Evaluating the life cycle energy benefits of energy efficiency regulations for buildings

Energy efficiency regulations for buildings often focus solely on operational and thermal energy demands. Increasing a building׳s thermal energy efficiency is most often undertaken by increasing insulation thickness and installing high performance windows. These measures can result in a significant...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Renewable & sustainable energy reviews Ročník 63; s. 435 - 451
Hlavní autoři: Crawford, Robert H., Bartak, Erika L., Stephan, André, Jensen, Christopher A.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Ltd 01.09.2016
Témata:
ISSN:1364-0321, 1879-0690
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Energy efficiency regulations for buildings often focus solely on operational and thermal energy demands. Increasing a building׳s thermal energy efficiency is most often undertaken by increasing insulation thickness and installing high performance windows. These measures can result in a significant increase in embodied energy which is currently not considered in the majority of existing building energy regulations. This study uses a case study house in Melbourne and Brisbane, Australia to investigate the life cycle primary energy repercussions of increasing building energy efficiency levels over 50 years. It uses the comprehensive hybrid approach and a dynamic software tool to quantify embodied and operational energy, respectively. It considers material and design-related changes in order to improve energy efficiency as well as a combination of both. Results show that while increasing the envelope thermal energy performance yields thermal operational energy savings, these can be offset by the additional embodied energy required for supplementary insulation materials and thermally efficient windows. The point at which supplementary insulation materials do not yield life cycle energy benefits is just above current minimum energy efficiency requirements in Australia. In order to reduce a building׳s life cycle energy demand, more comprehensive regulations are needed. These should combine embodied and operational energy and emphasise design strategies.
AbstractList Energy efficiency regulations for buildings often focus solely on operational and thermal energy demands. Increasing a building׳s thermal energy efficiency is most often undertaken by increasing insulation thickness and installing high performance windows. These measures can result in a significant increase in embodied energy which is currently not considered in the majority of existing building energy regulations. This study uses a case study house in Melbourne and Brisbane, Australia to investigate the life cycle primary energy repercussions of increasing building energy efficiency levels over 50 years. It uses the comprehensive hybrid approach and a dynamic software tool to quantify embodied and operational energy, respectively. It considers material and design-related changes in order to improve energy efficiency as well as a combination of both. Results show that while increasing the envelope thermal energy performance yields thermal operational energy savings, these can be offset by the additional embodied energy required for supplementary insulation materials and thermally efficient windows. The point at which supplementary insulation materials do not yield life cycle energy benefits is just above current minimum energy efficiency requirements in Australia. In order to reduce a building׳s life cycle energy demand, more comprehensive regulations are needed. These should combine embodied and operational energy and emphasise design strategies.
Energy efficiency regulations for buildings often focus solely on operational and thermal energy demands. Increasing a building's thermal energy efficiency is most often undertaken by increasing insulation thickness and installing high performance windows. These measures can result in a significant increase in embodied energy which is currently not considered in the majority of existing building energy regulations. This study uses a case study house in Melbourne and Brisbane, Australia to investigate the life cycle primary energy repercussions of increasing building energy efficiency levels over 50 years. It uses the comprehensive hybrid approach and a dynamic software tool to quantify embodied and operational energy, respectively. It considers material and design-related changes in order to improve energy efficiency as well as a combination of both. Results show that while increasing the envelope thermal energy performance yields thermal operational energy savings, these can be offset by the additional embodied energy required for supplementary insulation materials and thermally efficient windows. The point at which supplementary insulation materials do not yield life cycle energy benefits is just above current minimum energy efficiency requirements in Australia. In order to reduce a building's life cycle energy demand, more comprehensive regulations are needed. These should combine embodied and operational energy and emphasise design strategies.
Author Crawford, Robert H.
Stephan, André
Jensen, Christopher A.
Bartak, Erika L.
Author_xml – sequence: 1
  givenname: Robert H.
  surname: Crawford
  fullname: Crawford, Robert H.
– sequence: 2
  givenname: Erika L.
  surname: Bartak
  fullname: Bartak, Erika L.
– sequence: 3
  givenname: André
  orcidid: 0000-0001-9538-3830
  surname: Stephan
  fullname: Stephan, André
  email: andre.stephan@unimelb.edu.au
– sequence: 4
  givenname: Christopher A.
  surname: Jensen
  fullname: Jensen, Christopher A.
BookMark eNqNkE1LxDAQhoMo-PkHPOXopTVpmzQBL7KsH7DgRcFbSNLJmiXbatIK--_NunrxsJjLDJP3GZjnFB32Qw8IXVJSUkL59aqMCWJZ5b4krCScHqATKlpZEC7JYe5r3hSkrugxOk1pRQhloq1P0Ov8U4dJj75f4vENcPAOsN3YABh6iMsNNrk6PyY8uN8ROOeth95ucITlFDI-9Am7IWIz-dDlZekcHTkdElz81DP0cjd_nj0Ui6f7x9ntorANF2PRyoZKQY1rbG1sx8CQlnW6ccJIV_G24rAdGWEEcbIGwRlhEgxIbZklTX2GrnZ73-PwMUEa1donCyHoHoYpKSpqxhmVDflHlFIh2vxyVOyiNg4pRXDK-vH7zDFqHxQlautdrdTWu9p6V4Sp7D2j1R_0Pfq1jpv90M0Ogqzq0-ff9C0YOh_Bjqob_D78CyyXn9M
CitedBy_id crossref_primary_10_1016_j_proeng_2017_08_042
crossref_primary_10_1002_mame_202300086
crossref_primary_10_1016_j_enbuild_2020_110287
crossref_primary_10_3390_su12010351
crossref_primary_10_3390_app10124188
crossref_primary_10_1016_j_buildenv_2020_107258
crossref_primary_10_3390_buildings14051476
crossref_primary_10_1016_j_jclepro_2023_137191
crossref_primary_10_1016_j_seta_2021_101277
crossref_primary_10_3390_en10101570
crossref_primary_10_1016_j_jclepro_2023_135921
crossref_primary_10_1080_00207233_2019_1704036
crossref_primary_10_1016_j_rser_2017_03_120
crossref_primary_10_1680_jensu_23_00086
crossref_primary_10_3390_buildings11060230
crossref_primary_10_1016_j_enbuild_2021_111011
crossref_primary_10_1016_j_strueco_2022_09_002
crossref_primary_10_1016_j_enbuild_2017_12_056
crossref_primary_10_1016_j_enbuild_2020_110650
crossref_primary_10_1016_j_enpol_2018_10_003
crossref_primary_10_1111_jiec_13254
crossref_primary_10_1016_j_apenergy_2020_115932
crossref_primary_10_1016_j_enbuild_2021_111202
crossref_primary_10_1016_j_rser_2016_09_094
crossref_primary_10_1016_j_rser_2022_112530
crossref_primary_10_1016_j_jclepro_2018_10_230
crossref_primary_10_1016_j_ecolecon_2017_08_014
crossref_primary_10_1007_s12053_017_9521_8
crossref_primary_10_1080_15567249_2024_2373422
crossref_primary_10_1016_j_seta_2021_101318
crossref_primary_10_1088_1755_1315_588_2_022073
crossref_primary_10_3390_su142114628
crossref_primary_10_3390_buildings15101661
crossref_primary_10_1016_j_buildenv_2023_111077
crossref_primary_10_1016_j_rser_2017_06_049
crossref_primary_10_1016_j_jobe_2019_100779
crossref_primary_10_1088_1755_1315_95_4_042052
crossref_primary_10_1016_j_jclepro_2019_04_269
crossref_primary_10_3390_buildings8080106
crossref_primary_10_1016_j_resourpol_2023_104624
crossref_primary_10_3390_urbansci9050149
crossref_primary_10_1016_j_jclepro_2019_118656
crossref_primary_10_1016_j_jclepro_2017_02_161
crossref_primary_10_1007_s11367_020_01807_8
crossref_primary_10_1016_j_enbuild_2021_111556
crossref_primary_10_1016_j_eiar_2023_107085
crossref_primary_10_1016_j_enbuild_2022_112767
crossref_primary_10_1080_15623599_2019_1637098
crossref_primary_10_1016_j_jclepro_2020_122037
crossref_primary_10_1016_j_jclepro_2020_125622
crossref_primary_10_1016_j_buildenv_2016_11_043
crossref_primary_10_1108_IJBPA_11_2020_0100
crossref_primary_10_3846_jcem_2019_10928
crossref_primary_10_1007_s10098_018_1629_9
crossref_primary_10_1016_j_eiar_2025_107845
crossref_primary_10_1007_s11367_018_1521_1
crossref_primary_10_1088_2634_4505_ad1bb7
crossref_primary_10_1016_j_enbuild_2025_115516
crossref_primary_10_1016_j_jobe_2024_111603
crossref_primary_10_1016_j_buildenv_2025_112912
crossref_primary_10_3390_en11061383
crossref_primary_10_1016_j_enbenv_2020_09_005
crossref_primary_10_1016_j_enbuild_2023_113573
crossref_primary_10_1016_j_buildenv_2024_111542
crossref_primary_10_1016_j_energy_2017_06_159
crossref_primary_10_1016_j_enbuild_2025_115557
crossref_primary_10_1016_j_rser_2020_110372
crossref_primary_10_3390_su9091654
crossref_primary_10_1016_j_rser_2017_01_139
crossref_primary_10_1088_1755_1315_1078_1_012077
crossref_primary_10_5334_bc_36
crossref_primary_10_1016_j_enbuild_2020_109917
crossref_primary_10_1016_j_enbuild_2020_110340
crossref_primary_10_1016_j_proeng_2017_08_015
crossref_primary_10_1088_1755_1315_1101_2_022018
crossref_primary_10_1016_j_enbuild_2018_04_018
crossref_primary_10_1016_j_jclepro_2020_123731
crossref_primary_10_1088_1755_1315_297_1_012022
crossref_primary_10_1016_j_buildenv_2021_107602
crossref_primary_10_1016_j_jclepro_2021_129936
crossref_primary_10_1088_1755_1315_1196_1_012114
crossref_primary_10_3390_su15065327
crossref_primary_10_3390_buildings9010020
crossref_primary_10_3390_cli12120212
crossref_primary_10_1016_j_rser_2021_111569
crossref_primary_10_1016_j_jclepro_2021_126190
crossref_primary_10_1016_j_enbuild_2023_113048
crossref_primary_10_1080_00038628_2018_1450727
crossref_primary_10_1088_2634_4505_ad3577
crossref_primary_10_1080_00038628_2021_1911783
crossref_primary_10_3390_su14095570
crossref_primary_10_1016_j_enbuild_2017_11_030
crossref_primary_10_1016_j_resconrec_2021_106058
Cites_doi 10.1016/j.energy.2014.10.093
10.1016/j.enbuild.2007.08.001
10.1080/096132100369073
10.1080/00038628.2013.819556
10.1080/09613210903541527
10.1016/S0306-2619(99)00023-9
10.1016/j.enbuild.2010.12.013
10.1016/j.habitatint.2012.10.003
10.1162/10881980052541981
10.1016/j.buildenv.2013.11.019
10.1016/j.enbuild.2012.07.029
10.1016/j.enbuild.2010.05.007
10.1016/j.enbuild.2012.09.008
10.1016/j.rser.2013.08.037
10.1088/1748-9326/7/3/034037
10.1016/j.apenergy.2011.11.017
10.1021/es900529u
10.1016/j.enbuild.2005.05.004
10.1016/j.enbuild.2011.03.002
10.1016/j.buildenv.2005.12.003
10.1080/09535319700000032
10.1080/096132100368957
10.1021/es2016236
10.1016/j.enbuild.2007.03.007
10.1016/j.enbuild.2009.08.017
10.1016/j.energy.2014.07.028
10.1016/j.enbuild.2006.07.001
10.1016/j.rser.2010.09.008
10.1080/09613210903186661
10.1016/j.enbuild.2009.12.009
10.1016/j.enbuild.2009.09.011
10.1016/j.enbuild.2012.03.002
10.1016/j.rser.2014.03.009
10.1021/es201308x
10.1016/j.rser.2012.03.021
10.1016/j.apenergy.2013.05.076
10.1080/09613218.2010.494890
10.1016/j.jenvman.2007.03.024
ContentType Journal Article
Copyright 2016 Elsevier Ltd
Copyright_xml – notice: 2016 Elsevier Ltd
DBID AAYXX
CITATION
7ST
7U6
C1K
SOI
7SP
7TB
8FD
F28
FR3
H8D
KR7
L7M
DOI 10.1016/j.rser.2016.05.061
DatabaseName CrossRef
Environment Abstracts
Sustainability Science Abstracts
Environmental Sciences and Pollution Management
Environment Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Environment Abstracts
Sustainability Science Abstracts
Environmental Sciences and Pollution Management
Aerospace Database
Civil Engineering Abstracts
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList
Environment Abstracts
Aerospace Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-0690
EndPage 451
ExternalDocumentID 10_1016_j_rser_2016_05_061
S1364032116301733
GeographicLocations Australia, Victoria, Melbourne
Australia
Australia, Queensland, Brisbane
GeographicLocations_xml – name: Australia, Queensland, Brisbane
– name: Australia
– name: Australia, Victoria, Melbourne
GroupedDBID --K
--M
.~1
0R~
123
1B1
1RT
1~.
1~5
29P
4.4
457
4G.
5VS
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AAXUO
ABFNM
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADHUB
ADMUD
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHIDL
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JARJE
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSR
SSZ
T5K
Y6R
ZCA
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7ST
7U6
C1K
SOI
7SP
7TB
8FD
F28
FR3
H8D
KR7
L7M
ID FETCH-LOGICAL-c468t-7941981bf4c3bcd5eb075da4f8b9f26726eeb07b8b80f93e865059ebe9ac5c043
ISICitedReferencesCount 102
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000379887700031&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1364-0321
IngestDate Mon Sep 29 04:52:08 EDT 2025
Tue Oct 07 09:53:34 EDT 2025
Sat Nov 29 07:05:41 EST 2025
Tue Nov 18 22:53:36 EST 2025
Fri Feb 23 02:48:00 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Design
Insulation
Climate
Australia
Building energy regulations
Life cycle energy analysis
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c468t-7941981bf4c3bcd5eb075da4f8b9f26726eeb07b8b80f93e865059ebe9ac5c043
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-9538-3830
OpenAccessLink http://hdl.handle.net/11343/121775
PQID 1811887777
PQPubID 23462
PageCount 17
ParticipantIDs proquest_miscellaneous_1835651940
proquest_miscellaneous_1811887777
crossref_citationtrail_10_1016_j_rser_2016_05_061
crossref_primary_10_1016_j_rser_2016_05_061
elsevier_sciencedirect_doi_10_1016_j_rser_2016_05_061
PublicationCentury 2000
PublicationDate 2016-09-01
PublicationDateYYYYMMDD 2016-09-01
PublicationDate_xml – month: 09
  year: 2016
  text: 2016-09-01
  day: 01
PublicationDecade 2010
PublicationTitle Renewable & sustainable energy reviews
PublicationYear 2016
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Szalay (bib15) 2007; 42
Sharma, Saxena, Sethi, Shree, Varun (bib29) 2011; 15
ABS. T14 Dwelling Structure by Household Composition and Family Composition. Canberra; 2013.
Crawford R. An as-occupied life cycle energy assessment of a residential building. In: Skates H, editor. ASA2012: The 46th annual conference of the architectural science association - building on knowledge: theory and practice. Gold Coast; 2012.
2015 [accessed 20.10.15].
NOAA. State of the Climate: Global Analysis for December 2014. National Climatic Data Center. Available from
Williamson, Soebarto, Radford (bib51) 2010; 38
Stephan, Crawford, de Myttenaere (bib45) 2012; 55
Crawford (bib66) 2013; 57
Ding (bib48) 2004
Dodoo, Gustavsson, Sathre (bib16) 2011; 43
Cabeza, Rincón, Vilariño, Pérez, Castell (bib21) 2014; 29
Stephan, Stephan (bib27) 2014; 74
Kneifel (bib36) 2010; 42
Rodríguez-Soria, Domínguez-Hernández, Pérez-Bella, del Coz-Díaz (bib9) 2014; 34
Crawford (bib25) 2008; 88
Crawford R, Stephan A. The significance of embodied energy in certified passive houses. ICCBM 2013: International conference on construction and building materials. Copenhagen: World Academy of Science, Engineering and Technology; 2013. p. 473-479.
04/20/2009, 2009 [accessed 03.05.11].
Sartori, Hestnes (bib33) 2007; 39
Schwietzke, Griffin, Matthews (bib64) 2011; 45
Perez-Lombard, Ortiz, Pout (bib6) 2008; 40
Dahlstrøm, Sørnes, Eriksen, Hertwich (bib18) 2012; 54
Hasan (bib31) 1999; 63
Dixit, Fernández-Solís, Lavy, Culp (bib41) 2012; 16
International Standard 14025/TR (bib60) 2006
2015 [accessed 19.01.15]
Zhou, Zhang, Lin, Li (bib55) 2008; 40
Lenzen (bib39) 2000; 4
IEA (bib61) 2012
Winistorfer, Chen, Lippke, Stevens (bib43) 2007; 37
AGO. Australian Residential Building Sector Greenhouse Gas Emissions 1990–2010. Final Report. Canberra: Australian Greenhouse Office; 1999.
Dodoo, Gustavsson, Sathre (bib54) 2012; 92
November 6th 2010, 2013 [accessed 29.11.13].
Economidou (bib12) 2012; 5
Stephan, Crawford, de Myttenaere (bib19) 2013; 112
Ramesh, Prakash, Shukla (bib23) 2010; 42
Molenbroek, Stricker, Boermans (bib52) 2011
Kendall, Chang, Sharpe (bib63) 2009; 43
Stephan (bib46) 2013
NASA. NASA, NOAA Find 2014 Warmest Year in Modern Record. National Aeronautic and Spatial Agency, Available from
Majeau-Bettez, Strømman, Hertwich (bib40) 2011; 45
Crowther (bib28) 1999
Blengini, Di Carlo (bib17) 2010; 42
NAHB (bib49) 2007
IPCC (bib4) 2014
NatHERS. Heat loads, Available from
EIA. End-use consumption of electricity 2001. U.S. Energy Information Administration, Available from
Säynäjoki, Heinonen, Junnila (bib62) 2012; 7
Treloar (bib38) 1997; 9
EC. Directive 2010/31/EU of the European Parliament and the Council of the European Union of the 19 May 2010 on the Energy Performance of Buildings. Official Journal of the European Communities. Brussels: European Parliament and the Council of the European Union; 2010. p. 23.
2015 [accessed 19.01.15].
Crawford (bib20) 2011
Contributors of passipedia.passiv.de. What is a Passive House? Passipedia.org, Available from
Confédération Construction (bib11) 2014
IEA (bib5) 2012
Morrissey, Horne (bib30) 2011; 43
NatHERS (bib10) 2003
Ozel (bib32) 2012; 49
Rauf, Crawford (bib47) 2015; 79
DEWHA (bib65) 2008
García-Casals (bib14) 2006; 38
IPCC (bib3) 2013
Yung, Lam, Yu (bib24) 2013; 39
Plate-forme Maison Passive (bib56) 2013
Karimpour, Belusko, Xing, Bruno (bib22) 2014; 73
Gram-Hanssen (bib59) 2010; 38
Gustavsson, Joelsson (bib13) 2010; 42
Steemers, Yun (bib58) 2009; 37
Fay, Treloar, Iyer-Raniga (bib34) 2000; 28
Treloar, Fay, Love, Iyer-Raniga (bib35) 2000; 28
Treloar (bib53) 1998
ABCB (bib8) 2011
Treloar, Crawford (bib42) 2010
10.1016/j.rser.2016.05.061_bib37
Crawford (10.1016/j.rser.2016.05.061_bib20) 2011
NAHB (10.1016/j.rser.2016.05.061_bib49) 2007
Gustavsson (10.1016/j.rser.2016.05.061_bib13) 2010; 42
NatHERS (10.1016/j.rser.2016.05.061_bib10) 2003
Treloar (10.1016/j.rser.2016.05.061_bib38) 1997; 9
Treloar (10.1016/j.rser.2016.05.061_bib42) 2010
Perez-Lombard (10.1016/j.rser.2016.05.061_bib6) 2008; 40
Economidou (10.1016/j.rser.2016.05.061_bib12) 2012; 5
Plate-forme Maison Passive (10.1016/j.rser.2016.05.061_bib56) 2013
Lenzen (10.1016/j.rser.2016.05.061_bib39) 2000; 4
Steemers (10.1016/j.rser.2016.05.061_bib58) 2009; 37
Hasan (10.1016/j.rser.2016.05.061_bib31) 1999; 63
Confédération Construction (10.1016/j.rser.2016.05.061_bib11) 2014
Rauf (10.1016/j.rser.2016.05.061_bib47) 2015; 79
Szalay (10.1016/j.rser.2016.05.061_bib15) 2007; 42
10.1016/j.rser.2016.05.061_bib26
Kendall (10.1016/j.rser.2016.05.061_bib63) 2009; 43
Molenbroek (10.1016/j.rser.2016.05.061_bib52) 2011
Williamson (10.1016/j.rser.2016.05.061_bib51) 2010; 38
Yung (10.1016/j.rser.2016.05.061_bib24) 2013; 39
10.1016/j.rser.2016.05.061_bib67
10.1016/j.rser.2016.05.061_bib68
García-Casals (10.1016/j.rser.2016.05.061_bib14) 2006; 38
Dahlstrøm (10.1016/j.rser.2016.05.061_bib18) 2012; 54
Rodríguez-Soria (10.1016/j.rser.2016.05.061_bib9) 2014; 34
Morrissey (10.1016/j.rser.2016.05.061_bib30) 2011; 43
Cabeza (10.1016/j.rser.2016.05.061_bib21) 2014; 29
Majeau-Bettez (10.1016/j.rser.2016.05.061_bib40) 2011; 45
Zhou (10.1016/j.rser.2016.05.061_bib55) 2008; 40
10.1016/j.rser.2016.05.061_bib7
Kneifel (10.1016/j.rser.2016.05.061_bib36) 2010; 42
10.1016/j.rser.2016.05.061_bib2
10.1016/j.rser.2016.05.061_bib1
IPCC (10.1016/j.rser.2016.05.061_bib3) 2013
Winistorfer (10.1016/j.rser.2016.05.061_bib43) 2007; 37
Treloar (10.1016/j.rser.2016.05.061_bib53) 1998
Sartori (10.1016/j.rser.2016.05.061_bib33) 2007; 39
Crawford (10.1016/j.rser.2016.05.061_bib66) 2013; 57
10.1016/j.rser.2016.05.061_bib57
ABCB (10.1016/j.rser.2016.05.061_bib8) 2011
10.1016/j.rser.2016.05.061_bib50
International Standard 14025/TR (10.1016/j.rser.2016.05.061_bib60) 2006
Dodoo (10.1016/j.rser.2016.05.061_bib16) 2011; 43
Blengini (10.1016/j.rser.2016.05.061_bib17) 2010; 42
Treloar (10.1016/j.rser.2016.05.061_bib35) 2000; 28
Sharma (10.1016/j.rser.2016.05.061_bib29) 2011; 15
Stephan (10.1016/j.rser.2016.05.061_bib46) 2013
Ding (10.1016/j.rser.2016.05.061_bib48) 2004
Säynäjoki (10.1016/j.rser.2016.05.061_bib62) 2012; 7
Dodoo (10.1016/j.rser.2016.05.061_bib54) 2012; 92
Stephan (10.1016/j.rser.2016.05.061_bib19) 2013; 112
IPCC (10.1016/j.rser.2016.05.061_bib4) 2014
Karimpour (10.1016/j.rser.2016.05.061_bib22) 2014; 73
Gram-Hanssen (10.1016/j.rser.2016.05.061_bib59) 2010; 38
10.1016/j.rser.2016.05.061_bib44
Ramesh (10.1016/j.rser.2016.05.061_bib23) 2010; 42
Crawford (10.1016/j.rser.2016.05.061_bib25) 2008; 88
Fay (10.1016/j.rser.2016.05.061_bib34) 2000; 28
Crowther (10.1016/j.rser.2016.05.061_bib28) 1999
Ozel (10.1016/j.rser.2016.05.061_bib32) 2012; 49
Stephan (10.1016/j.rser.2016.05.061_bib45) 2012; 55
IEA (10.1016/j.rser.2016.05.061_bib61) 2012
Stephan (10.1016/j.rser.2016.05.061_bib27) 2014; 74
DEWHA (10.1016/j.rser.2016.05.061_bib65) 2008
Dixit (10.1016/j.rser.2016.05.061_bib41) 2012; 16
Schwietzke (10.1016/j.rser.2016.05.061_bib64) 2011; 45
IEA (10.1016/j.rser.2016.05.061_bib5) 2012
References_xml – year: 2013
  ident: bib3
  article-title: Climate change 2013: the physical science basis
  publication-title: Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change
– volume: 54
  start-page: 470
  year: 2012
  end-page: 479
  ident: bib18
  article-title: Life cycle assessment of a single-family residence built to either conventional- or passive house standard
  publication-title: Energy Build
– volume: 73
  start-page: 106
  year: 2014
  end-page: 114
  ident: bib22
  article-title: Minimising the life cycle energy of buildings: Review and analysis
  publication-title: Build Environ
– volume: 5
  year: 2012
  ident: bib12
  article-title: Energy performance requirements for buildings in Europe
  publication-title: REHVA Eur HVAC J
– year: 2013
  ident: bib46
  article-title: Towards a comprehensive energy assessment of residential buildings. a multi-scale life cycle energy analysis framework
– volume: 38
  start-page: 381
  year: 2006
  end-page: 392
  ident: bib14
  article-title: Analysis of building energy regulation and certification in Europe: their role, limitations and differences
  publication-title: Energ Build
– volume: 42
  start-page: 1592
  year: 2010
  end-page: 1600
  ident: bib23
  article-title: Life cycle energy analysis of buildings: an overview
  publication-title: Energy Build
– volume: 112
  start-page: 23
  year: 2013
  end-page: 34
  ident: bib19
  article-title: A comprehensive assessment of the life cycle energy demand of passive houses
  publication-title: Appl. Energy
– volume: 15
  start-page: 871
  year: 2011
  end-page: 875
  ident: bib29
  article-title: Life cycle assessment of buildings: a review
  publication-title: Renew Sustain Energy Rev
– reference: ; 2015 [accessed 19.01.15].
– start-page: 2
  year: 2014
  ident: bib11
  article-title: PEB 2015 en vigueur dès le 1
– volume: 28
  start-page: 31
  year: 2000
  end-page: 41
  ident: bib34
  article-title: Life-cycle energy analysis of buildings: a case study
  publication-title: Build Res Inf
– start-page: 115
  year: 2013
  ident: bib56
  article-title: Vade-mecum résidentiel
– volume: 43
  start-page: 915
  year: 2011
  end-page: 924
  ident: bib30
  article-title: Life cycle cost implications of energy efficiency measures in new residential buildings
  publication-title: Energy Build
– volume: 42
  start-page: 210
  year: 2010
  end-page: 220
  ident: bib13
  article-title: Life cycle primary energy analysis of residential buildings
  publication-title: Energ Build
– volume: 88
  start-page: 496
  year: 2008
  end-page: 506
  ident: bib25
  article-title: Validation of a hybrid life-cycle inventory analysis method
  publication-title: J Environ Manag
– reference: 2015 [accessed 20.10.15].
– volume: 79
  start-page: 140
  year: 2015
  end-page: 148
  ident: bib47
  article-title: Building service life and its effect on the life cycle embodied energy of buildings
  publication-title: Energy
– reference: ; 2015 [accessed 19.01.15]
– start-page: 655
  year: 2012
  ident: bib5
  article-title: World energy outlook 2012
– volume: 42
  start-page: 869
  year: 2010
  end-page: 880
  ident: bib17
  article-title: The changing role of life cycle phases, subsystems and materials in the LCA of low energy buildings
  publication-title: Energy Build
– volume: 63
  start-page: 115
  year: 1999
  end-page: 124
  ident: bib31
  article-title: Optimizing insulation thickness for buildings using life cycle cost
  publication-title: Appl Energy
– volume: 45
  start-page: 10170
  year: 2011
  end-page: 10177
  ident: bib40
  article-title: Evaluation of process- and input-output-based life cycle inventory data with regard to truncation and aggregation issues
  publication-title: Environ Sci Technol
– volume: 38
  start-page: 175
  year: 2010
  end-page: 186
  ident: bib59
  article-title: Residential heat comfort practices: understanding users
  publication-title: Build Res Inf
– reference: NOAA. State of the Climate: Global Analysis for December 2014. National Climatic Data Center. Available from:
– volume: 42
  start-page: 1761
  year: 2007
  end-page: 1769
  ident: bib15
  article-title: What is missing from the concept of the new European Building Directive?
  publication-title: Build Environ
– year: 2011
  ident: bib20
  publication-title: Life cycle assessment in the built environment
– year: 1998
  ident: bib53
  article-title: A comprehensive embodied energy analysis framework
– reference: Contributors of passipedia.passiv.de. What is a Passive House? Passipedia.org, Available from:
– volume: 43
  start-page: 7142
  year: 2009
  end-page: 7147
  ident: bib63
  article-title: Accounting for time-dependent effects in biofuel life cycle greenhouse gas emissions calculations
  publication-title: Environ Sci Technol
– volume: 37
  start-page: 128
  year: 2007
  end-page: 139
  ident: bib43
  article-title: Energy consumption and greenhouse gas emissions related to the use, maintenance, and disposal of a residential structure
  publication-title: Wood Fiber Sci
– volume: 55
  start-page: 592
  year: 2012
  end-page: 600
  ident: bib45
  article-title: Towards a comprehensive life cycle energy analysis framework for residential buildings
  publication-title: Energy Build
– start-page: 138
  year: 2012
  ident: bib61
  article-title: CO
– year: 1999
  ident: bib28
  article-title: Design for disassembly to recover embodied energy
– volume: 9
  start-page: 375
  year: 1997
  end-page: 391
  ident: bib38
  article-title: Extracting embodied energy paths from input-output tables: towards an input-output-based hybrid energy analysis method
  publication-title: Econ Syst Res
– volume: 7
  start-page: 034037
  year: 2012
  ident: bib62
  article-title: A scenario analysis of the life cycle greenhouse gas emissions of a new residential area
  publication-title: Environ Res Lett
– volume: 45
  start-page: 8197
  year: 2011
  end-page: 8203
  ident: bib64
  article-title: Relevance of emissions timing in biofuel greenhouse gases and climate impacts
  publication-title: Environ Sci Technol
– reference: ; 04/20/2009, 2009 [accessed 03.05.11].
– volume: 4
  start-page: 127
  year: 2000
  end-page: 148
  ident: bib39
  article-title: Errors in conventional and input-output-based life-cycle inventories
  publication-title: J Ind Ecol
– reference: NASA. NASA, NOAA Find 2014 Warmest Year in Modern Record. National Aeronautic and Spatial Agency, Available from:
– volume: 49
  start-page: 552
  year: 2012
  end-page: 559
  ident: bib32
  article-title: Cost analysis for optimum thicknesses and environmental impacts of different insulation materials
  publication-title: Energy Build
– volume: 29
  start-page: 394
  year: 2014
  end-page: 416
  ident: bib21
  article-title: Life cycle assessment (LCA) and life cycle energy analysis (LCEA) of buildings and the building sector: a review
  publication-title: Renew Sustain Energy Rev
– volume: 39
  start-page: 43
  year: 2013
  end-page: 54
  ident: bib24
  article-title: An audit of life cycle energy analyses of buildings
  publication-title: Habitat Int
– volume: 40
  start-page: 979
  year: 2008
  end-page: 986
  ident: bib55
  article-title: Coupling of thermal mass and natural ventilation in buildings
  publication-title: Energy Build
– start-page: 19
  year: 2007
  ident: bib49
  publication-title: Bank of America. Study of life expectancy of home materials
– year: 2004
  ident: bib48
  article-title: The development of a multi-criteria approach for the measurement of sustainable performance for built projects and facilities
– volume: 16
  start-page: 3730
  year: 2012
  end-page: 3743
  ident: bib41
  article-title: Need for an embodied energy measurement protocol for buildings: a review paper
  publication-title: Renew Sustain Energy Rev
– volume: 42
  start-page: 333
  year: 2010
  end-page: 340
  ident: bib36
  article-title: Life-cycle carbon and cost analysis of energy efficiency measures in new commercial buildings
  publication-title: Energy Build
– reference: November 6th 2010, 2013 [accessed 29.11.13].
– start-page: 25
  year: 2006
  ident: bib60
  article-title: Environmental labels and declarations -- type III environmental declarations -- principles and procedures
– reference: EC. Directive 2010/31/EU of the European Parliament and the Council of the European Union of the 19 May 2010 on the Energy Performance of Buildings. Official Journal of the European Communities. Brussels: European Parliament and the Council of the European Union; 2010. p. 23.
– year: 2014
  ident: bib4
  article-title: Climate change 2014: mitigation of climate change
  publication-title: Contribution of working group III to the fifth assessment report of the intergovernmental panel on climate change
– volume: 39
  start-page: 249
  year: 2007
  end-page: 257
  ident: bib33
  article-title: Energy use in the life cycle of conventional and low-energy buildings: a review article
  publication-title: Energy Build
– year: 2008
  ident: bib65
  article-title: Energy use in the Australian residential sector 1986−2020
– reference: EIA. End-use consumption of electricity 2001. U.S. Energy Information Administration, Available from:
– volume: 40
  start-page: 394
  year: 2008
  end-page: 398
  ident: bib6
  article-title: A review on buildings energy consumption information
  publication-title: Energy Build
– year: 2011
  ident: bib52
  publication-title: Primary energy factors for electricity in buildings: Toward a flexible electricity supply
– reference: ABS. T14 Dwelling Structure by Household Composition and Family Composition. Canberra; 2013.
– volume: 57
  start-page: 114
  year: 2013
  end-page: 124
  ident: bib66
  article-title: Post-occupancy life cycle energy assessment of a residential building in Australia
  publication-title: Archit Sci Rev
– reference: Crawford R, Stephan A. The significance of embodied energy in certified passive houses. ICCBM 2013: International conference on construction and building materials. Copenhagen: World Academy of Science, Engineering and Technology; 2013. p. 473-479.
– volume: 74
  start-page: 618
  year: 2014
  end-page: 637
  ident: bib27
  article-title: Reducing the total life cycle energy demand of recent residential buildings in Lebanon
  publication-title: Energy
– volume: 28
  start-page: 184
  year: 2000
  end-page: 195
  ident: bib35
  article-title: Analysing the life-cycle energy of an Australian residential building and its householders
  publication-title: Build Res Inf
– volume: 43
  start-page: 1589
  year: 2011
  end-page: 1597
  ident: bib16
  article-title: Building energy-efficiency standards in a life cycle primary energy perspective
  publication-title: Energy Build
– volume: 92
  start-page: 462
  year: 2012
  end-page: 472
  ident: bib54
  article-title: Effect of thermal mass on life cycle primary energy balances of a concrete- and a wood-frame building
  publication-title: Appl Energy
– reference: Crawford R. An as-occupied life cycle energy assessment of a residential building. In: Skates H, editor. ASA2012: The 46th annual conference of the architectural science association - building on knowledge: theory and practice. Gold Coast; 2012.
– start-page: 2
  year: 2003
  ident: bib10
  publication-title: Star band criteria
– reference: AGO. Australian Residential Building Sector Greenhouse Gas Emissions 1990–2010. Final Report. Canberra: Australian Greenhouse Office; 1999.
– year: 2010
  ident: bib42
  publication-title: Database of embodied energy and water values for materials
– volume: 38
  start-page: 509
  year: 2010
  end-page: 529
  ident: bib51
  article-title: Comfort and energy use in five Australian award-winning houses: regulated, measured and perceived
  publication-title: Build Res Inf
– volume: 37
  start-page: 625
  year: 2009
  end-page: 637
  ident: bib58
  article-title: Household energy consumption: a study of the role of occupants
  publication-title: Build Res Inf
– year: 2011
  ident: bib8
  article-title: Building Code of Australia (BCA) 2011
– reference: NatHERS. Heat loads, Available from:
– volume: 34
  start-page: 78
  year: 2014
  end-page: 90
  ident: bib9
  article-title: Review of international regulations governing the thermal insulation requirements of residential buildings and the harmonization of envelope energy loss
  publication-title: Renew Sustain Energy Rev
– year: 2013
  ident: 10.1016/j.rser.2016.05.061_bib3
  article-title: Climate change 2013: the physical science basis
– ident: 10.1016/j.rser.2016.05.061_bib67
– volume: 79
  start-page: 140
  year: 2015
  ident: 10.1016/j.rser.2016.05.061_bib47
  article-title: Building service life and its effect on the life cycle embodied energy of buildings
  publication-title: Energy
  doi: 10.1016/j.energy.2014.10.093
– volume: 40
  start-page: 979
  year: 2008
  ident: 10.1016/j.rser.2016.05.061_bib55
  article-title: Coupling of thermal mass and natural ventilation in buildings
  publication-title: Energy Build
  doi: 10.1016/j.enbuild.2007.08.001
– ident: 10.1016/j.rser.2016.05.061_bib44
– ident: 10.1016/j.rser.2016.05.061_bib50
– volume: 28
  start-page: 31
  year: 2000
  ident: 10.1016/j.rser.2016.05.061_bib34
  article-title: Life-cycle energy analysis of buildings: a case study
  publication-title: Build Res Inf
  doi: 10.1080/096132100369073
– volume: 57
  start-page: 114
  year: 2013
  ident: 10.1016/j.rser.2016.05.061_bib66
  article-title: Post-occupancy life cycle energy assessment of a residential building in Australia
  publication-title: Archit Sci Rev
  doi: 10.1080/00038628.2013.819556
– ident: 10.1016/j.rser.2016.05.061_bib7
– volume: 38
  start-page: 175
  year: 2010
  ident: 10.1016/j.rser.2016.05.061_bib59
  article-title: Residential heat comfort practices: understanding users
  publication-title: Build Res Inf
  doi: 10.1080/09613210903541527
– start-page: 2
  year: 2014
  ident: 10.1016/j.rser.2016.05.061_bib11
– volume: 63
  start-page: 115
  year: 1999
  ident: 10.1016/j.rser.2016.05.061_bib31
  article-title: Optimizing insulation thickness for buildings using life cycle cost
  publication-title: Appl Energy
  doi: 10.1016/S0306-2619(99)00023-9
– year: 2011
  ident: 10.1016/j.rser.2016.05.061_bib52
– volume: 43
  start-page: 915
  year: 2011
  ident: 10.1016/j.rser.2016.05.061_bib30
  article-title: Life cycle cost implications of energy efficiency measures in new residential buildings
  publication-title: Energy Build
  doi: 10.1016/j.enbuild.2010.12.013
– volume: 5
  year: 2012
  ident: 10.1016/j.rser.2016.05.061_bib12
  article-title: Energy performance requirements for buildings in Europe
  publication-title: REHVA Eur HVAC J
– volume: 39
  start-page: 43
  year: 2013
  ident: 10.1016/j.rser.2016.05.061_bib24
  article-title: An audit of life cycle energy analyses of buildings
  publication-title: Habitat Int
  doi: 10.1016/j.habitatint.2012.10.003
– volume: 4
  start-page: 127
  year: 2000
  ident: 10.1016/j.rser.2016.05.061_bib39
  article-title: Errors in conventional and input-output-based life-cycle inventories
  publication-title: J Ind Ecol
  doi: 10.1162/10881980052541981
– year: 2014
  ident: 10.1016/j.rser.2016.05.061_bib4
  article-title: Climate change 2014: mitigation of climate change
– volume: 73
  start-page: 106
  year: 2014
  ident: 10.1016/j.rser.2016.05.061_bib22
  article-title: Minimising the life cycle energy of buildings: Review and analysis
  publication-title: Build Environ
  doi: 10.1016/j.buildenv.2013.11.019
– volume: 54
  start-page: 470
  year: 2012
  ident: 10.1016/j.rser.2016.05.061_bib18
  article-title: Life cycle assessment of a single-family residence built to either conventional- or passive house standard
  publication-title: Energy Build
  doi: 10.1016/j.enbuild.2012.07.029
– ident: 10.1016/j.rser.2016.05.061_bib68
– volume: 42
  start-page: 1592
  year: 2010
  ident: 10.1016/j.rser.2016.05.061_bib23
  article-title: Life cycle energy analysis of buildings: an overview
  publication-title: Energy Build
  doi: 10.1016/j.enbuild.2010.05.007
– ident: 10.1016/j.rser.2016.05.061_bib26
– start-page: 138
  year: 2012
  ident: 10.1016/j.rser.2016.05.061_bib61
– volume: 55
  start-page: 592
  year: 2012
  ident: 10.1016/j.rser.2016.05.061_bib45
  article-title: Towards a comprehensive life cycle energy analysis framework for residential buildings
  publication-title: Energy Build
  doi: 10.1016/j.enbuild.2012.09.008
– year: 2011
  ident: 10.1016/j.rser.2016.05.061_bib20
– volume: 29
  start-page: 394
  year: 2014
  ident: 10.1016/j.rser.2016.05.061_bib21
  article-title: Life cycle assessment (LCA) and life cycle energy analysis (LCEA) of buildings and the building sector: a review
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2013.08.037
– volume: 7
  start-page: 034037
  year: 2012
  ident: 10.1016/j.rser.2016.05.061_bib62
  article-title: A scenario analysis of the life cycle greenhouse gas emissions of a new residential area
  publication-title: Environ Res Lett
  doi: 10.1088/1748-9326/7/3/034037
– volume: 92
  start-page: 462
  year: 2012
  ident: 10.1016/j.rser.2016.05.061_bib54
  article-title: Effect of thermal mass on life cycle primary energy balances of a concrete- and a wood-frame building
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2011.11.017
– ident: 10.1016/j.rser.2016.05.061_bib57
– volume: 37
  start-page: 128
  year: 2007
  ident: 10.1016/j.rser.2016.05.061_bib43
  article-title: Energy consumption and greenhouse gas emissions related to the use, maintenance, and disposal of a residential structure
  publication-title: Wood Fiber Sci
– volume: 43
  start-page: 7142
  year: 2009
  ident: 10.1016/j.rser.2016.05.061_bib63
  article-title: Accounting for time-dependent effects in biofuel life cycle greenhouse gas emissions calculations
  publication-title: Environ Sci Technol
  doi: 10.1021/es900529u
– year: 1999
  ident: 10.1016/j.rser.2016.05.061_bib28
– volume: 38
  start-page: 381
  year: 2006
  ident: 10.1016/j.rser.2016.05.061_bib14
  article-title: Analysis of building energy regulation and certification in Europe: their role, limitations and differences
  publication-title: Energ Build
  doi: 10.1016/j.enbuild.2005.05.004
– volume: 43
  start-page: 1589
  year: 2011
  ident: 10.1016/j.rser.2016.05.061_bib16
  article-title: Building energy-efficiency standards in a life cycle primary energy perspective
  publication-title: Energy Build
  doi: 10.1016/j.enbuild.2011.03.002
– start-page: 25
  year: 2006
  ident: 10.1016/j.rser.2016.05.061_bib60
– year: 2008
  ident: 10.1016/j.rser.2016.05.061_bib65
– start-page: 19
  year: 2007
  ident: 10.1016/j.rser.2016.05.061_bib49
– ident: 10.1016/j.rser.2016.05.061_bib1
– volume: 42
  start-page: 1761
  year: 2007
  ident: 10.1016/j.rser.2016.05.061_bib15
  article-title: What is missing from the concept of the new European Building Directive?
  publication-title: Build Environ
  doi: 10.1016/j.buildenv.2005.12.003
– year: 2004
  ident: 10.1016/j.rser.2016.05.061_bib48
– volume: 9
  start-page: 375
  year: 1997
  ident: 10.1016/j.rser.2016.05.061_bib38
  article-title: Extracting embodied energy paths from input-output tables: towards an input-output-based hybrid energy analysis method
  publication-title: Econ Syst Res
  doi: 10.1080/09535319700000032
– volume: 28
  start-page: 184
  year: 2000
  ident: 10.1016/j.rser.2016.05.061_bib35
  article-title: Analysing the life-cycle energy of an Australian residential building and its householders
  publication-title: Build Res Inf
  doi: 10.1080/096132100368957
– volume: 45
  start-page: 8197
  year: 2011
  ident: 10.1016/j.rser.2016.05.061_bib64
  article-title: Relevance of emissions timing in biofuel greenhouse gases and climate impacts
  publication-title: Environ Sci Technol
  doi: 10.1021/es2016236
– volume: 40
  start-page: 394
  year: 2008
  ident: 10.1016/j.rser.2016.05.061_bib6
  article-title: A review on buildings energy consumption information
  publication-title: Energy Build
  doi: 10.1016/j.enbuild.2007.03.007
– volume: 42
  start-page: 210
  year: 2010
  ident: 10.1016/j.rser.2016.05.061_bib13
  article-title: Life cycle primary energy analysis of residential buildings
  publication-title: Energ Build
  doi: 10.1016/j.enbuild.2009.08.017
– volume: 74
  start-page: 618
  year: 2014
  ident: 10.1016/j.rser.2016.05.061_bib27
  article-title: Reducing the total life cycle energy demand of recent residential buildings in Lebanon
  publication-title: Energy
  doi: 10.1016/j.energy.2014.07.028
– volume: 39
  start-page: 249
  year: 2007
  ident: 10.1016/j.rser.2016.05.061_bib33
  article-title: Energy use in the life cycle of conventional and low-energy buildings: a review article
  publication-title: Energy Build
  doi: 10.1016/j.enbuild.2006.07.001
– volume: 15
  start-page: 871
  year: 2011
  ident: 10.1016/j.rser.2016.05.061_bib29
  article-title: Life cycle assessment of buildings: a review
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2010.09.008
– ident: 10.1016/j.rser.2016.05.061_bib37
– start-page: 115
  year: 2013
  ident: 10.1016/j.rser.2016.05.061_bib56
– volume: 37
  start-page: 625
  year: 2009
  ident: 10.1016/j.rser.2016.05.061_bib58
  article-title: Household energy consumption: a study of the role of occupants
  publication-title: Build Res Inf
  doi: 10.1080/09613210903186661
– start-page: 655
  year: 2012
  ident: 10.1016/j.rser.2016.05.061_bib5
– volume: 42
  start-page: 869
  year: 2010
  ident: 10.1016/j.rser.2016.05.061_bib17
  article-title: The changing role of life cycle phases, subsystems and materials in the LCA of low energy buildings
  publication-title: Energy Build
  doi: 10.1016/j.enbuild.2009.12.009
– ident: 10.1016/j.rser.2016.05.061_bib2
– volume: 42
  start-page: 333
  year: 2010
  ident: 10.1016/j.rser.2016.05.061_bib36
  article-title: Life-cycle carbon and cost analysis of energy efficiency measures in new commercial buildings
  publication-title: Energy Build
  doi: 10.1016/j.enbuild.2009.09.011
– volume: 49
  start-page: 552
  year: 2012
  ident: 10.1016/j.rser.2016.05.061_bib32
  article-title: Cost analysis for optimum thicknesses and environmental impacts of different insulation materials
  publication-title: Energy Build
  doi: 10.1016/j.enbuild.2012.03.002
– volume: 34
  start-page: 78
  year: 2014
  ident: 10.1016/j.rser.2016.05.061_bib9
  article-title: Review of international regulations governing the thermal insulation requirements of residential buildings and the harmonization of envelope energy loss
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2014.03.009
– year: 2010
  ident: 10.1016/j.rser.2016.05.061_bib42
– volume: 45
  start-page: 10170
  year: 2011
  ident: 10.1016/j.rser.2016.05.061_bib40
  article-title: Evaluation of process- and input-output-based life cycle inventory data with regard to truncation and aggregation issues
  publication-title: Environ Sci Technol
  doi: 10.1021/es201308x
– volume: 16
  start-page: 3730
  year: 2012
  ident: 10.1016/j.rser.2016.05.061_bib41
  article-title: Need for an embodied energy measurement protocol for buildings: a review paper
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2012.03.021
– year: 2011
  ident: 10.1016/j.rser.2016.05.061_bib8
– volume: 112
  start-page: 23
  year: 2013
  ident: 10.1016/j.rser.2016.05.061_bib19
  article-title: A comprehensive assessment of the life cycle energy demand of passive houses
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2013.05.076
– year: 2013
  ident: 10.1016/j.rser.2016.05.061_bib46
– volume: 38
  start-page: 509
  year: 2010
  ident: 10.1016/j.rser.2016.05.061_bib51
  article-title: Comfort and energy use in five Australian award-winning houses: regulated, measured and perceived
  publication-title: Build Res Inf
  doi: 10.1080/09613218.2010.494890
– start-page: 2
  year: 2003
  ident: 10.1016/j.rser.2016.05.061_bib10
– year: 1998
  ident: 10.1016/j.rser.2016.05.061_bib53
– volume: 88
  start-page: 496
  year: 2008
  ident: 10.1016/j.rser.2016.05.061_bib25
  article-title: Validation of a hybrid life-cycle inventory analysis method
  publication-title: J Environ Manag
  doi: 10.1016/j.jenvman.2007.03.024
SSID ssj0015873
Score 2.5321493
SecondaryResourceType review_article
Snippet Energy efficiency regulations for buildings often focus solely on operational and thermal energy demands. Increasing a building׳s thermal energy efficiency is...
Energy efficiency regulations for buildings often focus solely on operational and thermal energy demands. Increasing a building's thermal energy efficiency is...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 435
SubjectTerms Australia
Building energy regulations
Buildings
Climate
Computer programs
Construction
Design
Energy management
Energy use
Insulation
Life cycle energy analysis
Regulations
Thermal energy
Title Evaluating the life cycle energy benefits of energy efficiency regulations for buildings
URI https://dx.doi.org/10.1016/j.rser.2016.05.061
https://www.proquest.com/docview/1811887777
https://www.proquest.com/docview/1835651940
Volume 63
WOSCitedRecordID wos000379887700031&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-0690
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0015873
  issn: 1364-0321
  databaseCode: AIEXJ
  dateStart: 19970301
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LjtMwFLVKhwUsEE8xvGQkZlUFJbGT2MsBWgGqCkIdqTsrcW2pM1Va0s6Dr-CXuX6lYRDVsGCTVpbttr6n19f2uccIvYkzDZMIkdGcJDqiTJKISxlHVappmgJqSm1vLRkXkwmbzfjXXu9nyIW5WBZ1za6u-Pq_mhrKwNgmdfYfzN12CgXwHowOTzA7PG9k-KHX7_ZpUMuFVgP5AyoNlMvzq-BVLxyHwxcpKyRhszAbdzm95cdZKqe_N3vTDWO_QbtLm3RlkLPpJGH5Dr3IaXvC0ZSXgUXvuNy7pIh38BvK4JPPykG7G20JaGXd0i5bso-q_bZRRxnB78n6_YskbwlaweWSnEYxcXnSwSd7p-ecKnWCJn5-pk6g9g_X73YhTt82YEtD2cutIqtTev9dZ3vyRYxOxmMxHc6mR2S0_h6ZS8jMYf0R-eAAcQsdpEXGWR8dHH8azj63B1MZs6SF9kv7PCxHGbz-0X-Lda7N-jaUmd5H9_waBB877DxAPVU_RHc7ypSP0GyHIgwowgZF2KIIOwvjgCK80qFohyLcQREGw-MWRY_RyWg4ff8x8pdwRJLmbBuBv044rG00laSS80xVEGTOS6pZxXWaF2muTFHFKhZrThSDkD_j4Bp4KTMZU_IE9etVrZ4iPJfzvEigaSVzmjFeqipjiQlZ4zJWOjlESRguIb1CvbkoZSkCFfFUmCEWZohFnAkY4kM0aNusnT7L3tpZsILwEaaLHAWgaG-718FkAtyvOVMra7U63wgIkBNmNDWLfXUILJsSTuNnN-jnObqz-5u8QP1tc65eotvyYrvYNK88Hn8BgvW3rA
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evaluating+the+life+cycle+energy+benefits+of+energy+efficiency+regulations+for+buildings&rft.jtitle=Renewable+%26+sustainable+energy+reviews&rft.au=Crawford%2C+Robert+H&rft.au=Bartak%2C+Erika+L&rft.au=Stephan%2C+Andre&rft.au=Jensen%2C+Christopher+A&rft.date=2016-09-01&rft.issn=1364-0321&rft.volume=63&rft.spage=435&rft.epage=451&rft_id=info:doi/10.1016%2Fj.rser.2016.05.061&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1364-0321&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1364-0321&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1364-0321&client=summon