Drug repositioning based on heterogeneous networks and variational graph autoencoders

Predicting new therapeutic effects (drug repositioning) of existing drugs plays an important role in drug development. However, traditional wet experimental prediction methods are usually time-consuming and costly. The emergence of more and more artificial intelligence-based drug repositioning metho...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Frontiers in pharmacology Jg. 13; S. 1056605
Hauptverfasser: Lei, Song, Lei, Xiujuan, Liu, Lian
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Switzerland Frontiers Media S.A 21.12.2022
Schlagworte:
ISSN:1663-9812, 1663-9812
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Predicting new therapeutic effects (drug repositioning) of existing drugs plays an important role in drug development. However, traditional wet experimental prediction methods are usually time-consuming and costly. The emergence of more and more artificial intelligence-based drug repositioning methods in the past 2 years has facilitated drug development. In this study we propose a drug repositioning method, VGAEDR, based on a heterogeneous network of multiple drug attributes and a variational graph autoencoder. First, a drug-disease heterogeneous network is established based on three drug attributes, disease semantic information, and known drug-disease associations. Second, low-dimensional feature representations for heterogeneous networks are learned through a variational graph autoencoder module and a multi-layer convolutional module. Finally, the feature representation is fed to a fully connected layer and a Softmax layer to predict new drug-disease associations. Comparative experiments with other baseline methods on three datasets demonstrate the excellent performance of VGAEDR. In the case study, we predicted the top 10 possible anti-COVID-19 drugs on the existing drug and disease data, and six of them were verified by other literatures.
AbstractList Predicting new therapeutic effects (drug repositioning) of existing drugs plays an important role in drug development. However, traditional wet experimental prediction methods are usually time-consuming and costly. The emergence of more and more artificial intelligence-based drug repositioning methods in the past 2 years has facilitated drug development. In this study we propose a drug repositioning method, VGAEDR, based on a heterogeneous network of multiple drug attributes and a variational graph autoencoder. First, a drug-disease heterogeneous network is established based on three drug attributes, disease semantic information, and known drug-disease associations. Second, low-dimensional feature representations for heterogeneous networks are learned through a variational graph autoencoder module and a multi-layer convolutional module. Finally, the feature representation is fed to a fully connected layer and a Softmax layer to predict new drug-disease associations. Comparative experiments with other baseline methods on three datasets demonstrate the excellent performance of VGAEDR. In the case study, we predicted the top 10 possible anti-COVID-19 drugs on the existing drug and disease data, and six of them were verified by other literatures.
Predicting new therapeutic effects (drug repositioning) of existing drugs plays an important role in drug development. However, traditional wet experimental prediction methods are usually time-consuming and costly. The emergence of more and more artificial intelligence-based drug repositioning methods in the past 2 years has facilitated drug development. In this study we propose a drug repositioning method, VGAEDR, based on a heterogeneous network of multiple drug attributes and a variational graph autoencoder. First, a drug-disease heterogeneous network is established based on three drug attributes, disease semantic information, and known drug-disease associations. Second, low-dimensional feature representations for heterogeneous networks are learned through a variational graph autoencoder module and a multi-layer convolutional module. Finally, the feature representation is fed to a fully connected layer and a Softmax layer to predict new drug-disease associations. Comparative experiments with other baseline methods on three datasets demonstrate the excellent performance of VGAEDR. In the case study, we predicted the top 10 possible anti-COVID-19 drugs on the existing drug and disease data, and six of them were verified by other literatures.Predicting new therapeutic effects (drug repositioning) of existing drugs plays an important role in drug development. However, traditional wet experimental prediction methods are usually time-consuming and costly. The emergence of more and more artificial intelligence-based drug repositioning methods in the past 2 years has facilitated drug development. In this study we propose a drug repositioning method, VGAEDR, based on a heterogeneous network of multiple drug attributes and a variational graph autoencoder. First, a drug-disease heterogeneous network is established based on three drug attributes, disease semantic information, and known drug-disease associations. Second, low-dimensional feature representations for heterogeneous networks are learned through a variational graph autoencoder module and a multi-layer convolutional module. Finally, the feature representation is fed to a fully connected layer and a Softmax layer to predict new drug-disease associations. Comparative experiments with other baseline methods on three datasets demonstrate the excellent performance of VGAEDR. In the case study, we predicted the top 10 possible anti-COVID-19 drugs on the existing drug and disease data, and six of them were verified by other literatures.
Author Lei, Song
Liu, Lian
Lei, Xiujuan
AuthorAffiliation School of Computer Science , Shaanxi Normal University , Xi’an , China
AuthorAffiliation_xml – name: School of Computer Science , Shaanxi Normal University , Xi’an , China
Author_xml – sequence: 1
  givenname: Song
  surname: Lei
  fullname: Lei, Song
– sequence: 2
  givenname: Xiujuan
  surname: Lei
  fullname: Lei, Xiujuan
– sequence: 3
  givenname: Lian
  surname: Liu
  fullname: Liu, Lian
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36618933$$D View this record in MEDLINE/PubMed
BookMark eNp9UctuHCEQRJEj27H9AzlEc8xlN7yWYS6RIsdOLFnKxT4jBppZnFmYAOMofx_2YcvOIVwauquqUdU7dBRiAITeE7xkTHaf3LTWaUkxpUuCV0Lg1Rt0SoRgi04SevTifoIucn7A9bCuY4IfoxMmBJEdY6fo_muahybBFLMvPgYfhqbXGWwTQ7OGAikOECDOuQlQfsf0Mzc62OZRJ6-3BD02Q9LTutFziRBMtJDyOXrr9Jjh4lDP0P311d3l98Xtj283l19uF4YLWRbSSWcIpwJbzqnFusXMUttxa3jvCGeyNa6TYGuXmJb2LTaMO1tfpCe4ZWfoZq9ro35QU_Ibnf6oqL3aNWIalE7FmxGUs72wplrQCsINxh0VhHIQPRbVlR6q1ue91jT3G7AGQkl6fCX6ehL8Wg3xUW095h2pAh8PAin-miEXtfHZwDjqnX-KtoJKspKtqNAPL3c9L3nKpQLoHmBSzDmBe4YQrLb5q13-apu_OuRfSfIfkvFlF1L9rx__R_0LSjG36g
CitedBy_id crossref_primary_10_1007_s12539_023_00550_6
crossref_primary_10_1016_j_drudis_2025_104327
crossref_primary_10_3389_fphar_2024_1393415
crossref_primary_10_1016_j_prmedi_2024_100014
Cites_doi 10.1016/j.artmed.2014.11.003
10.1039/c2mb00002d
10.3389/fphar.2022.872785
10.1093/infdis/jix186
10.1007/s15010-020-01438-z
10.1186/s12859-018-2220-4
10.1093/bioinformatics/btaa157
10.1016/j.ijid.2020.10.069
10.1186/s12859-020-3379-z
10.1093/bib/bbz176
10.1093/bioinformatics/btq241
10.1093/bib/bbaa025
10.1093/bioinformatics/bty013
10.1093/bioinformatics/btw228
10.1186/1758-2946-5-30
10.1093/bioinformatics/btz182
10.1166/jnn.2020.18955
10.1021/acsami.1c02755
10.1007/3-540-44886-1_25
10.1093/bioinformatics/btu403
10.4103/0022-3859.81870
10.1093/nar/gku1243
10.3390/ijms20174102
10.1093/bib/bbt056
10.1371/journal.pone.0118432
10.7150/ijbs.9224
10.1007/s11030-022-10492-8
10.1038/534314a
10.1093/bioinformatics/btz418
10.1186/s12859-021-04127-2
10.1038/nrd.2018.168
10.1038/nrd1468
10.1089/cmb.2010.0213
10.1093/bioinformatics/btz331
10.1038/msb.2011.26
10.1093/nar/gky092
10.1080/1062936X.2016.1209241
10.1186/s12879-020-05698-w
10.1186/s12879-021-06164-x
10.1377/hlthaff.25.2.420
10.1093/nar/gkv951
10.1038/nrd1382
10.1155/2015/275045
10.2169/internalmedicine.7971-21
10.1093/bib/bbaa104
10.1093/bioinformatics/btaa010
10.1093/bib/bbaa141
10.1109/JBHI.2020.3039502
10.1093/bioinformatics/btw770
10.1093/bib/bbaa243
ContentType Journal Article
Copyright Copyright © 2022 Lei, Lei and Liu.
Copyright © 2022 Lei, Lei and Liu. 2022 Lei, Lei and Liu
Copyright_xml – notice: Copyright © 2022 Lei, Lei and Liu.
– notice: Copyright © 2022 Lei, Lei and Liu. 2022 Lei, Lei and Liu
DBID AAYXX
CITATION
NPM
7X8
5PM
DOA
DOI 10.3389/fphar.2022.1056605
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE - Academic

PubMed

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Pharmacy, Therapeutics, & Pharmacology
DocumentTitleAlternate Lei et al
EISSN 1663-9812
ExternalDocumentID oai_doaj_org_article_fdb6dc0397614c00926124e6b06993be
PMC9812491
36618933
10_3389_fphar_2022_1056605
Genre Journal Article
GroupedDBID 53G
5VS
9T4
AAFWJ
AAKDD
AAYXX
ACGFO
ACGFS
ADBBV
ADRAZ
AENEX
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BCNDV
CITATION
DIK
EMOBN
GROUPED_DOAJ
GX1
HYE
KQ8
M48
M~E
O5R
O5S
OK1
P2P
PGMZT
RNS
RPM
ACXDI
IPNFZ
NPM
RIG
7X8
5PM
ID FETCH-LOGICAL-c468t-8f8fc14260d442d0a703d2d94dc4bf14387cf98ed3d21c72b70c34fdd211b1073
IEDL.DBID DOA
ISICitedReferencesCount 5
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000944084700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1663-9812
IngestDate Fri Oct 03 12:42:41 EDT 2025
Thu Aug 21 18:38:14 EDT 2025
Sun Nov 09 09:26:40 EST 2025
Thu Apr 03 07:11:06 EDT 2025
Sat Nov 29 03:51:46 EST 2025
Tue Nov 18 20:41:41 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords COVID-19
graph representation learning
drug repositioning
heterogeneous network
variational graph autoencoders
Language English
License Copyright © 2022 Lei, Lei and Liu.
This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c468t-8f8fc14260d442d0a703d2d94dc4bf14387cf98ed3d21c72b70c34fdd211b1073
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Seyedehzahra Sajadi, Yazd University, Iran
Edited by: Sajjad Gharaghani, University of Tehran, Iran
This article was submitted to Experimental Pharmacology and Drug Discovery, a section of the journal Frontiers in Pharmacology
Reviewed by: Luciana Scotti, Federal University of Paraíba, Brazil
OpenAccessLink https://doaj.org/article/fdb6dc0397614c00926124e6b06993be
PMID 36618933
PQID 2762815876
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_fdb6dc0397614c00926124e6b06993be
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9812491
proquest_miscellaneous_2762815876
pubmed_primary_36618933
crossref_primary_10_3389_fphar_2022_1056605
crossref_citationtrail_10_3389_fphar_2022_1056605
PublicationCentury 2000
PublicationDate 2022-12-21
PublicationDateYYYYMMDD 2022-12-21
PublicationDate_xml – month: 12
  year: 2022
  text: 2022-12-21
  day: 21
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
PublicationTitle Frontiers in pharmacology
PublicationTitleAlternate Front Pharmacol
PublicationYear 2022
Publisher Frontiers Media S.A
Publisher_xml – name: Frontiers Media S.A
References Wang (B39) 2010; 26
Zhang (B51) 2020; 36
Chen (B6) 2012; 8
Nojomi (B26) 2020; 20
Luo (B18) 2018; 34
Luo (B19) 2021; 22
Mitchell (B23) 2015; 43
Zeng (B47) 2020; 36
Yang (B45) 2019; 35
Ling (B17) 2003
Harter (B11) 2020; 48
Dai (B7) 2015; 2015
Kipf (B14) 2016
Gottlieb (B10) 2011; 7
Saito (B34) 2015; 10
Yu (B46) 2021; 22
Burnett (B5) 2017; 215
Moghadam (B24) 2016; 27
Zeng (B48) 2019; 35
Xuan (B44) 2019; 20
Dickson (B8) 2004; 3
Napolitano (B25) 2013; 5
Manabe (B21) 2021; 21
Arouche (B2) 2020; 20
Zhang (B50) 2022; 13
Adams (B1) 2006; 25
Wang (B40) 2021; 22
Pliakos (B31) 2020; 21
Nosengo (B27) 2016; 534
Martinez (B22) 2015; 63
Kim (B13) 2016; 44
Sajadi (B35) 2021; 22
Ding (B9) 2014; 15
Zhang (B49) 2018; 19
Xuan (B42) 2019; 35
Xuan (B43) 2021; 25
Perlman (B30) 2011; 18
Bagherian (B4) 2021; 22
Wang (B41) 2014; 30
Joshi (B12) 2021; 102
Sajadi (B36) 2022
Velikovi (B38) 2018
Liang (B16) 2017; 33
Pushpakom (B32) 2019; 18
Li (B15) 2021; 22
Ohgushi (B28) 2022; 61
Padhy (B29) 2011; 57
Renaux (B33) 2018; 46
Luo (B20) 2016; 32
Shim (B37) 2014; 10
Zhao (B52) 2021; 13
Ashburn (B3) 2004; 3
References_xml – volume: 63
  start-page: 41
  year: 2015
  ident: B22
  article-title: DrugNet: Network-based drug-disease prioritization by integrating heterogeneous data
  publication-title: Artif. Intell. Med.
  doi: 10.1016/j.artmed.2014.11.003
– volume: 8
  start-page: 1970
  year: 2012
  ident: B6
  article-title: Drug-target interaction prediction by random walk on the heterogeneous network
  publication-title: Mol. Biosyst.
  doi: 10.1039/c2mb00002d
– volume: 13
  start-page: 872785
  year: 2022
  ident: B50
  article-title: Drug repositioning with GraphSAGE and clustering constraints based on drug and disease networks
  publication-title: Front. Pharmacol.
  doi: 10.3389/fphar.2022.872785
– volume: 215
  start-page: 1666
  year: 2017
  ident: B5
  article-title: Global impact of rotavirus vaccination on childhood hospitalizations and mortality from diarrhea
  publication-title: J. Infect. Dis.
  doi: 10.1093/infdis/jix186
– volume: 48
  start-page: 681
  year: 2020
  ident: B11
  article-title: COVID-19 in people living with human immunodeficiency virus: A case series of 33 patients
  publication-title: Infection
  doi: 10.1007/s15010-020-01438-z
– volume: 19
  start-page: 233
  year: 2018
  ident: B49
  article-title: Predicting drug-disease associations by using similarity constrained matrix factorization
  publication-title: Bmc Bioinforma.
  doi: 10.1186/s12859-018-2220-4
– volume: 36
  start-page: 3474
  year: 2020
  ident: B51
  article-title: A graph regularized generalized matrix factorization model for predicting links in biomedical bipartite networks
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btaa157
– volume: 102
  start-page: 501
  year: 2021
  ident: B12
  article-title: Role of favipiravir in the treatment of COVID-19
  publication-title: Int. J. Infect. Dis.
  doi: 10.1016/j.ijid.2020.10.069
– volume: 21
  start-page: 49
  year: 2020
  ident: B31
  article-title: Drug-target interaction prediction with tree-ensemble learning and output space reconstruction
  publication-title: Bmc Bioinforma.
  doi: 10.1186/s12859-020-3379-z
– volume: 22
  start-page: 1604
  year: 2021
  ident: B19
  article-title: Biomedical data and computational models for drug repositioning: A comprehensive review
  publication-title: Briefings Bioinforma.
  doi: 10.1093/bib/bbz176
– volume: 26
  start-page: 1644
  year: 2010
  ident: B39
  article-title: Inferring the human microRNA functional similarity and functional network based on microRNA-associated diseases
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btq241
– volume: 22
  start-page: 2161
  year: 2021
  ident: B4
  article-title: Coupled matrix-matrix and coupled tensor-matrix completion methods for predicting drug-target interactions
  publication-title: Briefings Bioinforma.
  doi: 10.1093/bib/bbaa025
– year: 2018
  ident: B38
  article-title: Graph attention networks
– volume: 34
  start-page: 1904
  year: 2018
  ident: B18
  article-title: Computational drug repositioning using low-rank matrix approximation and randomized algorithms
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bty013
– volume: 32
  start-page: 2664
  year: 2016
  ident: B20
  article-title: Drug repositioning based on comprehensive similarity measures and Bi-Random walk algorithm
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btw228
– volume: 5
  start-page: 30
  year: 2013
  ident: B25
  article-title: Drug repositioning: A machine-learning approach through data integration
  publication-title: J. Cheminformatics
  doi: 10.1186/1758-2946-5-30
– volume: 35
  start-page: 4108
  year: 2019
  ident: B42
  article-title: Drug repositioning through integration of prior knowledge and projections of drugs and diseases
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btz182
– volume: 20
  start-page: 7311
  year: 2020
  ident: B2
  article-title: Interactions between remdesivir, ribavirin, favipiravir, galidesivir, hydroxychloroquine and chloroquine with fragment molecular of the COVID-19 main protease with inhibitor N3 complex (PDB ID:6LU7) using molecular docking
  publication-title: J. Nanosci. Nanotechnol.
  doi: 10.1166/jnn.2020.18955
– volume: 13
  start-page: 20995
  year: 2021
  ident: B52
  article-title: Glycyrrhizic acid nanoparticles as antiviral and anti-inflammatory agents for COVID-19 treatment
  publication-title: Acs Appl. Mater. Interfaces
  doi: 10.1021/acsami.1c02755
– start-page: 329
  year: 2003
  ident: B17
  article-title: Auc: A better measure than accuracy in comparing learning algorithms
  publication-title: Adv. Artif. Intelligence,Lecture Notes Comput. Sci.
  doi: 10.1007/3-540-44886-1_25
– volume: 30
  start-page: 2923
  year: 2014
  ident: B41
  article-title: Drug repositioning by integrating target information through a heterogeneous network model
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btu403
– volume: 57
  start-page: 153
  year: 2011
  ident: B29
  article-title: Drug repositioning: Re-Investigating existing drugs for new therapeutic indications
  publication-title: J. Postgrad. Med.
  doi: 10.4103/0022-3859.81870
– volume: 43
  start-page: D213
  year: 2015
  ident: B23
  article-title: The InterPro protein families database: The classification resource after 15 years
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gku1243
– volume: 20
  start-page: 4102
  year: 2019
  ident: B44
  article-title: Prediction of potential drug-disease associations through deep integration of diversity and projections of various drug features
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms20174102
– volume: 15
  start-page: 734
  year: 2014
  ident: B9
  article-title: Similarity-based machine learning methods for predicting drug-target interactions: A brief review
  publication-title: Briefings Bioinforma.
  doi: 10.1093/bib/bbt056
– volume: 10
  start-page: e0118432
  year: 2015
  ident: B34
  article-title: The precision-recall plot is more informative than the ROC plot when evaluating binary classifiers on imbalanced datasets
  publication-title: Plos One
  doi: 10.1371/journal.pone.0118432
– volume: 10
  start-page: 654
  year: 2014
  ident: B37
  article-title: Recent advances in drug repositioning for the discovery of new anticancer drugs
  publication-title: Int. J. Biol. Sci.
  doi: 10.7150/ijbs.9224
– year: 2022
  ident: B36
  article-title: Matrix factorization with denoising autoencoders for prediction of drug-target interactions
  publication-title: Mol. Divers.
  doi: 10.1007/s11030-022-10492-8
– volume: 534
  start-page: 314
  year: 2016
  ident: B27
  article-title: New tricks for old drugs
  publication-title: Nature
  doi: 10.1038/534314a
– volume: 35
  start-page: 5191
  year: 2019
  ident: B48
  article-title: deepDR: a network-based deep learning approach to in silico drug repositioning
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btz418
– volume: 22
  start-page: 204
  year: 2021
  ident: B35
  article-title: AutoDTI++: Deep unsupervised learning for DTI prediction by autoencoders
  publication-title: Bmc Bioinforma.
  doi: 10.1186/s12859-021-04127-2
– volume: 18
  start-page: 41
  year: 2019
  ident: B32
  article-title: Drug repurposing: Progress, challenges and recommendations
  publication-title: Nat. Rev. Drug Discov.
  doi: 10.1038/nrd.2018.168
– volume: 3
  start-page: 673
  year: 2004
  ident: B3
  article-title: Drug repositioning: Identifying and developing new uses for existing drugs
  publication-title: Nat. Rev. Drug Discov.
  doi: 10.1038/nrd1468
– volume: 18
  start-page: 133
  year: 2011
  ident: B30
  article-title: Combining drug and gene similarity measures for drug-target elucidation
  publication-title: J. Comput. Biol.
  doi: 10.1089/cmb.2010.0213
– volume: 35
  start-page: I455
  year: 2019
  ident: B45
  article-title: Drug repositioning based on bounded nuclear norm regularization
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btz331
– volume: 7
  start-page: 496
  year: 2011
  ident: B10
  article-title: Predict: A method for inferring novel drug indications with application to personalized medicine
  publication-title: Mol. Syst. Biol.
  doi: 10.1038/msb.2011.26
– volume: 46
  start-page: 2699
  year: 2018
  ident: B33
  article-title: UniProt: The universal protein knowledgebase
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gky092
– volume: 27
  start-page: 609
  year: 2016
  ident: B24
  article-title: Scoring multiple features to predict drug disease associations using information fusion and aggregation
  publication-title: Sar Qsar Environ. Res.
  doi: 10.1080/1062936X.2016.1209241
– volume: 20
  start-page: 954
  year: 2020
  ident: B26
  article-title: Effect of arbidol (umifenovir) on COVID-19: A randomized controlled trial
  publication-title: Bmc Infect. Dis.
  doi: 10.1186/s12879-020-05698-w
– volume: 21
  start-page: 489
  year: 2021
  ident: B21
  article-title: Favipiravir for the treatment of patients with COVID-19: A systematic review and meta-analysis
  publication-title: Bmc Infect. Dis.
  doi: 10.1186/s12879-021-06164-x
– volume: 25
  start-page: 420
  year: 2006
  ident: B1
  article-title: Estimating the cost of new drug development: Is it really $802 million?
  publication-title: Health Aff.
  doi: 10.1377/hlthaff.25.2.420
– volume: 44
  start-page: D1202
  year: 2016
  ident: B13
  article-title: PubChem substance and compound databases
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkv951
– volume: 3
  start-page: 417
  year: 2004
  ident: B8
  article-title: Key factors in the rising cost of new drug discovery and development
  publication-title: Nat. Rev. Drug Discov.
  doi: 10.1038/nrd1382
– volume: 2015
  start-page: 275045
  year: 2015
  ident: B7
  article-title: Matrix factorization-based prediction of novel drug indications by integrating genomic space
  publication-title: Comput. Math. Methods Med.
  doi: 10.1155/2015/275045
– volume: 61
  start-page: 585
  year: 2022
  ident: B28
  article-title: Tacrolimus treatment for post-COVID-19 interstitial lung disease
  publication-title: Intern. Med.
  doi: 10.2169/internalmedicine.7971-21
– volume: 22
  start-page: bbaa104
  year: 2021
  ident: B40
  article-title: MLCDForest: Multi-label classification with deep forest in disease prediction for long non-coding RNAs
  publication-title: Briefings Bioinforma.
  doi: 10.1093/bib/bbaa104
– volume: 36
  start-page: 2805
  year: 2020
  ident: B47
  article-title: Network-based prediction of drug-target interactions using an arbitrary-order proximity embedded deep forest
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btaa010
– volume: 22
  start-page: 1161
  year: 2021
  ident: B15
  article-title: Integrative pharmacological mechanism of vitamin C combined with glycyrrhizic acid against COVID-19: Findings of bioinformatics analyses
  publication-title: Briefings Bioinforma.
  doi: 10.1093/bib/bbaa141
– year: 2016
  ident: B14
  article-title: Semi-supervised classification with graph convolutional networks
– volume: 25
  start-page: 1793
  year: 2021
  ident: B43
  article-title: Graph convolutional autoencoder and fully-connected autoencoder with attention mechanism based method for predicting drug-disease associations
  publication-title: Ieee J. Biomed. Health Inf.
  doi: 10.1109/JBHI.2020.3039502
– volume: 33
  start-page: 1187
  year: 2017
  ident: B16
  article-title: Lrssl: Predict and interpret drug-disease associations based on data integration using sparse subspace learning
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btw770
– volume: 22
  start-page: bbaa243
  year: 2021
  ident: B46
  article-title: Predicting drug-disease associations through layer attention graph convolutional network
  publication-title: Briefings Bioinforma.
  doi: 10.1093/bib/bbaa243
SSID ssj0000399364
Score 2.3327212
Snippet Predicting new therapeutic effects (drug repositioning) of existing drugs plays an important role in drug development. However, traditional wet experimental...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 1056605
SubjectTerms COVID-19
drug repositioning
graph representation learning
heterogeneous network
Pharmacology
variational graph autoencoders
Title Drug repositioning based on heterogeneous networks and variational graph autoencoders
URI https://www.ncbi.nlm.nih.gov/pubmed/36618933
https://www.proquest.com/docview/2762815876
https://pubmed.ncbi.nlm.nih.gov/PMC9812491
https://doaj.org/article/fdb6dc0397614c00926124e6b06993be
Volume 13
WOSCitedRecordID wos000944084700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1663-9812
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000399364
  issn: 1663-9812
  databaseCode: DOA
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1663-9812
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000399364
  issn: 1663-9812
  databaseCode: M~E
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB5BxYEL4k14VEZCvdCocezGyZFHKw5Q7aFFe7P8ZCtVSbWPSr3w25mx0-0uQnDhEimJo1gzY38z9vgbgHe-kVyaoEoTQyil61xp0XBK5QV5v9LztKb7_as6OWmn026yUeqLcsIyPXAW3EH0tvGuItjk0hFFEGKyDI2tGoRWG2j2rVS3EUylOZhwt5H5lAxGYd1BvJwZ4v-s61RsvqF6dRtIlAj7_-Rl_p4suYE-xw_hweg2sg-5u4_gTugfw94k805f77PT22NUi322xya3jNTXT-Ds83z1g9H2QM7QQrhiBF-eDT2bUULMgHYUhtWC9TktfMFM79kVBtLjYiFLzNbMrJYDUV9S-vNTODs-Ov30pRzrKZRONu2ybGMbHSdKei9l7SuDo93XHhXipI1UB1252LXB41PuVG1V5YSMHu-4xTBRPIOdfujDC2DGCCswcgmiMfKw89g0xlqYNhqjOm4L4Dey1W4kG6eaFxcagw7Sh0760KQPPeqjgPfrby4z1cZfW38kla1bEk12eoDGo0fj0f8yngLe3ihc47CivRKTpK1rBImWHyJWFPA8G8D6VwJ9GnTzRAFqyzS2-rL9pj-fJerujvypjr_8H51_BfdJIJRbU_PXsLOcr8IbuOeulueL-S7cVdN2N40KvH77efQLu50UFQ
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Drug+repositioning+based+on+heterogeneous+networks+and+variational+graph+autoencoders&rft.jtitle=Frontiers+in+pharmacology&rft.au=Lei%2C+Song&rft.au=Lei%2C+Xiujuan&rft.au=Liu%2C+Lian&rft.date=2022-12-21&rft.issn=1663-9812&rft.eissn=1663-9812&rft.volume=13&rft_id=info:doi/10.3389%2Ffphar.2022.1056605&rft.externalDBID=n%2Fa&rft.externalDocID=10_3389_fphar_2022_1056605
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1663-9812&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1663-9812&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1663-9812&client=summon