Slip-Based Autonomous ZUPT Through Gaussian Process to Improve Planetary Rover Localization
The zero-velocity update (ZUPT) algorithm provides valuable state information to maintain the inertial navigation system (INS) reliability when stationary conditions are satisfied. Employing ZUPT along with leveraging non-holonomic constraints can greatly benefit wheeled mobile robot dead-reckoning...
Uloženo v:
| Vydáno v: | IEEE robotics and automation letters Ročník 6; číslo 3; s. 4782 - 4789 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
United States
IEEE
01.07.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 2377-3766, 2377-3766 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | The zero-velocity update (ZUPT) algorithm provides valuable state information to maintain the inertial navigation system (INS) reliability when stationary conditions are satisfied. Employing ZUPT along with leveraging non-holonomic constraints can greatly benefit wheeled mobile robot dead-reckoning localization accuracy. However, determining how often they should be employed requires consideration to balance localization accuracy and traversal rate for planetary rovers. To address this, we investigate when to autonomously initiate stops to improve wheel-inertial odometry (WIO) localization performance with ZUPT. To do this, we propose a 3D dead-reckoning approach that predicts wheel slippage while the rover is in motion and forecasts the appropriate time to stop without changing any rover hardware or major rover operations. We validate with field tests that our approach is viable on different terrain types and achieves a 3D localization accuracy of <inline-formula><tex-math notation="LaTeX">{\sim}97{\bf \%}</tex-math></inline-formula> over 650 m drives on rough terrain. |
|---|---|
| AbstractList | The zero-velocity update (ZUPT) algorithm provides valuable state information to maintain the inertial navigation system (INS) reliability when stationary conditions are satisfied. Employing ZUPT along with leveraging non-holonomic constraints can greatly benefit wheeled mobile robot dead-reckoning localization accuracy. However, determining how often they should be employed requires consideration to balance localization accuracy and traversal rate for planetary rovers. To address this, we investigate when to autonomously initiate stops to improve wheel-inertial odometry (WIO) localization performance with ZUPT. To do this, we propose a 3D dead-reckoning approach that predicts wheel slippage while the rover is in motion and forecasts the appropriate time to stop without changing any rover hardware or major rover operations. We validate with field tests that our approach is viable on different terrain types and achieves a 3D localization accuracy of ~97% over 650 m drives on rough terrain.The zero-velocity update (ZUPT) algorithm provides valuable state information to maintain the inertial navigation system (INS) reliability when stationary conditions are satisfied. Employing ZUPT along with leveraging non-holonomic constraints can greatly benefit wheeled mobile robot dead-reckoning localization accuracy. However, determining how often they should be employed requires consideration to balance localization accuracy and traversal rate for planetary rovers. To address this, we investigate when to autonomously initiate stops to improve wheel-inertial odometry (WIO) localization performance with ZUPT. To do this, we propose a 3D dead-reckoning approach that predicts wheel slippage while the rover is in motion and forecasts the appropriate time to stop without changing any rover hardware or major rover operations. We validate with field tests that our approach is viable on different terrain types and achieves a 3D localization accuracy of ~97% over 650 m drives on rough terrain. The zero-velocity update (ZUPT) algorithm provides valuable state information to maintain the inertial navigation system (INS) reliability when stationary conditions are satisfied. Employing ZUPT along with leveraging non-holonomic constraints can greatly benefit wheeled mobile robot dead-reckoning localization accuracy. However, determining how often they should be employed requires consideration to balance localization accuracy and traversal rate for planetary rovers. To address this, we investigate when to autonomously initiate stops to improve wheel-inertial odometry (WIO) localization performance with ZUPT. To do this, we propose a 3D dead-reckoning approach that predicts wheel slippage while the rover is in motion and forecasts the appropriate time to stop without changing any rover hardware or major rover operations. We validate with field tests that our approach is viable on different terrain types and achieves a 3D localization accuracy of ~97% over 650 m drives on rough terrain. The zero-velocity update (ZUPT) algorithm provides valuable state information to maintain the inertial navigation system (INS) reliability when stationary conditions are satisfied. Employing ZUPT along with leveraging non-holonomic constraints can greatly benefit wheeled mobile robot dead-reckoning localization accuracy. However, determining how often they should be employed requires consideration to balance localization accuracy and traversal rate for planetary rovers. To address this, we investigate when to autonomously initiate stops to improve wheel-inertial odometry (WIO) localization performance with ZUPT. To do this, we propose a 3D dead-reckoning approach that predicts wheel slippage while the rover is in motion and forecasts the appropriate time to stop without changing any rover hardware or major rover operations. We validate with field tests that our approach is viable on different terrain types and achieves a 3D localization accuracy of [Formula Omitted] over 650 m drives on rough terrain. The zero-velocity update (ZUPT) algorithm provides valuable state information to maintain the inertial navigation system (INS) reliability when stationary conditions are satisfied. Employing ZUPT along with leveraging non-holonomic constraints can greatly benefit wheeled mobile robot dead-reckoning localization accuracy. However, determining how often they should be employed requires consideration to balance localization accuracy and traversal rate for planetary rovers. To address this, we investigate when to autonomously initiate stops to improve wheel-inertial odometry (WIO) localization performance with ZUPT. To do this, we propose a 3D dead-reckoning approach that predicts wheel slippage while the rover is in motion and forecasts the appropriate time to stop without changing any rover hardware or major rover operations. We validate with field tests that our approach is viable on different terrain types and achieves a 3D localization accuracy of <inline-formula><tex-math notation="LaTeX">{\sim}97{\bf \%}</tex-math></inline-formula> over 650 m drives on rough terrain. |
| Author | Kilic, Cagri Gu, Yu Gross, Jason Ohi, Nicholas |
| Author_xml | – sequence: 1 givenname: Cagri orcidid: 0000-0002-8117-3602 surname: Kilic fullname: Kilic, Cagri email: cakilic@mix.wvu.edu organization: Department of Mechanical and Aerospace Engineering, West Virginia University, Morgantown, WV, USA – sequence: 2 givenname: Nicholas orcidid: 0000-0001-7868-1756 surname: Ohi fullname: Ohi, Nicholas email: nohi@mix.wvu.edu organization: Department of Mechanical and Aerospace Engineering, West Virginia University, Morgantown, WV, USA – sequence: 3 givenname: Yu orcidid: 0000-0003-3165-3269 surname: Gu fullname: Gu, Yu email: yu.gu@mail.wvu.edu organization: Department of Mechanical and Aerospace Engineering, West Virginia University, Morgantown, WV, USA – sequence: 4 givenname: Jason orcidid: 0000-0002-7771-2757 surname: Gross fullname: Gross, Jason email: Jason.Gross@mail.wvu.edu organization: Department of Mechanical and Aerospace Engineering, West Virginia University, Morgantown, WV, USA |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33969183$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9UU1r3DAUFCWl-WjuhUIR9JKLt_qw9XEpbEObBha6pJtLexCy_ZxVsKWNZAfaX19tdxPSHHrSE29mmDdzjA588IDQG0pmlBL9YXE1nzHC6IwToZTmL9AR41IWXApx8GQ-RKcp3RJCaMUk19UrdMi5FpoqfoR-fu_dpvhkE7R4Po3BhyFMCf-4Xq7wah3DdLPGF3ZKyVmPlzE0kBIeA74cNjHcA1721sNo4y98lb8RL0Jje_fbji741-hlZ_sEp_v3BF1_-bw6_1osvl1cns8XRVMKNRYaOlW3ldVtS0pRcsZJvorSVlioGOPcirqRvBOWVMTWFdSaEVJ2jNestlDzE_Rxp7uZ6gHaBvwYbW820Q3ZmAnWmX833q3NTbg3imgpS5UFzvYCMdxNkEYzuNRAv70tp2FYxUolOaNlhr5_Br0NU_T5vIyi21yl1Bn17qmjRysPuWeA2AGaGFKK0JnGjX9DywZdbygx245N7thsOzb7jjORPCM-aP-H8nZHcQDwCNdcSZK3fwAYzrFp |
| CODEN | IRALC6 |
| CitedBy_id | crossref_primary_10_1016_j_mechatronics_2023_103123 crossref_primary_10_1109_TAES_2023_3290142 crossref_primary_10_33012_navi_608 crossref_primary_10_1109_ACCESS_2023_3280472 crossref_primary_10_1109_TITS_2023_3344799 crossref_primary_10_1088_1361_6501_ad7f79 crossref_primary_10_1109_TIV_2024_3406756 crossref_primary_10_1109_ACCESS_2022_3220629 crossref_primary_10_3390_app12031676 crossref_primary_10_1109_TIM_2024_3481531 crossref_primary_10_1109_JSEN_2021_3106583 crossref_primary_10_1016_j_robot_2022_104262 crossref_primary_10_3390_math9233139 crossref_primary_10_1109_TIM_2024_3385822 crossref_primary_10_1109_JSEN_2025_3559153 crossref_primary_10_1109_TITS_2025_3552691 crossref_primary_10_1016_j_actaastro_2024_03_046 crossref_primary_10_1109_TITS_2023_3317275 crossref_primary_10_1007_s10846_023_01886_3 crossref_primary_10_1109_TRO_2022_3228128 crossref_primary_10_3390_s25051315 crossref_primary_10_1109_JIOT_2024_3386889 crossref_primary_10_1109_JSEN_2024_3365979 crossref_primary_10_3390_app12094789 crossref_primary_10_3390_aerospace11110892 |
| Cites_doi | 10.1109/JSEN.2016.2585599 10.1109/TITS.2011.2168818 10.1109/ICRA.2017.7989670 10.1007/s11214-012-9892-2 10.1109/CGNCC.2014.7007449 10.1007/b94718 10.1109/ROBOT.2006.1642209 10.1109/ICRA.2017.7989646 10.1109/TRO.2005.855994 10.1029/2008JE003097 10.1109/TCSVT.2015.2452781 10.1002/rob.21761 10.1002/rob.21736 10.1007/978-3-540-28650-9_4 10.1109/TBME.2010.2060723 10.1002/rob.21925 10.1029/2002JE002041 10.1109/MRA.2006.1638017 10.1002/rob.20184 10.1109/IROS40897.2019.8968593 10.1109/9.847726 10.1016/j.icarus.2008.05.004 10.1016/j.jpowsour.2017.05.004 10.1109/70.964672 10.1109/MCG.2005.140 10.7551/mitpress/4057.003.0004 10.1002/2013JE004605 10.1109/IROS40897.2019.8967634 10.1002/rob.21903 10.1109/AERO47225.2020.9172469 10.21227/vz7z-jc84 10.1002/rob.21833 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
| DBID | 97E RIA RIE AAYXX CITATION NPM 7SC 7SP 8FD JQ2 L7M L~C L~D 7X8 5PM |
| DOI | 10.1109/LRA.2021.3068893 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef PubMed Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef PubMed Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic PubMed Technology Research Database |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2377-3766 |
| EndPage | 4789 |
| ExternalDocumentID | PMC8097748 33969183 10_1109_LRA_2021_3068893 9387093 |
| Genre | orig-research Journal Article |
| GrantInformation_xml | – fundername: Benjamin M. Statler Fellowship – fundername: National Aeronautics and Space Administration; NASA grantid: WV-80NSSC17M0053; 80NSSC20M0055 funderid: 10.13039/100000104 – fundername: Shared Services Center NASA grantid: 80NSSC17M0053 |
| GroupedDBID | 0R~ 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFS AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD IFIPE IPLJI JAVBF KQ8 M43 M~E O9- OCL RIA RIE AAYXX CITATION NPM RIG 7SC 7SP 8FD JQ2 L7M L~C L~D 7X8 5PM |
| ID | FETCH-LOGICAL-c468t-9ef8bd5a9dd0464323002111d6ae52233a6bc73f6a050ab5eb92004f23b2baeb3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 34 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000640765600045&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2377-3766 |
| IngestDate | Tue Sep 30 15:46:05 EDT 2025 Thu Oct 02 14:34:03 EDT 2025 Sun Nov 30 04:48:06 EST 2025 Mon Jul 21 06:00:13 EDT 2025 Sat Nov 29 06:03:11 EST 2025 Tue Nov 18 22:45:35 EST 2025 Wed Aug 27 02:30:25 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Keywords | Planetary Rovers Localization Space Robotics and Automation Zero Velocity Update |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c468t-9ef8bd5a9dd0464323002111d6ae52233a6bc73f6a050ab5eb92004f23b2baeb3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0001-7868-1756 0000-0002-8117-3602 0000-0002-7771-2757 0000-0003-3165-3269 |
| PMID | 33969183 |
| PQID | 2513396779 |
| PQPubID | 4437225 |
| PageCount | 8 |
| ParticipantIDs | crossref_primary_10_1109_LRA_2021_3068893 proquest_miscellaneous_2524873214 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8097748 crossref_citationtrail_10_1109_LRA_2021_3068893 proquest_journals_2513396779 pubmed_primary_33969183 ieee_primary_9387093 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-07-01 |
| PublicationDateYYYYMMDD | 2021-07-01 |
| PublicationDate_xml | – month: 07 year: 2021 text: 2021-07-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: Piscataway |
| PublicationTitle | IEEE robotics and automation letters |
| PublicationTitleAbbrev | LRA |
| PublicationTitleAlternate | IEEE Robot Autom Lett |
| PublicationYear | 2021 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 (ref43) 0 ref34 ref12 ref15 ref36 ref14 ref31 ref30 ref11 campos (ref44) 2020 (ref37) 0 quigley (ref10) 0 ref2 ref1 ref17 ref16 (ref35) 0 ref19 ref18 takasu (ref39) 0 rogers-marcovitz (ref22) 0 misra (ref40) 2006 ref24 ref23 ref26 ref25 groves (ref8) 2013 ref20 ref42 ref21 (ref38) 0 vert (ref33) 2004; 47 ref28 ref27 ref29 ref7 ref9 ref4 ref3 ref6 duvenaud (ref32) 2014 ref5 ramme (ref41) 2013 |
| References_xml | – ident: ref25 doi: 10.1109/JSEN.2016.2585599 – ident: ref27 doi: 10.1109/TITS.2011.2168818 – ident: ref21 doi: 10.1109/ICRA.2017.7989670 – ident: ref6 doi: 10.1007/s11214-012-9892-2 – ident: ref26 doi: 10.1109/CGNCC.2014.7007449 – ident: ref12 doi: 10.1007/b94718 – ident: ref17 doi: 10.1109/ROBOT.2006.1642209 – ident: ref19 doi: 10.1109/ICRA.2017.7989646 – ident: ref20 doi: 10.1109/TRO.2005.855994 – ident: ref4 doi: 10.1029/2008JE003097 – ident: ref15 doi: 10.1109/TCSVT.2015.2452781 – year: 2014 ident: ref32 article-title: Automatic model construction with gaussian processes – year: 0 ident: ref22 article-title: Continuous vehicle slip model identification on changing terrains publication-title: Proc Robot Sci Syst Workshop Long-Term Oper Auton Robot Syst Changing Environ – start-page: 5 year: 0 ident: ref10 article-title: ROS: an open-source robot operating system publication-title: Proc ICRA Workshop Open Source Softw – year: 2006 ident: ref40 article-title: Global positioning system: signals, measurements and performance second edition – ident: ref5 doi: 10.1002/rob.21761 – ident: ref13 doi: 10.1002/rob.21736 – year: 2020 ident: ref44 article-title: ORB-SLAM3: An accurate open-source library for visual, visual-inertial and multi-map slam – ident: ref31 doi: 10.1007/978-3-540-28650-9_4 – ident: ref30 doi: 10.1109/TBME.2010.2060723 – year: 2013 ident: ref41 article-title: Coal Combustion Products Utilization Handbook – ident: ref16 doi: 10.1002/rob.21925 – ident: ref7 doi: 10.1029/2002JE002041 – year: 0 ident: ref37 article-title: Tactical Grade, Six Degrees of Freedom Inertial Sensor – ident: ref23 doi: 10.1109/MRA.2006.1638017 – start-page: 4 year: 0 ident: ref39 article-title: Development of the low-cost RTK-GPS receiver with an open source program package RTKLIB publication-title: Proc Int Symp GPS/GNSS – ident: ref1 doi: 10.1002/rob.20184 – ident: ref28 doi: 10.1109/IROS40897.2019.8968593 – year: 0 ident: ref43 article-title: Intel RealSense Tracking Camera – ident: ref36 doi: 10.1109/9.847726 – ident: ref42 doi: 10.1016/j.icarus.2008.05.004 – year: 2013 ident: ref8 publication-title: Principles of GNSS Inertial and Multisensor Integrated Navigation Systems – ident: ref34 doi: 10.1016/j.jpowsour.2017.05.004 – ident: ref29 doi: 10.1109/70.964672 – ident: ref24 doi: 10.1109/MCG.2005.140 – volume: 47 start-page: 35 year: 2004 ident: ref33 article-title: A primer on kernel methods publication-title: Kernel Methods in Computational Biology doi: 10.7551/mitpress/4057.003.0004 – ident: ref14 doi: 10.1002/2013JE004605 – year: 0 ident: ref35 – year: 0 ident: ref38 article-title: Compact, Dual Frequency GNSS Receiver – ident: ref9 doi: 10.1109/IROS40897.2019.8967634 – ident: ref3 doi: 10.1002/rob.21903 – ident: ref2 doi: 10.1109/AERO47225.2020.9172469 – ident: ref11 doi: 10.21227/vz7z-jc84 – ident: ref18 doi: 10.1002/rob.21833 |
| SSID | ssj0001527395 |
| Score | 2.3824334 |
| Snippet | The zero-velocity update (ZUPT) algorithm provides valuable state information to maintain the inertial navigation system (INS) reliability when stationary... |
| SourceID | pubmedcentral proquest pubmed crossref ieee |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 4782 |
| SubjectTerms | Accuracy Algorithms Dead reckoning Estimation Extraterrestrial measurements Field tests Gaussian process Inertial navigation Kernel Localization Location awareness Navigation systems Planetary rovers Reliability aspects Rough terrain Slippage Space robotics and automation Space vehicles Training Wheels zero velocity update |
| Title | Slip-Based Autonomous ZUPT Through Gaussian Process to Improve Planetary Rover Localization |
| URI | https://ieeexplore.ieee.org/document/9387093 https://www.ncbi.nlm.nih.gov/pubmed/33969183 https://www.proquest.com/docview/2513396779 https://www.proquest.com/docview/2524873214 https://pubmed.ncbi.nlm.nih.gov/PMC8097748 |
| Volume | 6 |
| WOSCitedRecordID | wos000640765600045&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 2377-3766 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001527395 issn: 2377-3766 databaseCode: RIE dateStart: 20160101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2377-3766 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001527395 issn: 2377-3766 databaseCode: M~E dateStart: 20160101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9RAEB_a4oM--FWt0bas4Itgekk2m919PEurD2cp9SqHPoRNdoIH5a7c5QRf_NudSXKxV0rBlxDYSUhmZpmZnY8fwDt0xqnEu7AslA_TDKPQocNQS1slkU5S1Zx3fBvpszMzmdjzLfjQ98IgYlN8hkd82-Ty_bxc8VHZwErSLiu3YVvrrO3V-neewpPErFpnIiM7GF0MKf5L4iPJwCqWEXOktJmNjdwwQg2qyl0O5u06yRuG5_TJ_33yU3jcOZhi2GrEM9jC2XN4dGPs4C78-Ho1vQ4_kv3yYriqua2B4n_x_fJ8LMYtbo_45FZL7q8UXSeBqOeiPYBAwUBHWLvFb3HBBaBixPaw6-d8AZenJ-Pjz2EHshCWaWbq0GJlCq-c9Z6znJJCEuJZHPvMIflmUrqsKLWsMhepyBUKC8sbq0pkkRSOQvGXsDObz_AVCHIN0JJ7hLLyqUVlbKJjZWIKgtOsLHwAgzXX87KbQM5AGFd5E4lENieR5SyyvBNZAO_7J67b6Rv30O4y-3u6jvMB7K8Fm3fbc5knjGpjM61tAG_7ZdpYnC0hFhLTiSahYI5xnALYa_Wgf_dajwLQGxrSE_DQ7s2V2fRnM7zbROxxm9d3f-0beMj_1NYD78NOvVjhATwof9XT5eKQ9H5i6Prlz8lho_1_AZ5yAPw |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9RAEB9qFdQHv6o1WnUFXwTTS3azSebxFGvFeJR6lVIfwiY7oQflrtwlgv-9O0ku9qQIvgV2EzYzs8z3_ADekEmNltb4ZaGtH8UU-IYM-YnCSgaJjHQb7_ieJZNJenqKR1vwbuiFIaK2-Iz2-bHN5dtF2XCobITKSReqG3BTR5EMum6tPxEVniWGep2LDHCUHY-dByjDfcXQKsiYOUphjGGqNtRQi6tynYn5d6XkFdVzcP__Dv0A7vUmphh3MvEQtmj-CO5eGTy4Az--Xcwu_fdOg1kxbmpubFg0K3F2cjQV0w65R3wyzYo7LEXfSyDqhehCECQY6ohqs_wljrkEVGSsEfuOzsdwcvBx-uHQ72EW_DKK09pHqtLCaoPWcp5TOafE0SwMbWzIWWdKmbgoE1XFJtCBKTQVyFerkqqQhXHO-BPYni_m9BSEMw4InYFEqrIRkk5RJqFOQ-cGR3FZWA9Ga6rnZT-DnKEwLvLWFwkwdyzLmWV5zzIP3g5vXHbzN_6xd4fJP-zrKe_B3pqxeX9BV7lkXBuMkwQ9eD0su6vF-RJHQkd0t0c6d46RnDzY7eRg-PZajjxINiRk2MBjuzdX5rPzdnx3GrDNnT67_rSv4Pbh9GuWZ58nX57DHf6_rjp4D7brZUMv4Fb5s56tli9b6f8NAEcCKg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Slip-Based+Autonomous+ZUPT+Through+Gaussian+Process+to+Improve+Planetary+Rover+Localization&rft.jtitle=IEEE+robotics+and+automation+letters&rft.au=Kilic%2C+Cagri&rft.au=Ohi%2C+Nicholas&rft.au=Gu%2C+Yu&rft.au=Gross%2C+Jason&rft.date=2021-07-01&rft.issn=2377-3766&rft.eissn=2377-3766&rft.volume=6&rft.issue=3&rft.spage=4782&rft.epage=4789&rft_id=info:doi/10.1109%2FLRA.2021.3068893&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_LRA_2021_3068893 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2377-3766&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2377-3766&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2377-3766&client=summon |