Predicting risky driving behavior with classification algorithms: results from a large-scale field-trial and simulator experiment
Road safety is a subject of significant concern and substantially affects individuals across the globe. Thus, real-time, and post-trip interventions have gained significant importance in the past few years. This study aimed to analyze different classification techniques and examine their ability to...
Uložené v:
| Vydané v: | European Transport Research Review Ročník 16; číslo 1; s. 65 - 13 |
|---|---|
| Hlavní autori: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Cham
Springer International Publishing
01.12.2024
Springer Springer Nature B.V SpringerOpen |
| Predmet: | |
| ISSN: | 1866-8887, 1867-0717, 1866-8887 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Road safety is a subject of significant concern and substantially affects individuals across the globe. Thus, real-time, and post-trip interventions have gained significant importance in the past few years. This study aimed to analyze different classification techniques and examine their ability to identify dangerous driving behavior based on a dual-approach study. The analysis was based on the investigation of important risk factors such as average speed, harsh acceleration, harsh braking, headway, overtaking, distraction (i.e., mobile phone use), and fatigue. In order to achieve the objective of this study, data were collected through a driving simulator as well as a naturalistic driving study. To that end, four classification algorithms, namely support vector machines, random forest (RFs), AdaBoost, and multilayer perceptron (MLP) neural networks were implemented and compared. In the simulator experiment, RFs and MLPs emerged as the top-performing models with an accuracy of 84% and 82%, respectively, demonstrating its ability to accurately classify driving behavior in a controlled environment. In the naturalistic driving study, RF and AdaBoost maintained robust performance, with high accuracy (i.e., 75% and 76.76% respectively) and balanced precision and recall. The outcomes of this study could provide essential guidance for practitioners and researchers on choosing models for driving behavior classification tasks. |
|---|---|
| AbstractList | Road safety is a subject of significant concern and substantially affects individuals across the globe. Thus, real-time, and post-trip interventions have gained significant importance in the past few years. This study aimed to analyze different classification techniques and examine their ability to identify dangerous driving behavior based on a dual-approach study. The analysis was based on the investigation of important risk factors such as average speed, harsh acceleration, harsh braking, headway, overtaking, distraction (i.e., mobile phone use), and fatigue. In order to achieve the objective of this study, data were collected through a driving simulator as well as a naturalistic driving study. To that end, four classification algorithms, namely support vector machines, random forest (RFs), AdaBoost, and multilayer perceptron (MLP) neural networks were implemented and compared. In the simulator experiment, RFs and MLPs emerged as the top-performing models with an accuracy of 84% and 82%, respectively, demonstrating its ability to accurately classify driving behavior in a controlled environment. In the naturalistic driving study, RF and AdaBoost maintained robust performance, with high accuracy (i.e., 75% and 76.76% respectively) and balanced precision and recall. The outcomes of this study could provide essential guidance for practitioners and researchers on choosing models for driving behavior classification tasks. Abstract Road safety is a subject of significant concern and substantially affects individuals across the globe. Thus, real-time, and post-trip interventions have gained significant importance in the past few years. This study aimed to analyze different classification techniques and examine their ability to identify dangerous driving behavior based on a dual-approach study. The analysis was based on the investigation of important risk factors such as average speed, harsh acceleration, harsh braking, headway, overtaking, distraction (i.e., mobile phone use), and fatigue. In order to achieve the objective of this study, data were collected through a driving simulator as well as a naturalistic driving study. To that end, four classification algorithms, namely support vector machines, random forest (RFs), AdaBoost, and multilayer perceptron (MLP) neural networks were implemented and compared. In the simulator experiment, RFs and MLPs emerged as the top-performing models with an accuracy of 84% and 82%, respectively, demonstrating its ability to accurately classify driving behavior in a controlled environment. In the naturalistic driving study, RF and AdaBoost maintained robust performance, with high accuracy (i.e., 75% and 76.76% respectively) and balanced precision and recall. The outcomes of this study could provide essential guidance for practitioners and researchers on choosing models for driving behavior classification tasks. |
| ArticleNumber | 65 |
| Audience | Academic |
| Author | Roussou, Stella Yannis, George Michelaraki, Eva Garefalakis, Thodoris Katrakazas, Christos Brijs, Tom |
| Author_xml | – sequence: 1 givenname: Thodoris orcidid: 0000-0003-0151-7864 surname: Garefalakis fullname: Garefalakis, Thodoris email: tgarefalakis@mail.ntua.gr organization: Department of Transportation Planning and Engineering, National Technical University of Athens – sequence: 2 givenname: Eva surname: Michelaraki fullname: Michelaraki, Eva organization: Department of Transportation Planning and Engineering, National Technical University of Athens – sequence: 3 givenname: Stella surname: Roussou fullname: Roussou, Stella organization: Department of Transportation Planning and Engineering, National Technical University of Athens – sequence: 4 givenname: Christos surname: Katrakazas fullname: Katrakazas, Christos organization: Department of Transportation Planning and Engineering, National Technical University of Athens – sequence: 5 givenname: Tom surname: Brijs fullname: Brijs, Tom organization: School for Transportation Sciences, Transportation Research Institute (IMOB), UHasselt – sequence: 6 givenname: George surname: Yannis fullname: Yannis, George organization: Department of Transportation Planning and Engineering, National Technical University of Athens |
| BookMark | eNp9kU1vFSEUhiemTaxt_0BXJK6nhflgwF3TqG3SRBd2Tc7AYcqVGa7ArXbpP5d7R6NxUQgBDud54fC-qY6WsGBVXTB6yZjgV4k1fdfVtCmDcslq-ao6KQe8FkIMR_-sX1fnKW1oaS3rRdueVD8_RzROZ7dMJLr09ZmY6J72uxEf4cmFSL67_Ei0h5ScdRqyCwsBP4VY4nN6RyKmnc-J2BhmAsRDnLBOGjwS69CbOkcHnsBiSHLzzkMuovhji9HNuOSz6tiCT3j-ez6tHj68_3JzW99_-nh3c31f646LXA8ddBYGoIxDqwWTmnJqTG86BMslN6PsESXsKwPJtbCMY6v7wQprqW7a0-pu1TUBNmpbLof4rAI4dQiEOCmI2WmPqgHoeiM6ZkfZUUbFSC3IsTECsBmNKFpvV61tDN92mLLahF1cyvNVy1pGGzmwfdblmjWVv1BusSFH0KUbnJ0uHlpX4teCcSnk0AwFECugY0gpolXa5cOHF9B5xajaG65Ww1UxXB0MV7KgzX_onwpfhNoVSiV5mTD-LeMF6he5WMJ_ |
| CitedBy_id | crossref_primary_10_1080_23249935_2025_2532104 crossref_primary_10_1109_ACCESS_2025_3608615 |
| Cites_doi | 10.1016/j.aap.2009.06.014 10.1162/105474600566952 10.1109/IJCNN.2008.4633969 10.1016/j.trc.2022.103561 10.1016/B978-0-12-817736-5.00009-0 10.1155/2023/7641472 10.1016/j.aap.2019.05.005 10.1155/2020/1257627 10.1109/ISS1.2019.8908018 10.3390/su14106032 10.1016/j.aap.2021.106122 10.1080/19345747.2013.831154 10.1016/j.aap.2018.12.005 10.1016/B978-0-12-822830-2.00005-2 10.1080/19942060.2022.2053786 10.1109/TITS.2021.3076140 10.1016/j.aap.2021.106038 10.1016/j.aap.2019.04.017 10.1016/j.ssci.2019.05.059 10.1201/b10836-2 10.3390/ijerph16030334 10.1145/2856767.2856806 10.1109/ACCESS.2022.3165792 10.48550/ARXIV.2109.01433 10.1109/MT-ITS49943.2021.9529309 10.1109/ITSC.2017.8317835 10.3390/app112210562 10.1016/j.aap.2020.105701 10.1016/B978-0-12-801505-6.00006-5 10.1371/journal.pone.0084217 10.1016/j.sbspro.2012.06.1047 10.1016/S1369-8478(00)00015-2 10.1016/j.aquaeng.2020.102053 10.1016/bs.adcom.2019.09.007 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2024 COPYRIGHT 2024 Springer The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s) 2024 – notice: COPYRIGHT 2024 Springer – notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | C6C AAYXX CITATION 3V. 7WY 7WZ 7XB 87Z 8FE 8FG 8FK 8FL ABJCF ABUWG AEUYN AFKRA AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G HCIFZ K60 K6~ L.- L6V M0C M7S PHGZM PHGZT PIMPY PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U DOA |
| DOI | 10.1186/s12544-024-00691-9 |
| DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest Central (Corporate) ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials - QC ProQuest Central - New (Subscription) Business Premium Collection ProQuest Technology Collection ProQuest One Community College ProQuest Central Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) SciTech Premium Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection ABI/INFORM Professional Advanced ProQuest Engineering Collection ABI/INFORM Global Engineering Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database ABI/INFORM Global (Corporate) ProQuest Business Collection (Alumni Edition) ProQuest One Business Technology Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ABI/INFORM Complete ProQuest Central ABI/INFORM Professional Advanced ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) ABI/INFORM Complete (Alumni Edition) Engineering Collection Business Premium Collection ABI/INFORM Global Engineering Database ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest Business Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Business (Alumni) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
| DatabaseTitleList | Publicly Available Content Database CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Economics Engineering |
| EISSN | 1866-8887 |
| EndPage | 13 |
| ExternalDocumentID | oai_doaj_org_article_2aa45d841fb940108b0fa9b2d8ae2bd8 A816989727 10_1186_s12544_024_00691_9 |
| GrantInformation_xml | – fundername: European Conference of Transport Research Institutes |
| GroupedDBID | 0R~ 29G 4.4 40G 5GY 5VS 6NX 7WY 8FE 8FG 8FL AAFWJ AAJSJ AAKKN AASML ABDBF ABEEZ ABFTD ABJCF ABUWG ACACY ACGFO ACGFS ACIHN ACIWK ACUHS ACULB ADBBV AEAQA AFGXO AFKRA AFPKN AHBYD AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH BAPOH BCNDV BENPR BEZIV BGLVJ BPHCQ C24 C6C CAG DWQXO EBLON EBS ESX GROUPED_DOAJ HCIFZ IAO K60 K6~ KQ8 L6V M0C M7S OK1 P2P PIMPY PQBIZ PQQKQ PROAC PTHSS RNS SDH SEG SOJ U2A AAYXX AEUYN AFFHD CCPQU CITATION PHGZM PHGZT PQBZA PQGLB M~E 3V. 7XB 8FK AZQEC FRNLG L.- PKEHL PQEST PQUKI PRINS Q9U |
| ID | FETCH-LOGICAL-c468t-74a4fa7a016a3c819c060dd5d4eaf696db95ee9a0315a96c8f16e3c57f8ff0c23 |
| IEDL.DBID | BENPR |
| ISICitedReferencesCount | 4 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001359466700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1866-8887 1867-0717 |
| IngestDate | Tue Oct 14 14:39:17 EDT 2025 Sat Oct 11 13:41:09 EDT 2025 Tue Apr 15 04:05:36 EDT 2025 Sat Nov 29 05:44:34 EST 2025 Tue Nov 18 20:58:03 EST 2025 Mon Jul 21 06:09:41 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Driving behavior Naturalistic driving study Driving simulator study Machine learning models Classification algorithms Random forests |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c468t-74a4fa7a016a3c819c060dd5d4eaf696db95ee9a0315a96c8f16e3c57f8ff0c23 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-0151-7864 |
| OpenAccessLink | https://www.proquest.com/docview/3131029718?pq-origsite=%requestingapplication% |
| PQID | 3131029718 |
| PQPubID | 2034765 |
| PageCount | 13 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_2aa45d841fb940108b0fa9b2d8ae2bd8 proquest_journals_3131029718 gale_infotracacademiconefile_A816989727 crossref_citationtrail_10_1186_s12544_024_00691_9 crossref_primary_10_1186_s12544_024_00691_9 springer_journals_10_1186_s12544_024_00691_9 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-12-01 |
| PublicationDateYYYYMMDD | 2024-12-01 |
| PublicationDate_xml | – month: 12 year: 2024 text: 2024-12-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Cham |
| PublicationPlace_xml | – name: Cham – name: Heidelberg |
| PublicationSubtitle | An Open Access Journal |
| PublicationTitle | European Transport Research Review |
| PublicationTitleAbbrev | Eur. Transp. Res. Rev |
| PublicationYear | 2024 |
| Publisher | Springer International Publishing Springer Springer Nature B.V SpringerOpen |
| Publisher_xml | – name: Springer International Publishing – name: Springer – name: Springer Nature B.V – name: SpringerOpen |
| References | KhouryMAHusseinFAEfficiency and safety: The impact of autonomous controls on transportationInternational Journal of Information and Cybersecurity2023711339 Mobileye. (2023). https://www.mobileye.com He, H., Bai, Y., Garcia, E. A., & Li, S. (2008). ADASYN: Adaptive synthetic sampling approach for imbalanced learning. In 2008 IEEE international joint conference on neural networks (IEEE world congress on computational intelligence) (pp. 1322–1328). https://doi.org/10.1109/IJCNN.2008.4633969 KennedyRSDuration and exposure to virtual environments: sickness curves during and across sessionsPresence: Teleoperators & Virtual Environments20009546347210.1162/105474600566952 World Health Organization. (2023). Global status report on road safety 2023. World Health Organization. https://www.who.int/publications/i/item/9789240086517 Zhang, C., Patel, M., Buthpitiya, S., Lyons, K., Harrison, B., & Abowd, G. D. (2016). Driver classification based on driving behaviors. In Proceedings of the 21st international conference on intelligent user interfaces (pp. 80–84). https://doi.org/10.1145/2856767.2856806 ShiXWongYDLiMZ-FPalanisamyCChaiCA feature learning approach based on XGBoost for driving assessment and risk predictionAccident Analysis and Prevention201912917017910.1016/j.aap.2019.05.005 Roy, K., Kar, S., & Das, R. N. (2015). Selected statistical methods in QSAR. In Understanding the basics of QSAR for applications in pharmaceutical sciences and risk assessment (pp. 191–229). Elsevier. https://doi.org/10.1016/B978-0-12-801505-6.00006-5 NajiHAHXueQLyuNDuanXLiTRisk levels classification of near-crashes in naturalistic driving dataSustainability20221410603210.3390/su14106032 Fisher, D., Caird, J., & Rizzo, M. (2011). Handbook of driving simulation for engineering, medicine and psychology. In Handbook of driving simulation for engineering, medicine, and psychology. https://doi.org/10.1201/b10836-2 Molnar, C., Freiesleben, T., König, G., Casalicchio, G., Wright, M. N., & Bischl, B. (2021). Relating the partial dependence plot and permutation feature importance to the data generating process. arXiv. https://doi.org/10.48550/ARXIV.2109.01433 AhmadGNFatimaHUllahSSalah SaidiAImdadullahEfficient medical diagnosis of human heart diseases using machine learning techniques with and without GridSearchCVIEEE Access202210801518017310.1109/ACCESS.2022.3165792 PapadimitriouEArgyropoulouATselentisDIYannisGAnalysis of driver behaviour through smartphone data: The case of mobile phone use while drivingSafety Science2019119919710.1016/j.ssci.2019.05.059 Yang, K., Haddad, C. Al, Yannis, G., & Antoniou, C. (2021). Driving behavior safety levels: Classification and evaluation. In 2021 7th International conference on models and technologies for intelligent transportation systems (MT-ITS) (pp. 1–6). https://doi.org/10.1109/MT-ITS49943.2021.9529309 Ghosh, S., Dasgupta, A., & Swetapadma, A. (2019). A study on support vector machine based linear and non-linear pattern classification. In 2019 International conference on intelligent sustainable systems (ICISS) (pp. 24–28). https://doi.org/10.1109/ISS1.2019.8908018 Michelaraki, E., Katrakazas, C., Brijs, T., & Yannis, G. (2021). Modelling the safety tolerance zone: Recommendations from the i-DREAMS project. In 10th International congress on transportation research. WijayaratnaKPCunninghamMLReganMAJianSChandSDixitVVMobile phone conversation distraction: Understanding differences in impact between simulator and naturalistic driving studiesAccident Analysis and Prevention201912910811810.1016/j.aap.2019.04.017 van SchagenISagbergFThe potential benefits of naturalistic driving for road safety research: Theoretical and empirical considerations and challenges for the futureProcedia: Social and Behavioral Sciences20124869270110.1016/j.sbspro.2012.06.1047 TiptonEHedgesLVaden-KiernanMBormanGSullivanKCaverlySSample selection in randomized experiments: A new method using propensity score stratified samplingJournal of Research on Educational Effectiveness20147111413510.1080/19345747.2013.831154 StaubachMFactors correlated with traffic accidents as a basis for evaluating advanced driver assistance systemsAccident Analysis and Prevention20094151025103310.1016/j.aap.2009.06.014 Knipling, R. R., Mironer, M., Hendricks, D. L., Tijeripa, L., Everson, J., Allen, J. C., Wilson, C., et al. (1993). Assessment of IVHS countermeasures for collision avoidance: Rear-end crashes. XiaYSunJChapter eleven—Correlation and association analyses in microbiome study integrating multiomics in health and diseaseProgress in molecular biology and translational science2020Academic Press309491 AbiramiSChitraPEnergy-efficient edge based real-time healthcare support systemAdvances in Computers2020117133936810.1016/bs.adcom.2019.09.007 ShangguanQFuTWangJLuoTFangSAn integrated methodology for real-time driving risk status prediction using naturalistic driving dataAccident Analysis and Prevention202115610.1016/j.aap.2021.106122 DingNZhuSJiaoNLiuBEffects of peripheral transverse line markings on drivers’ speed and headway choice and crash risk in car-following: A naturalistic observation studyAccident Analysis and Prevention202014610.1016/j.aap.2020.105701 GanJLiLZhangDYiZXiangQAn alternative method for traffic accident severity prediction: Using deep forests algorithmJournal of Advanced Transportation2020202011310.1155/2020/1257627 GhandourRPotamsAJBoulkaibetINejiBAl BarakehZDriver behavior classification system analysis using machine learning methodsApplied Sciences2021112210.3390/app112210562 MichaelPGLeemingFCDwyerWOHeadway on urban streets: Observational data and an intervention to decrease tailgatingTransportation Research Part F: Traffic Psychology and Behaviour200032556410.1016/S1369-8478(00)00015-2 MisraSLiHMisraSLiHHeJChapter 9—Noninvasive fracture characterization based on the classification of sonic wave travel timesMachine learning for subsurface characterization2020Gulf Professional Publishing24328710.1016/B978-0-12-817736-5.00009-0 WangXXuRZhangSZhuangYWangYDriver distraction detection based on vehicle dynamics using naturalistic driving dataTransportation Research Part C: Emerging Technologies202213610.1016/j.trc.2022.103561 Valverde-AlbaceteFJPeláez-MorenoC100% classification accuracy considered harmful: The normalized information transfer factor explains the accuracy paradoxPLoS ONE201491e84217e8421710.1371/journal.pone.0084217 CardioID Technologies. (2023). https://www.cardio-id.com/automotive ChenWSharifraziDLiangGBandSSChauKWMosaviAAccurate discharge coefficient prediction of streamlined weirs by coupling linear regression and deep convolutional gated recurrent unitEngineering Applications of Computational Fluid Mechanics202216196597610.1080/19942060.2022.2053786 SongXYinYCaoHZhaoSLiMYiBThe mediating effect of driver characteristics on risky driving behaviors moderated by gender, and the classification model of driver’s driving riskAccident Analysis and Prevention202115310.1016/j.aap.2021.106038 Saleh, K., Hossny, M., & Nahavandi, S. (2017). Driving behavior classification based on sensor data fusion using LSTM recurrent neural networks. In 2017 IEEE 20th international conference on intelligent transportation systems (ITSC) (pp. 1–6). https://doi.org/10.1109/ITSC.2017.8317835 YangJHanSChenYPrediction of traffic accident severity based on random forestJournal of Advanced Transportation202320231810.1155/2023/7641472 OhtaHIndividual differences in driving distance headwayVision in Vehicles1993491100 BananANasiriATaheri-GaravandADeep learning-based appearance features extraction for automated carp species identificationAquacultural Engineering20208910.1016/j.aquaeng.2020.102053 Nasr AzadaniMBoukercheADriving behavior analysis guidelines for intelligent transportation systemsIEEE Transactions on Intelligent Transportation Systems20222376027604510.1109/TITS.2021.3076140 WangCLiuLXuCLvWPredicting future driving risk of crash-involved drivers based on a systematic machine learning frameworkInternational Journal of Environmental Research and Public Health201916333410.3390/ijerph16030334 Liu, H. (2021). Data mining and processing for train unmanned driving systems. In Unmanned driving systems for smart trains (pp. 211–252). Elsevier. https://doi.org/10.1016/B978-0-12-822830-2.00005-2 OsmanOAHajijMKarbalaiealiSIshakSA hierarchical machine learning classification approach for secondary task identification from observed driving behavior dataAccident Analysis and Prevention201912327428110.1016/j.aap.2018.12.005 691_CR1 PG Michael (691_CR19) 2000; 3 W Chen (691_CR40) 2022; 16 691_CR20 691_CR21 MA Khoury (691_CR3) 2023; 7 691_CR4 691_CR41 X Wang (691_CR8) 2022; 136 E Papadimitriou (691_CR10) 2019; 119 M Staubach (691_CR2) 2009; 41 OA Osman (691_CR5) 2019; 123 691_CR35 691_CR14 691_CR17 C Wang (691_CR26) 2019; 16 X Shi (691_CR12) 2019; 129 691_CR15 X Song (691_CR13) 2021; 153 A Banan (691_CR39) 2020; 89 691_CR31 J Gan (691_CR37) 2020; 2020 E Tipton (691_CR22) 2014; 7 RS Kennedy (691_CR23) 2000; 9 S Abirami (691_CR32) 2020; 117 I van Schagen (691_CR16) 2012; 48 S Misra (691_CR30) 2020 N Ding (691_CR38) 2020; 146 J Yang (691_CR36) 2023; 2023 Y Xia (691_CR29) 2020 R Ghandour (691_CR9) 2021; 11 M Nasr Azadani (691_CR7) 2022; 23 691_CR24 691_CR25 H Ohta (691_CR18) 1993; 4 HAH Naji (691_CR42) 2022; 14 KP Wijayaratna (691_CR6) 2019; 129 Q Shangguan (691_CR11) 2021; 156 691_CR28 GN Ahmad (691_CR33) 2022; 10 FJ Valverde-Albacete (691_CR34) 2014; 9 691_CR27 |
| References_xml | – reference: KhouryMAHusseinFAEfficiency and safety: The impact of autonomous controls on transportationInternational Journal of Information and Cybersecurity2023711339 – reference: YangJHanSChenYPrediction of traffic accident severity based on random forestJournal of Advanced Transportation202320231810.1155/2023/7641472 – reference: Saleh, K., Hossny, M., & Nahavandi, S. (2017). Driving behavior classification based on sensor data fusion using LSTM recurrent neural networks. In 2017 IEEE 20th international conference on intelligent transportation systems (ITSC) (pp. 1–6). https://doi.org/10.1109/ITSC.2017.8317835 – reference: Mobileye. (2023). https://www.mobileye.com/ – reference: Nasr AzadaniMBoukercheADriving behavior analysis guidelines for intelligent transportation systemsIEEE Transactions on Intelligent Transportation Systems20222376027604510.1109/TITS.2021.3076140 – reference: WijayaratnaKPCunninghamMLReganMAJianSChandSDixitVVMobile phone conversation distraction: Understanding differences in impact between simulator and naturalistic driving studiesAccident Analysis and Prevention201912910811810.1016/j.aap.2019.04.017 – reference: GanJLiLZhangDYiZXiangQAn alternative method for traffic accident severity prediction: Using deep forests algorithmJournal of Advanced Transportation2020202011310.1155/2020/1257627 – reference: StaubachMFactors correlated with traffic accidents as a basis for evaluating advanced driver assistance systemsAccident Analysis and Prevention20094151025103310.1016/j.aap.2009.06.014 – reference: Michelaraki, E., Katrakazas, C., Brijs, T., & Yannis, G. (2021). Modelling the safety tolerance zone: Recommendations from the i-DREAMS project. In 10th International congress on transportation research. – reference: MichaelPGLeemingFCDwyerWOHeadway on urban streets: Observational data and an intervention to decrease tailgatingTransportation Research Part F: Traffic Psychology and Behaviour200032556410.1016/S1369-8478(00)00015-2 – reference: Yang, K., Haddad, C. Al, Yannis, G., & Antoniou, C. (2021). Driving behavior safety levels: Classification and evaluation. In 2021 7th International conference on models and technologies for intelligent transportation systems (MT-ITS) (pp. 1–6). https://doi.org/10.1109/MT-ITS49943.2021.9529309 – reference: SongXYinYCaoHZhaoSLiMYiBThe mediating effect of driver characteristics on risky driving behaviors moderated by gender, and the classification model of driver’s driving riskAccident Analysis and Prevention202115310.1016/j.aap.2021.106038 – reference: OhtaHIndividual differences in driving distance headwayVision in Vehicles1993491100 – reference: AhmadGNFatimaHUllahSSalah SaidiAImdadullahEfficient medical diagnosis of human heart diseases using machine learning techniques with and without GridSearchCVIEEE Access202210801518017310.1109/ACCESS.2022.3165792 – reference: Fisher, D., Caird, J., & Rizzo, M. (2011). Handbook of driving simulation for engineering, medicine and psychology. In Handbook of driving simulation for engineering, medicine, and psychology. https://doi.org/10.1201/b10836-2 – reference: Liu, H. (2021). Data mining and processing for train unmanned driving systems. In Unmanned driving systems for smart trains (pp. 211–252). Elsevier. https://doi.org/10.1016/B978-0-12-822830-2.00005-2 – reference: van SchagenISagbergFThe potential benefits of naturalistic driving for road safety research: Theoretical and empirical considerations and challenges for the futureProcedia: Social and Behavioral Sciences20124869270110.1016/j.sbspro.2012.06.1047 – reference: BananANasiriATaheri-GaravandADeep learning-based appearance features extraction for automated carp species identificationAquacultural Engineering20208910.1016/j.aquaeng.2020.102053 – reference: ChenWSharifraziDLiangGBandSSChauKWMosaviAAccurate discharge coefficient prediction of streamlined weirs by coupling linear regression and deep convolutional gated recurrent unitEngineering Applications of Computational Fluid Mechanics202216196597610.1080/19942060.2022.2053786 – reference: CardioID Technologies. (2023). https://www.cardio-id.com/automotive/ – reference: NajiHAHXueQLyuNDuanXLiTRisk levels classification of near-crashes in naturalistic driving dataSustainability20221410603210.3390/su14106032 – reference: Zhang, C., Patel, M., Buthpitiya, S., Lyons, K., Harrison, B., & Abowd, G. D. (2016). Driver classification based on driving behaviors. In Proceedings of the 21st international conference on intelligent user interfaces (pp. 80–84). https://doi.org/10.1145/2856767.2856806 – reference: Roy, K., Kar, S., & Das, R. N. (2015). Selected statistical methods in QSAR. In Understanding the basics of QSAR for applications in pharmaceutical sciences and risk assessment (pp. 191–229). Elsevier. https://doi.org/10.1016/B978-0-12-801505-6.00006-5 – reference: Ghosh, S., Dasgupta, A., & Swetapadma, A. (2019). A study on support vector machine based linear and non-linear pattern classification. In 2019 International conference on intelligent sustainable systems (ICISS) (pp. 24–28). https://doi.org/10.1109/ISS1.2019.8908018 – reference: PapadimitriouEArgyropoulouATselentisDIYannisGAnalysis of driver behaviour through smartphone data: The case of mobile phone use while drivingSafety Science2019119919710.1016/j.ssci.2019.05.059 – reference: DingNZhuSJiaoNLiuBEffects of peripheral transverse line markings on drivers’ speed and headway choice and crash risk in car-following: A naturalistic observation studyAccident Analysis and Prevention202014610.1016/j.aap.2020.105701 – reference: World Health Organization. (2023). Global status report on road safety 2023. World Health Organization. https://www.who.int/publications/i/item/9789240086517 – reference: Knipling, R. R., Mironer, M., Hendricks, D. L., Tijeripa, L., Everson, J., Allen, J. C., Wilson, C., et al. (1993). Assessment of IVHS countermeasures for collision avoidance: Rear-end crashes. – reference: He, H., Bai, Y., Garcia, E. A., & Li, S. (2008). ADASYN: Adaptive synthetic sampling approach for imbalanced learning. In 2008 IEEE international joint conference on neural networks (IEEE world congress on computational intelligence) (pp. 1322–1328). https://doi.org/10.1109/IJCNN.2008.4633969 – reference: GhandourRPotamsAJBoulkaibetINejiBAl BarakehZDriver behavior classification system analysis using machine learning methodsApplied Sciences2021112210.3390/app112210562 – reference: WangCLiuLXuCLvWPredicting future driving risk of crash-involved drivers based on a systematic machine learning frameworkInternational Journal of Environmental Research and Public Health201916333410.3390/ijerph16030334 – reference: XiaYSunJChapter eleven—Correlation and association analyses in microbiome study integrating multiomics in health and diseaseProgress in molecular biology and translational science2020Academic Press309491 – reference: OsmanOAHajijMKarbalaiealiSIshakSA hierarchical machine learning classification approach for secondary task identification from observed driving behavior dataAccident Analysis and Prevention201912327428110.1016/j.aap.2018.12.005 – reference: AbiramiSChitraPEnergy-efficient edge based real-time healthcare support systemAdvances in Computers2020117133936810.1016/bs.adcom.2019.09.007 – reference: WangXXuRZhangSZhuangYWangYDriver distraction detection based on vehicle dynamics using naturalistic driving dataTransportation Research Part C: Emerging Technologies202213610.1016/j.trc.2022.103561 – reference: Valverde-AlbaceteFJPeláez-MorenoC100% classification accuracy considered harmful: The normalized information transfer factor explains the accuracy paradoxPLoS ONE201491e84217e8421710.1371/journal.pone.0084217 – reference: ShangguanQFuTWangJLuoTFangSAn integrated methodology for real-time driving risk status prediction using naturalistic driving dataAccident Analysis and Prevention202115610.1016/j.aap.2021.106122 – reference: MisraSLiHMisraSLiHHeJChapter 9—Noninvasive fracture characterization based on the classification of sonic wave travel timesMachine learning for subsurface characterization2020Gulf Professional Publishing24328710.1016/B978-0-12-817736-5.00009-0 – reference: Molnar, C., Freiesleben, T., König, G., Casalicchio, G., Wright, M. N., & Bischl, B. (2021). Relating the partial dependence plot and permutation feature importance to the data generating process. arXiv. https://doi.org/10.48550/ARXIV.2109.01433 – reference: ShiXWongYDLiMZ-FPalanisamyCChaiCA feature learning approach based on XGBoost for driving assessment and risk predictionAccident Analysis and Prevention201912917017910.1016/j.aap.2019.05.005 – reference: TiptonEHedgesLVaden-KiernanMBormanGSullivanKCaverlySSample selection in randomized experiments: A new method using propensity score stratified samplingJournal of Research on Educational Effectiveness20147111413510.1080/19345747.2013.831154 – reference: KennedyRSDuration and exposure to virtual environments: sickness curves during and across sessionsPresence: Teleoperators & Virtual Environments20009546347210.1162/105474600566952 – volume: 41 start-page: 1025 issue: 5 year: 2009 ident: 691_CR2 publication-title: Accident Analysis and Prevention doi: 10.1016/j.aap.2009.06.014 – ident: 691_CR17 – volume: 9 start-page: 463 issue: 5 year: 2000 ident: 691_CR23 publication-title: Presence: Teleoperators & Virtual Environments doi: 10.1162/105474600566952 – volume: 4 start-page: 91 year: 1993 ident: 691_CR18 publication-title: Vision in Vehicles – ident: 691_CR35 doi: 10.1109/IJCNN.2008.4633969 – volume: 136 year: 2022 ident: 691_CR8 publication-title: Transportation Research Part C: Emerging Technologies doi: 10.1016/j.trc.2022.103561 – start-page: 243 volume-title: Machine learning for subsurface characterization year: 2020 ident: 691_CR30 doi: 10.1016/B978-0-12-817736-5.00009-0 – volume: 2023 start-page: 1 year: 2023 ident: 691_CR36 publication-title: Journal of Advanced Transportation doi: 10.1155/2023/7641472 – volume: 129 start-page: 170 year: 2019 ident: 691_CR12 publication-title: Accident Analysis and Prevention doi: 10.1016/j.aap.2019.05.005 – volume: 2020 start-page: 1 year: 2020 ident: 691_CR37 publication-title: Journal of Advanced Transportation doi: 10.1155/2020/1257627 – ident: 691_CR25 – ident: 691_CR28 doi: 10.1109/ISS1.2019.8908018 – volume: 14 start-page: 6032 issue: 10 year: 2022 ident: 691_CR42 publication-title: Sustainability doi: 10.3390/su14106032 – ident: 691_CR4 – volume: 156 year: 2021 ident: 691_CR11 publication-title: Accident Analysis and Prevention doi: 10.1016/j.aap.2021.106122 – volume: 7 start-page: 114 issue: 1 year: 2014 ident: 691_CR22 publication-title: Journal of Research on Educational Effectiveness doi: 10.1080/19345747.2013.831154 – volume: 123 start-page: 274 year: 2019 ident: 691_CR5 publication-title: Accident Analysis and Prevention doi: 10.1016/j.aap.2018.12.005 – start-page: 309 volume-title: Progress in molecular biology and translational science year: 2020 ident: 691_CR29 – ident: 691_CR31 doi: 10.1016/B978-0-12-822830-2.00005-2 – volume: 16 start-page: 965 issue: 1 year: 2022 ident: 691_CR40 publication-title: Engineering Applications of Computational Fluid Mechanics doi: 10.1080/19942060.2022.2053786 – volume: 23 start-page: 6027 issue: 7 year: 2022 ident: 691_CR7 publication-title: IEEE Transactions on Intelligent Transportation Systems doi: 10.1109/TITS.2021.3076140 – volume: 153 year: 2021 ident: 691_CR13 publication-title: Accident Analysis and Prevention doi: 10.1016/j.aap.2021.106038 – volume: 129 start-page: 108 year: 2019 ident: 691_CR6 publication-title: Accident Analysis and Prevention doi: 10.1016/j.aap.2019.04.017 – volume: 119 start-page: 91 year: 2019 ident: 691_CR10 publication-title: Safety Science doi: 10.1016/j.ssci.2019.05.059 – ident: 691_CR21 doi: 10.1201/b10836-2 – volume: 16 start-page: 334 issue: 3 year: 2019 ident: 691_CR26 publication-title: International Journal of Environmental Research and Public Health doi: 10.3390/ijerph16030334 – ident: 691_CR15 doi: 10.1145/2856767.2856806 – volume: 10 start-page: 80151 year: 2022 ident: 691_CR33 publication-title: IEEE Access doi: 10.1109/ACCESS.2022.3165792 – ident: 691_CR20 doi: 10.48550/ARXIV.2109.01433 – ident: 691_CR14 doi: 10.1109/MT-ITS49943.2021.9529309 – ident: 691_CR41 doi: 10.1109/ITSC.2017.8317835 – volume: 11 issue: 22 year: 2021 ident: 691_CR9 publication-title: Applied Sciences doi: 10.3390/app112210562 – volume: 146 year: 2020 ident: 691_CR38 publication-title: Accident Analysis and Prevention doi: 10.1016/j.aap.2020.105701 – ident: 691_CR27 doi: 10.1016/B978-0-12-801505-6.00006-5 – volume: 7 start-page: 13 issue: 1 year: 2023 ident: 691_CR3 publication-title: International Journal of Information and Cybersecurity – ident: 691_CR24 – volume: 9 start-page: e84217 issue: 1 year: 2014 ident: 691_CR34 publication-title: PLoS ONE doi: 10.1371/journal.pone.0084217 – ident: 691_CR1 – volume: 48 start-page: 692 year: 2012 ident: 691_CR16 publication-title: Procedia: Social and Behavioral Sciences doi: 10.1016/j.sbspro.2012.06.1047 – volume: 3 start-page: 55 issue: 2 year: 2000 ident: 691_CR19 publication-title: Transportation Research Part F: Traffic Psychology and Behaviour doi: 10.1016/S1369-8478(00)00015-2 – volume: 89 year: 2020 ident: 691_CR39 publication-title: Aquacultural Engineering doi: 10.1016/j.aquaeng.2020.102053 – volume: 117 start-page: 339 issue: 1 year: 2020 ident: 691_CR32 publication-title: Advances in Computers doi: 10.1016/bs.adcom.2019.09.007 |
| SSID | ssj0000315833 ssib044736607 |
| Score | 2.340111 |
| Snippet | Road safety is a subject of significant concern and substantially affects individuals across the globe. Thus, real-time, and post-trip interventions have... Abstract Road safety is a subject of significant concern and substantially affects individuals across the globe. Thus, real-time, and post-trip interventions... |
| SourceID | doaj proquest gale crossref springer |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 65 |
| SubjectTerms | Acceleration Accuracy Algorithms Automotive Engineering Cellular telephones Civil Engineering Classification Classification algorithms Driver behavior Driving ability Driving behavior Driving simulator study Engineering Headways Machine learning Machine learning models Multilayer perceptrons Naturalistic driving study Neural networks Original Paper Random forests Real time Regional/Spatial Science Risk factors Robust control Speed limits Support vector machines TRA 2024 Dublin - Transport Transitions (Highlights of the 2024 Transport Research Arena conference) Traffic accidents & safety Traffic safety Transportation |
| SummonAdditionalLinks | – databaseName: Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NaxUxEA9SBL1I_cK1VXIQPGjoZneTTbxVsXiQ0oNCb2HyJQ9eX8vuq-DR_9yZ7G5bKerFaza7zGYmyUwy8_sx9sp0PiljvKiTthigmE6YhigBowQfPPEhFcj8z_3xsTk9tSc3qL4oJ2yCB54G7qAB6FQ0nczeYixQG19nsL6JBlLjYynzRa_nRjBV1uBWUjnRUiVj9MEoCYxL4JYkCJ1XCvvbTlQA-28vy7fuR8u2c7TLHsz-Ij-c5HzI7qTNI3ZvKSceH7OfJwPdtVD2Mqc88R88Dis6JeBLBT6ns1YeyE2mvKCiCg7rb-cDtp-N7zhG3Jfr7cip1IQDX1NyuBhReYmXBDdRqD04bCIfV2fE94UfvaYGeMK-Hn388uGTmHkVROi02Yq-gy5DD-jtQRvQJQi1rmNUsUuQtdXRW5WSBRpEsDqYLHVqg-qzybkOTfuU7WzON-kZ46BsDjZFIGA_lb1pU4uKgSb1tUlKVUwuY-zCDDpO3BdrV4IPo92kF4d6cUUvzlbszdU7FxPkxl97vyfVXfUkuOzSgEbkZiNy_zKiir0mxTua1ChegLk2AX-S4LHcoZFEtIm-XsX2F9tw82wfXSvRSW4sbvMVe7vYy_XjPwv__H8Iv8fuN2TWJcdmn-1sh8v0gt0N37ercXhZ5sUv6b0RuA priority: 102 providerName: Directory of Open Access Journals – databaseName: SpringerLINK dbid: C24 link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5BQaIceJSiBgryAYkDWMRJnIx7KxUVB1T1AFJvlp_VSttdlGwrceSf1-NNWqoCElwTO5p4xuOxPd83AG-wsUEiWl6GVqUNCjYcKyoJ6IWxzlI9pEyZ_6U7OsKTE3U8gsKGKdt9upLMnjpPa2w_DILYtHhaUzjR6wqu7sI9KVCRXR-MGIfsf2tBUKIJIfPbrjdWoUzWf9sl37obzUvO4eP_E_YJPBpDTLa_tomncCcstuDBhEAetuDhLySEz-DncU-XNZT-zCjR_Afz_YyOGdgE4Wd0WMscxdmUWJR1ycz8dNmn52fDHktb9vP5amCEVWGGzSm7nA9J-4HlDDmea4Mws_BsmJ1RwbD00evaAtvw7fDT14PPfCzMwF3T4op3jWmi6UwKF03tUkzhyrb0XvommNiq1lslQ1CGNGFU6zCKNtROdhFjLF1VP4eNxXIRdoAZqaJTwRtiBpTRYh1qNMFUoSsxSFmAmBSl3chaTsUz5jrvXrDV66HWaah1HmqtCnh31ef7mrPjr60_kv6vWhLfdn6w7E_1OH11ZUwjPTYiWpV2pCXaMhplK59krazHAt6S9WjyCkk8Z0ZwQ_pJ4tfS-yioUmcKFgvYnQxMj-5i0LVIUXalUpxQwPvJoK5f_1n4F__W_CVsVmSTOR1nFzZW_Xl4BffdxWo29K_zNLoETqIZHA priority: 102 providerName: Springer Nature |
| Title | Predicting risky driving behavior with classification algorithms: results from a large-scale field-trial and simulator experiment |
| URI | https://link.springer.com/article/10.1186/s12544-024-00691-9 https://www.proquest.com/docview/3131029718 https://doaj.org/article/2aa45d841fb940108b0fa9b2d8ae2bd8 |
| Volume | 16 |
| WOSCitedRecordID | wos001359466700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1866-8887 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000315833 issn: 1866-8887 databaseCode: DOA dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1866-8887 dateEnd: 99991231 omitProxy: false ssIdentifier: ssib044736607 issn: 1866-8887 databaseCode: M~E dateStart: 20080101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ABI/INFORM Collection customDbUrl: eissn: 1866-8887 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000315833 issn: 1866-8887 databaseCode: 7WY dateStart: 20240101 isFulltext: true titleUrlDefault: https://www.proquest.com/abicomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ABI/INFORM Global customDbUrl: eissn: 1866-8887 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000315833 issn: 1866-8887 databaseCode: M0C dateStart: 20240101 isFulltext: true titleUrlDefault: https://search.proquest.com/abiglobal providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 1866-8887 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000315833 issn: 1866-8887 databaseCode: M7S dateStart: 20240101 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central - New (Subscription) customDbUrl: eissn: 1866-8887 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000315833 issn: 1866-8887 databaseCode: BENPR dateStart: 20240101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1866-8887 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000315833 issn: 1866-8887 databaseCode: PIMPY dateStart: 20240101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK customDbUrl: eissn: 1866-8887 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000315833 issn: 1866-8887 databaseCode: C24 dateStart: 20090301 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9swEBdrOthe9j3mrgt6GOxhE7VsWZb2MtqQssEazD5Y-yRkSe4CadLa7mAvg_3n0ylywyjry14ESRRb5s6nu9Pd74fQS8FqVwhRk9Rx6QMUwYjIgBLQUl2bGviQAmT-x3I2E8fHsooJty6WVQ42MRhquzKQI9_LqXdEMulN6bvzCwKsUXC6Gik0ttA2IJWxEdo-mM6qT4NGMVbmnMcAJ9jmnEKbEURhgkOOjpZDJ43gex0FwC7ity0CCL6UyL92qwDqf910XztDDVvT4f3_fagH6F50SvH-Woseoltu-QjdGXqWu8fod9XCgQ6USGMoRv-JbTuHVAQe2vwxJHSxAV8cio-CvLFenPq79d_PurfYh_WXi77D0M-CNV5ABTrpvIY4HKroSOAPwXppcTc_A1Ixf9EN_8AT9PVw-mXynkTyBmIYFz0pmWaNLrV3KXVuvN9hUp5aW1jmdMMlt7UsnJMaJKIlN6Kh3OWmKBvRNKnJ8qdotFwt3TOEdSEbI53VgB5YNLXIXS6005krU-GKIkF0EJIyEdkcCDYWKkQ4gqu1YJUXrAqCVTJBr6_-c77G9bhx9gHI_momYHKHL1btqYqvuMq0ZoUVjDa19FFrKuq00bLOrF9rVluRoFegOQosh1-e0bEBwj8kYHCpfUGBzdM7lAnaHdRFRZPSqY2uJOjNoHCbn_-9-J2br_Yc3c1A40OJzi4a9e2le4Fumx_9vGvHaKv8djKOr5X_NMnYOOQt_HiUTmAsP8P4a-pnVR-OqpM_ttItSw |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELaqglQuvFEDBXwAcQCreTiOjYRQKVStuqx6KFJvxs-y0na3xCmoR_4QvxGPN-kKVfTWA9fEsZzk84zHnvk-hF5wql3NuSa5YyIGKJwSXoIkoC2UNhr0kBJl_qgZj_nRkThYQb-HWhhIqxxsYjLUdm5gj3yzKuJCpBTRlL4__U5ANQpOVwcJjQUs9t35zxiyhXd7H-P_fVmWO58Ot3dJrypADGW8Iw1V1KtGxbWOqkx0iCZnubW1pU55JpjVonZOKJA_UIIZ7gvmKlM3nnufGyA6iCb_BqWxAaQK5tsDfiltKsb6cCp5gtgFT2r2QBsHtULNULfD2WYogB6MRCdJgC-4IOIv35gkBC47iksntskR7tz53z7hXXS7X3LjrcUcuYdW3Ow-WhsqssMD9OugheMqSADHkGp_jm07gY0WPJAYYNiuxgYiDUitSmjGanoc3677dhLe4taFs2kXMFTrYIWnkF9PQsS_wylHkCR1FKxmFofJCUimxU6X6goP0Zdr-QKP0OpsPnPrCKtaeCOcVcCNWHvNK1dx5VTpmpy7us5QMYBCmp63HeRDpjLFb5zJBZBkBJJMQJIiQ68vnjldsJZc2foDYO2iJTCOpwvz9lj2BkyWStHaclp4LWJMnnOdeyV0aeNYS215hl4BUiXYxTg8o_ryjviSwDAmt3gBWqVxuZyhjQGesjeYQS6xmaE3A8CXt_89-MdX9_Ycre0efh7J0d54_wm6VcJsS8lIG2i1a8_cU3TT_OgmoX2WpjJGX68b-H8AFCCCxA |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELaqgoALb0SggA8gDmBtHo5jIyFUKCuqVqs9gCgn4_jRrrTdbZMtqEf-Fr-OGW_SFarorQeuSdZyst_MeOyZ7yPkueS1L6WsWeqFggRFciZzlAR0maltjXpIkTJ_txqN5N6eGq-R330vDJZV9j4xOmo3t7hHPigyWIjkClzpIHRlEeOt4bujY4YKUnjS2stpLCGy409_QvrWvt3egv_6RZ4PP37-8Il1CgPMciEXrOKGB1MZWPeYwkJwtKlInSsd9yYIJVytSu-VQSkEo4SVIRO-sGUVZAipRdIDcP9XKsQ92FL19VuPZc6rQogutYpRAYaQUdkeKeSwb6jqe3ikGLQZUoUxCJgMuYMzpv6Kk1FO4HzQOHd6G4Pi8Nb__Dlvk5vdUpxuLm3nDlnzs7vket-p3d4jv8YNHmNhYTjFEvxT6poJbsDQntyA4jY2tZiBYMlVRDk10314u8XBYfuGNr49mS5ail081NAp1t2zFuzC01g7yKJqCjUzR9vJIUqpwaAr1YX75MulfIEHZH02n_mHhJpSBau8M8iZWIZaFr6QxpvcV6n0ZZmQrAeIth2fO8qKTHXM66TQS1BpAJWOoNIqIa_OfnO0ZDO58On3iLuzJ5GJPF6YN_u6c2w6N4aXTvIs1Apy9VTWaTCqzh3MNa-dTMhLRK1GfwnTs6Zr-4CXROYxvSkz1DCFZXRCNnqo6s6RtnqF04S87sG-uv3vyT-6eLRn5BrgXe9uj3Yekxs5Gl6sUdog64vmxD8hV-2PxaRtnkarpuT7ZeP-D_qqi-E |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Predicting+risky+driving+behavior+with+classification+algorithms%3A+results+from+a+large-scale+field-trial+and+simulator+experiment&rft.jtitle=European+transport+research+review&rft.au=Garefalakis%2C+Thodoris&rft.au=Michelaraki%2C+Eva&rft.au=Roussou%2C+Stella&rft.au=Katrakazas%2C+Christos&rft.date=2024-12-01&rft.issn=1866-8887&rft.eissn=1866-8887&rft.volume=16&rft.issue=1&rft_id=info:doi/10.1186%2Fs12544-024-00691-9&rft.externalDBID=n%2Fa&rft.externalDocID=10_1186_s12544_024_00691_9 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1866-8887&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1866-8887&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1866-8887&client=summon |