Slip-Based Autonomous ZUPT Through Gaussian Process to Improve Planetary Rover Localization

The zero-velocity update (ZUPT) algorithm provides valuable state information to maintain the inertial navigation system (INS) reliability when stationary conditions are satisfied. Employing ZUPT along with leveraging non-holonomic constraints can greatly benefit wheeled mobile robot dead-reckoning...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE robotics and automation letters Ročník 6; číslo 3; s. 4782 - 4789
Hlavní autoři: Kilic, Cagri, Ohi, Nicholas, Gu, Yu, Gross, Jason
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States IEEE 01.07.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:2377-3766, 2377-3766
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The zero-velocity update (ZUPT) algorithm provides valuable state information to maintain the inertial navigation system (INS) reliability when stationary conditions are satisfied. Employing ZUPT along with leveraging non-holonomic constraints can greatly benefit wheeled mobile robot dead-reckoning localization accuracy. However, determining how often they should be employed requires consideration to balance localization accuracy and traversal rate for planetary rovers. To address this, we investigate when to autonomously initiate stops to improve wheel-inertial odometry (WIO) localization performance with ZUPT. To do this, we propose a 3D dead-reckoning approach that predicts wheel slippage while the rover is in motion and forecasts the appropriate time to stop without changing any rover hardware or major rover operations. We validate with field tests that our approach is viable on different terrain types and achieves a 3D localization accuracy of <inline-formula><tex-math notation="LaTeX">{\sim}97{\bf \%}</tex-math></inline-formula> over 650 m drives on rough terrain.
AbstractList The zero-velocity update (ZUPT) algorithm provides valuable state information to maintain the inertial navigation system (INS) reliability when stationary conditions are satisfied. Employing ZUPT along with leveraging non-holonomic constraints can greatly benefit wheeled mobile robot dead-reckoning localization accuracy. However, determining how often they should be employed requires consideration to balance localization accuracy and traversal rate for planetary rovers. To address this, we investigate when to autonomously initiate stops to improve wheel-inertial odometry (WIO) localization performance with ZUPT. To do this, we propose a 3D dead-reckoning approach that predicts wheel slippage while the rover is in motion and forecasts the appropriate time to stop without changing any rover hardware or major rover operations. We validate with field tests that our approach is viable on different terrain types and achieves a 3D localization accuracy of ~97% over 650 m drives on rough terrain.The zero-velocity update (ZUPT) algorithm provides valuable state information to maintain the inertial navigation system (INS) reliability when stationary conditions are satisfied. Employing ZUPT along with leveraging non-holonomic constraints can greatly benefit wheeled mobile robot dead-reckoning localization accuracy. However, determining how often they should be employed requires consideration to balance localization accuracy and traversal rate for planetary rovers. To address this, we investigate when to autonomously initiate stops to improve wheel-inertial odometry (WIO) localization performance with ZUPT. To do this, we propose a 3D dead-reckoning approach that predicts wheel slippage while the rover is in motion and forecasts the appropriate time to stop without changing any rover hardware or major rover operations. We validate with field tests that our approach is viable on different terrain types and achieves a 3D localization accuracy of ~97% over 650 m drives on rough terrain.
The zero-velocity update (ZUPT) algorithm provides valuable state information to maintain the inertial navigation system (INS) reliability when stationary conditions are satisfied. Employing ZUPT along with leveraging non-holonomic constraints can greatly benefit wheeled mobile robot dead-reckoning localization accuracy. However, determining how often they should be employed requires consideration to balance localization accuracy and traversal rate for planetary rovers. To address this, we investigate when to autonomously initiate stops to improve wheel-inertial odometry (WIO) localization performance with ZUPT. To do this, we propose a 3D dead-reckoning approach that predicts wheel slippage while the rover is in motion and forecasts the appropriate time to stop without changing any rover hardware or major rover operations. We validate with field tests that our approach is viable on different terrain types and achieves a 3D localization accuracy of ~97% over 650 m drives on rough terrain.
The zero-velocity update (ZUPT) algorithm provides valuable state information to maintain the inertial navigation system (INS) reliability when stationary conditions are satisfied. Employing ZUPT along with leveraging non-holonomic constraints can greatly benefit wheeled mobile robot dead-reckoning localization accuracy. However, determining how often they should be employed requires consideration to balance localization accuracy and traversal rate for planetary rovers. To address this, we investigate when to autonomously initiate stops to improve wheel-inertial odometry (WIO) localization performance with ZUPT. To do this, we propose a 3D dead-reckoning approach that predicts wheel slippage while the rover is in motion and forecasts the appropriate time to stop without changing any rover hardware or major rover operations. We validate with field tests that our approach is viable on different terrain types and achieves a 3D localization accuracy of [Formula Omitted] over 650 m drives on rough terrain.
The zero-velocity update (ZUPT) algorithm provides valuable state information to maintain the inertial navigation system (INS) reliability when stationary conditions are satisfied. Employing ZUPT along with leveraging non-holonomic constraints can greatly benefit wheeled mobile robot dead-reckoning localization accuracy. However, determining how often they should be employed requires consideration to balance localization accuracy and traversal rate for planetary rovers. To address this, we investigate when to autonomously initiate stops to improve wheel-inertial odometry (WIO) localization performance with ZUPT. To do this, we propose a 3D dead-reckoning approach that predicts wheel slippage while the rover is in motion and forecasts the appropriate time to stop without changing any rover hardware or major rover operations. We validate with field tests that our approach is viable on different terrain types and achieves a 3D localization accuracy of <inline-formula><tex-math notation="LaTeX">{\sim}97{\bf \%}</tex-math></inline-formula> over 650 m drives on rough terrain.
Author Kilic, Cagri
Gu, Yu
Gross, Jason
Ohi, Nicholas
Author_xml – sequence: 1
  givenname: Cagri
  orcidid: 0000-0002-8117-3602
  surname: Kilic
  fullname: Kilic, Cagri
  email: cakilic@mix.wvu.edu
  organization: Department of Mechanical and Aerospace Engineering, West Virginia University, Morgantown, WV, USA
– sequence: 2
  givenname: Nicholas
  orcidid: 0000-0001-7868-1756
  surname: Ohi
  fullname: Ohi, Nicholas
  email: nohi@mix.wvu.edu
  organization: Department of Mechanical and Aerospace Engineering, West Virginia University, Morgantown, WV, USA
– sequence: 3
  givenname: Yu
  orcidid: 0000-0003-3165-3269
  surname: Gu
  fullname: Gu, Yu
  email: yu.gu@mail.wvu.edu
  organization: Department of Mechanical and Aerospace Engineering, West Virginia University, Morgantown, WV, USA
– sequence: 4
  givenname: Jason
  orcidid: 0000-0002-7771-2757
  surname: Gross
  fullname: Gross, Jason
  email: Jason.Gross@mail.wvu.edu
  organization: Department of Mechanical and Aerospace Engineering, West Virginia University, Morgantown, WV, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33969183$$D View this record in MEDLINE/PubMed
BookMark eNp9UU1r3DAUFCWl-WjuhUIR9JKLt_qw9XEpbEObBha6pJtLexCy_ZxVsKWNZAfaX19tdxPSHHrSE29mmDdzjA588IDQG0pmlBL9YXE1nzHC6IwToZTmL9AR41IWXApx8GQ-RKcp3RJCaMUk19UrdMi5FpoqfoR-fu_dpvhkE7R4Po3BhyFMCf-4Xq7wah3DdLPGF3ZKyVmPlzE0kBIeA74cNjHcA1721sNo4y98lb8RL0Jje_fbji741-hlZ_sEp_v3BF1_-bw6_1osvl1cns8XRVMKNRYaOlW3ldVtS0pRcsZJvorSVlioGOPcirqRvBOWVMTWFdSaEVJ2jNestlDzE_Rxp7uZ6gHaBvwYbW820Q3ZmAnWmX833q3NTbg3imgpS5UFzvYCMdxNkEYzuNRAv70tp2FYxUolOaNlhr5_Br0NU_T5vIyi21yl1Bn17qmjRysPuWeA2AGaGFKK0JnGjX9DywZdbygx245N7thsOzb7jjORPCM-aP-H8nZHcQDwCNdcSZK3fwAYzrFp
CODEN IRALC6
CitedBy_id crossref_primary_10_1016_j_mechatronics_2023_103123
crossref_primary_10_1109_TAES_2023_3290142
crossref_primary_10_33012_navi_608
crossref_primary_10_1109_ACCESS_2023_3280472
crossref_primary_10_1109_TITS_2023_3344799
crossref_primary_10_1088_1361_6501_ad7f79
crossref_primary_10_1109_TIV_2024_3406756
crossref_primary_10_1109_ACCESS_2022_3220629
crossref_primary_10_3390_app12031676
crossref_primary_10_1109_TIM_2024_3481531
crossref_primary_10_1109_JSEN_2021_3106583
crossref_primary_10_1016_j_robot_2022_104262
crossref_primary_10_3390_math9233139
crossref_primary_10_1109_TIM_2024_3385822
crossref_primary_10_1109_JSEN_2025_3559153
crossref_primary_10_1109_TITS_2025_3552691
crossref_primary_10_1016_j_actaastro_2024_03_046
crossref_primary_10_1109_TITS_2023_3317275
crossref_primary_10_1007_s10846_023_01886_3
crossref_primary_10_1109_TRO_2022_3228128
crossref_primary_10_3390_s25051315
crossref_primary_10_1109_JIOT_2024_3386889
crossref_primary_10_1109_JSEN_2024_3365979
crossref_primary_10_3390_app12094789
crossref_primary_10_3390_aerospace11110892
Cites_doi 10.1109/JSEN.2016.2585599
10.1109/TITS.2011.2168818
10.1109/ICRA.2017.7989670
10.1007/s11214-012-9892-2
10.1109/CGNCC.2014.7007449
10.1007/b94718
10.1109/ROBOT.2006.1642209
10.1109/ICRA.2017.7989646
10.1109/TRO.2005.855994
10.1029/2008JE003097
10.1109/TCSVT.2015.2452781
10.1002/rob.21761
10.1002/rob.21736
10.1007/978-3-540-28650-9_4
10.1109/TBME.2010.2060723
10.1002/rob.21925
10.1029/2002JE002041
10.1109/MRA.2006.1638017
10.1002/rob.20184
10.1109/IROS40897.2019.8968593
10.1109/9.847726
10.1016/j.icarus.2008.05.004
10.1016/j.jpowsour.2017.05.004
10.1109/70.964672
10.1109/MCG.2005.140
10.7551/mitpress/4057.003.0004
10.1002/2013JE004605
10.1109/IROS40897.2019.8967634
10.1002/rob.21903
10.1109/AERO47225.2020.9172469
10.21227/vz7z-jc84
10.1002/rob.21833
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
5PM
DOI 10.1109/LRA.2021.3068893
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed

Technology Research Database

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2377-3766
EndPage 4789
ExternalDocumentID PMC8097748
33969183
10_1109_LRA_2021_3068893
9387093
Genre orig-research
Journal Article
GrantInformation_xml – fundername: Benjamin M. Statler Fellowship
– fundername: National Aeronautics and Space Administration; NASA
  grantid: WV-80NSSC17M0053; 80NSSC20M0055
  funderid: 10.13039/100000104
– fundername: Shared Services Center NASA
  grantid: 80NSSC17M0053
GroupedDBID 0R~
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFS
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IFIPE
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
RIA
RIE
AAYXX
CITATION
NPM
RIG
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
5PM
ID FETCH-LOGICAL-c468t-9ef8bd5a9dd0464323002111d6ae52233a6bc73f6a050ab5eb92004f23b2baeb3
IEDL.DBID RIE
ISICitedReferencesCount 34
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000640765600045&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2377-3766
IngestDate Tue Sep 30 15:46:05 EDT 2025
Thu Oct 02 14:34:03 EDT 2025
Sun Nov 30 04:48:06 EST 2025
Mon Jul 21 06:00:13 EDT 2025
Sat Nov 29 06:03:11 EST 2025
Tue Nov 18 22:45:35 EST 2025
Wed Aug 27 02:30:25 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Planetary Rovers
Localization
Space Robotics and Automation
Zero Velocity Update
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c468t-9ef8bd5a9dd0464323002111d6ae52233a6bc73f6a050ab5eb92004f23b2baeb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-7868-1756
0000-0002-8117-3602
0000-0002-7771-2757
0000-0003-3165-3269
PMID 33969183
PQID 2513396779
PQPubID 4437225
PageCount 8
ParticipantIDs crossref_primary_10_1109_LRA_2021_3068893
proquest_miscellaneous_2524873214
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8097748
crossref_citationtrail_10_1109_LRA_2021_3068893
proquest_journals_2513396779
pubmed_primary_33969183
ieee_primary_9387093
PublicationCentury 2000
PublicationDate 2021-07-01
PublicationDateYYYYMMDD 2021-07-01
PublicationDate_xml – month: 07
  year: 2021
  text: 2021-07-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Piscataway
PublicationTitle IEEE robotics and automation letters
PublicationTitleAbbrev LRA
PublicationTitleAlternate IEEE Robot Autom Lett
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
(ref43) 0
ref34
ref12
ref15
ref36
ref14
ref31
ref30
ref11
campos (ref44) 2020
(ref37) 0
quigley (ref10) 0
ref2
ref1
ref17
ref16
(ref35) 0
ref19
ref18
takasu (ref39) 0
rogers-marcovitz (ref22) 0
misra (ref40) 2006
ref24
ref23
ref26
ref25
groves (ref8) 2013
ref20
ref42
ref21
(ref38) 0
vert (ref33) 2004; 47
ref28
ref27
ref29
ref7
ref9
ref4
ref3
ref6
duvenaud (ref32) 2014
ref5
ramme (ref41) 2013
References_xml – ident: ref25
  doi: 10.1109/JSEN.2016.2585599
– ident: ref27
  doi: 10.1109/TITS.2011.2168818
– ident: ref21
  doi: 10.1109/ICRA.2017.7989670
– ident: ref6
  doi: 10.1007/s11214-012-9892-2
– ident: ref26
  doi: 10.1109/CGNCC.2014.7007449
– ident: ref12
  doi: 10.1007/b94718
– ident: ref17
  doi: 10.1109/ROBOT.2006.1642209
– ident: ref19
  doi: 10.1109/ICRA.2017.7989646
– ident: ref20
  doi: 10.1109/TRO.2005.855994
– ident: ref4
  doi: 10.1029/2008JE003097
– ident: ref15
  doi: 10.1109/TCSVT.2015.2452781
– year: 2014
  ident: ref32
  article-title: Automatic model construction with gaussian processes
– year: 0
  ident: ref22
  article-title: Continuous vehicle slip model identification on changing terrains
  publication-title: Proc Robot Sci Syst Workshop Long-Term Oper Auton Robot Syst Changing Environ
– start-page: 5
  year: 0
  ident: ref10
  article-title: ROS: an open-source robot operating system
  publication-title: Proc ICRA Workshop Open Source Softw
– year: 2006
  ident: ref40
  article-title: Global positioning system: signals, measurements and performance second edition
– ident: ref5
  doi: 10.1002/rob.21761
– ident: ref13
  doi: 10.1002/rob.21736
– year: 2020
  ident: ref44
  article-title: ORB-SLAM3: An accurate open-source library for visual, visual-inertial and multi-map slam
– ident: ref31
  doi: 10.1007/978-3-540-28650-9_4
– ident: ref30
  doi: 10.1109/TBME.2010.2060723
– year: 2013
  ident: ref41
  article-title: Coal Combustion Products Utilization Handbook
– ident: ref16
  doi: 10.1002/rob.21925
– ident: ref7
  doi: 10.1029/2002JE002041
– year: 0
  ident: ref37
  article-title: Tactical Grade, Six Degrees of Freedom Inertial Sensor
– ident: ref23
  doi: 10.1109/MRA.2006.1638017
– start-page: 4
  year: 0
  ident: ref39
  article-title: Development of the low-cost RTK-GPS receiver with an open source program package RTKLIB
  publication-title: Proc Int Symp GPS/GNSS
– ident: ref1
  doi: 10.1002/rob.20184
– ident: ref28
  doi: 10.1109/IROS40897.2019.8968593
– year: 0
  ident: ref43
  article-title: Intel RealSense Tracking Camera
– ident: ref36
  doi: 10.1109/9.847726
– ident: ref42
  doi: 10.1016/j.icarus.2008.05.004
– year: 2013
  ident: ref8
  publication-title: Principles of GNSS Inertial and Multisensor Integrated Navigation Systems
– ident: ref34
  doi: 10.1016/j.jpowsour.2017.05.004
– ident: ref29
  doi: 10.1109/70.964672
– ident: ref24
  doi: 10.1109/MCG.2005.140
– volume: 47
  start-page: 35
  year: 2004
  ident: ref33
  article-title: A primer on kernel methods
  publication-title: Kernel Methods in Computational Biology
  doi: 10.7551/mitpress/4057.003.0004
– ident: ref14
  doi: 10.1002/2013JE004605
– year: 0
  ident: ref35
– year: 0
  ident: ref38
  article-title: Compact, Dual Frequency GNSS Receiver
– ident: ref9
  doi: 10.1109/IROS40897.2019.8967634
– ident: ref3
  doi: 10.1002/rob.21903
– ident: ref2
  doi: 10.1109/AERO47225.2020.9172469
– ident: ref11
  doi: 10.21227/vz7z-jc84
– ident: ref18
  doi: 10.1002/rob.21833
SSID ssj0001527395
Score 2.3824334
Snippet The zero-velocity update (ZUPT) algorithm provides valuable state information to maintain the inertial navigation system (INS) reliability when stationary...
SourceID pubmedcentral
proquest
pubmed
crossref
ieee
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 4782
SubjectTerms Accuracy
Algorithms
Dead reckoning
Estimation
Extraterrestrial measurements
Field tests
Gaussian process
Inertial navigation
Kernel
Localization
Location awareness
Navigation systems
Planetary rovers
Reliability aspects
Rough terrain
Slippage
Space robotics and automation
Space vehicles
Training
Wheels
zero velocity update
Title Slip-Based Autonomous ZUPT Through Gaussian Process to Improve Planetary Rover Localization
URI https://ieeexplore.ieee.org/document/9387093
https://www.ncbi.nlm.nih.gov/pubmed/33969183
https://www.proquest.com/docview/2513396779
https://www.proquest.com/docview/2524873214
https://pubmed.ncbi.nlm.nih.gov/PMC8097748
Volume 6
WOSCitedRecordID wos000640765600045&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2377-3766
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001527395
  issn: 2377-3766
  databaseCode: RIE
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2377-3766
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001527395
  issn: 2377-3766
  databaseCode: M~E
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9RAEB_a4oM--FWt0bas4Itgekk2m919PEurD2cp9SqHPoRNdoIH5a7c5QRf_NudSXKxV0rBlxDYSUhmZpmZnY8fwDt0xqnEu7AslA_TDKPQocNQS1slkU5S1Zx3fBvpszMzmdjzLfjQ98IgYlN8hkd82-Ty_bxc8VHZwErSLiu3YVvrrO3V-neewpPErFpnIiM7GF0MKf5L4iPJwCqWEXOktJmNjdwwQg2qyl0O5u06yRuG5_TJ_33yU3jcOZhi2GrEM9jC2XN4dGPs4C78-Ho1vQ4_kv3yYriqua2B4n_x_fJ8LMYtbo_45FZL7q8UXSeBqOeiPYBAwUBHWLvFb3HBBaBixPaw6-d8AZenJ-Pjz2EHshCWaWbq0GJlCq-c9Z6znJJCEuJZHPvMIflmUrqsKLWsMhepyBUKC8sbq0pkkRSOQvGXsDObz_AVCHIN0JJ7hLLyqUVlbKJjZWIKgtOsLHwAgzXX87KbQM5AGFd5E4lENieR5SyyvBNZAO_7J67b6Rv30O4y-3u6jvMB7K8Fm3fbc5knjGpjM61tAG_7ZdpYnC0hFhLTiSahYI5xnALYa_Wgf_dajwLQGxrSE_DQ7s2V2fRnM7zbROxxm9d3f-0beMj_1NYD78NOvVjhATwof9XT5eKQ9H5i6Prlz8lho_1_AZ5yAPw
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9RAEB9qFdQHv6o1WnUFXwTTS3azSebxFGvFeJR6lVIfwiY7oQflrtwlgv-9O0ku9qQIvgV2EzYzs8z3_ADekEmNltb4ZaGtH8UU-IYM-YnCSgaJjHQb7_ieJZNJenqKR1vwbuiFIaK2-Iz2-bHN5dtF2XCobITKSReqG3BTR5EMum6tPxEVniWGep2LDHCUHY-dByjDfcXQKsiYOUphjGGqNtRQi6tynYn5d6XkFdVzcP__Dv0A7vUmphh3MvEQtmj-CO5eGTy4Az--Xcwu_fdOg1kxbmpubFg0K3F2cjQV0w65R3wyzYo7LEXfSyDqhehCECQY6ohqs_wljrkEVGSsEfuOzsdwcvBx-uHQ72EW_DKK09pHqtLCaoPWcp5TOafE0SwMbWzIWWdKmbgoE1XFJtCBKTQVyFerkqqQhXHO-BPYni_m9BSEMw4InYFEqrIRkk5RJqFOQ-cGR3FZWA9Ga6rnZT-DnKEwLvLWFwkwdyzLmWV5zzIP3g5vXHbzN_6xd4fJP-zrKe_B3pqxeX9BV7lkXBuMkwQ9eD0su6vF-RJHQkd0t0c6d46RnDzY7eRg-PZajjxINiRk2MBjuzdX5rPzdnx3GrDNnT67_rSv4Pbh9GuWZ58nX57DHf6_rjp4D7brZUMv4Fb5s56tli9b6f8NAEcCKg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Slip-Based+Autonomous+ZUPT+Through+Gaussian+Process+to+Improve+Planetary+Rover+Localization&rft.jtitle=IEEE+robotics+and+automation+letters&rft.au=Kilic%2C+Cagri&rft.au=Ohi%2C+Nicholas&rft.au=Gu%2C+Yu&rft.au=Gross%2C+Jason&rft.date=2021-07-01&rft.issn=2377-3766&rft.eissn=2377-3766&rft.volume=6&rft.issue=3&rft.spage=4782&rft.epage=4789&rft_id=info:doi/10.1109%2FLRA.2021.3068893&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_LRA_2021_3068893
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2377-3766&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2377-3766&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2377-3766&client=summon