Low complexity sparse beamspace DOA estimation via single measurement vectors for uniform circular array

In this paper, we present a low complexity sparse beamspace direction-of-arrival (DOA) estimation method for uniform circular array (UCA). In the proposed method, we firstly use the beamspace transformation (BT) to transform the signal model of UCA in element-space domain to that of virtual uniform...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:EURASIP journal on advances in signal processing Ročník 2021; číslo 1; s. 1 - 20
Hlavní autoři: Zhao, Di, Tan, Weijie, Deng, Zhongliang, Li, Gang
Médium: Journal Article
Jazyk:angličtina
Vydáno: Cham Springer International Publishing 30.07.2021
Springer
Springer Nature B.V
SpringerOpen
Témata:
ISSN:1687-6180, 1687-6172, 1687-6180
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In this paper, we present a low complexity sparse beamspace direction-of-arrival (DOA) estimation method for uniform circular array (UCA). In the proposed method, we firstly use the beamspace transformation (BT) to transform the signal model of UCA in element-space domain to that of virtual uniform linear array (ULA) in beamspace domain. Subsequently, by applying the vectoring operator on the virtual ULA-like array signal model, a novel dimension-reduction sparse beamspace signal model is derived based on Khatri-Rao (KR) product, the observation data of which is represented by the single measurement vectors (SMVs) via vectorization of sparse covariance matrix. And then, the DOA estimation is formulated as a convex optimization problem by following the concept of a sparse-signal-representation (SSR) of the SMVs. Finally, simulations are carried out to validate the effectiveness of the proposed method. The results show that without knowledge of the number of signals, the proposed method not only has higher DOA resolution than the subspace-based methods in low signal-to-noise ratio (SNR), but also has far lower computational complexity than other sparse-like DOA estimation methods.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1687-6180
1687-6172
1687-6180
DOI:10.1186/s13634-021-00770-2