.compbiomed.2016.10.025 10.1016/j.addr.2011.10.004 10.1016/j.xphs.2016.03.033 10.1098/rsos.170873 10.1080/02786826.2014.887829 10.1016/j.jaerosci.2008.03.008 10.1152/japplphysiol.01117.2014 10.1089/jamp.2018.1454 10.1007/s10439-008-9583-z 10.1006/taap.1993.1152 10.1016/j.rmed.2005.09.027 10.1007/s11095-015-1695-1 10.4187/respcare.02568 10.1007/s12650-010-0043-0 10.1080/02786826.2011.566592 10.1007/BF02462290 10.1016/j.jaerosci.2014.09.003 10.1080/02786826.2017.1413489 10.4209/aaqr.2018.02.0058 10.1089/jamp.2012.0997 10.1080/02786820902950887 10.1115/1.3049481 10.1089/jam.2006.19.473 10.1016/j.jaerosci.2006.01.011 10.1016/S1078-5337(05)70030-7 10.1111/j.2042-7158.2012.01476.x 10.1016/j.jbiomech.2007.12.019 10.1016/j.addr.2011.05.009 10.1089/jam.1989.2.285 10.1007/s11095-010-0078-x 10.1080/13547500902965286 10.1089/jamp.2015.1281 10.1089/jam.2006.0617 10.4187/respcare.02903 10.1016/j.ijpharm.2013.01.003 10.1089/0894268041457129 10.1016/j.ejps.2017.10.030 10.1152/japplphysiol.00520.2004 10.1089/jamp.2011.0905 10.1080/08958370600748653 10.1006/taap.1998.8407 10.1089/jamp.2013.1077 10.1007/s10439-012-0603-7 10.1089/jamp.2014.1158 10.1159/000343629 10.1080/02786826.2013.784393 10.1089/jamp.2008.0708 10.1115/1.3005339 10.1089/jamp.2015.1215 10.1089/jamp.2013.1075 10.1152/japplphysiol.01233.2007 10.1115/1.2768109 10.1080/02786826.2012.708799 10.1016/j.resp.2007.02.006 10.1002/wsbm.1234 10.1089/jamp.2016.1343 10.1089/jamp.2012.1006 10.1016/j.jbiomech.2006.01.006 10.1016/j.rmed.2016.05.006 10.1115/1.4024630 10.1089/jam.1996.9.329 10.1016/j.jaerosci.2017.10.001 10.1007/s11095-010-0165-z 10.1002/cnm.2873 10.1164/arrd.1983.128.1.1 10.7150/thno.11107 10.1007/BF02460796 10.1016/j.jaerosci.2004.03.003 10.1089/jamp.2013.1064 10.1089/jamp.2010.0849 10.1007/s11095-011-0596-1 10.1148/radiol.10100322 10.1089/jam.2007.0554 10.1016/j.compbiomed.2015.03.032 10.1016/j.ijmultiphaseflow.2015.01.006 10.1016/j.jbiomech.2015.11.026 10.1002/jps.23775 10.1089/jamp.2007.0645 10.1016/j.ejps.2013.04.011 10.1016/j.jaerosci.2012.04.006 10.1007/s11095-017-2210-7 10.1007/s10494-017-9835-9 10.1007/s11095-013-1165-6 10.1016/j.jaerosci.2012.03.001 10.1016/j.jaerosci.2003.12.006 10.1080/02786820701777440 10.1016/j.compbiomed.2016.10.020 10.1016/j.jaerosci.2013.01.008 10.4187/aarc0537 10.1016/j.compfluid.2007.05.001 10.1016/j.medengphy.2006.05.012 10.1007/s11095-014-1466-4 10.1016/j.addr.2014.08.013 10.1016/j.jaerosci.2003.09.002 10.1007/s10439-013-0759-9 10.1159/000347120 10.1007/s11095-010-0070-5 10.1016/j.jaerosci.2011.07.005 10.1063/1.3247170 10.1007/s11095-012-0691-y 10.1385/CBB:35:3:233 10.1016/0021-8502(86)90035-2 10.1007/s10439-013-0954-8 10.1164/rccm.200410-1414OC 10.1002/ar.1091900202 10.1016/j.jaerosci.2017.03.004 10.1385/CBB:35:3:245 10.1016/j.jaerosci.2004.08.006 10.1089/jamp.2012.0975 10.1016/0021-8502(94)00113-D 10.1016/S0021-8502(98)00043-3 10.1007/s11095-015-1837-5 10.1016/0021-8502(90)90121-D 10.4187/respcare.03579 10.1517/17425247.2013.753053 10.1378/chest.113.4.957 10.1016/j.resp.2008.07.002 10.1089/jamp.2012.0995 10.1016/j.jaerosci.2007.10.001 10.1080/02786826.2010.517578 10.1016/j.compfluid.2017.02.008 10.1080/02786820701607027 10.1183/09031936.05.00132404 10.1089/jam.2006.19.533 10.1089/jamp.2012.0989 10.1016/j.jaerosci.2017.07.004 10.1115/1.4038896 10.1089/jamp.2015.1252 10.1016/j.jbiomech.2007.07.009 10.1080/02786826.2010.488256 10.1114/1.1289457 10.1016/j.jcp.2012.12.007 10.1016/j.medengphy.2015.05.014 10.1016/j.jfluidstructs.2015.07.006 10.1115/1.4031693 10.1089/jamp.2010.0836 10.1080/027868200303939 10.1208/s12248-009-9121-4 10.1201/9781482234213 10.1371/journal.pone.0104682 10.1016/j.jaerosci.2010.04.006 10.1016/0021-8502(93)90045-B 10.3109/08958378.2011.644351 10.1007/s10439-015-1318-3 10.1371/journal.pone.0118454 10.1007/s10439-014-1074-9 10.1164/rccm.200403-408OC 10.1183/09031936.00072511 10.1016/j.jaerosci.2014.08.003 10.1016/j.xphs.2015.11.027 10.1016/j.jaerosci.2018.02.007 10.1002/(SICI)1099-0496(199605)21:5<301::AID-PPUL5>3.0.CO;2-P 10.3109/07853890.2011.585656 10.1007/s11095-013-1123-3 10.1088/0031-9155/30/6/004 10.1016/j.jaerosci.2010.12.004 10.1089/jamp.2008.0692 10.1016/j.addr.2006.07.012 10.1046/j.0021-8782.2001.00018.x 10.4187/respcare.03606 10.1111/all.12062 10.1016/S0021-8502(03)00381-1 10.1080/02786826.2014.954029 10.1016/j.jaerosci.2007.03.010 10.1016/j.medengphy.2010.08.012 10.1007/s10439-010-0223-z 10.2147/IJN.S102138 10.1007/s10439-012-0616-2 10.1007/s11095-013-1001-z 10.1115/1.429636 10.1007/s10439-013-0955-7 10.2147/COPD.S21917 10.1016/j.ijheatmasstransfer.2016.12.057 10.1002/jps.22168 10.1080/02786820300932 10.1016/j.ijheatmasstransfer.2008.04.037 |
| ContentType | Journal Article |
| Copyright | 2018 Informa UK Limited, trading as Taylor & Francis Group 2018 |
| Copyright_xml | – notice: 2018 Informa UK Limited, trading as Taylor & Francis Group 2018 |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
| DOI | 10.1080/17425247.2019.1551875 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Pharmacy, Therapeutics, & Pharmacology |
| EISSN | 1744-7593 |
| EndPage | 26 |
| ExternalDocumentID | PMC6529297 30463458 10_1080_17425247_2019_1551875 1551875 |
| Genre | Review Journal Article Research Support, N.I.H., Extramural |
| GrantInformation_xml | – fundername: Eunice Kennedy Shriver National Institute of Child Health and Human Development grantid: R01HD087339 funderid: 10.13039/100009633 – fundername: National Heart, Lung, and Blood Institute grantid: R01HL139673 funderid: 10.13039/100000050 – fundername: NICHD NIH HHS grantid: R01 HD087339 – fundername: NHLBI NIH HHS grantid: R01 HL139673 – fundername: NHLBI NIH HHS grantid: R01 HL107333 |
| GroupedDBID | --- 00X 03L 0R~ 29G 4.4 53G 5GY AAMIU AAOUU ABEIZ ABJNI ABLIJ ABLKL ABXYU ACGFS ACIEZ ADCVX ADRBQ AECIN AENEX AEOZL AFRVT AGDLA AGMLL AIJEM AIRBT AIYSM AKBVH ALMA_UNASSIGNED_HOLDINGS ALQZU AQTUD BABNJ BLEHA CCCUG CS3 DKSSO DU5 EBS EJD F5P H13 HZ~ KRBQP KSSTO KWAYT KYCEM LJTGL M4Z O9- P2P RNANH TASJS TBQAZ TDBHL TERGH TFDNU TFL TFW TUROJ TZHSB V1S ~1N AAYXX CITATION AAPWH ABBAB ABJYH ADTOD AGMHR CAZVN CGR CUY CVF DASJU DAWQK ECM EIF EMOBN M44 NPM 7X8 5PM |
| ID | FETCH-LOGICAL-c468t-c43616b596f3a48b3146fab7fb9359c385280a97a0a0971ba776d43d25152fe73 |
| IEDL.DBID | TFW |
| ISICitedReferencesCount | 91 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000454649700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1742-5247 1744-7593 |
| IngestDate | Tue Nov 04 02:01:24 EST 2025 Thu Sep 04 20:04:11 EDT 2025 Mon Jul 21 05:57:07 EDT 2025 Sat Nov 29 06:32:41 EST 2025 Tue Nov 18 22:00:34 EST 2025 Mon Oct 20 23:49:09 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | inhalers whole-lung CFD modeling aerosol deposition Pharmaceutical aerosols complete-airway modeling airway models CFD simulations aerosol dosimetry bioequivalence |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c468t-c43616b596f3a48b3146fab7fb9359c385280a97a0a0971ba776d43d25152fe73 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
| OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/6529297 |
| PMID | 30463458 |
| PQID | 2179228951 |
| PQPubID | 23479 |
| PageCount | 20 |
| ParticipantIDs | proquest_miscellaneous_2179228951 crossref_citationtrail_10_1080_17425247_2019_1551875 pubmed_primary_30463458 informaworld_taylorfrancis_310_1080_17425247_2019_1551875 pubmedcentral_primary_oai_pubmedcentral_nih_gov_6529297 crossref_primary_10_1080_17425247_2019_1551875 |
| PublicationCentury | 2000 |
| PublicationDate | 2019-01-02 |
| PublicationDateYYYYMMDD | 2019-01-02 |
| PublicationDate_xml | – month: 01 year: 2019 text: 2019-01-02 day: 02 |
| PublicationDecade | 2010 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England |
| PublicationTitle | Expert opinion on drug delivery |
| PublicationTitleAlternate | Expert Opin Drug Deliv |
| PublicationYear | 2019 |
| Publisher | Taylor & Francis |
| Publisher_xml | – name: Taylor & Francis |
| References | CIT0110 Kolanjiyil AV (CIT0111) 2013; 135 CIT0113 CIT0115 CIT0114 CIT0117 CIT0116 CIT0119 CIT0118 CIT0120 CIT0122 CIT0121 CIT0003 CIT0124 CIT0002 CIT0123 CIT0005 CIT0126 CIT0004 CIT0125 CIT0007 CIT0128 CIT0006 CIT0127 CIT0009 CIT0008 CIT0129 CIT0010 CIT0131 CIT0130 CIT0012 CIT0133 CIT0011 CIT0132 Longest PW (CIT0192) 2018; 1 CIT0014 CIT0135 CIT0013 CIT0134 CIT0016 CIT0137 CIT0015 CIT0136 CIT0018 CIT0139 CIT0017 CIT0138 CIT0019 CIT0140 CIT0021 CIT0142 CIT0020 CIT0141 CIT0023 CIT0022 CIT0143 Longest PW (CIT0086) 2008 CIT0025 CIT0146 CIT0024 CIT0145 CIT0027 CIT0148 CIT0026 CIT0147 CIT0029 CIT0028 CIT0201 CIT0200 CIT0203 CIT0202 CIT0205 CIT0204 CIT0207 CIT0206 Xi J (CIT0076) 2018 Srivastav VK (CIT0166) 2014; 7 CIT0100 CIT0109 CIT0101 CIT0104 CIT0103 CIT0105 CIT0108 CIT0107 CIT0072 CIT0193 CIT0071 CIT0074 CIT0195 CIT0073 CIT0194 CIT0197 CIT0075 CIT0196 CIT0078 CIT0199 CIT0077 CIT0198 CIT0070 ICRP (CIT0106) 1994; 66 CIT0191 CIT0190 CIT0079 Longest PW (CIT0181) 2016; 2016 CIT0083 CIT0082 CIT0085 Ari A (CIT0149) 2010; 55 CIT0084 CIT0087 CIT0089 CIT0088 CIT0081 CIT0080 Phalen RF (CIT0102) 1983; 128 CIT0094 CIT0093 CIT0096 CIT0095 CIT0098 CIT0097 CIT0099 CIT0090 CIT0092 CIT0091 CIT0030 CIT0151 CIT0150 CIT0032 CIT0153 CIT0031 CIT0152 CIT0155 CIT0033 CIT0154 CIT0036 CIT0157 CIT0035 CIT0156 CIT0038 CIT0159 CIT0037 CIT0158 CIT0039 CIT0160 CIT0041 CIT0162 CIT0040 CIT0161 CIT0043 CIT0164 CIT0042 CIT0163 CIT0045 CIT0044 CIT0165 CIT0047 CIT0168 CIT0046 CIT0167 CIT0049 CIT0048 CIT0169 CIT0050 Kolanjiyil AV (CIT0112) 2013; 135 CIT0171 CIT0170 CIT0052 CIT0173 CIT0051 CIT0172 CIT0054 CIT0175 CIT0053 CIT0174 CIT0056 CIT0177 CIT0055 CIT0176 Olsson B (CIT0188) 2010; 2010 CIT0058 CIT0179 CIT0057 CIT0178 CIT0059 CIT0061 CIT0182 CIT0060 CIT0063 CIT0184 CIT0062 CIT0183 CIT0065 CIT0186 CIT0064 CIT0185 CIT0067 CIT0066 CIT0187 Fink JB (CIT0144) 2004; 49 Tannehill JC (CIT0034) 1997 Finlay WH. (CIT0001) 2001 CIT0180 CIT0069 CIT0068 CIT0189 |
| References_xml | – ident: CIT0054 doi: 10.1089/jam.2006.19.290 – ident: CIT0121 doi: 10.1152/japplphysiol.00391.2005 – ident: CIT0205 doi: 10.1183/09031936.00113606 – ident: CIT0067 doi: 10.1007/s10439-011-0503-2 – ident: CIT0148 doi: 10.4187/respcare.04137 – ident: CIT0073 doi: 10.1016/j.ejps.2017.09.033 – ident: CIT0203 doi: 10.1016/j.jaerosci.2008.07.011 – ident: CIT0057 doi: 10.1093/jac/dkx293 – ident: CIT0195 doi: 10.1080/02786826.2016.1254721 – ident: CIT0163 doi: 10.1089/jamp.2014.1204 – ident: CIT0020 doi: 10.1080/02786820119122 – ident: CIT0164 doi: 10.1186/s12911-017-0561-y – ident: CIT0207 doi: 10.4187/respcare.03537 – ident: CIT0019 doi: 10.1080/08958370701513014 – ident: CIT0146 doi: 10.1016/j.rmed.2014.06.004 – ident: CIT0024 doi: 10.1089/jam.2006.19.268 – ident: CIT0084 doi: 10.1089/jamp.2008.0739 – ident: CIT0115 doi: 10.1016/j.compbiomed.2016.10.025 – ident: CIT0052 doi: 10.1016/j.addr.2011.10.004 – ident: CIT0177 doi: 10.1016/j.xphs.2016.03.033 – ident: CIT0125 doi: 10.1098/rsos.170873 – ident: CIT0191 doi: 10.1080/02786826.2014.887829 – ident: CIT0002 doi: 10.1016/j.jaerosci.2008.03.008 – start-page: 151 volume-title: Proceedings of respiratory drug delivery 2008 year: 2008 ident: CIT0086 – ident: CIT0070 doi: 10.1152/japplphysiol.01117.2014 – ident: CIT0012 doi: 10.1089/jamp.2018.1454 – ident: CIT0059 doi: 10.1007/s10439-008-9583-z – ident: CIT0038 doi: 10.1006/taap.1993.1152 – ident: CIT0194 doi: 10.1016/j.rmed.2005.09.027 – ident: CIT0098 doi: 10.1007/s11095-015-1695-1 – ident: CIT0153 doi: 10.4187/respcare.02568 – ident: CIT0030 doi: 10.1007/s12650-010-0043-0 – ident: CIT0131 doi: 10.1080/02786826.2011.566592 – ident: CIT0021 doi: 10.1007/BF02462290 – ident: CIT0056 doi: 10.1016/j.jaerosci.2014.09.003 – ident: CIT0204 doi: 10.1080/02786826.2017.1413489 – ident: CIT0159 doi: 10.4209/aaqr.2018.02.0058 – ident: CIT0133 doi: 10.1089/jamp.2012.0997 – ident: CIT0155 doi: 10.1080/02786820902950887 – ident: CIT0043 doi: 10.1115/1.3049481 – ident: CIT0198 doi: 10.1089/jam.2006.19.473 – volume: 55 start-page: 845 issue: 7 year: 2010 ident: CIT0149 publication-title: Respir Care – ident: CIT0042 doi: 10.1016/j.jaerosci.2006.01.011 – ident: CIT0143 doi: 10.1016/S1078-5337(05)70030-7 – volume: 49 start-page: 653 issue: 6 year: 2004 ident: CIT0144 publication-title: Respir Care – ident: CIT0130 doi: 10.1111/j.2042-7158.2012.01476.x – ident: CIT0060 doi: 10.1016/j.jbiomech.2007.12.019 – ident: CIT0016 doi: 10.1016/j.addr.2011.05.009 – ident: CIT0200 doi: 10.1089/jam.1989.2.285 – ident: CIT0126 doi: 10.1007/s11095-010-0078-x – ident: CIT0026 doi: 10.1080/13547500902965286 – ident: CIT0097 doi: 10.1089/jamp.2015.1281 – ident: CIT0063 doi: 10.1089/jam.2006.0617 – ident: CIT0140 doi: 10.4187/respcare.02903 – ident: CIT0190 doi: 10.1016/j.ijpharm.2013.01.003 – volume: 135 start-page: 12 issue: 12 year: 2013 ident: CIT0111 publication-title: J Biomech Eng Trans ASME – ident: CIT0147 doi: 10.1089/0894268041457129 – ident: CIT0176 doi: 10.1016/j.ejps.2017.10.030 – ident: CIT0109 doi: 10.1152/japplphysiol.00520.2004 – ident: CIT0184 doi: 10.1089/jamp.2011.0905 – ident: CIT0089 doi: 10.1080/08958370600748653 – ident: CIT0178 doi: 10.1006/taap.1998.8407 – ident: CIT0157 doi: 10.1089/jamp.2013.1077 – ident: CIT0152 doi: 10.1007/s10439-012-0603-7 – ident: CIT0141 doi: 10.1089/jamp.2014.1158 – ident: CIT0183 doi: 10.1159/000343629 – ident: CIT0022 doi: 10.1080/02786826.2013.784393 – ident: CIT0027 doi: 10.1089/jamp.2008.0708 – ident: CIT0110 doi: 10.1115/1.3005339 – ident: CIT0079 doi: 10.1089/jamp.2015.1215 – ident: CIT0151 doi: 10.1089/jamp.2013.1075 – ident: CIT0041 doi: 10.1152/japplphysiol.01233.2007 – ident: CIT0069 doi: 10.1115/1.2768109 – ident: CIT0028 doi: 10.1080/02786826.2012.708799 – ident: CIT0046 doi: 10.1016/j.resp.2007.02.006 – ident: CIT0058 doi: 10.1002/wsbm.1234 – ident: CIT0142 doi: 10.1089/jamp.2016.1343 – ident: CIT0139 doi: 10.1089/jamp.2012.1006 – ident: CIT0088 doi: 10.1016/j.jbiomech.2006.01.006 – ident: CIT0004 doi: 10.1016/j.rmed.2016.05.006 – ident: CIT0096 doi: 10.1115/1.4024630 – ident: CIT0037 doi: 10.1089/jam.1996.9.329 – ident: CIT0114 doi: 10.1016/j.jaerosci.2017.10.001 – ident: CIT0128 doi: 10.1007/s11095-010-0165-z – ident: CIT0206 doi: 10.1002/cnm.2873 – volume: 128 start-page: S1 year: 1983 ident: CIT0102 publication-title: Am Rev Respir Dis doi: 10.1164/arrd.1983.128.1.1 – ident: CIT0167 doi: 10.7150/thno.11107 – ident: CIT0101 doi: 10.1007/BF02460796 – ident: CIT0201 doi: 10.1016/j.jaerosci.2004.03.003 – ident: CIT0169 doi: 10.1089/jamp.2013.1064 – ident: CIT0135 doi: 10.1089/jamp.2010.0849 – ident: CIT0189 doi: 10.1007/s11095-011-0596-1 – ident: CIT0161 doi: 10.1148/radiol.10100322 – ident: CIT0065 doi: 10.1089/jam.2007.0554 – volume: 7 start-page: 345 issue: 2 year: 2014 ident: CIT0166 publication-title: J Appl Fluid Mech – ident: CIT0074 doi: 10.1016/j.compbiomed.2015.03.032 – ident: CIT0049 doi: 10.1016/j.ijmultiphaseflow.2015.01.006 – ident: CIT0071 doi: 10.1016/j.jbiomech.2015.11.026 – ident: CIT0185 doi: 10.1002/jps.23775 – ident: CIT0018 doi: 10.1089/jamp.2007.0645 – ident: CIT0187 doi: 10.1016/j.ejps.2013.04.011 – ident: CIT0023 doi: 10.1016/j.jaerosci.2012.04.006 – ident: CIT0014 doi: 10.1007/s11095-017-2210-7 – ident: CIT0050 doi: 10.1007/s10494-017-9835-9 – ident: CIT0193 doi: 10.1007/s11095-013-1165-6 – ident: CIT0033 doi: 10.1016/j.jaerosci.2012.03.001 – ident: CIT0093 doi: 10.1016/j.jaerosci.2003.12.006 – ident: CIT0064 doi: 10.1080/02786820701777440 – ident: CIT0113 doi: 10.1016/j.compbiomed.2016.10.020 – volume-title: Computational fluid mechanics and heat transfer year: 1997 ident: CIT0034 – ident: CIT0090 doi: 10.1016/j.jaerosci.2013.01.008 – ident: CIT0007 doi: 10.4187/aarc0537 – ident: CIT0108 doi: 10.1016/j.compfluid.2007.05.001 – ident: CIT0107 doi: 10.1016/j.medengphy.2006.05.012 – ident: CIT0158 doi: 10.1007/s11095-014-1466-4 – ident: CIT0006 doi: 10.1016/j.addr.2014.08.013 – ident: CIT0031 doi: 10.1016/j.jaerosci.2003.09.002 – ident: CIT0134 doi: 10.1007/s10439-013-0759-9 – ident: CIT0162 doi: 10.1159/000347120 – ident: CIT0015 doi: 10.1007/s11095-010-0070-5 – ident: CIT0055 doi: 10.1016/j.jaerosci.2011.07.005 – ident: CIT0047 doi: 10.1063/1.3247170 – ident: CIT0013 doi: 10.1007/s11095-012-0691-y – ident: CIT0165 doi: 10.1385/CBB:35:3:233 – ident: CIT0199 doi: 10.1016/0021-8502(86)90035-2 – ident: CIT0172 doi: 10.1007/s10439-013-0954-8 – ident: CIT0003 doi: 10.1164/rccm.200410-1414OC – ident: CIT0103 doi: 10.1002/ar.1091900202 – ident: CIT0116 doi: 10.1016/j.jaerosci.2017.03.004 – ident: CIT0040 doi: 10.1385/CBB:35:3:245 – ident: CIT0062 doi: 10.1016/j.jaerosci.2004.08.006 – ident: CIT0011 doi: 10.1089/jamp.2012.0975 – ident: CIT0100 doi: 10.1016/0021-8502(94)00113-D – ident: CIT0066 doi: 10.1016/S0021-8502(98)00043-3 – ident: CIT0179 doi: 10.1007/s11095-015-1837-5 – ident: CIT0025 doi: 10.1016/0021-8502(90)90121-D – ident: CIT0008 doi: 10.4187/respcare.03579 – ident: CIT0053 doi: 10.1517/17425247.2013.753053 – ident: CIT0099 doi: 10.1378/chest.113.4.957 – ident: CIT0061 doi: 10.1016/j.resp.2008.07.002 – ident: CIT0083 doi: 10.1089/jamp.2012.0995 – ident: CIT0087 doi: 10.1016/j.jaerosci.2007.10.001 – ident: CIT0044 doi: 10.1080/02786826.2010.517578 – ident: CIT0068 doi: 10.1016/j.compfluid.2017.02.008 – ident: CIT0017 doi: 10.1089/jam.1989.2.285 – ident: CIT0082 doi: 10.1080/02786820701607027 – ident: CIT0005 doi: 10.1183/09031936.05.00132404 – ident: CIT0156 doi: 10.1089/jam.2006.19.533 – ident: CIT0080 doi: 10.1089/jamp.2012.0989 – ident: CIT0075 doi: 10.1016/j.jaerosci.2017.07.004 – ident: CIT0173 doi: 10.1115/1.4038896 – ident: CIT0180 doi: 10.1089/jamp.2015.1252 – ident: CIT0160 doi: 10.1016/j.jbiomech.2007.07.009 – ident: CIT0202 doi: 10.1080/02786826.2010.488256 – volume: 1 start-page: 123 year: 2018 ident: CIT0192 publication-title: Respir Drug Delivery – volume-title: The mechanics of inhaled pharmaceutical aerosols year: 2001 ident: CIT0001 – ident: CIT0120 doi: 10.1114/1.1289457 – ident: CIT0119 doi: 10.1016/j.jcp.2012.12.007 – ident: CIT0196 doi: 10.1016/j.medengphy.2015.05.014 – volume: 66 volume-title: Human respiratory tract model for radiological protection year: 1994 ident: CIT0106 – volume: 2010 start-page: 225 year: 2010 ident: CIT0188 publication-title: Respir Drug Delivery – ident: CIT0078 doi: 10.1016/j.jfluidstructs.2015.07.006 – ident: CIT0051 doi: 10.1115/1.4031693 – ident: CIT0009 doi: 10.1089/jamp.2010.0836 – ident: CIT0029 doi: 10.1080/027868200303939 – ident: CIT0197 doi: 10.1208/s12248-009-9121-4 – ident: CIT0035 doi: 10.1201/9781482234213 – ident: CIT0168 doi: 10.1371/journal.pone.0104682 – ident: CIT0129 doi: 10.1016/j.jaerosci.2010.04.006 – ident: CIT0036 doi: 10.1016/0021-8502(93)90045-B – ident: CIT0122 doi: 10.3109/08958378.2011.644351 – ident: CIT0117 doi: 10.1007/s10439-015-1318-3 – volume: 2016 start-page: 175 issue: 1 year: 2016 ident: CIT0181 publication-title: Respir Drug Delivery – ident: CIT0175 doi: 10.1371/journal.pone.0118454 – ident: CIT0118 doi: 10.1007/s10439-014-1074-9 – ident: CIT0182 doi: 10.1164/rccm.200403-408OC – ident: CIT0170 doi: 10.1183/09031936.00072511 – ident: CIT0136 doi: 10.1016/j.jaerosci.2014.08.003 – ident: CIT0095 doi: 10.1016/j.xphs.2015.11.027 – ident: CIT0092 doi: 10.1016/j.jaerosci.2018.02.007 – volume: 135 start-page: 11 issue: 12 year: 2013 ident: CIT0112 publication-title: J Biomech Eng Trans ASME – ident: CIT0145 doi: 10.1002/(SICI)1099-0496(199605)21:5<301::AID-PPUL5>3.0.CO;2-P – ident: CIT0123 doi: 10.3109/07853890.2011.585656 – ident: CIT0137 doi: 10.1007/s11095-013-1123-3 – ident: CIT0105 doi: 10.1088/0031-9155/30/6/004 – ident: CIT0154 doi: 10.1016/j.jaerosci.2010.12.004 – ident: CIT0085 doi: 10.1089/jamp.2008.0692 – ident: CIT0010 doi: 10.1016/j.addr.2006.07.012 – ident: CIT0104 doi: 10.1046/j.0021-8782.2001.00018.x – ident: CIT0150 doi: 10.4187/respcare.03606 – ident: CIT0124 doi: 10.1111/all.12062 – ident: CIT0081 doi: 10.1016/S0021-8502(03)00381-1 – start-page: 1757482X1879189 year: 2018 ident: CIT0076 publication-title: J Comput Multiphase Flows – ident: CIT0138 doi: 10.1080/02786826.2014.954029 – ident: CIT0048 doi: 10.1016/j.jaerosci.2007.03.010 – ident: CIT0045 doi: 10.1016/j.medengphy.2010.08.012 – ident: CIT0094 doi: 10.1007/s10439-010-0223-z – ident: CIT0072 doi: 10.2147/IJN.S102138 – ident: CIT0132 doi: 10.1007/s10439-012-0616-2 – ident: CIT0186 doi: 10.1007/s11095-013-1001-z – ident: CIT0039 doi: 10.1115/1.429636 – ident: CIT0174 doi: 10.1007/s10439-013-0955-7 – ident: CIT0171 doi: 10.2147/COPD.S21917 – ident: CIT0077 doi: 10.1016/j.ijheatmasstransfer.2016.12.057 – ident: CIT0127 doi: 10.1002/jps.22168 – ident: CIT0091 doi: 10.1080/02786820300932 – ident: CIT0032 doi: 10.1016/j.ijheatmasstransfer.2008.04.037 |
| SSID | ssj0036701 |
| Score | 2.5143795 |
| SecondaryResourceType | review_article |
| Snippet | Introduction: Respiratory drug delivery is a surprisingly complex process with a number of physical and biological challenges. Computational fluid dynamics... Respiratory drug delivery is a surprisingly complex process with a number of physical and biological challenges. Computational fluid dynamics (CFD) is a... |
| SourceID | pubmedcentral proquest pubmed crossref informaworld |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 7 |
| SubjectTerms | Administration, Inhalation aerosol deposition aerosol dosimetry Aerosols - administration & dosage airway models Asthma - drug therapy bioequivalence CFD simulations complete-airway modeling Computer Simulation Drug Compounding Drug Delivery Systems - methods Humans Hydrodynamics inhalers Models, Biological Nebulizers and Vaporizers Pharmaceutical aerosols Therapeutic Equivalency whole-lung CFD modeling |
| Title | Use of computational fluid dynamics deposition modeling in respiratory drug delivery |
| URI | https://www.tandfonline.com/doi/abs/10.1080/17425247.2019.1551875 https://www.ncbi.nlm.nih.gov/pubmed/30463458 https://www.proquest.com/docview/2179228951 https://pubmed.ncbi.nlm.nih.gov/PMC6529297 |
| Volume | 16 |
| WOSCitedRecordID | wos000454649700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAWR databaseName: Taylor & Francis Journals Complete customDbUrl: eissn: 1744-7593 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0036701 issn: 1742-5247 databaseCode: TFW dateStart: 20041101 isFulltext: true titleUrlDefault: https://www.tandfonline.com providerName: Taylor & Francis |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NT8MgFCdqPHjx-2N-LJgYT3auQAscjXHxYJYdNt2tAQq6xHRm3Uz23wu03YfR7KCXJg3QAH0P3oP3fj8ArlIcGm4QDawvwAOiOQsYVjhAMjWKx6Ghnj_l-Ym226zf550ymjAvwyqdD20KoAi_VjvlFjKvIuJurRGNIkSoC8ziDY8pRl2aud36HYdBt_VSrcUOnSwsUiKdy0VolcPz21eWdqcl7NKfLNDvgZQLO1Nr5x_GtAu2S7MU3hVytAfWdLYPrjsFrvX0BnbnaVr5DbyGnTni9fQAdHu5hkMDlaeIKI8XoXmfDFKYFpT3OUx1FSAGPf2O3TPhIIOj-V0_TEeTV-iKrH5ND0Gv9dC9fwxKuoZAkZiN7RPHYSwjHhssCJPYLsJGSGqky_5VmEWINQWnoikccJUUlMYpwam1sCJkNMVHYCMbZvoEQEaUCTWy9YQmkQiZNFQ3YyW1JoIJVgOk-k2JKrHMHaXGexKWkKfVfCZuPpNyPmugMWv2UYB5rGrAF2UgGftTFFNQniR4RdvLSmASq7LuHkZkejjJE-sFcmQd3SisgeNCgGbd8QhuJLIjpEuiNavg4MCXS7LBm4cFjyNkbV16-oc-n4Et9-qPmNA52BiPJvoCbKrP8SAf1cE67bO6V7AvXdQh7A |
| linkProvider | Taylor & Francis |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB71gVQu5Q3bQjES6qkpGz9i-4hQV0VdVj2k0JvlOHZZqcqizS7S_vvaTrIPBOqhXHKxHfkx43l45huAjyVJnXSYJ94WkAm1UiSCGJLgonRGZqnjsX7K9yEfjcT1tVzPhQlhlcGGdg1QRLyrA3MHZ3QXEvfJa9GYYcpDZJY8jaBinG3DLvOyNlB5PvjR3cYBnyxtkiKD0UV5l8Xzr99syKcN9NK_6aB_hlKuyabBk_-xqqew32qm6HNDSs9gy1bP4fiygbZenKB8lalVn6BjdLkCvV68gPyqtmjikIlVIloPI3K383GJyqbqfY1K28WIoViBx4tNNK7QdPXcj8rp_AaFJs9ii5dwNTjLv5wnbcWGxNBMzPyXZGlWMJk5oqkoiL-HnS64K0ICsCGCYdHXkuu-DthVheY8KykpvZLFsLOcvIKdalLZN4AENS612PfTljKdisJx289MYS3VQose0O6clGnhzENVjVuVtqin3X6qsJ-q3c8enC6H_WrwPO4bINeJQM2iI8U1VU8UuWfsh45ilOfa8BSjKzuZ18obghJ7W5elPXjdUNByOhHEjTK_Qr5BW8sOARF8s6Ua_4zI4BnDXt3lBw-Y83vYO8-_DdXw6-jiEB6Hpuhxwm9hZzad23fwyPyejevpUeSzO89oJS8 |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LbxMxEB5BQagX3tDwNBLqqVuyfvuIgAhEFeWQQm-W148SqdpU2QQp_x7bu5s0CNQDXPZie-XHjD1jz3wfwFtHyqACFkX0BVRBvZKFJJYUuHLBKl4GkflTvp2I8VienalJF03YdGGVyYcOLVBE3quTcl-60EfEvYtGNGaYihSYpY4zpphgN-FWNJ158r-mo-_9Zpzgyco2JzL5XFT0STx_-83O8bQDXvonE_T3SMorR9Po3n8Y1H2429ml6H0rSA_ghq8fwuGkBbZeH6HpNk-rOUKHaLKFvF4_gulp49E8IJs5Irr7RRQuVjOHXMt53yDn-wgxlPl34qGJZjVabB_7kVuszlEqigq2fgyno0_TD5-Ljq-hsJTLZfwSXvKKKR6IobIicRcOphKhSum_lkiG5dAoYYYmIVdVRgjuKHHRxGI4eEGewF49r_0BIEltKD2O9YynzJSyCsIPua28p0YaOQDaL5O2HZh54tS40GWHedrPp07zqbv5HMDxptlli-ZxXQN1VQb0Ml-jhJbzRJNr2r7pBUZHnU0PMab281WjoxuocPR0WTmAp60AbbqTIdwoiyMUO6K1qZDwwHdL6tmPjAvOGY7Grnj2D31-DXcmH0f65Mv463PYTyX5ugm_gL3lYuVfwm37czlrFq-ylv0CPFAj4A |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Use+of+computational+fluid+dynamics+deposition+modeling+in+respiratory+drug+delivery&rft.jtitle=Expert+opinion+on+drug+delivery&rft.au=Longest%2C+P.+Worth&rft.au=Bass%2C+Karl&rft.au=Dutta%2C+Rabijit&rft.au=Rani%2C+Vijaya&rft.date=2019-01-02&rft.pub=Taylor+%26+Francis&rft.issn=1742-5247&rft.eissn=1744-7593&rft.volume=16&rft.issue=1&rft.spage=7&rft.epage=26&rft_id=info:doi/10.1080%2F17425247.2019.1551875&rft.externalDocID=1551875 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1742-5247&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1742-5247&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1742-5247&client=summon |