High titre neutralizing antibodies in response to SARS–CoV–2 infection require RBD–specific CD4 T cells that include proliferative memory cells

Long-term immunity to SARS-CoV-2 infection, including neutralizing antibodies and T cell-mediated immunity, is required in a very large majority of the population in order to reduce ongoing disease burden. We have investigated the association between memory CD4 and CD8 T cells and levels of neutrali...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Frontiers in immunology Ročník 13; s. 1032911
Hlavní autori: Phetsouphanh, Chansavath, Khoo, Weng Hua, Jackson, Katherine, Klemm, Vera, Howe, Annett, Aggarwal, Anupriya, Akerman, Anouschka, Milogiannakis, Vanessa, Stella, Alberto Ospina, Rouet, Romain, Schofield, Peter, Faulks, Megan L., Law, Hannah, Danwilai, Thidarat, Starr, Mitchell, Munier, C. Mee Ling, Christ, Daniel, Singh, Mandeep, Croucher, Peter I., Brilot-Turville, Fabienne, Turville, Stuart, Phan, Tri Giang, Dore, Gregory J., Darley, David, Cunningham, Philip, Matthews, Gail V., Kelleher, Anthony D., Zaunders, John J.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Switzerland Frontiers Media S.A 05.12.2022
Predmet:
ISSN:1664-3224, 1664-3224
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Long-term immunity to SARS-CoV-2 infection, including neutralizing antibodies and T cell-mediated immunity, is required in a very large majority of the population in order to reduce ongoing disease burden. We have investigated the association between memory CD4 and CD8 T cells and levels of neutralizing antibodies in convalescent COVID-19 subjects. Higher titres of convalescent neutralizing antibodies were associated with significantly higher levels of RBD-specific CD4 T cells, including specific memory cells that proliferated vigorously . Conversely, up to half of convalescent individuals had low neutralizing antibody titres together with a lack of receptor binding domain (RBD)-specific memory CD4 T cells. These low antibody subjects had other, non-RBD, spike-specific CD4 T cells, but with more of an inhibitory Foxp3+ and CTLA-4+ cell phenotype, in contrast to the effector T-bet+, cytotoxic granzymes+ and perforin+ cells seen in RBD-specific memory CD4 T cells from high antibody subjects. Single cell transcriptomics of antigen-specific CD4+ T cells from high antibody subjects similarly revealed heterogenous RBD-specific CD4+ T cells that comprised central memory, transitional memory and Tregs, as well as cytotoxic clusters containing diverse TCR repertoires, in individuals with high antibody levels. However, vaccination of low antibody convalescent individuals led to a slight but significant improvement in RBD-specific memory CD4 T cells and increased neutralizing antibody titres. Our results suggest that targeting CD4 T cell epitopes proximal to and within the RBD-region should be prioritized in booster vaccines.
AbstractList BackgroundLong-term immunity to SARS-CoV-2 infection, including neutralizing antibodies and T cell-mediated immunity, is required in a very large majority of the population in order to reduce ongoing disease burden.MethodsWe have investigated the association between memory CD4 and CD8 T cells and levels of neutralizing antibodies in convalescent COVID-19 subjects.FindingsHigher titres of convalescent neutralizing antibodies were associated with significantly higher levels of RBD-specific CD4 T cells, including specific memory cells that proliferated vigorously in vitro. Conversely, up to half of convalescent individuals had low neutralizing antibody titres together with a lack of receptor binding domain (RBD)-specific memory CD4 T cells. These low antibody subjects had other, non-RBD, spike-specific CD4 T cells, but with more of an inhibitory Foxp3+ and CTLA-4+ cell phenotype, in contrast to the effector T-bet+, cytotoxic granzymes+ and perforin+ cells seen in RBD-specific memory CD4 T cells from high antibody subjects. Single cell transcriptomics of antigen-specific CD4+ T cells from high antibody subjects similarly revealed heterogenous RBD-specific CD4+ T cells that comprised central memory, transitional memory and Tregs, as well as cytotoxic clusters containing diverse TCR repertoires, in individuals with high antibody levels. However, vaccination of low antibody convalescent individuals led to a slight but significant improvement in RBD-specific memory CD4 T cells and increased neutralizing antibody titres.InterpretationOur results suggest that targeting CD4 T cell epitopes proximal to and within the RBD-region should be prioritized in booster vaccines.
Long-term immunity to SARS-CoV-2 infection, including neutralizing antibodies and T cell-mediated immunity, is required in a very large majority of the population in order to reduce ongoing disease burden. We have investigated the association between memory CD4 and CD8 T cells and levels of neutralizing antibodies in convalescent COVID-19 subjects. Higher titres of convalescent neutralizing antibodies were associated with significantly higher levels of RBD-specific CD4 T cells, including specific memory cells that proliferated vigorously . Conversely, up to half of convalescent individuals had low neutralizing antibody titres together with a lack of receptor binding domain (RBD)-specific memory CD4 T cells. These low antibody subjects had other, non-RBD, spike-specific CD4 T cells, but with more of an inhibitory Foxp3+ and CTLA-4+ cell phenotype, in contrast to the effector T-bet+, cytotoxic granzymes+ and perforin+ cells seen in RBD-specific memory CD4 T cells from high antibody subjects. Single cell transcriptomics of antigen-specific CD4+ T cells from high antibody subjects similarly revealed heterogenous RBD-specific CD4+ T cells that comprised central memory, transitional memory and Tregs, as well as cytotoxic clusters containing diverse TCR repertoires, in individuals with high antibody levels. However, vaccination of low antibody convalescent individuals led to a slight but significant improvement in RBD-specific memory CD4 T cells and increased neutralizing antibody titres. Our results suggest that targeting CD4 T cell epitopes proximal to and within the RBD-region should be prioritized in booster vaccines.
Long-term immunity to SARS-CoV-2 infection, including neutralizing antibodies and T cell-mediated immunity, is required in a very large majority of the population in order to reduce ongoing disease burden.BackgroundLong-term immunity to SARS-CoV-2 infection, including neutralizing antibodies and T cell-mediated immunity, is required in a very large majority of the population in order to reduce ongoing disease burden.We have investigated the association between memory CD4 and CD8 T cells and levels of neutralizing antibodies in convalescent COVID-19 subjects.MethodsWe have investigated the association between memory CD4 and CD8 T cells and levels of neutralizing antibodies in convalescent COVID-19 subjects.Higher titres of convalescent neutralizing antibodies were associated with significantly higher levels of RBD-specific CD4 T cells, including specific memory cells that proliferated vigorously in vitro. Conversely, up to half of convalescent individuals had low neutralizing antibody titres together with a lack of receptor binding domain (RBD)-specific memory CD4 T cells. These low antibody subjects had other, non-RBD, spike-specific CD4 T cells, but with more of an inhibitory Foxp3+ and CTLA-4+ cell phenotype, in contrast to the effector T-bet+, cytotoxic granzymes+ and perforin+ cells seen in RBD-specific memory CD4 T cells from high antibody subjects. Single cell transcriptomics of antigen-specific CD4+ T cells from high antibody subjects similarly revealed heterogenous RBD-specific CD4+ T cells that comprised central memory, transitional memory and Tregs, as well as cytotoxic clusters containing diverse TCR repertoires, in individuals with high antibody levels. However, vaccination of low antibody convalescent individuals led to a slight but significant improvement in RBD-specific memory CD4 T cells and increased neutralizing antibody titres.FindingsHigher titres of convalescent neutralizing antibodies were associated with significantly higher levels of RBD-specific CD4 T cells, including specific memory cells that proliferated vigorously in vitro. Conversely, up to half of convalescent individuals had low neutralizing antibody titres together with a lack of receptor binding domain (RBD)-specific memory CD4 T cells. These low antibody subjects had other, non-RBD, spike-specific CD4 T cells, but with more of an inhibitory Foxp3+ and CTLA-4+ cell phenotype, in contrast to the effector T-bet+, cytotoxic granzymes+ and perforin+ cells seen in RBD-specific memory CD4 T cells from high antibody subjects. Single cell transcriptomics of antigen-specific CD4+ T cells from high antibody subjects similarly revealed heterogenous RBD-specific CD4+ T cells that comprised central memory, transitional memory and Tregs, as well as cytotoxic clusters containing diverse TCR repertoires, in individuals with high antibody levels. However, vaccination of low antibody convalescent individuals led to a slight but significant improvement in RBD-specific memory CD4 T cells and increased neutralizing antibody titres.Our results suggest that targeting CD4 T cell epitopes proximal to and within the RBD-region should be prioritized in booster vaccines.InterpretationOur results suggest that targeting CD4 T cell epitopes proximal to and within the RBD-region should be prioritized in booster vaccines.
Author Schofield, Peter
Kelleher, Anthony D.
Faulks, Megan L.
Howe, Annett
Rouet, Romain
Munier, C. Mee Ling
Darley, David
Aggarwal, Anupriya
Turville, Stuart
Zaunders, John J.
Akerman, Anouschka
Cunningham, Philip
Brilot-Turville, Fabienne
Law, Hannah
Milogiannakis, Vanessa
Danwilai, Thidarat
Dore, Gregory J.
Phetsouphanh, Chansavath
Croucher, Peter I.
Phan, Tri Giang
Christ, Daniel
Khoo, Weng Hua
Klemm, Vera
Matthews, Gail V.
Singh, Mandeep
Jackson, Katherine
Stella, Alberto Ospina
Starr, Mitchell
AuthorAffiliation 2 Garvan Institute of Medical Research , Sydney, NSW , Australia
7 Department of Infectious Diseases, St. Vincent's Hospital , Sydney, NSW , Australia
3 St. Vincent’s Clinical School, Faculty of Medicine, University of New South Wales (UNSW) Sydney , Sydney, NSW , Australia
4 NSW State Reference Laboratory for HIV, St. Vincent’s Centre for Applied Medical Research , Sydney, NSW , Australia
1 Kirby Institute, University of New South Wales (UNSW) , Sydney, NSW , Australia
6 Sydney Institute for Infectious Diseases, The University of Sydney , Sydney, NSW , Australia
5 Brain and Mind Centre, Children’s Hospital at Westmead, University of Sydney , Sydney, NSW , Australia
8 Department of Immunology, St Vincent's Hospital , Sydney, NSW , Australia
AuthorAffiliation_xml – name: 1 Kirby Institute, University of New South Wales (UNSW) , Sydney, NSW , Australia
– name: 4 NSW State Reference Laboratory for HIV, St. Vincent’s Centre for Applied Medical Research , Sydney, NSW , Australia
– name: 6 Sydney Institute for Infectious Diseases, The University of Sydney , Sydney, NSW , Australia
– name: 7 Department of Infectious Diseases, St. Vincent's Hospital , Sydney, NSW , Australia
– name: 8 Department of Immunology, St Vincent's Hospital , Sydney, NSW , Australia
– name: 5 Brain and Mind Centre, Children’s Hospital at Westmead, University of Sydney , Sydney, NSW , Australia
– name: 2 Garvan Institute of Medical Research , Sydney, NSW , Australia
– name: 3 St. Vincent’s Clinical School, Faculty of Medicine, University of New South Wales (UNSW) Sydney , Sydney, NSW , Australia
Author_xml – sequence: 1
  givenname: Chansavath
  surname: Phetsouphanh
  fullname: Phetsouphanh, Chansavath
– sequence: 2
  givenname: Weng Hua
  surname: Khoo
  fullname: Khoo, Weng Hua
– sequence: 3
  givenname: Katherine
  surname: Jackson
  fullname: Jackson, Katherine
– sequence: 4
  givenname: Vera
  surname: Klemm
  fullname: Klemm, Vera
– sequence: 5
  givenname: Annett
  surname: Howe
  fullname: Howe, Annett
– sequence: 6
  givenname: Anupriya
  surname: Aggarwal
  fullname: Aggarwal, Anupriya
– sequence: 7
  givenname: Anouschka
  surname: Akerman
  fullname: Akerman, Anouschka
– sequence: 8
  givenname: Vanessa
  surname: Milogiannakis
  fullname: Milogiannakis, Vanessa
– sequence: 9
  givenname: Alberto Ospina
  surname: Stella
  fullname: Stella, Alberto Ospina
– sequence: 10
  givenname: Romain
  surname: Rouet
  fullname: Rouet, Romain
– sequence: 11
  givenname: Peter
  surname: Schofield
  fullname: Schofield, Peter
– sequence: 12
  givenname: Megan L.
  surname: Faulks
  fullname: Faulks, Megan L.
– sequence: 13
  givenname: Hannah
  surname: Law
  fullname: Law, Hannah
– sequence: 14
  givenname: Thidarat
  surname: Danwilai
  fullname: Danwilai, Thidarat
– sequence: 15
  givenname: Mitchell
  surname: Starr
  fullname: Starr, Mitchell
– sequence: 16
  givenname: C. Mee Ling
  surname: Munier
  fullname: Munier, C. Mee Ling
– sequence: 17
  givenname: Daniel
  surname: Christ
  fullname: Christ, Daniel
– sequence: 18
  givenname: Mandeep
  surname: Singh
  fullname: Singh, Mandeep
– sequence: 19
  givenname: Peter I.
  surname: Croucher
  fullname: Croucher, Peter I.
– sequence: 20
  givenname: Fabienne
  surname: Brilot-Turville
  fullname: Brilot-Turville, Fabienne
– sequence: 21
  givenname: Stuart
  surname: Turville
  fullname: Turville, Stuart
– sequence: 22
  givenname: Tri Giang
  surname: Phan
  fullname: Phan, Tri Giang
– sequence: 23
  givenname: Gregory J.
  surname: Dore
  fullname: Dore, Gregory J.
– sequence: 24
  givenname: David
  surname: Darley
  fullname: Darley, David
– sequence: 25
  givenname: Philip
  surname: Cunningham
  fullname: Cunningham, Philip
– sequence: 26
  givenname: Gail V.
  surname: Matthews
  fullname: Matthews, Gail V.
– sequence: 27
  givenname: Anthony D.
  surname: Kelleher
  fullname: Kelleher, Anthony D.
– sequence: 28
  givenname: John J.
  surname: Zaunders
  fullname: Zaunders, John J.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36544780$$D View this record in MEDLINE/PubMed
BookMark eNp9ks9u1DAQxiNUREvpC3BAPnLZxf9iJxeksgVaqRJSW7hajjPedZXEqe1UKifeAfGCPAlOd4taDvhgWzPf9xt5PC-LvcEPUBSvCV4yVtXvrOv7aUkxpUuCGa0JeVYcECH4glHK9x7d94ujGK9xXrxmjJUvin0mSs5lhQ-KX6duvUHJpQBogCkF3bnvblgjPSTX-NZBRG5AAeLohwgoeXR5fHH5-8fPlf-Wd5qzFkxyfhbdTC5zLj6c5EwcwTjrDFqdcHSFDHRdRGmjU3aYbmoBjcF3zkLQyd0C6qH34W6re1U8t7qLcLQ7D4uvnz5erU4X518-n62OzxeGiyotGmu5NJaKlkgmQBjcUGhpQy3lFFfGyobmpwrcApPS1oKz3BQLrMqhmlh2WJxtua3X12oMrtfhTnnt1H3Ah7XSITnTgSq5xUDqEltdcWhtVfKqxYS1GksrNc-s91vWODU9tAaGuZlPoE8zg9uotb9VtRSUVDgD3u4Awd9MEJPqXZzboQfwU1RUlpIIQvksffO41t8iD_-aBdVWYIKPMYBVxiU9_1Iu7TpFsJqnSN1PkZqnSO2mKFvpP9YH-n9MfwARg9DE
CitedBy_id crossref_primary_10_1128_jvi_01546_23
crossref_primary_10_22207_JPAM_18_3_48
crossref_primary_10_1038_s41467_024_47720_8
crossref_primary_10_1111_imcb_12636
crossref_primary_10_1515_chem_2025_0130
crossref_primary_10_1016_j_ijpharm_2025_125970
crossref_primary_10_1016_j_leukres_2023_107314
crossref_primary_10_3389_fimmu_2024_1382711
crossref_primary_10_1038_s41541_024_00926_9
crossref_primary_10_1126_scitranslmed_adl1997
crossref_primary_10_1016_j_heliyon_2023_e18039
crossref_primary_10_1016_j_isci_2025_113380
Cites_doi 10.1038/s41577-020-00451-5
10.1016/j.cell.2019.05.031
10.1038/s41591-021-01377-8
10.1038/s41467-022-28089-y
10.1038/s41591-020-01143-2
10.1186/gb-2014-15-2-r29
10.1002/jmv.26213
10.1056/NEJMc2200133
10.1038/s41591-020-0819-2
10.3389/fimmu.2018.00678
10.12688/f1000research.9501.2
10.1016/j.immuni.2021.08.001
10.3389/fimmu.2022.798300
10.1016/j.immuni.2020.04.023
10.3389/fimmu.2017.00019
10.1016/j.chom.2021.05.010
10.4049/jimmunol.168.11.5954
10.1101/2020.06.12.148916
10.1038/s41590-020-0762-x
10.1128/JVI.02670-05
10.1016/j.tube.2012.03.008
10.1093/bioinformatics/btu138
10.1089/aid.2016.0171
10.1371/journal.ppat.1009761
10.1038/nm917
10.1038/s41423-021-00750-4
10.1101/2020.11.15.383323
10.1093/nar/gkt382
10.1016/S0140-6736(21)00575-4
10.1371/journal.pmed.1003656
10.1146/annurev.immunol.18.1.561
10.1002/j.1538-7305.1948.tb01338.x
10.1146/annurev-immunol-031210-101400
10.1101/gr.092759.109
10.1016/j.xcrm.2021.100204
10.3389/fimmu.2013.00095
10.1038/s41586-020-2598-9
10.1038/s41591-022-02078-6
10.1084/jem.164.4.1114
10.1016/j.immuni.2010.12.012
10.1016/j.celrep.2022.110345
10.1182/blood-2003-08-2765
10.1016/j.isci.2020.101212
10.1016/j.isci.2021.103656
10.1016/j.cell.2021.04.048
10.1016/j.immuni.2021.04.006
10.21203/rs.3.rs-51964/v1
10.1182/blood-2006-11-056168
10.1056/NEJMra1204186
10.1016/j.vaccine.2016.09.009
10.1016/S2055-6640(20)30056-X
10.1038/s41564-022-01135-7
10.1038/280147a0
10.1371/journal.pone.0074946
10.1016/j.immuni.2021.04.009
10.1093/bioinformatics/btv359
10.3389/fimmu.2021.708523
10.1097/QAD.0000000000002503
10.1038/nmeth.4380
10.1126/science.abd3871
10.4049/jimmunol.144.2.574
10.1016/j.cell.2020.05.015
10.21105/joss.01686
10.1093/nar/gkz874
10.1126/science.abg8985
10.18637/jss.v067.i08
10.1016/j.immuni.2008.04.018
10.4049/jimmunol.0803548
10.1128/JVI.00249-06
10.3389/fimmu.2017.00376
10.1080/19420862.2021.1922134
10.1186/s13059-019-1874-1
10.1126/science.abf4063
10.1038/s41467-021-24377-1
10.1093/bioinformatics/btw777
10.3389/fimmu.2019.01844
10.1002/eji.201344102
10.1126/sciimmunol.abd2071
10.1101/2021.02.15.431212
10.1038/s41591-020-0995-0
10.1038/ni1515
10.1016/j.cell.2020.02.052
10.1038/s41590-021-01113-x
10.5694/mja2.50963
10.1128/jvi.00128-22
10.1126/sciimmunol.abe4782
ContentType Journal Article
Copyright Copyright © 2022 Phetsouphanh, Khoo, Jackson, Klemm, Howe, Aggarwal, Akerman, Milogiannakis, Stella, Rouet, Schofield, Faulks, Law, Danwilai, Starr, Munier, Christ, Singh, Croucher, Brilot-Turville, Turville, Phan, Dore, Darley, Cunningham, Matthews, Kelleher and Zaunders.
Copyright © 2022 Phetsouphanh, Khoo, Jackson, Klemm, Howe, Aggarwal, Akerman, Milogiannakis, Stella, Rouet, Schofield, Faulks, Law, Danwilai, Starr, Munier, Christ, Singh, Croucher, Brilot-Turville, Turville, Phan, Dore, Darley, Cunningham, Matthews, Kelleher and Zaunders 2022 Phetsouphanh, Khoo, Jackson, Klemm, Howe, Aggarwal, Akerman, Milogiannakis, Stella, Rouet, Schofield, Faulks, Law, Danwilai, Starr, Munier, Christ, Singh, Croucher, Brilot-Turville, Turville, Phan, Dore, Darley, Cunningham, Matthews, Kelleher and Zaunders
Copyright_xml – notice: Copyright © 2022 Phetsouphanh, Khoo, Jackson, Klemm, Howe, Aggarwal, Akerman, Milogiannakis, Stella, Rouet, Schofield, Faulks, Law, Danwilai, Starr, Munier, Christ, Singh, Croucher, Brilot-Turville, Turville, Phan, Dore, Darley, Cunningham, Matthews, Kelleher and Zaunders.
– notice: Copyright © 2022 Phetsouphanh, Khoo, Jackson, Klemm, Howe, Aggarwal, Akerman, Milogiannakis, Stella, Rouet, Schofield, Faulks, Law, Danwilai, Starr, Munier, Christ, Singh, Croucher, Brilot-Turville, Turville, Phan, Dore, Darley, Cunningham, Matthews, Kelleher and Zaunders 2022 Phetsouphanh, Khoo, Jackson, Klemm, Howe, Aggarwal, Akerman, Milogiannakis, Stella, Rouet, Schofield, Faulks, Law, Danwilai, Starr, Munier, Christ, Singh, Croucher, Brilot-Turville, Turville, Phan, Dore, Darley, Cunningham, Matthews, Kelleher and Zaunders
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOA
DOI 10.3389/fimmu.2022.1032911
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Open Access Full Text
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Open Access Full Text
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1664-3224
ExternalDocumentID oai_doaj_org_article_54f0e1950fa84edf8548d013da07f7a4
PMC9762180
36544780
10_3389_fimmu_2022_1032911
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID 53G
5VS
9T4
AAFWJ
AAKDD
AAYXX
ACGFO
ACGFS
ADBBV
ADRAZ
AENEX
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BCNDV
CITATION
DIK
EBS
EMOBN
GROUPED_DOAJ
GX1
HYE
KQ8
M48
M~E
OK1
PGMZT
RNS
RPM
ACXDI
CGR
CUY
CVF
ECM
EIF
IAO
IEA
IHR
IHW
IPNFZ
NPM
RIG
7X8
5PM
ID FETCH-LOGICAL-c468t-bff47cf26d1736e6c0b2ed2b2f24208cf7b236560de377f9643664fe3860d91f3
IEDL.DBID DOA
ISICitedReferencesCount 15
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000899745100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1664-3224
IngestDate Fri Oct 03 12:38:21 EDT 2025
Thu Aug 21 18:38:58 EDT 2025
Fri Sep 05 11:23:08 EDT 2025
Thu Jan 02 22:53:29 EST 2025
Tue Nov 18 21:26:48 EST 2025
Sat Nov 29 03:28:18 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords neutralizing antibodies
SARS-CoV-2
CD4 T cells
CD4 function
proliferation
Language English
License Copyright © 2022 Phetsouphanh, Khoo, Jackson, Klemm, Howe, Aggarwal, Akerman, Milogiannakis, Stella, Rouet, Schofield, Faulks, Law, Danwilai, Starr, Munier, Christ, Singh, Croucher, Brilot-Turville, Turville, Phan, Dore, Darley, Cunningham, Matthews, Kelleher and Zaunders.
This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c468t-bff47cf26d1736e6c0b2ed2b2f24208cf7b236560de377f9643664fe3860d91f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Edited by: Vijayakumar Velu, Emory University, United States
These authors have contributed equally to this work
This article was submitted to Viral Immunology, a section of the journal Frontiers in Immunology
Reviewed by: Nanda Kishore Routhu, Emory Vaccine Center, School of Medicine, Emory University, United States; Anusmita Sahoo, Emory Vaccine Center, School of Medicine, Emory University, United States
OpenAccessLink https://doaj.org/article/54f0e1950fa84edf8548d013da07f7a4
PMID 36544780
PQID 2757161240
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_54f0e1950fa84edf8548d013da07f7a4
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9762180
proquest_miscellaneous_2757161240
pubmed_primary_36544780
crossref_citationtrail_10_3389_fimmu_2022_1032911
crossref_primary_10_3389_fimmu_2022_1032911
PublicationCentury 2000
PublicationDate 2022-12-05
PublicationDateYYYYMMDD 2022-12-05
PublicationDate_xml – month: 12
  year: 2022
  text: 2022-12-05
  day: 05
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
PublicationTitle Frontiers in immunology
PublicationTitleAlternate Front Immunol
PublicationYear 2022
Publisher Frontiers Media S.A
Publisher_xml – name: Frontiers Media S.A
References Phetsouphanh (B30) 2022; 23
Hsu (B33) 2012; 92
Hafemeister (B40) 2019; 20
Phetsouphanh (B69) 2013; 8
Dan (B59) 2021; 371
Thevarajan (B75) 2020; 26
Lun (B41) 2016; 5
Juno (B14) 2020; 26
Wickham (B49) 2019; 4
Essalmani (B80) 2022; 96
Li (B85) 2022; 13
McCarthy (B42) 2017; 33
Rouet (B31) 2021; 13
Xu (B68) 2017; 8
Lineburg (B26) 2021; 54
Juno (B74) 2017; 8
Ni (B16) 2020; 52
Hao (B48) 2021; 184
Dan (B7) 2020; 371
Sette (B83) 2008; 28
Darley (B29) 2021; 214
Morita (B70) 2011; 34
Zaunders (B62) 2006; 80
Painter (B8) 2021; 54
Zaunders (B13) 2013; 4
Balachandran (B57) 2022; 38
Nabel (B4) 2013; 368
Mateus (B60) 2020; 370
Gimenez (B25) 2021; 93
Krzywinski (B52) 2009; 19
Low (B21) 2021; 372
Seddiki (B56) 2014; 44
Zaunders (B20) 2009; 183
Zaunders (B34) 2019; 5
Tea (B35) 2021; 18
Bagaev (B54) 2019; 48
Hansen (B1) 2021; 397
Kaufmann (B63) 2007; 8
Mentzer (B87) 2022
Zaunders (B32) 2020; 34
Russell (B81) 1979; 280
Nguyen (B28) 2021; 54
Zaunders (B71) 2004; 103
Stuart (B39) 2019; 177
Shannon (B50) 1948; 27
Ye (B46) 2013; 41
Law (B67) 2022; 25
Jaimes (B78) 2020; 23
Grifoni (B86) 2021; 29
Jung (B19) 2021; 12
Stoeckius (B38) 2017; 14
Vander Heiden (B45) 2014; 30
Massey (B44) 2022; 13
Crotty (B5) 2011; 29
Wolfl (B55) 2007; 110
Schulien (B27) 2021; 27
Hey-Nguyen (B66) 2017; 33
Law (B43) 2014; 15
Anderson (B76) 1990; 144
Hammarlund (B11) 2003; 9
Meckiff (B61) 2020
Xiang (B6) 2021; 12
Grifoni (B15) 2020; 181
Braun (B18) 2020; 587
Aggarwal (B37) 2022; 7
Weiskopf (B17) 2020; 5
Kusnadi (B24) 2021; 6
Schmidt (B22) 2018; 9
Boppana (B64) 2021; 17
Tarke (B65) 2021; 2
Appay (B72) 2002; 168
Khoury (B58) 2021; 27
Phetsouphanh (B73) 2019; 10
Marcon (B51) 2015; 67
Zhang (B77) 2020; 21
Rha (B23) 2021; 18
Altarawneh (B2) 2022; 386
Gupta (B47) 2015; 31
Munier (B10) 2016; 34
Fontanet (B3) 2020; 20
Nolan (B53) 2020
Zaunders (B9) 2006; 80
Scherle (B82) 1986; 164
Doherty (B12) 2000; 18
Hoffmann (B79) 2020; 181
Follenzi (B36) 2002
Sztain (B84) 2021
References_xml – volume: 20
  year: 2020
  ident: B3
  article-title: COVID-19 herd immunity: Where are we
  publication-title: Nat Rev Immunol
  doi: 10.1038/s41577-020-00451-5
– volume: 177
  start-page: 1888
  year: 2019
  ident: B39
  article-title: Comprehensive integration of single-cell data
  publication-title: Cell
  doi: 10.1016/j.cell.2019.05.031
– volume: 27
  year: 2021
  ident: B58
  article-title: Neutralizing antibody levels are highly predictive of immune protection from symptomatic SARS-CoV-2 infection
  publication-title: Nat Med
  doi: 10.1038/s41591-021-01377-8
– volume: 13
  start-page: 460
  year: 2022
  ident: B85
  article-title: Viral infection and transmission in a large, well-traced outbreak caused by the SARS-CoV-2 delta variant
  publication-title: Nat Commun
  doi: 10.1038/s41467-022-28089-y
– volume: 27
  start-page: 78
  year: 2021
  ident: B27
  article-title: Characterization of pre-existing and induced SARS-CoV-2-specific CD8(+) T cells
  publication-title: Nat Med
  doi: 10.1038/s41591-020-01143-2
– volume: 15
  start-page: R29
  year: 2014
  ident: B43
  article-title: Voom: Precision weights unlock linear model analysis tools for RNA-seq read counts
  publication-title: Genome Biol
  doi: 10.1186/gb-2014-15-2-r29
– volume: 93
  year: 2021
  ident: B25
  article-title: SARS-CoV-2-reactive interferon-gamma-producing CD8+ T cells in patients hospitalized with coronavirus disease 2019
  publication-title: J Med Virol
  doi: 10.1002/jmv.26213
– volume: 386
  year: 2022
  ident: B2
  article-title: Protection against the omicron variant from previous SARS-CoV-2 infection
  publication-title: New Engl J Med
  doi: 10.1056/NEJMc2200133
– volume: 26
  year: 2020
  ident: B75
  article-title: Breadth of concomitant immune responses prior to patient recovery: a case report of non-severe COVID-19
  publication-title: Nat Med
  doi: 10.1038/s41591-020-0819-2
– volume: 9
  year: 2018
  ident: B22
  article-title: The CD8 T cell response to respiratory virus infections
  publication-title: Front Immunol
  doi: 10.3389/fimmu.2018.00678
– volume: 5
  start-page: 2122
  year: 2016
  ident: B41
  article-title: A step-by-step workflow for low-level analysis of single-cell RNA-seq data with bioconductor
  publication-title: F1000Res
  doi: 10.12688/f1000research.9501.2
– volume: 54
  start-page: 2133
  year: 2021
  ident: B8
  article-title: Rapid induction of antigen-specific CD4(+) T cells is associated with coordinated humoral and cellular immunity to SARS-CoV-2 mRNA vaccination
  publication-title: Immunity
  doi: 10.1016/j.immuni.2021.08.001
– volume: 13
  year: 2022
  ident: B44
  article-title: Haematopoietic stem cell transplantation results in extensive remodelling of the clonal T cell repertoire in multiple sclerosis
  publication-title: Front Immunol
  doi: 10.3389/fimmu.2022.798300
– volume: 52
  start-page: 971
  year: 2020
  ident: B16
  article-title: Detection of SARS-CoV-2-Specific humoral and cellular immunity in COVID-19 convalescent individuals
  publication-title: Immunity
  doi: 10.1016/j.immuni.2020.04.023
– volume: 8
  year: 2017
  ident: B74
  article-title: Cytotoxic CD4 T cells-friend or foe during viral infection
  publication-title: Front Immunol
  doi: 10.3389/fimmu.2017.00019
– volume: 29
  year: 2021
  ident: B86
  article-title: SARS-CoV-2 human T cell epitopes: Adaptive immune response against COVID-19
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2021.05.010
– volume: 168
  year: 2002
  ident: B72
  article-title: Characterization of CD4(+) CTLs ex vivo
  publication-title: J Immunol
  doi: 10.4049/jimmunol.168.11.5954
– start-page: 3641939
  year: 2020
  ident: B61
  article-title: Single-cell transcriptomic analysis of SARS-CoV-2 reactive CD4 (+) T cells
  publication-title: SSRN
  doi: 10.1101/2020.06.12.148916
– volume: 21
  year: 2020
  ident: B77
  article-title: Single-cell landscape of immunological responses in patients with COVID-19
  publication-title: Nat Immunol
  doi: 10.1038/s41590-020-0762-x
– volume: 80
  year: 2006
  ident: B9
  article-title: CD127+CCR5+CD38+++ CD4+ Th1 effector cells are an early component of the primary immune response to vaccinia virus and precede development of interleukin-2+ memory CD4+ T cells
  publication-title: J Virol
  doi: 10.1128/JVI.02670-05
– volume: 92
  year: 2012
  ident: B33
  article-title: A novel assay detecting recall response to mycobacterium tuberculosis: Comparison with existing assays
  publication-title: Tuberculosis (Edinb)
  doi: 10.1016/j.tube.2012.03.008
– volume: 30
  year: 2014
  ident: B45
  article-title: pRESTO: a toolkit for processing high-throughput sequencing raw reads of lymphocyte receptor repertoires
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btu138
– volume: 33
  year: 2017
  ident: B66
  article-title: Quantification of residual germinal center activity and HIV-1 DNA and RNA levels using fine needle biopsies of lymph nodes during antiretroviral therapy
  publication-title: AIDS Res Hum Retroviruses
  doi: 10.1089/aid.2016.0171
– volume: 17
  year: 2021
  ident: B64
  article-title: SARS-CoV-2-specific circulating T follicular helper cells correlate with neutralizing antibodies and increase during early convalescence
  publication-title: PloS Pathog
  doi: 10.1371/journal.ppat.1009761
– volume-title: Gene therapy protocols
  year: 2002
  ident: B36
– volume: 9
  year: 2003
  ident: B11
  article-title: Duration of antiviral immunity after smallpox vaccination
  publication-title: Nat Med
  doi: 10.1038/nm917
– volume: 18
  year: 2021
  ident: B23
  article-title: Activation or exhaustion of CD8(+) T cells in patients with COVID-19
  publication-title: Cell Mol Immunol
  doi: 10.1038/s41423-021-00750-4
– volume: 371
  year: 2020
  ident: B7
  article-title: Immunological memory to SARS-CoV-2 assessed for up to eight months after infection
  publication-title: bioRxiv
  doi: 10.1101/2020.11.15.383323
– volume: 41
  year: 2013
  ident: B46
  article-title: IgBLAST: an immunoglobulin variable domain sequence analysis tool
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkt382
– volume: 397
  year: 2021
  ident: B1
  article-title: Assessment of protection against reinfection with SARS-CoV-2 among 4 million PCR-tested individuals in Denmark in 2020: a population-level observational study
  publication-title: Lancet
  doi: 10.1016/S0140-6736(21)00575-4
– volume: 18
  start-page: e1003656
  year: 2021
  ident: B35
  article-title: SARS-CoV-2 neutralizing antibodies: Longevity, breadth, and evasion by emerging viral variants
  publication-title: PloS Med
  doi: 10.1371/journal.pmed.1003656
– volume: 18
  year: 2000
  ident: B12
  article-title: Accessing complexity: the dynamics of virus-specific T cell responses
  publication-title: Annu Rev Immunol
  doi: 10.1146/annurev.immunol.18.1.561
– volume: 27
  start-page: 379
  year: 1948
  ident: B50
  article-title: A mathematical theory of communication
  publication-title: Bell System Tech J
  doi: 10.1002/j.1538-7305.1948.tb01338.x
– volume: 29
  year: 2011
  ident: B5
  article-title: Follicular helper CD4 T cells (TFH)
  publication-title: Annu Rev Immunol
  doi: 10.1146/annurev-immunol-031210-101400
– volume: 19
  year: 2009
  ident: B52
  article-title: Circos: an information aesthetic for comparative genomics
  publication-title: Genome Res
  doi: 10.1101/gr.092759.109
– volume: 2
  start-page: 100204
  year: 2021
  ident: B65
  article-title: Comprehensive analysis of T cell immunodominance and immunoprevalence of SARS-CoV-2 epitopes in COVID-19 cases
  publication-title: Cell Rep Med
  doi: 10.1016/j.xcrm.2021.100204
– volume: 4
  year: 2013
  ident: B13
  article-title: Innate and adaptive immunity in long-term non-progression in HIV disease
  publication-title: Front Immunol
  doi: 10.3389/fimmu.2013.00095
– volume: 587
  year: 2020
  ident: B18
  article-title: SARS-CoV-2-reactive T cells in healthy donors and patients with COVID-19
  publication-title: Nature
  doi: 10.1038/s41586-020-2598-9
– year: 2022
  ident: B87
  article-title: Human leukocyte antigen alleles associate with COVID-19 vaccine immunogenicity and risk of breakthrough infection
  publication-title: Nat Med
  doi: 10.1038/s41591-022-02078-6
– volume: 164
  year: 1986
  ident: B82
  article-title: Functional analysis of influenza-specific helper T cell clones in vivo. T cells specific for internal viral proteins provide cognate help for b cell responses to hemagglutinin
  publication-title: J Exp Med
  doi: 10.1084/jem.164.4.1114
– volume: 34
  year: 2011
  ident: B70
  article-title: Human blood CXCR5(+)CD4(+) T cells are counterparts of T follicular cells and contain specific subsets that differentially support antibody secretion
  publication-title: Immunity
  doi: 10.1016/j.immuni.2010.12.012
– volume: 38
  start-page: 110345
  year: 2022
  ident: B57
  article-title: Maintenance of broad neutralizing antibodies and memory b cells 1 year post-infection is predicted by SARS-CoV-2-specific CD4+ T cell responses
  publication-title: Cell Rep
  doi: 10.1016/j.celrep.2022.110345
– volume: 103
  year: 2004
  ident: B71
  article-title: Identification of circulating antigen-specific CD4+ T lymphocytes with a CCR5+, cytotoxic phenotype in an HIV-1 long-term nonprogressor and in CMV infection
  publication-title: Blood
  doi: 10.1182/blood-2003-08-2765
– volume: 23
  start-page: 101212
  year: 2020
  ident: B78
  article-title: Proteolytic cleavage of the SARS-CoV-2 spike protein and the role of the novel S1/S2 site
  publication-title: iScience
  doi: 10.1016/j.isci.2020.101212
– volume: 25
  start-page: 103656
  year: 2022
  ident: B67
  article-title: Early expansion of CD38+ICOS+ GC tfh in draining lymph nodes during influenza vaccination immune response
  publication-title: iScience
  doi: 10.1016/j.isci.2021.103656
– volume: 184
  start-page: 3573
  year: 2021
  ident: B48
  article-title: Integrated analysis of multimodal single-cell data
  publication-title: Cell
  doi: 10.1016/j.cell.2021.04.048
– volume: 54
  start-page: 1055
  year: 2021
  ident: B26
  article-title: CD8(+) T cells specific for an immunodominant SARS-CoV-2 nucleocapsid epitope cross-react with selective seasonal coronaviruses
  publication-title: Immunity
  doi: 10.1016/j.immuni.2021.04.006
– year: 2020
  ident: B53
  article-title: A large-scale database of T-cell receptor beta (TCRβ) sequences and binding associations from natural and synthetic exposure to SARS-CoV-2
  publication-title: Res Sq
  doi: 10.21203/rs.3.rs-51964/v1
– volume: 110
  year: 2007
  ident: B55
  article-title: Activation-induced expression of CD137 permits detection, isolation, and expansion of the full repertoire of CD8+ T cells responding to antigen without requiring knowledge of epitope specificities
  publication-title: Blood
  doi: 10.1182/blood-2006-11-056168
– volume: 368
  year: 2013
  ident: B4
  article-title: Designing tomorrow's vaccines
  publication-title: N Engl J Med
  doi: 10.1056/NEJMra1204186
– volume: 34
  year: 2016
  ident: B10
  article-title: The primary immune response to vaccinia virus vaccination includes cells with a distinct cytotoxic effector CD4 T-cell phenotype
  publication-title: Vaccine
  doi: 10.1016/j.vaccine.2016.09.009
– volume: 5
  start-page: 73
  year: 2019
  ident: B34
  article-title: Possible clearance of transfusion-acquired nef/LTR-deleted attenuated HIV-1 infection by an elite controller with CCR5 Δ32 heterozygous and HLA-B57 genotype
  publication-title: J Virus Eradication
  doi: 10.1016/S2055-6640(20)30056-X
– volume: 7
  year: 2022
  ident: B37
  article-title: Platform for isolation and characterization of SARS-CoV-2 variants enables rapid characterisation of omicron in Australia
  publication-title: Nat Microbiol
  doi: 10.1038/s41564-022-01135-7
– volume: 280
  year: 1979
  ident: B81
  article-title: T Cells primed by influenza virion internal components can cooperate in the antibody response to haemagglutinin
  publication-title: Nature
  doi: 10.1038/280147a0
– volume: 8
  year: 2013
  ident: B69
  article-title: Characterization of transcription factor phenotypes within antigen-specific CD4+ T cells using qualitative multiplex single-cell RT-PCR
  publication-title: PloS One
  doi: 10.1371/journal.pone.0074946
– volume: 54
  start-page: 1066
  year: 2021
  ident: B28
  article-title: CD8(+) T cells specific for an immunodominant SARS-CoV-2 nucleocapsid epitope display high naive precursor frequency and TCR promiscuity
  publication-title: Immunity
  doi: 10.1016/j.immuni.2021.04.009
– volume: 31
  year: 2015
  ident: B47
  article-title: Change-O: a toolkit for analyzing large-scale b cell immunoglobulin repertoire sequencing data
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btv359
– volume: 12
  year: 2021
  ident: B6
  article-title: Declining levels of neutralizing antibodies against SARS-CoV-2 in convalescent COVID-19 patients one year post symptom onset
  publication-title: Front Immunol
  doi: 10.3389/fimmu.2021.708523
– volume: 34
  year: 2020
  ident: B32
  article-title: Mapping the extent of heterogeneity of human CCR5+ CD4+ T cells in peripheral blood and lymph nodes
  publication-title: AIDS
  doi: 10.1097/QAD.0000000000002503
– volume: 14
  year: 2017
  ident: B38
  article-title: Simultaneous epitope and transcriptome measurement in single cells
  publication-title: Nat Methods
  doi: 10.1038/nmeth.4380
– volume: 370
  year: 2020
  ident: B60
  article-title: Selective and cross-reactive SARS-CoV-2 T cell epitopes in unexposed humans
  publication-title: Science
  doi: 10.1126/science.abd3871
– volume: 144
  year: 1990
  ident: B76
  article-title: A monoclonal antibody reactive with a 15-kDa cytoplasmic granule- associated protein defines a subpopulation of CD8+ T lymphocytes
  publication-title: J Immunol
  doi: 10.4049/jimmunol.144.2.574
– volume: 181
  start-page: 1489
  year: 2020
  ident: B15
  article-title: Targets of T cell responses to SARS-CoV-2 coronavirus in humans with COVID-19 disease and unexposed individuals
  publication-title: Cell
  doi: 10.1016/j.cell.2020.05.015
– volume: 4
  year: 2019
  ident: B49
  article-title: Welcome to the tidyverse
  publication-title: J Open Source Software
  doi: 10.21105/joss.01686
– volume: 48
  year: 2019
  ident: B54
  article-title: VDJdb in 2019: Database extension, new analysis infrastructure and a T-cell receptor motif compendium
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkz874
– volume: 372
  year: 2021
  ident: B21
  article-title: Clonal analysis of immunodominance and cross-reactivity of the CD4 T cell response to SARS-CoV-2
  publication-title: Science
  doi: 10.1126/science.abg8985
– volume: 67
  start-page: 1
  year: 2015
  ident: B51
  article-title: Entropart: An r package to measure and partition diversity
  publication-title: J Stat Software
  doi: 10.18637/jss.v067.i08
– volume: 28
  year: 2008
  ident: B83
  article-title: Selective CD4+ T cell help for antibody responses to a large viral pathogen: deterministic linkage of specificities
  publication-title: Immunity
  doi: 10.1016/j.immuni.2008.04.018
– volume: 183
  year: 2009
  ident: B20
  article-title: High levels of human antigen-specific CD4+ T cells in peripheral blood revealed by stimulated coexpression of CD25 and CD134 (OX40)
  publication-title: J Immunol
  doi: 10.4049/jimmunol.0803548
– volume: 80
  year: 2006
  ident: B62
  article-title: Infection of CD127+ (interleukin-7 receptor+) CD4+ cells and overexpression of CTLA-4 are linked to loss of antigen-specific CD4 T cells during primary human immunodeficiency virus type 1 infection
  publication-title: J Virol
  doi: 10.1128/JVI.00249-06
– volume: 8
  year: 2017
  ident: B68
  article-title: HIV-1 and SIV predominantly use CCR5 expressed on a precursor population to establish infection in T follicular helper cells
  publication-title: Front Immunol
  doi: 10.3389/fimmu.2017.00376
– volume: 13
  start-page: 1922134
  year: 2021
  ident: B31
  article-title: Potent SARS-CoV-2 binding and neutralization through maturation of iconic SARS-CoV-1 antibodies
  publication-title: MAbs
  doi: 10.1080/19420862.2021.1922134
– volume: 20
  start-page: 296
  year: 2019
  ident: B40
  article-title: Normalization and variance stabilization of single-cell RNA-seq data using regularized negative binomial regression
  publication-title: Genome Biol
  doi: 10.1186/s13059-019-1874-1
– volume: 371
  year: 2021
  ident: B59
  article-title: Immunological memory to SARS-CoV-2 assessed for up to 8 months after infection
  publication-title: Science
  doi: 10.1126/science.abf4063
– volume: 12
  start-page: 4043
  year: 2021
  ident: B19
  article-title: SARS-CoV-2-specific T cell memory is sustained in COVID-19 convalescent patients for 10 months with successful development of stem cell-like memory T cells
  publication-title: Nat Commun
  doi: 10.1038/s41467-021-24377-1
– volume: 33
  year: 2017
  ident: B42
  article-title: Scater: pre-processing, quality control, normalization and visualization of single-cell RNA-seq data in r
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btw777
– volume: 10
  year: 2019
  ident: B73
  article-title: Maintenance of functional CD57+ cytolytic CD4+ T cells in HIV+ elite controllers
  publication-title: Front Immunol
  doi: 10.3389/fimmu.2019.01844
– volume: 44
  year: 2014
  ident: B56
  article-title: Human antigen-specific CD4(+) CD25(+) CD134(+) CD39(+) T cells are enriched for regulatory T cells and comprise a substantial proportion of recall responses
  publication-title: Eur J Immunol
  doi: 10.1002/eji.201344102
– volume: 5
  year: 2020
  ident: B17
  article-title: Phenotype and kinetics of SARS-CoV-2-specific T cells in COVID-19 patients with acute respiratory distress syndrome
  publication-title: Sci Immunol
  doi: 10.1126/sciimmunol.abd2071
– year: 2021
  ident: B84
  article-title: A glycan gate controls opening of the SARS-CoV-2 spike protein
  publication-title: bioRxiv
  doi: 10.1101/2021.02.15.431212
– volume: 26
  year: 2020
  ident: B14
  article-title: Humoral and circulating follicular helper T cell responses in recovered patients with COVID-19
  publication-title: Nat Med
  doi: 10.1038/s41591-020-0995-0
– volume: 8
  year: 2007
  ident: B63
  article-title: Upregulation of CTLA-4 by HIV-specific CD4(+) T cells correlates with disease progression and defines a reversible immune dysfunction
  publication-title: Nat Immunol
  doi: 10.1038/ni1515
– volume: 181
  start-page: 271
  year: 2020
  ident: B79
  article-title: SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor
  publication-title: Cell
  doi: 10.1016/j.cell.2020.02.052
– volume: 23
  year: 2022
  ident: B30
  article-title: Immunological dysfunction persists for 8 months following initial mild-to-moderate SARS-CoV-2 infection
  publication-title: Nat Immunol
  doi: 10.1038/s41590-021-01113-x
– volume: 214
  year: 2021
  ident: B29
  article-title: Persistent symptoms up to four months after community and hospital-managed SARS-CoV-2 infection
  publication-title: Med J Aust
  doi: 10.5694/mja2.50963
– volume: 96
  year: 2022
  ident: B80
  article-title: Distinctive roles of furin and TMPRSS2 in SARS-CoV-2 infectivity
  publication-title: J Virol
  doi: 10.1128/jvi.00128-22
– volume: 6
  year: 2021
  ident: B24
  article-title: Severely ill COVID-19 patients display impaired exhaustion features in SARS-CoV-2-reactive CD8(+) T cells
  publication-title: Sci Immunol
  doi: 10.1126/sciimmunol.abe4782
SSID ssj0000493335
Score 2.4076116
Snippet Long-term immunity to SARS-CoV-2 infection, including neutralizing antibodies and T cell-mediated immunity, is required in a very large majority of the...
BackgroundLong-term immunity to SARS-CoV-2 infection, including neutralizing antibodies and T cell-mediated immunity, is required in a very large majority of...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 1032911
SubjectTerms Antibodies, Neutralizing
CD4 function
CD4 T cells
CD4-Positive T-Lymphocytes
COVID-19
Epitopes, T-Lymphocyte
Humans
Immunology
neutralizing antibodies
proliferation
SARS-CoV-2
Title High titre neutralizing antibodies in response to SARS–CoV–2 infection require RBD–specific CD4 T cells that include proliferative memory cells
URI https://www.ncbi.nlm.nih.gov/pubmed/36544780
https://www.proquest.com/docview/2757161240
https://pubmed.ncbi.nlm.nih.gov/PMC9762180
https://doaj.org/article/54f0e1950fa84edf8548d013da07f7a4
Volume 13
WOSCitedRecordID wos000899745100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Open Access Full Text
  customDbUrl:
  eissn: 1664-3224
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000493335
  issn: 1664-3224
  databaseCode: DOA
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1664-3224
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000493335
  issn: 1664-3224
  databaseCode: M~E
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Na9wwEBVtaKGXkn5vP4IKvRUTW5It-5hsEnpoQ0nSsjdjSyPikLXDrl1IDqH_IeQP5pd0xvIuu6W0l158sCQsZsbMG_vpDWMfnLRl6MIyUHHmAlWmYVBgXgoSkTnM78Zo0-vMftaHh-lkkn1dafVFnDAvD-wNtx0rFwL1KnVFqsC6FCG2Rdxii1A7XfRKoKHOVoqpM497pZSxPyWDVVi27arptMN6UAg6Zy6yKFrLRL1g_59Q5u9kyZXsc7DJHg-wke_47T5h96B-yh76RpKXz9gt0TU4On4GvIau_3pxhUmJo92qsiGmIK9qPvOEWOBtw493jo7vft6Mm-94FXxByqJJRA4GfrS7hyN0EpPYRHy8p_gJp-_8c96eFi2uMOedBX5BfX8ceAVxPiXm7qWf95x9O9g_GX8KhoYLgVFJ2galc0obJxIbaZlAYsJSgBWlcIL-whunSyFJrceC1NqRlFeSKAcyxVtZ5OQLtlE3NbxiXBprrI4F-g5BY5aWEpQscDUUCWhjRyxaGD83gxo5NcU4z7EqIYflvcNyclg-OGzEPi7XXHgtjr_O3iWfLmeSjnZ_A6MrH6Ir_1d0jdj7RUTk-N6R8Yoamm6eCx1jqYnoKByxlz5Clo9CGymlUxzRa7Gztpf1kbo67bW9ER0i6Apf_4_Nv2GPyCA9-SZ-yzbaWQfv2APzo63msy12X0_Srf61weuX6_1f2YsiWg
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High+titre+neutralizing+antibodies+in+response+to+SARS%E2%80%93CoV%E2%80%932+infection+require+RBD%E2%80%93specific+CD4+T+cells+that+include+proliferative+memory+cells&rft.jtitle=Frontiers+in+immunology&rft.au=Phetsouphanh%2C+Chansavath&rft.au=Khoo%2C+Weng+Hua&rft.au=Jackson%2C+Katherine&rft.au=Klemm%2C+Vera&rft.date=2022-12-05&rft.issn=1664-3224&rft.eissn=1664-3224&rft.volume=13&rft_id=info:doi/10.3389%2Ffimmu.2022.1032911&rft.externalDBID=n%2Fa&rft.externalDocID=10_3389_fimmu_2022_1032911
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1664-3224&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1664-3224&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1664-3224&client=summon