Flight maneuver intelligent recognition based on deep variational autoencoder network

The selection and training of aircraft pilots has high standards, long training cycles, high resource consumption, high risk, and high elimination rate. It is the particularly urgent and important requirement for the current talent training strategy of national and military to increase efficiency an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:EURASIP journal on advances in signal processing Jg. 2022; H. 1; S. 1 - 23
Hauptverfasser: Tian, Wei, Zhang, Hong, Li, Hui, Xiong, Yuan
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Cham Springer International Publishing 12.03.2022
Springer
Springer Nature B.V
SpringerOpen
Schlagworte:
ISSN:1687-6180, 1687-6172, 1687-6180
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract The selection and training of aircraft pilots has high standards, long training cycles, high resource consumption, high risk, and high elimination rate. It is the particularly urgent and important requirement for the current talent training strategy of national and military to increase efficiency and speed up all aspects of pilot training, reduce the training cycle and reduce the elimination rate. To this end, this paper uses deep variational auto-encoder network and adaptive dynamic time warping algorithms as support to explore the establishment of an integrated evaluation system for flight maneuver recognition and quality evaluation, solve the industry difficulty faced by current flight training data mining applications, and achieve accurate recognition and reliable quality evaluation of flight regimes under the background of high mobility. It will fully explore the benefits of existing airborne flight data for military trainee pilots, support the personalized and accurate training of flight talents, and reduce the rate of talent elimination.
AbstractList The selection and training of aircraft pilots has high standards, long training cycles, high resource consumption, high risk, and high elimination rate. It is the particularly urgent and important requirement for the current talent training strategy of national and military to increase efficiency and speed up all aspects of pilot training, reduce the training cycle and reduce the elimination rate. To this end, this paper uses deep variational auto-encoder network and adaptive dynamic time warping algorithms as support to explore the establishment of an integrated evaluation system for flight maneuver recognition and quality evaluation, solve the industry difficulty faced by current flight training data mining applications, and achieve accurate recognition and reliable quality evaluation of flight regimes under the background of high mobility. It will fully explore the benefits of existing airborne flight data for military trainee pilots, support the personalized and accurate training of flight talents, and reduce the rate of talent elimination.
Abstract The selection and training of aircraft pilots has high standards, long training cycles, high resource consumption, high risk, and high elimination rate. It is the particularly urgent and important requirement for the current talent training strategy of national and military to increase efficiency and speed up all aspects of pilot training, reduce the training cycle and reduce the elimination rate. To this end, this paper uses deep variational auto-encoder network and adaptive dynamic time warping algorithms as support to explore the establishment of an integrated evaluation system for flight maneuver recognition and quality evaluation, solve the industry difficulty faced by current flight training data mining applications, and achieve accurate recognition and reliable quality evaluation of flight regimes under the background of high mobility. It will fully explore the benefits of existing airborne flight data for military trainee pilots, support the personalized and accurate training of flight talents, and reduce the rate of talent elimination.
ArticleNumber 21
Audience Academic
Author Tian, Wei
Zhang, Hong
Li, Hui
Xiong, Yuan
Author_xml – sequence: 1
  givenname: Wei
  orcidid: 0000-0002-2214-5417
  surname: Tian
  fullname: Tian, Wei
  email: twhztwhz@126.com
  organization: Jiangxi Hongdu Aviation Industry Group Co. Ltd, Naval Aviation University
– sequence: 2
  givenname: Hong
  surname: Zhang
  fullname: Zhang, Hong
  organization: Jiangxi Hongdu Aviation Industry Group Co. Ltd
– sequence: 3
  givenname: Hui
  surname: Li
  fullname: Li, Hui
  organization: Naval Aviation University
– sequence: 4
  givenname: Yuan
  surname: Xiong
  fullname: Xiong, Yuan
  organization: Jiangxi Hongdu Aviation Industry Group Co. Ltd
BookMark eNp9kUtv1TAQhSNUJNrCH2AViXWKH_Ejy6riUakSG1hbE3scfMm1L7ZvKf8e9wYEYlF54dHRfGc8PhfdWUwRu-41JVeUavm2UC75OBDGBkK0IMPDs-6cSq0GSTU5-6d-0V2UsiNESEbYeffl_RqWr7XfQ8TjPeY-xIpr0zDWPqNNSww1pNjPUND1rXCIh_4ecoBHHdYejjVhtMk1OmL9kfK3l91zD2vBV7_vyzbn3eebj8Pdpw-3N9d3gx2lrgNwCxzlaAUy4iaBQKSkSCckQuiJMTfOXiDxcvZUWQlk5DiDZXam1Evgl93t5usS7Mwhhz3knyZBMCch5cVArsGuaIR3k-IKJVd0FFoAOsIpoGKWqXGcmtebzeuQ0_cjlmp26ZjbgsUwyTWnjGreuq62rgWaaYg-1Qy2HYf7YFsoPjT9WrWXEq5OtnoDbE6lZPTGhnr6ugaG1VBiHhM0W4KmJWhOCZqHhrL_0D8bPgnxDSqtOS6Y_67xBPULJyWxQQ
CitedBy_id crossref_primary_10_1109_ACCESS_2022_3232808
crossref_primary_10_1515_pjbr_2022_0096
crossref_primary_10_1007_s40747_023_01257_3
crossref_primary_10_1016_j_engappai_2023_105840
crossref_primary_10_3390_aerospace12010009
crossref_primary_10_1016_j_ast_2025_110251
crossref_primary_10_1109_ACCESS_2024_3459793
crossref_primary_10_1016_j_neuroscience_2025_05_305
crossref_primary_10_62762_CJIF_2024_344084
crossref_primary_10_1109_ACCESS_2024_3444704
Cites_doi 10.1109/TII.2019.2951728
10.1109/JIOT.2018.2863267
10.3969/j.issn.1000-3428.2005.12.062
10.5488/CMP.8.4.761
10.3778/j.issn.1002-8331.1707-0156
10.7682/j.issn.1673-1522.2018.05.005
10.3969/j.issn.1002-0640.2020.05.030
10.3969/j.issn.1673-4599.2005.01.009
10.3778/j.issn.1002-8331.2011.03.069
10.3969/j.issn.1671-637X.2011.01.007
10.3969/j.issn.1009-3516.2017.04.007
10.7690/bgzdh.2019.05.001
10.3969/j.issn.1006-9348.2005.04.007
10.3969/j.issn.1003-5850.2006.04.008
10.3778/j.issn.1002-8331.1307-0018
10.1007/3-540-57301-1_5
10.1109/T-C.1974.224041
10.15892/j.cnki.djzdxb.2004.s3.015
10.3969/j.issn.1672-9730.2018.10.018
10.1145/253262.253332
10.1145/1007568.1007636
ContentType Journal Article
Copyright The Author(s) 2022
COPYRIGHT 2022 Springer
The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2022
– notice: COPYRIGHT 2022 Springer
– notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
3V.
7SC
7SP
7XB
8AL
8FD
8FE
8FG
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L7M
L~C
L~D
M0N
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
DOA
DOI 10.1186/s13634-022-00850-x
DatabaseName Springer Nature OA Free Journals (WRLC)
CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest SciTech Premium Collection Technology Collection Advanced Technologies & Aerospace Collection
ProQuest Central Essentials - QC
ProQuest Central Database Suite (ProQuest)
ProQuest Technology Collection
ProQuest One
ProQuest Central
ProQuest Central Student
SciTech Collection (ProQuest)
ProQuest Computer Science Collection
Computer Science Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Proquest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList


CrossRef
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: ProQuest Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1687-6180
EndPage 23
ExternalDocumentID oai_doaj_org_article_5fd9737e63714585aed031ae72c27449
A704303749
10_1186_s13634_022_00850_x
GrantInformation_xml – fundername: Aviation Science Fund
  grantid: 2020Z014066001
GroupedDBID -A0
.4S
.DC
0R~
29G
2WC
3V.
4.4
40G
5GY
5VS
6OB
8FE
8FG
8R4
8R5
AAFWJ
AAJSJ
AAKKN
AAKPC
ABEEZ
ABUWG
ACACY
ACGFO
ACGFS
ACULB
ADBBV
ADINQ
ADMLS
AEGXH
AENEX
AFGXO
AFKRA
AFPKN
AHBYD
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
ARAPS
ARCSS
AZQEC
BAPOH
BCNDV
BENPR
BGLVJ
BPHCQ
C24
C6C
CCPQU
DU5
DWQXO
E3Z
EBLON
EBS
EDO
F5P
GNUQQ
GROUPED_DOAJ
HCIFZ
IAO
ITC
K6V
K7-
KQ8
M0N
M~E
OK1
P62
PIMPY
PQQKQ
PROAC
Q2X
RHU
RHW
RNS
RSV
SEG
SOJ
TUS
U2A
AASML
AAYXX
CITATION
OVT
7SC
7SP
7XB
8AL
8FD
8FK
JQ2
L7M
L~C
L~D
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c468t-a3ca3e64c5e20d95ea0661e19e0558922d4bf5e0f6bf17c6a043ebac2cb11f6a3
IEDL.DBID DOA
ISICitedReferencesCount 10
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000767928700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1687-6180
1687-6172
IngestDate Fri Oct 03 12:53:42 EDT 2025
Sat Oct 11 05:44:31 EDT 2025
Mon Oct 20 16:23:59 EDT 2025
Sat Nov 29 03:12:12 EST 2025
Tue Nov 18 22:26:28 EST 2025
Fri Feb 21 02:47:25 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Variational autoencoder
Flight quality evaluation
Deep neural network
Flight maneuver recognition
Dynamic time warping
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c468t-a3ca3e64c5e20d95ea0661e19e0558922d4bf5e0f6bf17c6a043ebac2cb11f6a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-2214-5417
OpenAccessLink https://doaj.org/article/5fd9737e63714585aed031ae72c27449
PQID 2638312183
PQPubID 237299
PageCount 23
ParticipantIDs doaj_primary_oai_doaj_org_article_5fd9737e63714585aed031ae72c27449
proquest_journals_2638312183
gale_infotracacademiconefile_A704303749
crossref_citationtrail_10_1186_s13634_022_00850_x
crossref_primary_10_1186_s13634_022_00850_x
springer_journals_10_1186_s13634_022_00850_x
PublicationCentury 2000
PublicationDate 2022-03-12
PublicationDateYYYYMMDD 2022-03-12
PublicationDate_xml – month: 03
  year: 2022
  text: 2022-03-12
  day: 12
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: New York
PublicationTitle EURASIP journal on advances in signal processing
PublicationTitleAbbrev EURASIP J. Adv. Signal Process
PublicationYear 2022
Publisher Springer International Publishing
Springer
Springer Nature B.V
SpringerOpen
Publisher_xml – name: Springer International Publishing
– name: Springer
– name: Springer Nature B.V
– name: SpringerOpen
References Olemskoi, Kokhan (CR18) 2006; 360
Agrawal, Faloutsos, Swami (CR12) 1993
Xu, Liu (CR25) 2020; 45
Liu, Zhai, Lu, Wu (CR1) 2019; 17
Zhang, Ni (CR6) 2006; S2
Zhou, Fan, Zhang, Huang (CR21) 2017; 18
Xu, Wang, Bai (CR26) 2020; 03
Ni, Shi, Xie, Wang (CR5) 2005
Gao, Ni, Wang, Zhang (CR9) 2011; 18
Pavlidis, Horowitz (CR16) 1974; 23
CR17
Wang, Gao (CR24) 2019; 38
Shen, Ni, Zhang (CR20) 2017; 53
CR14
CR13
Li, Shan, Guo (CR19) 2015; 51
Su, Ni, Wang (CR8) 2011; 47
Liu, Zhang (CR2) 2019; 6
Wang, Gao (CR11) 2018; 38
Yin, Ni (CR7) 2006
Xie, Ni, Zhang, Wang (CR3) 2004; 3
Korn, Jagadish, Faloutsos (CR15) 1997; 26
Xiao, Fu (CR23) 2018; 2
Wang, Gao (CR10) 2018; 33
Xie, Ni, Zhang (CR4) 2005; 12
Shen, Ni, Zhang (CR22) 2019; 20
T Pavlidis (850_CR16) 1974; 23
S Xu (850_CR26) 2020; 03
X Liu (850_CR2) 2019; 6
YC Shen (850_CR20) 2017; 53
YW Wang (850_CR10) 2018; 33
YP Xiao (850_CR23) 2018; 2
850_CR14
850_CR13
C Zhou (850_CR21) 2017; 18
C Su (850_CR8) 2011; 47
RF Zhang (850_CR6) 2006; S2
G Xu (850_CR25) 2020; 45
R Agrawal (850_CR12) 1993
F Korn (850_CR15) 1997; 26
C Xie (850_CR4) 2005; 12
SH Ni (850_CR5) 2005
YW Wang (850_CR11) 2018; 38
WJ Yin (850_CR7) 2006
YW Wang (850_CR24) 2019; 38
A Olemskoi (850_CR18) 2006; 360
850_CR17
Y Gao (850_CR9) 2011; 18
HL Li (850_CR19) 2015; 51
YC Shen (850_CR22) 2019; 20
X Liu (850_CR1) 2019; 17
C Xie (850_CR3) 2004; 3
References_xml – volume: 20
  start-page: 7
  issue: 02
  year: 2019
  end-page: 12
  ident: CR22
  article-title: Similarity query method for flight data time series sub-sequences
  publication-title: J. Air Force Eng. Univ. (Natural Science Edition)
– volume: 17
  start-page: 2052
  issue: 3
  year: 2019
  end-page: 2061
  ident: CR1
  article-title: QoS-guarantee resource allocation for multibeam satellite industrial internet of things with NOMA
  publication-title: IEEE Tran. Ind. Inf.
  doi: 10.1109/TII.2019.2951728
– volume: 6
  start-page: 5971
  year: 2019
  end-page: 5980
  ident: CR2
  article-title: Rate and energy efficiency improvements for 5G-based IoT with simultaneous transfer
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2018.2863267
– volume: 12
  start-page: 169
  year: 2005
  end-page: 171
  ident: CR4
  article-title: Pattern attributes extraction of flight data based on rough set
  publication-title: Comput. Eng.
  doi: 10.3969/j.issn.1000-3428.2005.12.062
– volume: 03
  start-page: 58
  year: 2020
  end-page: 62
  ident: CR26
  article-title: Overview of military helicopter training effectiveness based on simulation
  publication-title: Helicopter Tech.
– ident: CR14
– volume: 360
  start-page: 37
  issue: 1
  year: 2006
  end-page: 58
  ident: CR18
  article-title: Effective temperature of self-similar time series: analytical and numerical developments
  publication-title: Physica A
  doi: 10.5488/CMP.8.4.761
– volume: 53
  start-page: 161
  issue: 24
  year: 2017
  end-page: 167+218
  ident: CR20
  article-title: Flight action recognition method based on Bayesian network
  publication-title: Comput. Eng. Appl.
  doi: 10.3778/j.issn.1002-8331.1707-0156
– volume: 33
  start-page: 447
  issue: 05
  year: 2018
  end-page: 451+498
  ident: CR10
  article-title: A rule extraction method for flight action recognition based on whale optimization algorithm
  publication-title: J. Naval Aeronaut. Astronaut. Univ.
  doi: 10.7682/j.issn.1673-1522.2018.05.005
– volume: 45
  start-page: 162
  issue: 05
  year: 2020
  end-page: 169
  ident: CR25
  article-title: An automatic evaluation method for military simulation training result
  publication-title: Fire Control Command Control
  doi: 10.3969/j.issn.1002-0640.2020.05.030
– volume: S2
  start-page: 109
  year: 2006
  end-page: 111
  ident: CR6
  article-title: The algorithm of flight trajectory creatation based on Cardinals cubic splines
  publication-title: Calc. Technol. Autom.
  doi: 10.3969/j.issn.1673-4599.2005.01.009
– volume: 47
  start-page: 237
  issue: 3
  year: 2011
  end-page: 239
  ident: CR8
  article-title: Method of rule acquirement of flight state based on improved AIS
  publication-title: Comput. Eng. Appl.
  doi: 10.3778/j.issn.1002-8331.2011.03.069
– volume: 2
  start-page: 42
  issue: 05
  year: 2018
  end-page: 45
  ident: CR23
  article-title: A review of the research on lat-eral direction flight quality assessment methods
  publication-title: J. Civ. Aviat.
– volume: 18
  start-page: 28
  issue: 01
  year: 2011
  end-page: 31
  ident: CR9
  article-title: A flight state rule extraction method based on improved quantum genetic algorithm
  publication-title: Electroopt. Control
  doi: 10.3969/j.issn.1671-637X.2011.01.007
– volume: 18
  start-page: 34
  issue: 04
  year: 2017
  end-page: 39
  ident: CR21
  article-title: A flight action recognition based on multivariate time series fusion
  publication-title: J. Air Force Eng. Univ. (Natural Science Edition)
  doi: 10.3969/j.issn.1009-3516.2017.04.007
– ident: CR17
– volume: 38
  start-page: 1
  issue: 05
  year: 2019
  end-page: 4+10
  ident: CR24
  article-title: Comprehensive evaluation method of UAV flight quality based on comprehensive weighting method
  publication-title: Ordnance Ind. Autom.
  doi: 10.7690/bgzdh.2019.05.001
– ident: CR13
– year: 2005
  ident: CR5
  article-title: Establishment of avion inflight maneuver action recognizing knowledge base
  publication-title: Comput. Simul.
  doi: 10.3969/j.issn.1006-9348.2005.04.007
– year: 2006
  ident: CR7
  article-title: A method of recognizing flight maneuver based on genetic algorithm
  publication-title: Comput. Dev. Appl.
  doi: 10.3969/j.issn.1003-5850.2006.04.008
– volume: 51
  start-page: 267
  issue: 09
  year: 2015
  end-page: 270
  ident: CR19
  article-title: Flight action recognition algorithm based on MDTW
  publication-title: Comput. Eng. Appl.
  doi: 10.3778/j.issn.1002-8331.1307-0018
– year: 1993
  ident: CR12
  publication-title: Efficient Similarity Search in Sequence Databases
  doi: 10.1007/3-540-57301-1_5
– volume: 23
  start-page: 860
  issue: 8
  year: 1974
  end-page: 870
  ident: CR16
  article-title: Segmentation of plane curves
  publication-title: IEEE Trans. Comput.
  doi: 10.1109/T-C.1974.224041
– volume: 3
  start-page: 240
  year: 2004
  end-page: 242
  ident: CR3
  article-title: Recognition method of acrobatic maneuver based on state matching and support vector machines
  publication-title: J. Project. Rockets Missiles Guidance
  doi: 10.15892/j.cnki.djzdxb.2004.s3.015
– volume: 38
  start-page: 74
  issue: 10
  year: 2018
  end-page: 76
  ident: CR11
  article-title: Research on complex motion recognition method based on basic flying motion
  publication-title: Ship Electron. Eng.
  doi: 10.3969/j.issn.1672-9730.2018.10.018
– volume: 26
  start-page: 289
  issue: 2
  year: 1997
  end-page: 300
  ident: CR15
  article-title: Efficiently supporting ad hoc queries in large datasets of time sequence
  publication-title: ACM SIGMOD Rec.
  doi: 10.1145/253262.253332
– volume: 18
  start-page: 34
  issue: 04
  year: 2017
  ident: 850_CR21
  publication-title: J. Air Force Eng. Univ. (Natural Science Edition)
  doi: 10.3969/j.issn.1009-3516.2017.04.007
– volume: 53
  start-page: 161
  issue: 24
  year: 2017
  ident: 850_CR20
  publication-title: Comput. Eng. Appl.
  doi: 10.3778/j.issn.1002-8331.1707-0156
– year: 2005
  ident: 850_CR5
  publication-title: Comput. Simul.
  doi: 10.3969/j.issn.1006-9348.2005.04.007
– volume: 26
  start-page: 289
  issue: 2
  year: 1997
  ident: 850_CR15
  publication-title: ACM SIGMOD Rec.
  doi: 10.1145/253262.253332
– volume: 3
  start-page: 240
  year: 2004
  ident: 850_CR3
  publication-title: J. Project. Rockets Missiles Guidance
  doi: 10.15892/j.cnki.djzdxb.2004.s3.015
– volume: 38
  start-page: 1
  issue: 05
  year: 2019
  ident: 850_CR24
  publication-title: Ordnance Ind. Autom.
  doi: 10.7690/bgzdh.2019.05.001
– volume: 17
  start-page: 2052
  issue: 3
  year: 2019
  ident: 850_CR1
  publication-title: IEEE Tran. Ind. Inf.
  doi: 10.1109/TII.2019.2951728
– volume: S2
  start-page: 109
  year: 2006
  ident: 850_CR6
  publication-title: Calc. Technol. Autom.
  doi: 10.3969/j.issn.1673-4599.2005.01.009
– volume: 33
  start-page: 447
  issue: 05
  year: 2018
  ident: 850_CR10
  publication-title: J. Naval Aeronaut. Astronaut. Univ.
  doi: 10.7682/j.issn.1673-1522.2018.05.005
– ident: 850_CR14
  doi: 10.1145/1007568.1007636
– volume: 03
  start-page: 58
  year: 2020
  ident: 850_CR26
  publication-title: Helicopter Tech.
– volume-title: Efficient Similarity Search in Sequence Databases
  year: 1993
  ident: 850_CR12
  doi: 10.1007/3-540-57301-1_5
– volume: 20
  start-page: 7
  issue: 02
  year: 2019
  ident: 850_CR22
  publication-title: J. Air Force Eng. Univ. (Natural Science Edition)
– volume: 45
  start-page: 162
  issue: 05
  year: 2020
  ident: 850_CR25
  publication-title: Fire Control Command Control
  doi: 10.3969/j.issn.1002-0640.2020.05.030
– volume: 6
  start-page: 5971
  year: 2019
  ident: 850_CR2
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2018.2863267
– year: 2006
  ident: 850_CR7
  publication-title: Comput. Dev. Appl.
  doi: 10.3969/j.issn.1003-5850.2006.04.008
– volume: 23
  start-page: 860
  issue: 8
  year: 1974
  ident: 850_CR16
  publication-title: IEEE Trans. Comput.
  doi: 10.1109/T-C.1974.224041
– volume: 18
  start-page: 28
  issue: 01
  year: 2011
  ident: 850_CR9
  publication-title: Electroopt. Control
  doi: 10.3969/j.issn.1671-637X.2011.01.007
– ident: 850_CR17
– volume: 2
  start-page: 42
  issue: 05
  year: 2018
  ident: 850_CR23
  publication-title: J. Civ. Aviat.
– volume: 38
  start-page: 74
  issue: 10
  year: 2018
  ident: 850_CR11
  publication-title: Ship Electron. Eng.
  doi: 10.3969/j.issn.1672-9730.2018.10.018
– volume: 51
  start-page: 267
  issue: 09
  year: 2015
  ident: 850_CR19
  publication-title: Comput. Eng. Appl.
  doi: 10.3778/j.issn.1002-8331.1307-0018
– ident: 850_CR13
– volume: 47
  start-page: 237
  issue: 3
  year: 2011
  ident: 850_CR8
  publication-title: Comput. Eng. Appl.
  doi: 10.3778/j.issn.1002-8331.2011.03.069
– volume: 12
  start-page: 169
  year: 2005
  ident: 850_CR4
  publication-title: Comput. Eng.
  doi: 10.3969/j.issn.1000-3428.2005.12.062
– volume: 360
  start-page: 37
  issue: 1
  year: 2006
  ident: 850_CR18
  publication-title: Physica A
  doi: 10.5488/CMP.8.4.761
SSID ssj0056202
Score 2.367419
Snippet The selection and training of aircraft pilots has high standards, long training cycles, high resource consumption, high risk, and high elimination rate. It is...
Abstract The selection and training of aircraft pilots has high standards, long training cycles, high resource consumption, high risk, and high elimination...
SourceID doaj
proquest
gale
crossref
springer
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Aircraft maneuvers
Aircraft pilots
Algorithms
Artificial Intelligence and Cognitive Computing for Smart Internet of Vehicle
Coders
Consumption (Economics)
Data mining
Deep neural network
Dynamic time warping
Engineering
Flight maneuver recognition
Flight quality evaluation
Flight training
Pilot training
Pilots
Pilots and pilotage
Quality assessment
Quantum Information Technology
Recognition
Signal,Image and Speech Processing
Spintronics
Variational autoencoder
SummonAdditionalLinks – databaseName: Advanced Technologies & Aerospace Database
  dbid: P5Z
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagcIADb8RCQT4gcQCriR2_TqggKg6o6gFQxcVynDGq1CbLbrbqz8fjOFtQRS_cosS2HM_nGY89_oaQ11FZY0LbMAVWsibqyLzRwCofk_lppDc5x9L3L_rw0Bwf26Oy4bYuYZWzTsyKuhsC7pHv8QQUUaNBf7_8xTBrFJ6ulhQaN8ktZEnA1A1H8sesiZNpn2IOlclX4fh8acaovXUtlGgYxrJn1jZ28Zdhyvz9V7X0lePSbIUO7v9v_x-Qe2X9SfcnwDwkN6B_RO7-wUr4mHw7OEWPnZ75HjYJ6fRkS9s50m3A0dBTtIAdTQ8dwJKeJ6-77CxSvxkHZMjsUu1-CjR_ktr99PXjZ1ayL7DQKDMyL4IXoJoggVedleDT6qSG2kIlpbGcd00bJVRRtbHWQfmqEdD6wENb11F58ZTs9EMPzwiVHXhtQhqAyBEOlkNsteeN9iHJIS5IPQ-9C4WaHDNknLrsohjlJnG5JC6XxeUuFuTtts5yIua4tvQHlOi2JJJq5xfD6qcrc9TJ2FktNChkMUxulIcuqTwPmgfkUbQL8gbx4HDqp-4FX24wpJ9EEi23r5FATWgsuTuDwBWdsHaXCFiQdzOMLj__u_PPr2_tBbnDM44Fq_ku2RlXG3hJbofz8WS9epVnxG-gxBEf
  priority: 102
  providerName: ProQuest
– databaseName: SpringerOpen
  dbid: C24
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZQ4QAH3ogtBfmAxAEs4rd9bCsqDqjiAKg3y3HGqFLJVrvZqj-_HidZqKoiwS1KZiJnPM94_JmQt9l451KrmAGvmco2s-gssCbmEn6Ujq6esfTjiz0-dicn_uu0KWw9d7vPS5LVU1ezdubjmksjFcPu84qzxkrmeFdz57GR7xD3OIz-twR07NnZvZ3vWgiqSP03_fGNhdEab44e_d9IH5OHU35J90eFeELuQP-UPPgDdfAZ-X50hhU5_RV72BRNpqdbWM6BbhuKlj3FCNfRctEBnNOLUlVPfw5p3AxLRMDsCnc_NpI_L-_99O3wM5tOV2BJGTewKFOUYFTSIJrOa4gl--DAPTRaOy9Ep9qsocmmzdwmExsloY1JpJbzbKJ8QXb6ZQ8vCdUdROtSKXazwOn2AnJro1A2piKLvCB8FnhIE_Q4noBxFmoJ4kwYRRaKyEIVWbhckPdbnvMReOOv1Ac4j1tKBM2uN5arn2GywaBz5620YBClsJRJEbri0iJYkRAn0S_IO9SCgKZdhpfitEOhfCSCZIV9iwBp0iLl3qwoYbL5dRDFlUmOKeeCfJgV4_fj2we_-2_kr8h9UXVLMi72yM6w2sBrci9dDKfr1ZtqC1d5XgVn
  priority: 102
  providerName: Springer Nature
Title Flight maneuver intelligent recognition based on deep variational autoencoder network
URI https://link.springer.com/article/10.1186/s13634-022-00850-x
https://www.proquest.com/docview/2638312183
https://doaj.org/article/5fd9737e63714585aed031ae72c27449
Volume 2022
WOSCitedRecordID wos000767928700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1687-6180
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0056202
  issn: 1687-6180
  databaseCode: DOA
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVAVX
  databaseName: SpringerOpen
  customDbUrl:
  eissn: 1687-6180
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0056202
  issn: 1687-6180
  databaseCode: C24
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELagcIADKi-xtF3lgMQBrCZ--9hWrVoBqwgBKlwsxxlLlUq26mar_vyOnexSVAEXLlYU29FkZuyZScbfEPImKmtMaARVYCUVUUfqjQZa-ojmR0hvco2lbx_1bGZOT219q9RXygkb4IEHxu3K2FrNNagELYe-rYcW9dCDZiGB2-Wje6W2q2Bq2IPRqKe8neGIjFG7i4orLmjKXM8YbfT6NzOU0frv7sl3fo5mm3O0SZ6MzmKxNxD5lNyD7hl5fAtC8Dn5enSewuvip-9giWpZnK0xNvtinR0074pkrtoCL1qAi-IKQ-TxM2Dhl_08wVm2OLsbssJf4HMPvxwc07FUAg1CmZ56HjwHJYIEVrZWgkdXooLKQimlsYy1ookSyqiaWOmgfCk4ND6w0FRVVJ6_JBvdvINXpJAteG0CRq6RJdlZBrHRngntA7IxTki14pwLI454Kmdx7nI8YZQbuO2Q2y5z211PyLv1nIsBReOvo_eTQNYjEwJ2voF64Ua9cP_Siwl5m8Tp0jpF8oIfjxvgSybEK7enE9oZ12nk9kriblzAC8dwX-JV8h8n5P1KC351_5n41_-D-C3yiGVl5bRi22Sjv1zCDnkYrvqzxeWUPNg_nNWfp-T-ARPTrPjYftAU21r-wP765FP9_QbMWQYg
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELZKQQIOvBELBXIAcQCrie3YzgGh8li12mXFoaDeXMcZo5VKdtnNlvKn-I14nGQLquitB25RYlux_c2MHzPfEPLMy0JrVwoqocip8MpTqxXQ1PpgfkRudcyx9GWsJhN9cFB82iC_-lgYdKvsdWJU1NXM4Rn5NgtA4Rka9Dfz7xSzRuHtap9Co4XFCH7-CFu25eu992F-nzM2_LD_bpd2WQWoE1I31HJnOUjhcmBpVeRgg9XNICsgzXNdMFaJ0ueQeln6TDlpU8GhtI65Msu8tDy0e4lcFlwrlKuRor3mD0uJ1sdR6hh6x_ogHS23lxmXXFD0nY8scfTkL0MY8wWctQpnrmej1Rve_N_G6xa50a2vk51WIG6TDajvkOt_sC7eJZ-HR3gikXyzNayCJCfTNS1pk6wdqmZ1gha-SsJDBTBPju1i2p2cJnbVzJABtAq169aR_l5o9yL6dZ9s1rMaHpAkr8Aq7cKAe4ZwLxj4UlkmlHVh3v2AZP1UG9dRr2MGkCMTt2BamhYeJsDDRHiYkwF5ua4zb4lHzi39FhG0Lomk4fHFbPHVdDrI5L4qFFcgkaUxbBMtVEGlW1DMIU9kMSAvEH8GVVv4PWe7CI3QSSQJMzsKCeK4wpJbPehMp_OW5hRxA_Kqh-3p53___MPzW3tKru7ufxyb8d5k9IhcY1GGOM3YFtlsFit4TK6442a6XDyJ0piQw4uG828f029m
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELZKQQgOvBELBXwAcQBrEyd-5IBQoayoWq32AKji4jrOGK1UkmUfpfw1fh0eJ9mCKnrrgVuU2FZsfzPjscffEPLMy0JrV-ZMQiFY7pVnVitgifXB_OTC6phj6fO-Go_1wUEx2SC_-rswGFbZ68SoqKvG4R75kAegZCka9KHvwiImO6M3s-8MM0jhSWufTqOFyB78_BHct8Xr3Z0w1885H73_-O4D6zIMMJdLvWQ2czYDmTsBPKkKATZY4BTSAhIhdMF5lZdeQOJl6VPlpE3yDErruCvT1EubhXYvkcsq-JgYTjgRX3orEJYVbbyj1PEaHu8v7Gg5XKSZzHKGcfSRMY6d_GUUY-6AsxbizFFttICjm__z2N0iN7p1N91uBeU22YD6Drn-BxvjXfJpdIQ7FfSbrWEVJJxO13SlS7oOtGpqipa_ouGhApjRYzufdjuq1K6WDTKDVqF23QbY3wvtXkS_7pPNuqnhAaGiAqu0C4PvOYpBwcGXyvJcWRcw4Ack7afduI6SHTODHJnommlpWqiYABUToWJOBuTlus6sJSQ5t_RbRNO6JJKJxxfN_KvpdJMRvipUpkAie2NwHy1UQdVbUNwhf2QxIC8QiwZVXvg9Z7ubG6GTSB5mthUSx2UKS271ADSdLlyYU_QNyKsewqef__3zD89v7Sm5GlBs9nfHe4_INR7FKWMp3yKby_kKHpMr7ng5XcyfRMGk5PCi0fwbDuN4ig
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Flight+maneuver+intelligent+recognition+based+on+deep+variational+autoencoder+network&rft.jtitle=EURASIP+journal+on+advances+in+signal+processing&rft.au=Tian%2C+Wei&rft.au=Zhang%2C+Hong&rft.au=Li%2C+Hui&rft.au=Xiong%2C+Yuan&rft.date=2022-03-12&rft.pub=Springer&rft.issn=1687-6180&rft.volume=2022&rft.issue=1&rft_id=info:doi/10.1186%2Fs13634-022-00850-x&rft.externalDocID=A704303749
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1687-6180&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1687-6180&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1687-6180&client=summon