Application of artificial intelligence techniques for the profiling of visitors to tourist destinations

Tourism in Peru represents an opportunity for local development; however, there is limited understanding of visitor profiles. The aim of this study was to characterize tourists using machine learning techniques in order to identify distinct segments that can inform planning and promotional strategie...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Frontiers in artificial intelligence Jg. 8; S. 1632415
Hauptverfasser: Schrader, Juan, Pinedo, Lloy, Vargas, Franz, Martell, Karla, Seijas-Díaz, José, Rengifo-Amasifen, Roger, Cueto-Orbe, Rosa, Torres-Silva, Cinthya
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Switzerland Frontiers Media S.A 04.08.2025
Schlagworte:
ISSN:2624-8212, 2624-8212
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Tourism in Peru represents an opportunity for local development; however, there is limited understanding of visitor profiles. The aim of this study was to characterize tourists using machine learning techniques in order to identify distinct segments that can inform planning and promotional strategies for the Alto Amazonas destination. The research followed the CRISP-DM methodology for data analysis, based on surveys administered to 882 visitors. The data were processed using the clustering algorithms K-Means, DBSCAN, HDBSCAN, and Agglomerative, with Principal Component Analysis applied beforehand for dimensionality reduction. The results showed that the Agglomerative Clustering model achieved the best performance in internal validation metrics, allowing for the identification of five distinct visitor profiles. These segments provide valuable insights for the design of more inclusive and personalized tourism products. In conclusion, the study demonstrates the value of machine learning as a tool for tourism segmentation, offering empirical evidence that can strengthen the management of emerging destinations such as Alto Amazonas. The practical contribution of this study lies in providing strategic information that enables destination managers to tailor services and experiences to the characteristics of each segment, thereby optimizing visitor satisfaction and strengthening the destination’s competitiveness.
AbstractList Tourism in Peru represents an opportunity for local development; however, there is limited understanding of visitor profiles. The aim of this study was to characterize tourists using machine learning techniques in order to identify distinct segments that can inform planning and promotional strategies for the Alto Amazonas destination. The research followed the CRISP-DM methodology for data analysis, based on surveys administered to 882 visitors. The data were processed using the clustering algorithms K-Means, DBSCAN, HDBSCAN, and Agglomerative, with Principal Component Analysis applied beforehand for dimensionality reduction. The results showed that the Agglomerative Clustering model achieved the best performance in internal validation metrics, allowing for the identification of five distinct visitor profiles. These segments provide valuable insights for the design of more inclusive and personalized tourism products. In conclusion, the study demonstrates the value of machine learning as a tool for tourism segmentation, offering empirical evidence that can strengthen the management of emerging destinations such as Alto Amazonas. The practical contribution of this study lies in providing strategic information that enables destination managers to tailor services and experiences to the characteristics of each segment, thereby optimizing visitor satisfaction and strengthening the destination's competitiveness.Tourism in Peru represents an opportunity for local development; however, there is limited understanding of visitor profiles. The aim of this study was to characterize tourists using machine learning techniques in order to identify distinct segments that can inform planning and promotional strategies for the Alto Amazonas destination. The research followed the CRISP-DM methodology for data analysis, based on surveys administered to 882 visitors. The data were processed using the clustering algorithms K-Means, DBSCAN, HDBSCAN, and Agglomerative, with Principal Component Analysis applied beforehand for dimensionality reduction. The results showed that the Agglomerative Clustering model achieved the best performance in internal validation metrics, allowing for the identification of five distinct visitor profiles. These segments provide valuable insights for the design of more inclusive and personalized tourism products. In conclusion, the study demonstrates the value of machine learning as a tool for tourism segmentation, offering empirical evidence that can strengthen the management of emerging destinations such as Alto Amazonas. The practical contribution of this study lies in providing strategic information that enables destination managers to tailor services and experiences to the characteristics of each segment, thereby optimizing visitor satisfaction and strengthening the destination's competitiveness.
Tourism in Peru represents an opportunity for local development; however, there is limited understanding of visitor profiles. The aim of this study was to characterize tourists using machine learning techniques in order to identify distinct segments that can inform planning and promotional strategies for the Alto Amazonas destination. The research followed the CRISP-DM methodology for data analysis, based on surveys administered to 882 visitors. The data were processed using the clustering algorithms K-Means, DBSCAN, HDBSCAN, and Agglomerative, with Principal Component Analysis applied beforehand for dimensionality reduction. The results showed that the Agglomerative Clustering model achieved the best performance in internal validation metrics, allowing for the identification of five distinct visitor profiles. These segments provide valuable insights for the design of more inclusive and personalized tourism products. In conclusion, the study demonstrates the value of machine learning as a tool for tourism segmentation, offering empirical evidence that can strengthen the management of emerging destinations such as Alto Amazonas. The practical contribution of this study lies in providing strategic information that enables destination managers to tailor services and experiences to the characteristics of each segment, thereby optimizing visitor satisfaction and strengthening the destination's competitiveness.
Author Vargas, Franz
Torres-Silva, Cinthya
Martell, Karla
Seijas-Díaz, José
Schrader, Juan
Pinedo, Lloy
Cueto-Orbe, Rosa
Rengifo-Amasifen, Roger
AuthorAffiliation 1 Grupo de Investigación Innovación Turística y Comercio Exterior, Facultad de Ciencias Económicas, Administrativas y Contables, Universidad Nacional Autónoma de Alto Amazonas , Yurimaguas , Peru
2 Grupo de Investigación Transformación Digital Empresarial, Facultad de Ingeniería y Negocios, Universidad Privada Norbert Wiener , Lima , Peru
3 Grupo de Investigación Gestión ATEC, Facultad de Ciencias Económicas, Universidad Nacional de San Martín , Tarapoto , Peru
AuthorAffiliation_xml – name: 2 Grupo de Investigación Transformación Digital Empresarial, Facultad de Ingeniería y Negocios, Universidad Privada Norbert Wiener , Lima , Peru
– name: 1 Grupo de Investigación Innovación Turística y Comercio Exterior, Facultad de Ciencias Económicas, Administrativas y Contables, Universidad Nacional Autónoma de Alto Amazonas , Yurimaguas , Peru
– name: 3 Grupo de Investigación Gestión ATEC, Facultad de Ciencias Económicas, Universidad Nacional de San Martín , Tarapoto , Peru
Author_xml – sequence: 1
  givenname: Juan
  surname: Schrader
  fullname: Schrader, Juan
– sequence: 2
  givenname: Lloy
  surname: Pinedo
  fullname: Pinedo, Lloy
– sequence: 3
  givenname: Franz
  surname: Vargas
  fullname: Vargas, Franz
– sequence: 4
  givenname: Karla
  surname: Martell
  fullname: Martell, Karla
– sequence: 5
  givenname: José
  surname: Seijas-Díaz
  fullname: Seijas-Díaz, José
– sequence: 6
  givenname: Roger
  surname: Rengifo-Amasifen
  fullname: Rengifo-Amasifen, Roger
– sequence: 7
  givenname: Rosa
  surname: Cueto-Orbe
  fullname: Cueto-Orbe, Rosa
– sequence: 8
  givenname: Cinthya
  surname: Torres-Silva
  fullname: Torres-Silva, Cinthya
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40832675$$D View this record in MEDLINE/PubMed
BookMark eNp9UstqHDEQFMEhdhx_QC5hjrnsRs-R5hSMycNgyCU5C42mtdtmVppIWkP-3jO7G2PnEBDoVVUtddVbchZTBELeM7oWwnSfQna45pSrNWsFl0y9Ihe85XJlOONnz9bn5KqUe0pnKFWM8TfkXFIjeKvVBdlcT9OI3lVMsUmhcbliQI9ubDBWGEfcQPTQVPDbiL_3UJqQclO30Ew5BRwxbhbeAxasKZempnnsM5baDFAqxoN0eUdeBzcWuDrNl-TX1y8_b76v7n58u725vlt52Zq66rQLlIEBrwfNgHbe9QZUx4WRHSg9BBW4MVqGIGhYNlx4o4MMnQyyG8QluT3qDsnd2ynjzuU_Njm0h4OUN3b5oh_BqmBaT4V3AFTyvncUONWDH3rdMcHcrPX5qDXt-x0MHmLNbnwh-vIm4tZu0oNlXCgjuZ4VPp4Uclp6V-0Oi5-76iKkfbGLb4IZJdoZ-uF5sacqf62aAewI8DmVkiE8QRi1SyLskgi7JMKeEjFz9D8cj_VgyPxeHP_DfATrKr7G
CitedBy_id crossref_primary_10_62486_latia2025306
Cites_doi 10.1108/JHTI-03-2021-0069
10.1016/j.jes.2024.01.023
10.1177/002224295602100102
10.1016/j.knosys.2005.10.011
10.1108/JHTI-11-2021-0317
10.1088/1742-6596/2406/1/012024
10.1108/JHTI-10-2020-0188
10.1007/978-3-031-22324-2_15
10.51252/race.v3i2.697
10.3390/ijerph20021063
10.1080/14616688.2021.2006769
10.1016/j.jdmm.2020.100532
10.1177/0047287520922316
10.1108/SJME-06-2022-0134
10.1016/j.progress.2021.100615
10.30892/gtg.34129-640
10.1016/j.tourman.2022.104689
10.1007/978-981-16-1669-3_12
10.1177/00472875231183162
10.1002/widm.1549
10.3390/economies10020047
10.1016/j.jdmm.2023.100822
10.54055/ejtr.v29i.2414
10.47909/ijsmc.114
10.1080/19388160.2024.2305744
10.2478/ejthr-2024-0008
10.3390/su14137861
10.1080/10941665.2020.1851274
10.1016/j.heliyon.2021.e07579
10.1080/03610927408827101
10.1016/j.techsoc.2021.101528
10.3390/land13010120
10.1007/978-3-319-18305-3_1
10.51252/rcsi.v5i1.908
10.1080/10548408.2020.1842289
10.1080/22243534.2023.2239582
10.3390/s18092972
10.22266/ijies2025.0229.47
10.1080/1528008X.2021.1891596
10.51252/rcsi.v4i1.612
10.1108/TR-09-2020-0435
10.3390/data7110165
10.1371/journal.pone.0285138
10.1007/s40747-022-00958-5
10.15446/innovar.v31n80.93664
10.1080/15428052.2020.1738298
10.3390/su15054034
10.1007/978-3-030-88389-8_8
10.58763/rc2024281
10.1155/2022/1191419
10.55908/sdgs.v11i7.491
10.1016/j.matpr.2021.07.059
10.18080/jtde.v12n3.978
10.51252/race.v3i2.747
10.1016/0377-0427(87)90125-7
10.1371/journal.pone.0303762
10.3390/su13042270
10.1109/InCIT60207.2023.10412867
ContentType Journal Article
Copyright Copyright © 2025 Schrader, Pinedo, Vargas, Martell, Seijas-Díaz, Rengifo-Amasifen, Cueto-Orbe and Torres-Silva.
Copyright © 2025 Schrader, Pinedo, Vargas, Martell, Seijas-Díaz, Rengifo-Amasifen, Cueto-Orbe and Torres-Silva. 2025 Schrader, Pinedo, Vargas, Martell, Seijas-Díaz, Rengifo-Amasifen, Cueto-Orbe and Torres-Silva
Copyright_xml – notice: Copyright © 2025 Schrader, Pinedo, Vargas, Martell, Seijas-Díaz, Rengifo-Amasifen, Cueto-Orbe and Torres-Silva.
– notice: Copyright © 2025 Schrader, Pinedo, Vargas, Martell, Seijas-Díaz, Rengifo-Amasifen, Cueto-Orbe and Torres-Silva. 2025 Schrader, Pinedo, Vargas, Martell, Seijas-Díaz, Rengifo-Amasifen, Cueto-Orbe and Torres-Silva
DBID AAYXX
CITATION
NPM
7X8
5PM
DOA
DOI 10.3389/frai.2025.1632415
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed
CrossRef


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2624-8212
ExternalDocumentID oai_doaj_org_article_5f86c03caee042bba0e207dcdb79131a
PMC12358427
40832675
10_3389_frai_2025_1632415
Genre Journal Article
GroupedDBID 53G
9T4
AAFWJ
AAYXX
ADBBV
ADMLS
AFPKN
ALMA_UNASSIGNED_HOLDINGS
BCNDV
CITATION
GROUPED_DOAJ
OK1
PGMZT
RPM
NPM
7X8
5PM
ID FETCH-LOGICAL-c468t-97af01e8ec7d71e09cab8e5923849e57df5f28874ff30ff5f223c87f4f94f49d3
IEDL.DBID DOA
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001551031900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2624-8212
IngestDate Fri Oct 03 12:52:37 EDT 2025
Thu Aug 21 18:22:39 EDT 2025
Wed Aug 20 23:49:55 EDT 2025
Mon Sep 15 01:52:41 EDT 2025
Sat Nov 29 07:38:43 EST 2025
Tue Nov 18 22:14:05 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Agglomerative Clustering
HDBSCAN
K-means
DBSCAN
segmentation
clustering
tourists
artificial intelligence
Language English
License Copyright © 2025 Schrader, Pinedo, Vargas, Martell, Seijas-Díaz, Rengifo-Amasifen, Cueto-Orbe and Torres-Silva.
This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c468t-97af01e8ec7d71e09cab8e5923849e57df5f28874ff30ff5f223c87f4f94f49d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Edited by: Erfan Babaee Tirkolaee, University of Istinye, Türkiye
Reviewed by: Magdalena Graczyk-Kucharska, Poznan University of Life Sciences, Poland
Małgorzata Spychała, Poznań University of Technology, Poland
OpenAccessLink https://doaj.org/article/5f86c03caee042bba0e207dcdb79131a
PMID 40832675
PQID 3241318536
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_5f86c03caee042bba0e207dcdb79131a
pubmedcentral_primary_oai_pubmedcentral_nih_gov_12358427
proquest_miscellaneous_3241318536
pubmed_primary_40832675
crossref_primary_10_3389_frai_2025_1632415
crossref_citationtrail_10_3389_frai_2025_1632415
PublicationCentury 2000
PublicationDate 2025-08-04
PublicationDateYYYYMMDD 2025-08-04
PublicationDate_xml – month: 08
  year: 2025
  text: 2025-08-04
  day: 04
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
PublicationTitle Frontiers in artificial intelligence
PublicationTitleAlternate Front Artif Intell
PublicationYear 2025
Publisher Frontiers Media S.A
Publisher_xml – name: Frontiers Media S.A
References (ref33) 2024
Calinski (ref8) 1974; 3
Smith (ref53) 1956; 21
Zavaleta-Chavez-Arroyo (ref65) 2024; 13
Jarumaneerat (ref26) 2022; 23
Dolnicar (ref14) 2022
Aksu (ref2) 2022; 5
Wibowo (ref60) 2021; 34
Pulido-Fernández (ref45) 2021; 60
Al-Omary (ref4) 2006; 19
Carvache-Franco (ref10) 2024; 19
Thommandru (ref55) 2023; 80
Egger (ref15) 2024; 63
Noorian Avval (ref38) 2023; 9
Marín Rodriguez (ref31) 2025; 5
Hassan (ref24) 2022; 14
Babafemi (ref5) 2023
Choe (ref12) 2025; 21
Camacho Delgado (ref9) 2023; 11
Félix-Mendoza (ref18) 2024; 3
Yadegaridehkordi (ref63) 2021; 65
Ghosh (ref21) 2023; 6
Ruiz Camus (ref51) 2022; 14
Wong (ref61) 2024; 12
Rousseeuw (ref50) 1987; 20
Ramadhani (ref46) 2023
Yao (ref64) 2021; 26
Parra Vargas (ref40) 2021; 7
González Rosas (ref23) 2024; 14
Huamán (ref25) 2022
Carvache-Franco (ref11) 2023; 18
Jauhari (ref27) 2022; 2406
León-Gómez (ref30) 2021; 13
Álava-García (ref3) 2024; 3
Tsegaw (ref56) 2023; 13
Faizal (ref17) 2025; 18
Bartra-Rategui (ref6) 2024; 3
Núñez (ref39) 2024; 14
Fuchs (ref19) 2022
Pensiri (ref42) 2022
Mor (ref35) 2023; 95
Kingrat (ref28) 2023
El Naqa (ref16) 2015
Rodríguez (ref49) 2018; 18
Perales-Domínguez (ref43) 2024; 4
Shinde (ref52) 2018
Penagos-Londoño (ref41) 2021; 19
Wu (ref62) 2023; 30
Wang (ref59) 2022; 2022
Gonçalves (ref22) 2023
Zhou (ref67) 2023; 25
Molina Collado (ref34) 2007; 4
Martell-Alfaro (ref32) 2024; 4
Zhang (ref66) 2025; 149
Blanco-Moreno (ref7) 2024; 28
Lee (ref29) 2023; 20
Nakhaeinejad (ref36) 2022; 5
Tasci (ref54) 2022; 77
Valles-Coral (ref57) 2022; 7
Walker (ref58) 2021; 38
Rebelo (ref47) 2022; 161
Agarwal (ref1) 2021
Coelho (ref13) 2023; 15
Nella (ref37) 2021; 29
Riojas-Díaz (ref48) 2022; 10
Garcia Reinoso (ref20) 2021; 31
Pérez Gálvez (ref44) 2021; 19
References_xml – volume: 5
  start-page: 1022
  year: 2022
  ident: ref36
  article-title: A framework for medical tourists’ satisfaction and loyalty by costumer segmentation and quality improvement
  publication-title: J. Hospital. Tour. Insights
  doi: 10.1108/JHTI-03-2021-0069
– volume: 149
  start-page: 68
  year: 2025
  ident: ref66
  article-title: Machine learning-assisted fluorescence visualization for sequential quantitative detection of aluminum and fluoride ions
  publication-title: J. Environ. Sci.
  doi: 10.1016/j.jes.2024.01.023
– volume: 21
  start-page: 3
  year: 1956
  ident: ref53
  article-title: Product differentiation and market segmentation as alternative marketing strategies
  publication-title: J. Mark.
  doi: 10.1177/002224295602100102
– volume: 19
  start-page: 248
  year: 2006
  ident: ref4
  article-title: A new approach of clustering based machine-learning algorithm
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2005.10.011
– volume: 6
  start-page: 754
  year: 2023
  ident: ref21
  article-title: Understanding tourist behaviour towards destination selection based on social media information: an evaluation using unsupervised clustering algorithms
  publication-title: J. Hospital. Tour. Insights
  doi: 10.1108/JHTI-11-2021-0317
– volume: 2406
  start-page: 012024
  year: 2022
  ident: ref27
  article-title: Analysis of clusters number effect based on K-means method for tourist attractions segmentation
  publication-title: J. Phys. Conf. Ser.
  doi: 10.1088/1742-6596/2406/1/012024
– volume: 5
  start-page: 501
  year: 2022
  ident: ref2
  article-title: Hotel customer segmentation according to eco-service quality perception: the case of Russian tourists
  publication-title: J. Hospital. Tour. Insights
  doi: 10.1108/JHTI-10-2020-0188
– start-page: 191
  volume-title: Data and information in online environments
  year: 2022
  ident: ref25
  article-title: Classification model based on Chatbot and unsupervised algorithms to determine psychological intervention programs in Peruvian university students
  doi: 10.1007/978-3-031-22324-2_15
– volume: 3
  start-page: e697
  year: 2024
  ident: ref18
  article-title: Turismo en represas
  publication-title: Revista Amazónica de Ciencias Económicas
  doi: 10.51252/race.v3i2.697
– volume: 20
  start-page: 1063
  year: 2023
  ident: ref29
  article-title: A study on market segmentation according to wellness tourism motivation and differences in behavior between the groups—focusing on satisfaction, behavioral intention, and flow
  publication-title: Int. J. Environ. Res. Public Health
  doi: 10.3390/ijerph20021063
– volume: 25
  start-page: 797
  year: 2023
  ident: ref67
  article-title: Destination attraction clustering: segmenting tourist movement patterns with geotagged information
  publication-title: Tour. Geogr.
  doi: 10.1080/14616688.2021.2006769
– volume: 19
  start-page: 100532
  year: 2021
  ident: ref41
  article-title: A machine learning approach to segmentation of tourists based on perceived destination sustainability and trustworthiness
  publication-title: J. Destin. Mark. Manag.
  doi: 10.1016/j.jdmm.2020.100532
– volume: 60
  start-page: 583
  year: 2021
  ident: ref45
  article-title: Analyzing the bidirectional relationship between tourism growth and economic development
  publication-title: J. Travel Res.
  doi: 10.1177/0047287520922316
– start-page: 571
  volume-title: Sustainable development and biodiversity
  year: 2023
  ident: ref5
  article-title: Touristic value of African environment: a socio-economic perspective
– volume: 28
  start-page: 266
  year: 2024
  ident: ref7
  article-title: Big data in tourism marketing: past research and future opportunities
  publication-title: Spanish J. Market. ESIC
  doi: 10.1108/SJME-06-2022-0134
– volume: 161
  start-page: 100615
  year: 2022
  ident: ref47
  article-title: Betterment capture for social redistribution: a developer obligation for touristic developments
  publication-title: Prog. Plan.
  doi: 10.1016/j.progress.2021.100615
– volume: 34
  start-page: 218
  year: 2021
  ident: ref60
  article-title: Revealing tourist hotspots in Yogyakarta city based on social media data clustering
  publication-title: GeoJ. Tour. Geosites
  doi: 10.30892/gtg.34129-640
– start-page: 1
  year: 2018
  ident: ref52
  article-title: A review of machine learning and deep learning applications
– volume: 95
  start-page: 104689
  year: 2023
  ident: ref35
  article-title: Who is a tourist? Classifying international urban tourists using machine learning
  publication-title: Tour. Manag.
  doi: 10.1016/j.tourman.2022.104689
– start-page: 201
  volume-title: Future of tourism in Asia
  year: 2021
  ident: ref1
  article-title: Understanding psychographics in tourism: a tool for segmenting tourists
  doi: 10.1007/978-981-16-1669-3_12
– volume: 63
  start-page: 1043
  year: 2024
  ident: ref15
  article-title: Vectorize me! A proposed machine learning approach for segmenting the multi-optional tourist
  publication-title: J. Travel Res.
  doi: 10.1177/00472875231183162
– volume: 14
  start-page: 1
  year: 2024
  ident: ref39
  article-title: Machine learning applied to tourism: a systematic review
  publication-title: WIREs Data Min. Knowl. Discov.
  doi: 10.1002/widm.1549
– volume: 10
  start-page: 47
  year: 2022
  ident: ref48
  article-title: Sustainable tourism and renewable energy’s potential: a local development proposal for the La Florida community, Huaral, Peru
  publication-title: Economies
  doi: 10.3390/economies10020047
– volume: 30
  start-page: 100822
  year: 2023
  ident: ref62
  article-title: Service attributes for sustainable rural tourism from online comments: tourist satisfaction perspective
  publication-title: J. Destin. Mark. Manag.
  doi: 10.1016/j.jdmm.2023.100822
– volume: 29
  start-page: 2903
  year: 2021
  ident: ref37
  article-title: Market segmentation for wine tourism: identifying sub-groups of winery visitors
  publication-title: Eur. J. Tour. Res.
  doi: 10.54055/ejtr.v29i.2414
– volume: 4
  start-page: 1
  year: 2024
  ident: ref32
  article-title: Latin American research on ecotourism and Peru’s contribution: a bibliometric overview
  publication-title: Iberoamerican J. Sci. Meas. Commun.
  doi: 10.47909/ijsmc.114
– volume: 21
  start-page: 21
  year: 2025
  ident: ref12
  article-title: Tourist consumption values and perceived risks of using smart technologies: a market segmentation approach
  publication-title: J. China Tour. Res.
  doi: 10.1080/19388160.2024.2305744
– volume: 14
  start-page: 112
  year: 2024
  ident: ref23
  article-title: Guanajuato international film festival visitor profile and segmentation
  publication-title: Eur. J. Tour. Hospital. Recreat.
  doi: 10.2478/ejthr-2024-0008
– volume: 14
  start-page: 7861
  year: 2022
  ident: ref24
  article-title: Segmentation of religious tourism by motivations: a study of the pilgrimage to the city of Mecca
  publication-title: Sustainability
  doi: 10.3390/su14137861
– volume: 26
  start-page: 245
  year: 2021
  ident: ref64
  article-title: Motivation-based segmentation of yachting tourists in China
  publication-title: Asia Pacific J. Tour. Res.
  doi: 10.1080/10941665.2020.1851274
– volume: 7
  start-page: e07579
  year: 2021
  ident: ref40
  article-title: Lifestyle segmentation of tourists: the role of personality
  publication-title: Heliyon
  doi: 10.1016/j.heliyon.2021.e07579
– volume: 3
  start-page: 1
  year: 1974
  ident: ref8
  article-title: A dendrite method for cluster analysis
  publication-title: Commun. Stat. Theory Methods
  doi: 10.1080/03610927408827101
– volume: 65
  start-page: 101528
  year: 2021
  ident: ref63
  article-title: Customers segmentation in eco-friendly hotels using multi-criteria and machine learning techniques
  publication-title: Technol. Soc.
  doi: 10.1016/j.techsoc.2021.101528
– start-page: 849
  volume-title: Handbook of e-tourism
  year: 2022
  ident: ref14
  article-title: Market segmentation for e-tourism
– volume: 13
  start-page: 120
  year: 2024
  ident: ref65
  article-title: A structural analysis of the economic impact of tourism and the perspective of tourism providers in Kuélap, Peru
  publication-title: Land
  doi: 10.3390/land13010120
– start-page: 3
  volume-title: Machine learning in radiation oncology
  year: 2015
  ident: ref16
  article-title: What is machine learning?
  doi: 10.1007/978-3-319-18305-3_1
– volume: 5
  start-page: e908
  year: 2025
  ident: ref31
  article-title: Investigación sobre computación en nube en ciencias de la computación e ingeniería: análisis de resultados de Scopus
  publication-title: Revista Científica de Sistemas e InformáticaInformatica
  doi: 10.51252/rcsi.v5i1.908
– volume: 38
  start-page: 1
  year: 2021
  ident: ref58
  article-title: Sustainable development for small island tourism: developing slow tourism in the Caribbean
  publication-title: J. Travel Tourism Mark.
  doi: 10.1080/10548408.2020.1842289
– volume: 13
  start-page: 45
  year: 2023
  ident: ref56
  article-title: Slow tourism motivations: a factor/cluster segmentation approach
  publication-title: Res. Hospital. Manag.
  doi: 10.1080/22243534.2023.2239582
– start-page: 80006
  volume-title: AIP Conference Proceedings
  year: 2023
  ident: ref46
  article-title: Determining priority location for tourist village development using k-means clustering
– volume: 18
  start-page: 2972
  year: 2018
  ident: ref49
  article-title: Unsupervised hierarchical clustering approach for tourism market segmentation based on crowdsourced mobile phone data
  publication-title: Sensors
  doi: 10.3390/s18092972
– volume: 18
  start-page: 660
  year: 2025
  ident: ref17
  article-title: Multi-cluster DBSCAN for analysing tourism data
  publication-title: Int. J. Intell. Eng. Syst.
  doi: 10.22266/ijies2025.0229.47
– volume-title: More than 2.9 million international tourists visited Peru between January and November 2024
  year: 2024
  ident: ref33
– volume: 23
  start-page: 508
  year: 2022
  ident: ref26
  article-title: Segmenting international tourists based on the integration of travel risk perceptions and past travel experience
  publication-title: J. Qual. Assur. Hosp. Tour.
  doi: 10.1080/1528008X.2021.1891596
– volume: 4
  start-page: e612
  year: 2024
  ident: ref43
  article-title: Metodologías para la construcción de soluciones de inteligencia de negocios
  publication-title: Revista Científica de Sistemas e Informática
  doi: 10.51252/rcsi.v4i1.612
– volume: 77
  start-page: 341
  year: 2022
  ident: ref54
  article-title: Sustainable tourism consumer: socio-demographic, psychographic and behavioral characteristics
  publication-title: Tour. Rev.
  doi: 10.1108/TR-09-2020-0435
– volume: 7
  start-page: 165
  year: 2022
  ident: ref57
  article-title: Density-based unsupervised learning algorithm to categorize college students into dropout risk levels
  publication-title: Data
  doi: 10.3390/data7110165
– volume: 18
  start-page: e0285138
  year: 2023
  ident: ref11
  article-title: Market segmentation in urban tourism: a study in Latin America
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0285138
– volume: 9
  start-page: 4457
  year: 2023
  ident: ref38
  article-title: A hybrid recommender system using topic modeling and prefixspan algorithm in social media
  publication-title: Complex Intell. Syst.
  doi: 10.1007/s40747-022-00958-5
– volume: 31
  start-page: 57
  year: 2021
  ident: ref20
  article-title: Segmentación por motivaciones y valoración del turismo interior en el destino Manta, Manabí, Ecuador
  publication-title: Innovar
  doi: 10.15446/innovar.v31n80.93664
– volume: 19
  start-page: 149
  year: 2021
  ident: ref44
  article-title: Segmentation of tourists that visit the City of Popayán (Colombia) according to their interest in its gastronomy
  publication-title: J. Culin. Sci. Technol.
  doi: 10.1080/15428052.2020.1738298
– volume: 15
  start-page: 4034
  year: 2023
  ident: ref13
  article-title: Profiling tourist segmentation of heritage destinations in emerging markets: the case of tequila visitors
  publication-title: Sustainability
  doi: 10.3390/su15054034
– start-page: 129
  volume-title: Applied data science in tourism
  year: 2022
  ident: ref19
  article-title: Clustering
  doi: 10.1007/978-3-030-88389-8_8
– volume: 3
  start-page: 2024281
  year: 2024
  ident: ref6
  article-title: ICT incorporation to promote tourism destinations: a systematic review
  publication-title: Región Científica
  doi: 10.58763/rc2024281
– volume: 14
  start-page: 237
  year: 2022
  ident: ref51
  article-title: Inventario de atractivos para el desarrollo turístico de la provincia de Alto Amazonas, Perú
  publication-title: Univ. Soc.
– start-page: 557
  volume-title: Smart innovation, systems and technologies
  year: 2023
  ident: ref22
  article-title: Methodological approach for the definition of urban tourist patterns through data mining
– volume: 4
  start-page: 36
  year: 2007
  ident: ref34
  article-title: Segmentación de la demanda turística un análisis aplicado a un destino de turismo cultural
  publication-title: Rev. Anal. Turist.
– volume: 2022
  start-page: 1
  year: 2022
  ident: ref59
  article-title: Optimization of digital recommendation service system for tourist attractions based on personalized recommendation algorithm
  publication-title: J. Funct. Spaces
  doi: 10.1155/2022/1191419
– volume: 11
  start-page: e491
  year: 2023
  ident: ref9
  article-title: Effects of marketing strategies on the brand positioning of a tourist hotel, Bagua – Peru
  publication-title: J. Law Sustain. Dev.
  doi: 10.55908/sdgs.v11i7.491
– volume: 80
  start-page: 2901
  year: 2023
  ident: ref55
  article-title: Role of tourism and hospitality business in economic development
  publication-title: Mater Today Proc
  doi: 10.1016/j.matpr.2021.07.059
– start-page: 020002
  year: 2022
  ident: ref42
  article-title: Clustering tourist using DBSCAN algorithm
– volume: 12
  start-page: 97
  year: 2024
  ident: ref61
  article-title: Exploring customer segmentation in E-commerce using RFM analysis with clustering techniques
  publication-title: J. Telecommun. Digit. Econ.
  doi: 10.18080/jtde.v12n3.978
– volume: 3
  start-page: e747
  year: 2024
  ident: ref3
  article-title: Factores clave de la competitividad que promueven los emprendimientos turísticos sostenibles en la zona norte de la provincia de Manabí
  publication-title: Revista Amazónica de Ciencias Económicas
  doi: 10.51252/race.v3i2.747
– volume: 20
  start-page: 53
  year: 1987
  ident: ref50
  article-title: Silhouettes: a graphical aid to the interpretation and validation of cluster analysis
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/0377-0427(87)90125-7
– volume: 19
  start-page: e0303762
  year: 2024
  ident: ref10
  article-title: Segmentation by motivations in religious tourism: a study of the Christ of miracles pilgrimage, Peru
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0303762
– volume: 13
  start-page: 2270
  year: 2021
  ident: ref30
  article-title: Sustainable tourism development and economic growth: bibliometric review and analysis
  publication-title: Sustainability
  doi: 10.3390/su13042270
– start-page: 418
  volume-title: 2023 7th international conference on information technology (InCIT)
  year: 2023
  ident: ref28
  article-title: Uncovering hidden tourist traits using characteristics-based clustering
  doi: 10.1109/InCIT60207.2023.10412867
SSID ssj0002505112
Score 2.306286
Snippet Tourism in Peru represents an opportunity for local development; however, there is limited understanding of visitor profiles. The aim of this study was to...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 1632415
SubjectTerms Agglomerative Clustering
Artificial Intelligence
clustering
DBSCAN
segmentation
tourists
Title Application of artificial intelligence techniques for the profiling of visitors to tourist destinations
URI https://www.ncbi.nlm.nih.gov/pubmed/40832675
https://www.proquest.com/docview/3241318536
https://pubmed.ncbi.nlm.nih.gov/PMC12358427
https://doaj.org/article/5f86c03caee042bba0e207dcdb79131a
Volume 8
WOSCitedRecordID wos001551031900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2624-8212
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002505112
  issn: 2624-8212
  databaseCode: DOA
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwEB1BxYELtHxuSysjcUIKdRxnbR8LouKAKg6A9mY5jgdWQtlqN-X3MxNnt1mE4IKUSz6s2J5x5k1svwfwqooYCAXXRYk6FtqW8yJQpC9CbJJsmzLJQUXh60dzdWUXC_dpIvXFa8IyPXDuuPMa7TzKKoZExVTTBJmUNG1sG-PKqhygkTRukkzxN5gDOyGJPI1JWZg7x3VYUjqo6jclM5SzDO4kEA18_X8Cmb-vlZwEn8tDeDCiRnGRa3sEd1L3CB5uFRnEOEAfw7eL2_losULBzcsUEWI54d4UO-bWjSDQKggEiizeTYGMy_GOc5bhEf2KDuYZ7EXLfBz53-HmCXy5fP_53YdilFIoop7bvnAmoCyTTdG0hgzgYmhsqgndWe1SbVqsUdH3RiNWEvlEVdEa1Og0atdWT-GgW3XpOYi6TtYhc_xg0li6JmodqoTKuKRMnM9AbvvVx5FnnOUufnjKN9gUnk3h2RR-NMUMXu-KXGeSjb89_JaNtXuQ-bGHC-Q1fvQa_y-vmcHLrak9jSeeJAldWt1sPL-Dd5RX1JBn2fS7V2nyYkUZ1gzsnlPs1WX_Trf8PnB2D1uStTLH_6P2J3Cfe2RYh6hfwEG_vkmncC_-7Jeb9RncNQt7NoyHX_bNE40
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Application+of+artificial+intelligence+techniques+for+the+profiling+of+visitors+to+tourist+destinations&rft.jtitle=Frontiers+in+artificial+intelligence&rft.au=Schrader%2C+Juan&rft.au=Pinedo%2C+Lloy&rft.au=Vargas%2C+Franz&rft.au=Martell%2C+Karla&rft.date=2025-08-04&rft.pub=Frontiers+Media+S.A&rft.eissn=2624-8212&rft.volume=8&rft_id=info:doi/10.3389%2Ffrai.2025.1632415&rft.externalDocID=PMC12358427
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2624-8212&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2624-8212&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2624-8212&client=summon