Innovative flexural strengthening of RC beams using self-anchored prestressed CFRP plates: Experimental and numerical investigations

•Self-anchored prestressed CFRP plates without the need for mechanical end anchorage.•Significant improvement in bending stiffness, crack width, and load-carrying capacity.•Nonlinear finite element analyses of flexural cracks and crack-induced debonding of CFRP plates. This paper presents an innovat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Engineering structures Jg. 243; S. 112687
Hauptverfasser: Yang, Jincheng, Johansson, Morgan, Al-Emrani, Mohammad, Haghani, Reza
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Kidlington Elsevier Ltd 15.09.2021
Elsevier BV
Schlagworte:
ISSN:0141-0296, 1873-7323, 1873-7323
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract •Self-anchored prestressed CFRP plates without the need for mechanical end anchorage.•Significant improvement in bending stiffness, crack width, and load-carrying capacity.•Nonlinear finite element analyses of flexural cracks and crack-induced debonding of CFRP plates. This paper presents an innovative method of prestressing carbon fibre reinforced polymer (CFRP) plates used as externally bonded reinforcement for flexural strengthening of reinforced concrete (RC) beams. The proposed method aims to achieve self-anchorage of the prestressed CFRP plate and thus eliminate the need for conventional mechanical anchorage at its ends. Experimental tests of RC beams in four-point bending were conducted to investigate the strengthening efficiency of the self-anchored prestressed CFRP plate. The experimental results showed that using the self-anchored prestressed CFRP significantly improved the flexural performance of the strengthened beam in terms of bending stiffness, crack widths, and load-carrying capacity. The utilisation ratio of the prestressed CFRP plate reached 81% at its debonding. Numerical analyses using nonlinear finite element (FE) method were conducted to model the tested specimens. Based on the reliable simulation of flexural cracks and crack-induced CFRP debonding, parametric studies were conducted using FE analyses, in order to investigate the effect of prestressing levels and the CFRP plate’s stiffness on the flexural behaviour. Recommendations were then made for selecting a proper prestressing level and the mechanical properties of CFRP plates.
AbstractList This paper presents an innovative method of prestressing carbon fibre reinforced polymer (CFRP) plates used as externally bonded reinforcement for flexural strengthening of reinforced concrete (RC) beams. The proposed method aims to achieve self-anchorage of the prestressed CFRP plate and thus eliminate the need for conventional mechanical anchorage at its ends. Experimental tests of RC beams in four-point bending were conducted to investigate the strengthening efficiency of the self-anchored prestressed CFRP plate. The experimental results showed that using the self-anchored prestressed CFRP significantly improved the flexural performance of the strengthened beam in terms of bending stiffness, crack widths, and load-carrying capacity. The utilisation ratio of the prestressed CFRP plate reached 81% at its debonding. Numerical analyses using nonlinear finite element (FE) method were conducted to model the tested specimens. Based on the reliable simulation of flexural cracks and crack-induced CFRP debonding, parametric studies were conducted using FE analyses, in order to investigate the effect of prestressing levels and the CFRP plate's stiffness on the flexural behaviour. Recommendations were then made for selecting a proper prestressing level and the mechanical properties of CFRP plates.
•Self-anchored prestressed CFRP plates without the need for mechanical end anchorage.•Significant improvement in bending stiffness, crack width, and load-carrying capacity.•Nonlinear finite element analyses of flexural cracks and crack-induced debonding of CFRP plates. This paper presents an innovative method of prestressing carbon fibre reinforced polymer (CFRP) plates used as externally bonded reinforcement for flexural strengthening of reinforced concrete (RC) beams. The proposed method aims to achieve self-anchorage of the prestressed CFRP plate and thus eliminate the need for conventional mechanical anchorage at its ends. Experimental tests of RC beams in four-point bending were conducted to investigate the strengthening efficiency of the self-anchored prestressed CFRP plate. The experimental results showed that using the self-anchored prestressed CFRP significantly improved the flexural performance of the strengthened beam in terms of bending stiffness, crack widths, and load-carrying capacity. The utilisation ratio of the prestressed CFRP plate reached 81% at its debonding. Numerical analyses using nonlinear finite element (FE) method were conducted to model the tested specimens. Based on the reliable simulation of flexural cracks and crack-induced CFRP debonding, parametric studies were conducted using FE analyses, in order to investigate the effect of prestressing levels and the CFRP plate’s stiffness on the flexural behaviour. Recommendations were then made for selecting a proper prestressing level and the mechanical properties of CFRP plates.
ArticleNumber 112687
Author Yang, Jincheng
Johansson, Morgan
Al-Emrani, Mohammad
Haghani, Reza
Author_xml – sequence: 1
  givenname: Jincheng
  surname: Yang
  fullname: Yang, Jincheng
  organization: Division of Structural Engineering, Department of Architecture and Civil Engineering, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
– sequence: 2
  givenname: Morgan
  surname: Johansson
  fullname: Johansson, Morgan
  organization: Division of Structural Engineering, Department of Architecture and Civil Engineering, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
– sequence: 3
  givenname: Mohammad
  surname: Al-Emrani
  fullname: Al-Emrani, Mohammad
  organization: Division of Structural Engineering, Department of Architecture and Civil Engineering, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
– sequence: 4
  givenname: Reza
  surname: Haghani
  fullname: Haghani, Reza
  email: reza.haghani@chalmers.se
  organization: Division of Structural Engineering, Department of Architecture and Civil Engineering, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
BackLink https://research.chalmers.se/publication/524650$$DView record from Swedish Publication Index (Chalmers tekniska högskola)
BookMark eNqFkUFv1DAQhSNUJLaF30Akzllsx46zSByqVQuVKoEKnK3JZLzrVdYJdrItd344TkM5cOnJ9mjeN_P8zrMz33vKsrecrTnj1fvDmvwujmHCcS2Y4GvORVXrF9mK17osdCnKs2zFuOQFE5vqVXYe44ExJuqarbLfN973JxjdiXLb0cMUoMsTLTHHPXnnd3lv87tt3hAcYz7FuRKpswV43PeB2nwINAtiTPft9d3XfOhgpPghv3oYKLgj-TExwbe5n46pgOnl_CmJ3C4N7n18nb200EV68_e8yH5cX33ffi5uv3y62V7eFiireiygbqHEDTIgUqXQWqqqJGwQpSytFVBVSimRLroGaaWSkgvYMNU0qFXVlhfZt4Ub72mYGjOk7SD8Mj04kwwQBNwb3EOX1owmkmFS1mhla4QW3Ei50QYQ0dgKESy3wDciUd8t1CH0P6dkyxz6KfhkxAhVSZ5Gq7nr49KFoY8xkDXoxkf7YwDXGc7MHKc5mH9xmjlOs8SZ9Po__dP2zysvFyWlrz05CiaiI4_UukCpt-3ds4w_L8PF3g
CitedBy_id crossref_primary_10_1016_j_tust_2024_105699
crossref_primary_10_1016_j_engfracmech_2025_110922
crossref_primary_10_1016_j_cscm_2023_e02270
crossref_primary_10_1016_j_istruc_2025_109581
crossref_primary_10_1016_j_istruc_2025_110230
crossref_primary_10_1061__ASCE_CC_1943_5614_0001267
crossref_primary_10_1016_j_heliyon_2024_e26995
crossref_primary_10_1016_j_engstruct_2021_113078
crossref_primary_10_1016_j_conbuildmat_2024_137118
crossref_primary_10_1016_j_jmapro_2024_07_125
crossref_primary_10_1016_j_compstruct_2023_117571
crossref_primary_10_1061_JCCOF2_CCENG_4247
crossref_primary_10_1177_13694332251334839
crossref_primary_10_1016_j_engstruct_2025_120677
crossref_primary_10_1080_09243046_2025_2469973
crossref_primary_10_1016_j_engfracmech_2025_110878
crossref_primary_10_3390_ma16051813
crossref_primary_10_1016_j_ultsonch_2022_106126
crossref_primary_10_1016_j_conbuildmat_2023_134409
crossref_primary_10_1007_s13369_024_08908_8
crossref_primary_10_1016_j_engfracmech_2025_111447
crossref_primary_10_1016_j_engstruct_2023_115823
crossref_primary_10_1016_j_conbuildmat_2024_137964
crossref_primary_10_1016_j_advengsoft_2025_104041
crossref_primary_10_1016_j_istruc_2024_106991
crossref_primary_10_1016_j_engstruct_2023_116310
crossref_primary_10_3390_polym15030549
crossref_primary_10_1016_j_conbuildmat_2022_129309
crossref_primary_10_1016_j_istruc_2025_110008
crossref_primary_10_1016_j_jobe_2023_107528
crossref_primary_10_3390_polym14245498
Cites_doi 10.1016/j.matdes.2013.07.087
10.1016/j.conbuildmat.2008.07.013
10.1061/(ASCE)1090-0268(2008)12:1(44)
10.3390/ma14030506
10.1016/j.engstruct.2005.01.014
10.1061/(ASCE)1090-0268(2001)5:4(221)
10.1016/j.compositesb.2017.03.049
10.1016/j.engstruct.2019.109542
10.1016/j.engstruct.2019.109416
10.1061/(ASCE)1090-0268(1998)2:3(132)
10.1007/BF02486267
10.1016/j.compositesb.2005.03.002
10.1016/j.compositesb.2011.07.006
10.1061/(ASCE)1090-0268(2002)6:2(73)
10.1016/j.engstruct.2012.06.047
10.2749/stockholm.2016.1551
10.1016/j.conbuildmat.2015.02.051
10.1061/(ASCE)CC.1943-5614.0000125
10.1016/j.tws.2016.12.024
10.1260/1369433053749607
10.3390/jcs5010019
10.1260/136943303322419214
10.1002/pse.76
10.1061/(ASCE)CC.1943-5614.0000081
10.1007/s00107-015-0970-5
10.1016/j.conbuildmat.2010.11.100
10.1007/s40069-013-0029-0
10.1016/j.tws.2008.10.019
10.1002/9783433604090
10.1016/j.compstruct.2006.04.037
10.1016/S1359-8368(97)00043-7
10.1061/(ASCE)CC.1943-5614.0000276
10.1016/j.phpro.2014.07.002
ContentType Journal Article
Copyright 2021 The Author(s)
Copyright Elsevier BV Sep 15, 2021
Copyright_xml – notice: 2021 The Author(s)
– notice: Copyright Elsevier BV Sep 15, 2021
DBID 6I.
AAFTH
AAYXX
CITATION
7SR
7ST
8BQ
8FD
C1K
FR3
JG9
KR7
SOI
ABBSD
ADTPV
AOWAS
D8T
F1S
ZZAVC
DOI 10.1016/j.engstruct.2021.112687
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Engineered Materials Abstracts
Environment Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Materials Research Database
Civil Engineering Abstracts
Environment Abstracts
SWEPUB Chalmers tekniska högskola full text
SwePub
SwePub Articles
SWEPUB Freely available online
SWEPUB Chalmers tekniska högskola
SwePub Articles full text
DatabaseTitle CrossRef
Materials Research Database
Civil Engineering Abstracts
Engineered Materials Abstracts
Technology Research Database
Engineering Research Database
Environment Abstracts
METADEX
Environmental Sciences and Pollution Management
DatabaseTitleList
Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-7323
ExternalDocumentID oai_research_chalmers_se_0448cf4d_2721_4497_accc_f6ccaf1fa192
10_1016_j_engstruct_2021_112687
S0141029621008373
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABJNI
ABMAC
ABQEM
ABQYD
ABYKQ
ACDAQ
ACGFS
ACIWK
ACLVX
ACRLP
ACSBN
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ATOGT
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
IMUCA
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SPC
SPCBC
SSE
SST
SSZ
T5K
TN5
XPP
ZMT
~02
~G-
29G
9DU
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
SET
SEW
VH1
WUQ
ZY4
~HD
7SR
7ST
8BQ
8FD
AGCQF
C1K
FR3
JG9
KR7
SOI
ABBSD
ADTPV
AOWAS
D8T
F1S
ZZAVC
ID FETCH-LOGICAL-c468t-a8da3c9c0aee532774563ecbcc443ff2a665552f2a78a4f454412a905bbc756d3
ISICitedReferencesCount 37
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000681263100003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0141-0296
1873-7323
IngestDate Wed Nov 05 04:45:34 EST 2025
Wed Aug 13 09:17:07 EDT 2025
Sat Nov 29 07:24:41 EST 2025
Tue Nov 18 20:41:43 EST 2025
Fri Feb 23 02:37:54 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Flexural strengthening
Nonlinear finite element analysis
Carbon fibre reinforced polymer (CFRP)
Prestress
Intermediate crack-induced debonding
Self-anchorage
Reinforced concrete (RC)
Language English
License This is an open access article under the CC BY license.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c468t-a8da3c9c0aee532774563ecbcc443ff2a665552f2a78a4f454412a905bbc756d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://research.chalmers.se/publication/524650
PQID 2564175652
PQPubID 2045481
ParticipantIDs swepub_primary_oai_research_chalmers_se_0448cf4d_2721_4497_accc_f6ccaf1fa192
proquest_journals_2564175652
crossref_citationtrail_10_1016_j_engstruct_2021_112687
crossref_primary_10_1016_j_engstruct_2021_112687
elsevier_sciencedirect_doi_10_1016_j_engstruct_2021_112687
PublicationCentury 2000
PublicationDate 2021-09-15
PublicationDateYYYYMMDD 2021-09-15
PublicationDate_xml – month: 09
  year: 2021
  text: 2021-09-15
  day: 15
PublicationDecade 2020
PublicationPlace Kidlington
PublicationPlace_xml – name: Kidlington
PublicationTitle Engineering structures
PublicationYear 2021
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Kim, Wight, Green (b0110) 2008; 12
Jirásek, Bažant (b0215) 2002
Linghoff, Haghani, Al-Emrani (b0025) 2009; 47
ASTM International. A615/A615M-20 Standard Specification for Deformed and Plain Carbon-Steel Bars for Concrete Reinforcement. West Conshohocken, PA: ASTM International; 2020.
Aslam, Shafigh, Jumaat, Shah (b0070) 2015; 82
Grelle, Sneed (b0140) 2013; 7
Colombi, Poggi (b0030) 2006; 37
Triantafillou, Deskovic, Deuring (b0065) 1992; 89
Garden, Hollaway (b0090) 1998; 29
fib. CEB-FIP Model Code 1990: Design Code. fib Fédération internationale du béton; 1993.
Kliger, Haghani, Brunner, Harte, Schober (b0045) 2016; 74
Czaderski, Martinelli, Michels, Motavalli (b0150) 2012; 43
Mathern, Yang (b0205) 2021; 14
Smith, Teng (b0100) 2003; 6
Haghani R, Al-Emrani M. A new method for application of pre-stressed FRP laminates for strengthening of concrete structures. In: Proceeding of the 19th IABSE Congress, Stockholm; 2016. p. 1556–63.
Naser, Hawileh, Abdalla (b0170) 2021; 5
Heshmati, Haghani, Al-Emrani (b0200) 2017; 119
Ghafoori, Schumacher, Motavalli (b0040) 2012; 45
fib. fib Model Code for Concrete Structures 2010. John Wiley & Sons; 2013.
Simulia. ABAQUS 6.14: User’s Manual. Providence, RI: Dassault Systems; 2014.
Haghani, Al-Emrani, Kliger (b0035) 2009; 23
Karam, Hawileh, El Maaddawy, Abdalla (b0095) 2017; 112
Al-Amery, Al-Mahaidi (b0105) 2006; 75
Naser, Hawileh, Abdalla (b0010) 2019; 198
Yang, Haghani, Al-Emrani (b0080) 2019; 197
Zhang, Smith, Kim (b0125) 2012; 32
Stöcklin, Meier (b0145) 2001
Lam, Teng (b0115) 2001; 5
Haghani, Al-Emrani, Kliger (b0160) 2015
Bažant, Oh (b0210) 1983; 16
El-Hacha, Wight, Green (b0075) 2001; 3
CEN. EN 1992-1-1 Eurocode 2: Design of concrete structures - Part 1-1: General ruels and rules for buildings. Brussels: CEN; 2005.
Bakis, Bank, Brown, Cosenza, Davalos, Lesko (b0005) 2002; 6
Lu, Teng, Ye, Jiang (b0225) 2005; 27
Ali, Abdalla, Hawileh, Galal (b0130) 2014; 55
Haghani R, Al-Emrani M, Kliger R. Control of interfacial stresses in beams strengthened with prestressed CFRP laminates. In: Proceedings of the 1st Asia-Pacific Conference on FRP in Structures, APFIS 2007, vol. 2. p. 1053–60.
.
Kotynia R, Staskiewicz M, Michels J, Czaderski C, Motavalli M. Pioneering strengthening of bridge girders with pretensioned CFRP laminates in Poland. In: Proceedings of SMAR 2015 the 3rd conference on smart monitoring, assessment and rehabilitation of civil structures; 2015. 8 pp.
Kotynia, Walendziak, Stoecklin, Meier (b0015) 2010; 15
Motavalli, Czaderski, Pfyl-Lang (b0055) 2011; 15
Hawileh, Rasheed, Abdalla, Al-Tamimi (b0020) 2014; 53
Eshwar, Ibell, Nanni (b0120) 2005; 8
Kalfat, Al-Mahaidi, Smith (b0135) 2013; 17
Triantafillou, Deskovic (b0060) 1991; 117
Spadea, Bencardino, Swamy (b0085) 1998; 2
ASTM International. ASTM D3039 / D3039M-17 Standard Test Method for Tensile Properties of Polymer Matrix Composite Materials. West Conshohocken, PA: ASTM International; 2017.
10.1016/j.engstruct.2021.112687_b0190
Karam (10.1016/j.engstruct.2021.112687_b0095) 2017; 112
10.1016/j.engstruct.2021.112687_b0050
Jirásek (10.1016/j.engstruct.2021.112687_b0215) 2002
Grelle (10.1016/j.engstruct.2021.112687_b0140) 2013; 7
Smith (10.1016/j.engstruct.2021.112687_b0100) 2003; 6
10.1016/j.engstruct.2021.112687_b0195
Lu (10.1016/j.engstruct.2021.112687_b0225) 2005; 27
10.1016/j.engstruct.2021.112687_b0175
10.1016/j.engstruct.2021.112687_b0155
Al-Amery (10.1016/j.engstruct.2021.112687_b0105) 2006; 75
Kim (10.1016/j.engstruct.2021.112687_b0110) 2008; 12
Lam (10.1016/j.engstruct.2021.112687_b0115) 2001; 5
Czaderski (10.1016/j.engstruct.2021.112687_b0150) 2012; 43
Kliger (10.1016/j.engstruct.2021.112687_b0045) 2016; 74
Ali (10.1016/j.engstruct.2021.112687_b0130) 2014; 55
Aslam (10.1016/j.engstruct.2021.112687_b0070) 2015; 82
Naser (10.1016/j.engstruct.2021.112687_b0010) 2019; 198
Colombi (10.1016/j.engstruct.2021.112687_b0030) 2006; 37
Triantafillou (10.1016/j.engstruct.2021.112687_b0060) 1991; 117
Kalfat (10.1016/j.engstruct.2021.112687_b0135) 2013; 17
Mathern (10.1016/j.engstruct.2021.112687_b0205) 2021; 14
Bakis (10.1016/j.engstruct.2021.112687_b0005) 2002; 6
Yang (10.1016/j.engstruct.2021.112687_b0080) 2019; 197
Haghani (10.1016/j.engstruct.2021.112687_b0160) 2015
Haghani (10.1016/j.engstruct.2021.112687_b0035) 2009; 23
10.1016/j.engstruct.2021.112687_b0180
Naser (10.1016/j.engstruct.2021.112687_b0170) 2021; 5
Bažant (10.1016/j.engstruct.2021.112687_b0210) 1983; 16
Ghafoori (10.1016/j.engstruct.2021.112687_b0040) 2012; 45
Linghoff (10.1016/j.engstruct.2021.112687_b0025) 2009; 47
10.1016/j.engstruct.2021.112687_b0185
Triantafillou (10.1016/j.engstruct.2021.112687_b0065) 1992; 89
Zhang (10.1016/j.engstruct.2021.112687_b0125) 2012; 32
10.1016/j.engstruct.2021.112687_b0165
10.1016/j.engstruct.2021.112687_b0220
Kotynia (10.1016/j.engstruct.2021.112687_b0015) 2010; 15
Stöcklin (10.1016/j.engstruct.2021.112687_b0145) 2001
El-Hacha (10.1016/j.engstruct.2021.112687_b0075) 2001; 3
Heshmati (10.1016/j.engstruct.2021.112687_b0200) 2017; 119
Eshwar (10.1016/j.engstruct.2021.112687_b0120) 2005; 8
Motavalli (10.1016/j.engstruct.2021.112687_b0055) 2011; 15
Garden (10.1016/j.engstruct.2021.112687_b0090) 1998; 29
Hawileh (10.1016/j.engstruct.2021.112687_b0020) 2014; 53
Spadea (10.1016/j.engstruct.2021.112687_b0085) 1998; 2
References_xml – volume: 15
  start-page: 194
  year: 2011
  end-page: 205
  ident: b0055
  article-title: Prestressed CFRP for strengthening of reinforced concrete structures: Recent developments at Empa, Switzerland
  publication-title: J Compos Constr
– volume: 2
  start-page: 132
  year: 1998
  end-page: 137
  ident: b0085
  article-title: Structural behavior of composite RC beams with externally bonded CFRP
  publication-title: J Compos Constr
– reference: Haghani R, Al-Emrani M, Kliger R. Control of interfacial stresses in beams strengthened with prestressed CFRP laminates. In: Proceedings of the 1st Asia-Pacific Conference on FRP in Structures, APFIS 2007, vol. 2. p. 1053–60.
– volume: 3
  start-page: 111
  year: 2001
  end-page: 121
  ident: b0075
  article-title: Prestressed fibre-reinforced polymer laminates for strengthening structures
  publication-title: Prog Struct Engng Mater
– volume: 12
  start-page: 44
  year: 2008
  end-page: 52
  ident: b0110
  article-title: Flexural strengthening of RC beams with prestressed CFRP sheets: Using nonmetallic anchor systems
  publication-title: J Compos Constr
– reference: Haghani R, Al-Emrani M. A new method for application of pre-stressed FRP laminates for strengthening of concrete structures. In: Proceeding of the 19th IABSE Congress, Stockholm; 2016. p. 1556–63.
– volume: 45
  start-page: 270
  year: 2012
  end-page: 283
  ident: b0040
  article-title: Fatigue behavior of notched steel beams reinforced with bonded CFRP plates: Determination of prestressing level for crack arrest
  publication-title: Eng Struct
– volume: 37
  start-page: 64
  year: 2006
  end-page: 73
  ident: b0030
  article-title: An experimental, analytical and numerical study of the static behavior of steel beams reinforced by pultruded CFRP strips
  publication-title: Compos B Eng
– reference: ASTM International. A615/A615M-20 Standard Specification for Deformed and Plain Carbon-Steel Bars for Concrete Reinforcement. West Conshohocken, PA: ASTM International; 2020.
– volume: 75
  start-page: 457
  year: 2006
  end-page: 464
  ident: b0105
  article-title: Coupled flexural–shear retrofitting of RC beams using CFRP straps
  publication-title: Compos Struct
– volume: 43
  start-page: 398
  year: 2012
  end-page: 410
  ident: b0150
  article-title: Effect of curing conditions on strength development in an epoxy resin for structural strengthening
  publication-title: Compos B Eng
– volume: 117
  start-page: 1652
  year: 1991
  end-page: 1672
  ident: b0060
  article-title: Innovative prestressing with FRP sheets: Mechanics of short-term behavior
  publication-title: J Eng Mech
– reference: ASTM International. ASTM D3039 / D3039M-17 Standard Test Method for Tensile Properties of Polymer Matrix Composite Materials. West Conshohocken, PA: ASTM International; 2017.
– year: 2002
  ident: b0215
  article-title: Inelastic analysis of structures
– volume: 17
  start-page: 14
  year: 2013
  end-page: 33
  ident: b0135
  article-title: Anchorage devices used to improve the performance of reinforced concrete beams retrofitted with FRP composites: State-of-the-art review
  publication-title: J Compos Constr
– volume: 198
  year: 2019
  ident: b0010
  article-title: Fiber-reinforced polymer composites in strengthening reinforced concrete structures: A critical review
  publication-title: Eng Struct
– volume: 112
  start-page: 107
  year: 2017
  end-page: 117
  ident: b0095
  article-title: Experimental investigations of repair of pre-damaged steel-concrete composite beams using CFRP laminates and mechanical anchors
  publication-title: Thin-Walled Struct
– volume: 53
  start-page: 972
  year: 2014
  end-page: 982
  ident: b0020
  article-title: Behavior of reinforced concrete beams strengthened with externally bonded hybrid fiber reinforced polymer systems
  publication-title: Mater Des
– reference: fib. CEB-FIP Model Code 1990: Design Code. fib Fédération internationale du béton; 1993.
– volume: 27
  start-page: 920
  year: 2005
  end-page: 937
  ident: b0225
  article-title: Bond-slip models for FRP sheets/plates bonded to concrete
  publication-title: Eng Struct
– volume: 14
  start-page: 506
  year: 2021
  ident: b0205
  article-title: A practical finite element modeling strategy to capture cracking and crushing behavior of reinforced concrete structures
  publication-title: Materials
– volume: 8
  start-page: 55
  year: 2005
  end-page: 68
  ident: b0120
  article-title: Effectiveness of CFRP strengthening on curved soffit RC beams
  publication-title: Adv Struct Eng
– reference: Simulia. ABAQUS 6.14: User’s Manual. Providence, RI: Dassault Systems; 2014.
– volume: 5
  start-page: 19
  year: 2021
  ident: b0170
  article-title: Modeling strategies of finite element simulation of reinforced concrete beams strengthened with FRP: A review
  publication-title: J Compos Sci
– volume: 23
  start-page: 1413
  year: 2009
  end-page: 1422
  ident: b0035
  article-title: Interfacial stress analysis of geometrically modified adhesive joints in steel beams strengthened with FRP laminates
  publication-title: Constr Build Mater
– start-page: 1153
  year: 2015
  end-page: 1158
  ident: b0160
  article-title: A new method for strengthening concrete structures using prestressed FRP laminates
  publication-title: Proceeding of the 8th international structural engineering and construction conference
– volume: 7
  start-page: 17
  year: 2013
  end-page: 33
  ident: b0140
  article-title: Review of anchorage systems for externally bonded FRP laminates
  publication-title: Int J Concr Struct Mater
– volume: 74
  start-page: 319
  year: 2016
  end-page: 330
  ident: b0045
  article-title: Wood-based beams strengthened with FRP laminates: improved performance with pre-stressed systems
  publication-title: Eur J Wood Prod
– reference: fib. fib Model Code for Concrete Structures 2010. John Wiley & Sons; 2013.
– volume: 47
  start-page: 1048
  year: 2009
  end-page: 1058
  ident: b0025
  article-title: Carbon-fibre composites for strengthening steel structures
  publication-title: Thin-Walled Struct
– reference: Kotynia R, Staskiewicz M, Michels J, Czaderski C, Motavalli M. Pioneering strengthening of bridge girders with pretensioned CFRP laminates in Poland. In: Proceedings of SMAR 2015 the 3rd conference on smart monitoring, assessment and rehabilitation of civil structures; 2015. 8 pp.
– volume: 15
  start-page: 168
  year: 2010
  end-page: 180
  ident: b0015
  article-title: RC slabs strengthened with prestressed and gradually anchored CFRP strips under monotonic and cyclic loading
  publication-title: J Compos Constr
– volume: 89
  start-page: 235
  year: 1992
  end-page: 244
  ident: b0065
  article-title: Strengthening of concrete structures with prestressed fiber reinforced plastic sheets
  publication-title: ACI Struct J
– reference: CEN. EN 1992-1-1 Eurocode 2: Design of concrete structures - Part 1-1: General ruels and rules for buildings. Brussels: CEN; 2005.
– reference: .
– volume: 6
  start-page: 73
  year: 2002
  end-page: 87
  ident: b0005
  article-title: Fiber-reinforced polymer composites for construction—state-of-the-art review
  publication-title: J Compos Constr
– volume: 55
  start-page: 10
  year: 2014
  end-page: 16
  ident: b0130
  article-title: CFRP mechanical anchorage for externally strengthened RC beams under flexure
  publication-title: Phys. Procedia
– volume: 16
  start-page: 155
  year: 1983
  end-page: 177
  ident: b0210
  article-title: Crack band theory for fracture of concrete
  publication-title: Mat Constr
– volume: 82
  start-page: 235
  year: 2015
  end-page: 256
  ident: b0070
  article-title: Strengthening of RC beams using prestressed fiber reinforced polymers – A review
  publication-title: Constr Build Mater
– volume: 197
  year: 2019
  ident: b0080
  article-title: Innovative prestressing method for externally bonded CFRP laminates without mechanical anchorage
  publication-title: Eng Struct
– volume: 6
  start-page: 183
  year: 2003
  end-page: 199
  ident: b0100
  article-title: Shear-bending interaction in debonding failures of FRP-plated RC beams
  publication-title: Adv Struct Eng
– volume: 29
  start-page: 411
  year: 1998
  end-page: 424
  ident: b0090
  article-title: An experimental study of the failure modes of reinforced concrete beams strengthened with prestressed carbon composite plates
  publication-title: Compos B Eng
– volume: 5
  start-page: 221
  year: 2001
  end-page: 227
  ident: b0115
  article-title: Strength of RC cantilever slabs bonded with GFRP strips
  publication-title: J Compos Constr
– volume: 119
  start-page: 153
  year: 2017
  end-page: 167
  ident: b0200
  article-title: Durability of bonded FRP-to-steel jointsEffects of moisture, de-icing salt solution, temperature and FRP type
  publication-title: Compos B Eng
– volume: 32
  start-page: 1
  year: 2012
  end-page: 12
  ident: b0125
  article-title: Optimisation of carbon and glass FRP anchor design
  publication-title: Constr Build Mater
– start-page: 291
  year: 2001
  end-page: 296
  ident: b0145
  article-title: Strengthening of concrete structures with prestressed and gradually anchored CFRP strips. FRPRCS-5: Fibre-reinforced plastics for reinforced concrete structures Volume 1
– start-page: 1153
  year: 2015
  ident: 10.1016/j.engstruct.2021.112687_b0160
  article-title: A new method for strengthening concrete structures using prestressed FRP laminates
– volume: 53
  start-page: 972
  year: 2014
  ident: 10.1016/j.engstruct.2021.112687_b0020
  article-title: Behavior of reinforced concrete beams strengthened with externally bonded hybrid fiber reinforced polymer systems
  publication-title: Mater Des
  doi: 10.1016/j.matdes.2013.07.087
– volume: 23
  start-page: 1413
  year: 2009
  ident: 10.1016/j.engstruct.2021.112687_b0035
  article-title: Interfacial stress analysis of geometrically modified adhesive joints in steel beams strengthened with FRP laminates
  publication-title: Constr Build Mater
  doi: 10.1016/j.conbuildmat.2008.07.013
– volume: 12
  start-page: 44
  year: 2008
  ident: 10.1016/j.engstruct.2021.112687_b0110
  article-title: Flexural strengthening of RC beams with prestressed CFRP sheets: Using nonmetallic anchor systems
  publication-title: J Compos Constr
  doi: 10.1061/(ASCE)1090-0268(2008)12:1(44)
– volume: 14
  start-page: 506
  year: 2021
  ident: 10.1016/j.engstruct.2021.112687_b0205
  article-title: A practical finite element modeling strategy to capture cracking and crushing behavior of reinforced concrete structures
  publication-title: Materials
  doi: 10.3390/ma14030506
– volume: 27
  start-page: 920
  year: 2005
  ident: 10.1016/j.engstruct.2021.112687_b0225
  article-title: Bond-slip models for FRP sheets/plates bonded to concrete
  publication-title: Eng Struct
  doi: 10.1016/j.engstruct.2005.01.014
– volume: 5
  start-page: 221
  year: 2001
  ident: 10.1016/j.engstruct.2021.112687_b0115
  article-title: Strength of RC cantilever slabs bonded with GFRP strips
  publication-title: J Compos Constr
  doi: 10.1061/(ASCE)1090-0268(2001)5:4(221)
– volume: 119
  start-page: 153
  year: 2017
  ident: 10.1016/j.engstruct.2021.112687_b0200
  article-title: Durability of bonded FRP-to-steel jointsEffects of moisture, de-icing salt solution, temperature and FRP type
  publication-title: Compos B Eng
  doi: 10.1016/j.compositesb.2017.03.049
– volume: 198
  year: 2019
  ident: 10.1016/j.engstruct.2021.112687_b0010
  article-title: Fiber-reinforced polymer composites in strengthening reinforced concrete structures: A critical review
  publication-title: Eng Struct
  doi: 10.1016/j.engstruct.2019.109542
– volume: 197
  year: 2019
  ident: 10.1016/j.engstruct.2021.112687_b0080
  article-title: Innovative prestressing method for externally bonded CFRP laminates without mechanical anchorage
  publication-title: Eng Struct
  doi: 10.1016/j.engstruct.2019.109416
– volume: 2
  start-page: 132
  year: 1998
  ident: 10.1016/j.engstruct.2021.112687_b0085
  article-title: Structural behavior of composite RC beams with externally bonded CFRP
  publication-title: J Compos Constr
  doi: 10.1061/(ASCE)1090-0268(1998)2:3(132)
– ident: 10.1016/j.engstruct.2021.112687_b0175
– volume: 16
  start-page: 155
  year: 1983
  ident: 10.1016/j.engstruct.2021.112687_b0210
  article-title: Crack band theory for fracture of concrete
  publication-title: Mat Constr
  doi: 10.1007/BF02486267
– volume: 37
  start-page: 64
  year: 2006
  ident: 10.1016/j.engstruct.2021.112687_b0030
  article-title: An experimental, analytical and numerical study of the static behavior of steel beams reinforced by pultruded CFRP strips
  publication-title: Compos B Eng
  doi: 10.1016/j.compositesb.2005.03.002
– volume: 43
  start-page: 398
  year: 2012
  ident: 10.1016/j.engstruct.2021.112687_b0150
  article-title: Effect of curing conditions on strength development in an epoxy resin for structural strengthening
  publication-title: Compos B Eng
  doi: 10.1016/j.compositesb.2011.07.006
– volume: 6
  start-page: 73
  year: 2002
  ident: 10.1016/j.engstruct.2021.112687_b0005
  article-title: Fiber-reinforced polymer composites for construction—state-of-the-art review
  publication-title: J Compos Constr
  doi: 10.1061/(ASCE)1090-0268(2002)6:2(73)
– ident: 10.1016/j.engstruct.2021.112687_b0180
– volume: 45
  start-page: 270
  year: 2012
  ident: 10.1016/j.engstruct.2021.112687_b0040
  article-title: Fatigue behavior of notched steel beams reinforced with bonded CFRP plates: Determination of prestressing level for crack arrest
  publication-title: Eng Struct
  doi: 10.1016/j.engstruct.2012.06.047
– ident: 10.1016/j.engstruct.2021.112687_b0165
  doi: 10.2749/stockholm.2016.1551
– volume: 82
  start-page: 235
  year: 2015
  ident: 10.1016/j.engstruct.2021.112687_b0070
  article-title: Strengthening of RC beams using prestressed fiber reinforced polymers – A review
  publication-title: Constr Build Mater
  doi: 10.1016/j.conbuildmat.2015.02.051
– volume: 15
  start-page: 194
  year: 2011
  ident: 10.1016/j.engstruct.2021.112687_b0055
  article-title: Prestressed CFRP for strengthening of reinforced concrete structures: Recent developments at Empa, Switzerland
  publication-title: J Compos Constr
  doi: 10.1061/(ASCE)CC.1943-5614.0000125
– volume: 112
  start-page: 107
  year: 2017
  ident: 10.1016/j.engstruct.2021.112687_b0095
  article-title: Experimental investigations of repair of pre-damaged steel-concrete composite beams using CFRP laminates and mechanical anchors
  publication-title: Thin-Walled Struct
  doi: 10.1016/j.tws.2016.12.024
– volume: 8
  start-page: 55
  year: 2005
  ident: 10.1016/j.engstruct.2021.112687_b0120
  article-title: Effectiveness of CFRP strengthening on curved soffit RC beams
  publication-title: Adv Struct Eng
  doi: 10.1260/1369433053749607
– volume: 5
  start-page: 19
  year: 2021
  ident: 10.1016/j.engstruct.2021.112687_b0170
  article-title: Modeling strategies of finite element simulation of reinforced concrete beams strengthened with FRP: A review
  publication-title: J Compos Sci
  doi: 10.3390/jcs5010019
– volume: 6
  start-page: 183
  year: 2003
  ident: 10.1016/j.engstruct.2021.112687_b0100
  article-title: Shear-bending interaction in debonding failures of FRP-plated RC beams
  publication-title: Adv Struct Eng
  doi: 10.1260/136943303322419214
– ident: 10.1016/j.engstruct.2021.112687_b0190
– volume: 3
  start-page: 111
  year: 2001
  ident: 10.1016/j.engstruct.2021.112687_b0075
  article-title: Prestressed fibre-reinforced polymer laminates for strengthening structures
  publication-title: Prog Struct Engng Mater
  doi: 10.1002/pse.76
– volume: 15
  start-page: 168
  year: 2010
  ident: 10.1016/j.engstruct.2021.112687_b0015
  article-title: RC slabs strengthened with prestressed and gradually anchored CFRP strips under monotonic and cyclic loading
  publication-title: J Compos Constr
  doi: 10.1061/(ASCE)CC.1943-5614.0000081
– volume: 74
  start-page: 319
  year: 2016
  ident: 10.1016/j.engstruct.2021.112687_b0045
  article-title: Wood-based beams strengthened with FRP laminates: improved performance with pre-stressed systems
  publication-title: Eur J Wood Prod
  doi: 10.1007/s00107-015-0970-5
– ident: 10.1016/j.engstruct.2021.112687_b0050
– volume: 32
  start-page: 1
  year: 2012
  ident: 10.1016/j.engstruct.2021.112687_b0125
  article-title: Optimisation of carbon and glass FRP anchor design
  publication-title: Constr Build Mater
  doi: 10.1016/j.conbuildmat.2010.11.100
– volume: 7
  start-page: 17
  year: 2013
  ident: 10.1016/j.engstruct.2021.112687_b0140
  article-title: Review of anchorage systems for externally bonded FRP laminates
  publication-title: Int J Concr Struct Mater
  doi: 10.1007/s40069-013-0029-0
– volume: 89
  start-page: 235
  year: 1992
  ident: 10.1016/j.engstruct.2021.112687_b0065
  article-title: Strengthening of concrete structures with prestressed fiber reinforced plastic sheets
  publication-title: ACI Struct J
– volume: 47
  start-page: 1048
  issue: 10
  year: 2009
  ident: 10.1016/j.engstruct.2021.112687_b0025
  article-title: Carbon-fibre composites for strengthening steel structures
  publication-title: Thin-Walled Struct
  doi: 10.1016/j.tws.2008.10.019
– volume: 117
  start-page: 1652
  year: 1991
  ident: 10.1016/j.engstruct.2021.112687_b0060
  article-title: Innovative prestressing with FRP sheets: Mechanics of short-term behavior
  publication-title: J Eng Mech
– ident: 10.1016/j.engstruct.2021.112687_b0185
  doi: 10.1002/9783433604090
– ident: 10.1016/j.engstruct.2021.112687_b0220
– volume: 75
  start-page: 457
  year: 2006
  ident: 10.1016/j.engstruct.2021.112687_b0105
  article-title: Coupled flexural–shear retrofitting of RC beams using CFRP straps
  publication-title: Compos Struct
  doi: 10.1016/j.compstruct.2006.04.037
– volume: 29
  start-page: 411
  year: 1998
  ident: 10.1016/j.engstruct.2021.112687_b0090
  article-title: An experimental study of the failure modes of reinforced concrete beams strengthened with prestressed carbon composite plates
  publication-title: Compos B Eng
  doi: 10.1016/S1359-8368(97)00043-7
– year: 2002
  ident: 10.1016/j.engstruct.2021.112687_b0215
– volume: 17
  start-page: 14
  year: 2013
  ident: 10.1016/j.engstruct.2021.112687_b0135
  article-title: Anchorage devices used to improve the performance of reinforced concrete beams retrofitted with FRP composites: State-of-the-art review
  publication-title: J Compos Constr
  doi: 10.1061/(ASCE)CC.1943-5614.0000276
– ident: 10.1016/j.engstruct.2021.112687_b0155
– volume: 55
  start-page: 10
  year: 2014
  ident: 10.1016/j.engstruct.2021.112687_b0130
  article-title: CFRP mechanical anchorage for externally strengthened RC beams under flexure
  publication-title: Phys. Procedia
  doi: 10.1016/j.phpro.2014.07.002
– ident: 10.1016/j.engstruct.2021.112687_b0195
– start-page: 291
  year: 2001
  ident: 10.1016/j.engstruct.2021.112687_b0145
SSID ssj0002880
Score 2.495331
Snippet •Self-anchored prestressed CFRP plates without the need for mechanical end anchorage.•Significant improvement in bending stiffness, crack width, and...
This paper presents an innovative method of prestressing carbon fibre reinforced polymer (CFRP) plates used as externally bonded reinforcement for flexural...
SourceID swepub
proquest
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 112687
SubjectTerms Anchorages
Bearing strength
Bonding strength
Carbon fiber reinforced plastics
Carbon fibre reinforced polymer (CFRP)
Carrying capacity
Debonding
Fiber reinforced polymers
Finite element method
Flexural strengthening
Intermediate crack-induced debonding
Investigations
Load carrying capacity
Mechanical properties
Model testing
Nonlinear finite element analysis
Plates
Polymers
Prestress
Prestressing
Reinforced concrete
Reinforced concrete (RC)
Self-anchorage
Stiffness
Strengthening
Title Innovative flexural strengthening of RC beams using self-anchored prestressed CFRP plates: Experimental and numerical investigations
URI https://dx.doi.org/10.1016/j.engstruct.2021.112687
https://www.proquest.com/docview/2564175652
https://research.chalmers.se/publication/524650
Volume 243
WOSCitedRecordID wos000681263100003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-7323
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002880
  issn: 1873-7323
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6FlgMcEE81UNAeuFWunLW9a_dWRaloBVUVFSmcVuv1bp0qcao8qogz_4g_yOzDjqOCCgIukWVrN3a-z7szk5lvEHrPNAtzUqiA5kUYwI4XBYKFIhAyB1-M5OBBa9tsgp2fp6NRdtHpfK9rYW4nrKrS9Tq7-a9QwzkA25TO_gHczaRwAo4BdPgE2OHzt4A_9X1OjZz3RK2trIapCKmujNCBT3Ie9g9yZcQYVjZWsFATHQD-5cyko5vcWFtCYqK_J8ML02p66XLnBu2GACbmXq3cXz5GuqNR7KhDgHXEf6N5eOD0alfzTeriFx-xPhvD9yu_kbqcHthGfUHYJ9t9qr4kJsFgOnfdqOBSKaZTUWzW0isYOAbX4EqUqnQc-ira4Q3SM7kYrsDTr8gpiwIWuaLkeskmTtrpzvLvIhHXh3Cz7nEOzZS2TMpv63e1tb2oUsllaTvWLPhC8RC8VqnjghPwkHkcZ4wLKSXXFBive1qAYfwA7RKWZLCU7h6fDkZnjQFAUtuwz6TQBiGxLeKap9hKMfzpbf7KQGo7QG1RW2sIXT5FT7wHg48d856hjqqeo8ctjF-gbxsO4pqDeIuDeKbxsI8tB7HlIN7iIG5xEBsOYsfBI9xmIAYG4oaBeJuBL9Hnk8Fl_0Pg230EMqbpMhBpISKZyVAolUQE_JKERkrmUsZxpDURlCZJQuCApSLWsemeR0QWJnkuWUKL6BXaqWaV2kM4l-DIRHkiMrBQJc1TmAbs2qInKaNS97qI1r8xl14L37RkmfA66fGaN-BwAw534HRR2Ay8cXIw9w85qkHk3qp11ioH1t4_eL-Gnfs1ZsHBS4nB6qcJ6aKPjgrNzfwVo1__2-neoEebN3of7cDTqbfoobxdjhfzd_6t-QH9bQFu
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Innovative+flexural+strengthening+of+RC+beams+using+self-anchored+prestressed+CFRP+plates%3A+Experimental+and+numerical+investigations&rft.jtitle=Engineering+structures&rft.au=Yang%2C+Jincheng&rft.au=Johansson%2C+Morgan&rft.au=al-Emrani%2C+Mohammad&rft.au=Haghani+Dogaheh%2C+Reza&rft.date=2021-09-15&rft.issn=1873-7323&rft.volume=243&rft_id=info:doi/10.1016%2Fj.engstruct.2021.112687&rft.externalDocID=oai_research_chalmers_se_0448cf4d_2721_4497_accc_f6ccaf1fa192
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0141-0296&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0141-0296&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0141-0296&client=summon