Predicting risky driving behavior with classification algorithms: results from a large-scale field-trial and simulator experiment

Road safety is a subject of significant concern and substantially affects individuals across the globe. Thus, real-time, and post-trip interventions have gained significant importance in the past few years. This study aimed to analyze different classification techniques and examine their ability to...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:European Transport Research Review Ročník 16; číslo 1; s. 65 - 13
Hlavní autori: Garefalakis, Thodoris, Michelaraki, Eva, Roussou, Stella, Katrakazas, Christos, Brijs, Tom, Yannis, George
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Cham Springer International Publishing 01.12.2024
Springer
Springer Nature B.V
SpringerOpen
Predmet:
ISSN:1866-8887, 1867-0717, 1866-8887
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Road safety is a subject of significant concern and substantially affects individuals across the globe. Thus, real-time, and post-trip interventions have gained significant importance in the past few years. This study aimed to analyze different classification techniques and examine their ability to identify dangerous driving behavior based on a dual-approach study. The analysis was based on the investigation of important risk factors such as average speed, harsh acceleration, harsh braking, headway, overtaking, distraction (i.e., mobile phone use), and fatigue. In order to achieve the objective of this study, data were collected through a driving simulator as well as a naturalistic driving study. To that end, four classification algorithms, namely support vector machines, random forest (RFs), AdaBoost, and multilayer perceptron (MLP) neural networks were implemented and compared. In the simulator experiment, RFs and MLPs emerged as the top-performing models with an accuracy of 84% and 82%, respectively, demonstrating its ability to accurately classify driving behavior in a controlled environment. In the naturalistic driving study, RF and AdaBoost maintained robust performance, with high accuracy (i.e., 75% and 76.76% respectively) and balanced precision and recall. The outcomes of this study could provide essential guidance for practitioners and researchers on choosing models for driving behavior classification tasks.
AbstractList Road safety is a subject of significant concern and substantially affects individuals across the globe. Thus, real-time, and post-trip interventions have gained significant importance in the past few years. This study aimed to analyze different classification techniques and examine their ability to identify dangerous driving behavior based on a dual-approach study. The analysis was based on the investigation of important risk factors such as average speed, harsh acceleration, harsh braking, headway, overtaking, distraction (i.e., mobile phone use), and fatigue. In order to achieve the objective of this study, data were collected through a driving simulator as well as a naturalistic driving study. To that end, four classification algorithms, namely support vector machines, random forest (RFs), AdaBoost, and multilayer perceptron (MLP) neural networks were implemented and compared. In the simulator experiment, RFs and MLPs emerged as the top-performing models with an accuracy of 84% and 82%, respectively, demonstrating its ability to accurately classify driving behavior in a controlled environment. In the naturalistic driving study, RF and AdaBoost maintained robust performance, with high accuracy (i.e., 75% and 76.76% respectively) and balanced precision and recall. The outcomes of this study could provide essential guidance for practitioners and researchers on choosing models for driving behavior classification tasks.
Abstract Road safety is a subject of significant concern and substantially affects individuals across the globe. Thus, real-time, and post-trip interventions have gained significant importance in the past few years. This study aimed to analyze different classification techniques and examine their ability to identify dangerous driving behavior based on a dual-approach study. The analysis was based on the investigation of important risk factors such as average speed, harsh acceleration, harsh braking, headway, overtaking, distraction (i.e., mobile phone use), and fatigue. In order to achieve the objective of this study, data were collected through a driving simulator as well as a naturalistic driving study. To that end, four classification algorithms, namely support vector machines, random forest (RFs), AdaBoost, and multilayer perceptron (MLP) neural networks were implemented and compared. In the simulator experiment, RFs and MLPs emerged as the top-performing models with an accuracy of 84% and 82%, respectively, demonstrating its ability to accurately classify driving behavior in a controlled environment. In the naturalistic driving study, RF and AdaBoost maintained robust performance, with high accuracy (i.e., 75% and 76.76% respectively) and balanced precision and recall. The outcomes of this study could provide essential guidance for practitioners and researchers on choosing models for driving behavior classification tasks.
ArticleNumber 65
Audience Academic
Author Roussou, Stella
Yannis, George
Michelaraki, Eva
Garefalakis, Thodoris
Katrakazas, Christos
Brijs, Tom
Author_xml – sequence: 1
  givenname: Thodoris
  orcidid: 0000-0003-0151-7864
  surname: Garefalakis
  fullname: Garefalakis, Thodoris
  email: tgarefalakis@mail.ntua.gr
  organization: Department of Transportation Planning and Engineering, National Technical University of Athens
– sequence: 2
  givenname: Eva
  surname: Michelaraki
  fullname: Michelaraki, Eva
  organization: Department of Transportation Planning and Engineering, National Technical University of Athens
– sequence: 3
  givenname: Stella
  surname: Roussou
  fullname: Roussou, Stella
  organization: Department of Transportation Planning and Engineering, National Technical University of Athens
– sequence: 4
  givenname: Christos
  surname: Katrakazas
  fullname: Katrakazas, Christos
  organization: Department of Transportation Planning and Engineering, National Technical University of Athens
– sequence: 5
  givenname: Tom
  surname: Brijs
  fullname: Brijs, Tom
  organization: School for Transportation Sciences, Transportation Research Institute (IMOB), UHasselt
– sequence: 6
  givenname: George
  surname: Yannis
  fullname: Yannis, George
  organization: Department of Transportation Planning and Engineering, National Technical University of Athens
BookMark eNp9kU1vFSEUhiemTaxt_0BXJK6nhflgwF3TqG3SRBd2Tc7AYcqVGa7ArXbpP5d7R6NxUQgBDud54fC-qY6WsGBVXTB6yZjgV4k1fdfVtCmDcslq-ao6KQe8FkIMR_-sX1fnKW1oaS3rRdueVD8_RzROZ7dMJLr09ZmY6J72uxEf4cmFSL67_Ei0h5ScdRqyCwsBP4VY4nN6RyKmnc-J2BhmAsRDnLBOGjwS69CbOkcHnsBiSHLzzkMuovhji9HNuOSz6tiCT3j-ez6tHj68_3JzW99_-nh3c31f646LXA8ddBYGoIxDqwWTmnJqTG86BMslN6PsESXsKwPJtbCMY6v7wQprqW7a0-pu1TUBNmpbLof4rAI4dQiEOCmI2WmPqgHoeiM6ZkfZUUbFSC3IsTECsBmNKFpvV61tDN92mLLahF1cyvNVy1pGGzmwfdblmjWVv1BusSFH0KUbnJ0uHlpX4teCcSnk0AwFECugY0gpolXa5cOHF9B5xajaG65Ww1UxXB0MV7KgzX_onwpfhNoVSiV5mTD-LeMF6he5WMJ_
CitedBy_id crossref_primary_10_1080_23249935_2025_2532104
crossref_primary_10_1109_ACCESS_2025_3608615
Cites_doi 10.1016/j.aap.2009.06.014
10.1162/105474600566952
10.1109/IJCNN.2008.4633969
10.1016/j.trc.2022.103561
10.1016/B978-0-12-817736-5.00009-0
10.1155/2023/7641472
10.1016/j.aap.2019.05.005
10.1155/2020/1257627
10.1109/ISS1.2019.8908018
10.3390/su14106032
10.1016/j.aap.2021.106122
10.1080/19345747.2013.831154
10.1016/j.aap.2018.12.005
10.1016/B978-0-12-822830-2.00005-2
10.1080/19942060.2022.2053786
10.1109/TITS.2021.3076140
10.1016/j.aap.2021.106038
10.1016/j.aap.2019.04.017
10.1016/j.ssci.2019.05.059
10.1201/b10836-2
10.3390/ijerph16030334
10.1145/2856767.2856806
10.1109/ACCESS.2022.3165792
10.48550/ARXIV.2109.01433
10.1109/MT-ITS49943.2021.9529309
10.1109/ITSC.2017.8317835
10.3390/app112210562
10.1016/j.aap.2020.105701
10.1016/B978-0-12-801505-6.00006-5
10.1371/journal.pone.0084217
10.1016/j.sbspro.2012.06.1047
10.1016/S1369-8478(00)00015-2
10.1016/j.aquaeng.2020.102053
10.1016/bs.adcom.2019.09.007
ContentType Journal Article
Copyright The Author(s) 2024
COPYRIGHT 2024 Springer
The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2024
– notice: COPYRIGHT 2024 Springer
– notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
3V.
7WY
7WZ
7XB
87Z
8FE
8FG
8FK
8FL
ABJCF
ABUWG
AEUYN
AFKRA
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
HCIFZ
K60
K6~
L.-
L6V
M0C
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
DOA
DOI 10.1186/s12544-024-00691-9
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest Central (Corporate)
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
ProQuest Central - New (Subscription)
Business Premium Collection
ProQuest Technology Collection
ProQuest One Community College
ProQuest Central
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
SciTech Premium Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
ABI/INFORM Global
Engineering Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
ABI/INFORM Complete (Alumni Edition)
Engineering Collection
Business Premium Collection
ABI/INFORM Global
Engineering Database
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList
Publicly Available Content Database


CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Economics
Engineering
EISSN 1866-8887
EndPage 13
ExternalDocumentID oai_doaj_org_article_2aa45d841fb940108b0fa9b2d8ae2bd8
A816989727
10_1186_s12544_024_00691_9
GrantInformation_xml – fundername: European Conference of Transport Research Institutes
GroupedDBID 0R~
29G
4.4
40G
5GY
5VS
6NX
7WY
8FE
8FG
8FL
AAFWJ
AAJSJ
AAKKN
AASML
ABDBF
ABEEZ
ABFTD
ABJCF
ABUWG
ACACY
ACGFO
ACGFS
ACIHN
ACIWK
ACUHS
ACULB
ADBBV
AEAQA
AFGXO
AFKRA
AFPKN
AHBYD
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
BAPOH
BCNDV
BENPR
BEZIV
BGLVJ
BPHCQ
C24
C6C
CAG
DWQXO
EBLON
EBS
ESX
GROUPED_DOAJ
HCIFZ
IAO
K60
K6~
KQ8
L6V
M0C
M7S
OK1
P2P
PIMPY
PQBIZ
PQQKQ
PROAC
PTHSS
RNS
SDH
SEG
SOJ
U2A
AAYXX
AEUYN
AFFHD
CCPQU
CITATION
PHGZM
PHGZT
PQBZA
PQGLB
M~E
3V.
7XB
8FK
AZQEC
FRNLG
L.-
PKEHL
PQEST
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c468t-74a4fa7a016a3c819c060dd5d4eaf696db95ee9a0315a96c8f16e3c57f8ff0c23
IEDL.DBID BENPR
ISICitedReferencesCount 4
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001359466700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1866-8887
1867-0717
IngestDate Tue Oct 14 14:39:17 EDT 2025
Sat Oct 11 13:41:09 EDT 2025
Tue Apr 15 04:05:36 EDT 2025
Sat Nov 29 05:44:34 EST 2025
Tue Nov 18 20:58:03 EST 2025
Mon Jul 21 06:09:41 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Driving behavior
Naturalistic driving study
Driving simulator study
Machine learning models
Classification algorithms
Random forests
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c468t-74a4fa7a016a3c819c060dd5d4eaf696db95ee9a0315a96c8f16e3c57f8ff0c23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-0151-7864
OpenAccessLink https://www.proquest.com/docview/3131029718?pq-origsite=%requestingapplication%
PQID 3131029718
PQPubID 2034765
PageCount 13
ParticipantIDs doaj_primary_oai_doaj_org_article_2aa45d841fb940108b0fa9b2d8ae2bd8
proquest_journals_3131029718
gale_infotracacademiconefile_A816989727
crossref_citationtrail_10_1186_s12544_024_00691_9
crossref_primary_10_1186_s12544_024_00691_9
springer_journals_10_1186_s12544_024_00691_9
PublicationCentury 2000
PublicationDate 2024-12-01
PublicationDateYYYYMMDD 2024-12-01
PublicationDate_xml – month: 12
  year: 2024
  text: 2024-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: Heidelberg
PublicationSubtitle An Open Access Journal
PublicationTitle European Transport Research Review
PublicationTitleAbbrev Eur. Transp. Res. Rev
PublicationYear 2024
Publisher Springer International Publishing
Springer
Springer Nature B.V
SpringerOpen
Publisher_xml – name: Springer International Publishing
– name: Springer
– name: Springer Nature B.V
– name: SpringerOpen
References KhouryMAHusseinFAEfficiency and safety: The impact of autonomous controls on transportationInternational Journal of Information and Cybersecurity2023711339
Mobileye. (2023). https://www.mobileye.com
He, H., Bai, Y., Garcia, E. A., & Li, S. (2008). ADASYN: Adaptive synthetic sampling approach for imbalanced learning. In 2008 IEEE international joint conference on neural networks (IEEE world congress on computational intelligence) (pp. 1322–1328). https://doi.org/10.1109/IJCNN.2008.4633969
KennedyRSDuration and exposure to virtual environments: sickness curves during and across sessionsPresence: Teleoperators & Virtual Environments20009546347210.1162/105474600566952
World Health Organization. (2023). Global status report on road safety 2023. World Health Organization. https://www.who.int/publications/i/item/9789240086517
Zhang, C., Patel, M., Buthpitiya, S., Lyons, K., Harrison, B., & Abowd, G. D. (2016). Driver classification based on driving behaviors. In Proceedings of the 21st international conference on intelligent user interfaces (pp. 80–84). https://doi.org/10.1145/2856767.2856806
ShiXWongYDLiMZ-FPalanisamyCChaiCA feature learning approach based on XGBoost for driving assessment and risk predictionAccident Analysis and Prevention201912917017910.1016/j.aap.2019.05.005
Roy, K., Kar, S., & Das, R. N. (2015). Selected statistical methods in QSAR. In Understanding the basics of QSAR for applications in pharmaceutical sciences and risk assessment (pp. 191–229). Elsevier. https://doi.org/10.1016/B978-0-12-801505-6.00006-5
NajiHAHXueQLyuNDuanXLiTRisk levels classification of near-crashes in naturalistic driving dataSustainability20221410603210.3390/su14106032
Fisher, D., Caird, J., & Rizzo, M. (2011). Handbook of driving simulation for engineering, medicine and psychology. In Handbook of driving simulation for engineering, medicine, and psychology. https://doi.org/10.1201/b10836-2
Molnar, C., Freiesleben, T., König, G., Casalicchio, G., Wright, M. N., & Bischl, B. (2021). Relating the partial dependence plot and permutation feature importance to the data generating process. arXiv. https://doi.org/10.48550/ARXIV.2109.01433
AhmadGNFatimaHUllahSSalah SaidiAImdadullahEfficient medical diagnosis of human heart diseases using machine learning techniques with and without GridSearchCVIEEE Access202210801518017310.1109/ACCESS.2022.3165792
PapadimitriouEArgyropoulouATselentisDIYannisGAnalysis of driver behaviour through smartphone data: The case of mobile phone use while drivingSafety Science2019119919710.1016/j.ssci.2019.05.059
Yang, K., Haddad, C. Al, Yannis, G., & Antoniou, C. (2021). Driving behavior safety levels: Classification and evaluation. In 2021 7th International conference on models and technologies for intelligent transportation systems (MT-ITS) (pp. 1–6). https://doi.org/10.1109/MT-ITS49943.2021.9529309
Ghosh, S., Dasgupta, A., & Swetapadma, A. (2019). A study on support vector machine based linear and non-linear pattern classification. In 2019 International conference on intelligent sustainable systems (ICISS) (pp. 24–28). https://doi.org/10.1109/ISS1.2019.8908018
Michelaraki, E., Katrakazas, C., Brijs, T., & Yannis, G. (2021). Modelling the safety tolerance zone: Recommendations from the i-DREAMS project. In 10th International congress on transportation research.
WijayaratnaKPCunninghamMLReganMAJianSChandSDixitVVMobile phone conversation distraction: Understanding differences in impact between simulator and naturalistic driving studiesAccident Analysis and Prevention201912910811810.1016/j.aap.2019.04.017
van SchagenISagbergFThe potential benefits of naturalistic driving for road safety research: Theoretical and empirical considerations and challenges for the futureProcedia: Social and Behavioral Sciences20124869270110.1016/j.sbspro.2012.06.1047
TiptonEHedgesLVaden-KiernanMBormanGSullivanKCaverlySSample selection in randomized experiments: A new method using propensity score stratified samplingJournal of Research on Educational Effectiveness20147111413510.1080/19345747.2013.831154
StaubachMFactors correlated with traffic accidents as a basis for evaluating advanced driver assistance systemsAccident Analysis and Prevention20094151025103310.1016/j.aap.2009.06.014
Knipling, R. R., Mironer, M., Hendricks, D. L., Tijeripa, L., Everson, J., Allen, J. C., Wilson, C., et al. (1993). Assessment of IVHS countermeasures for collision avoidance: Rear-end crashes.
XiaYSunJChapter eleven—Correlation and association analyses in microbiome study integrating multiomics in health and diseaseProgress in molecular biology and translational science2020Academic Press309491
AbiramiSChitraPEnergy-efficient edge based real-time healthcare support systemAdvances in Computers2020117133936810.1016/bs.adcom.2019.09.007
ShangguanQFuTWangJLuoTFangSAn integrated methodology for real-time driving risk status prediction using naturalistic driving dataAccident Analysis and Prevention202115610.1016/j.aap.2021.106122
DingNZhuSJiaoNLiuBEffects of peripheral transverse line markings on drivers’ speed and headway choice and crash risk in car-following: A naturalistic observation studyAccident Analysis and Prevention202014610.1016/j.aap.2020.105701
GanJLiLZhangDYiZXiangQAn alternative method for traffic accident severity prediction: Using deep forests algorithmJournal of Advanced Transportation2020202011310.1155/2020/1257627
GhandourRPotamsAJBoulkaibetINejiBAl BarakehZDriver behavior classification system analysis using machine learning methodsApplied Sciences2021112210.3390/app112210562
MichaelPGLeemingFCDwyerWOHeadway on urban streets: Observational data and an intervention to decrease tailgatingTransportation Research Part F: Traffic Psychology and Behaviour200032556410.1016/S1369-8478(00)00015-2
MisraSLiHMisraSLiHHeJChapter 9—Noninvasive fracture characterization based on the classification of sonic wave travel timesMachine learning for subsurface characterization2020Gulf Professional Publishing24328710.1016/B978-0-12-817736-5.00009-0
WangXXuRZhangSZhuangYWangYDriver distraction detection based on vehicle dynamics using naturalistic driving dataTransportation Research Part C: Emerging Technologies202213610.1016/j.trc.2022.103561
Valverde-AlbaceteFJPeláez-MorenoC100% classification accuracy considered harmful: The normalized information transfer factor explains the accuracy paradoxPLoS ONE201491e84217e8421710.1371/journal.pone.0084217
CardioID Technologies. (2023). https://www.cardio-id.com/automotive
ChenWSharifraziDLiangGBandSSChauKWMosaviAAccurate discharge coefficient prediction of streamlined weirs by coupling linear regression and deep convolutional gated recurrent unitEngineering Applications of Computational Fluid Mechanics202216196597610.1080/19942060.2022.2053786
SongXYinYCaoHZhaoSLiMYiBThe mediating effect of driver characteristics on risky driving behaviors moderated by gender, and the classification model of driver’s driving riskAccident Analysis and Prevention202115310.1016/j.aap.2021.106038
Saleh, K., Hossny, M., & Nahavandi, S. (2017). Driving behavior classification based on sensor data fusion using LSTM recurrent neural networks. In 2017 IEEE 20th international conference on intelligent transportation systems (ITSC) (pp. 1–6). https://doi.org/10.1109/ITSC.2017.8317835
YangJHanSChenYPrediction of traffic accident severity based on random forestJournal of Advanced Transportation202320231810.1155/2023/7641472
OhtaHIndividual differences in driving distance headwayVision in Vehicles1993491100
BananANasiriATaheri-GaravandADeep learning-based appearance features extraction for automated carp species identificationAquacultural Engineering20208910.1016/j.aquaeng.2020.102053
Nasr AzadaniMBoukercheADriving behavior analysis guidelines for intelligent transportation systemsIEEE Transactions on Intelligent Transportation Systems20222376027604510.1109/TITS.2021.3076140
WangCLiuLXuCLvWPredicting future driving risk of crash-involved drivers based on a systematic machine learning frameworkInternational Journal of Environmental Research and Public Health201916333410.3390/ijerph16030334
Liu, H. (2021). Data mining and processing for train unmanned driving systems. In Unmanned driving systems for smart trains (pp. 211–252). Elsevier. https://doi.org/10.1016/B978-0-12-822830-2.00005-2
OsmanOAHajijMKarbalaiealiSIshakSA hierarchical machine learning classification approach for secondary task identification from observed driving behavior dataAccident Analysis and Prevention201912327428110.1016/j.aap.2018.12.005
691_CR1
PG Michael (691_CR19) 2000; 3
W Chen (691_CR40) 2022; 16
691_CR20
691_CR21
MA Khoury (691_CR3) 2023; 7
691_CR4
691_CR41
X Wang (691_CR8) 2022; 136
E Papadimitriou (691_CR10) 2019; 119
M Staubach (691_CR2) 2009; 41
OA Osman (691_CR5) 2019; 123
691_CR35
691_CR14
691_CR17
C Wang (691_CR26) 2019; 16
X Shi (691_CR12) 2019; 129
691_CR15
X Song (691_CR13) 2021; 153
A Banan (691_CR39) 2020; 89
691_CR31
J Gan (691_CR37) 2020; 2020
E Tipton (691_CR22) 2014; 7
RS Kennedy (691_CR23) 2000; 9
S Abirami (691_CR32) 2020; 117
I van Schagen (691_CR16) 2012; 48
S Misra (691_CR30) 2020
N Ding (691_CR38) 2020; 146
J Yang (691_CR36) 2023; 2023
Y Xia (691_CR29) 2020
R Ghandour (691_CR9) 2021; 11
M Nasr Azadani (691_CR7) 2022; 23
691_CR24
691_CR25
H Ohta (691_CR18) 1993; 4
HAH Naji (691_CR42) 2022; 14
KP Wijayaratna (691_CR6) 2019; 129
Q Shangguan (691_CR11) 2021; 156
691_CR28
GN Ahmad (691_CR33) 2022; 10
FJ Valverde-Albacete (691_CR34) 2014; 9
691_CR27
References_xml – reference: KhouryMAHusseinFAEfficiency and safety: The impact of autonomous controls on transportationInternational Journal of Information and Cybersecurity2023711339
– reference: YangJHanSChenYPrediction of traffic accident severity based on random forestJournal of Advanced Transportation202320231810.1155/2023/7641472
– reference: Saleh, K., Hossny, M., & Nahavandi, S. (2017). Driving behavior classification based on sensor data fusion using LSTM recurrent neural networks. In 2017 IEEE 20th international conference on intelligent transportation systems (ITSC) (pp. 1–6). https://doi.org/10.1109/ITSC.2017.8317835
– reference: Mobileye. (2023). https://www.mobileye.com/
– reference: Nasr AzadaniMBoukercheADriving behavior analysis guidelines for intelligent transportation systemsIEEE Transactions on Intelligent Transportation Systems20222376027604510.1109/TITS.2021.3076140
– reference: WijayaratnaKPCunninghamMLReganMAJianSChandSDixitVVMobile phone conversation distraction: Understanding differences in impact between simulator and naturalistic driving studiesAccident Analysis and Prevention201912910811810.1016/j.aap.2019.04.017
– reference: GanJLiLZhangDYiZXiangQAn alternative method for traffic accident severity prediction: Using deep forests algorithmJournal of Advanced Transportation2020202011310.1155/2020/1257627
– reference: StaubachMFactors correlated with traffic accidents as a basis for evaluating advanced driver assistance systemsAccident Analysis and Prevention20094151025103310.1016/j.aap.2009.06.014
– reference: Michelaraki, E., Katrakazas, C., Brijs, T., & Yannis, G. (2021). Modelling the safety tolerance zone: Recommendations from the i-DREAMS project. In 10th International congress on transportation research.
– reference: MichaelPGLeemingFCDwyerWOHeadway on urban streets: Observational data and an intervention to decrease tailgatingTransportation Research Part F: Traffic Psychology and Behaviour200032556410.1016/S1369-8478(00)00015-2
– reference: Yang, K., Haddad, C. Al, Yannis, G., & Antoniou, C. (2021). Driving behavior safety levels: Classification and evaluation. In 2021 7th International conference on models and technologies for intelligent transportation systems (MT-ITS) (pp. 1–6). https://doi.org/10.1109/MT-ITS49943.2021.9529309
– reference: SongXYinYCaoHZhaoSLiMYiBThe mediating effect of driver characteristics on risky driving behaviors moderated by gender, and the classification model of driver’s driving riskAccident Analysis and Prevention202115310.1016/j.aap.2021.106038
– reference: OhtaHIndividual differences in driving distance headwayVision in Vehicles1993491100
– reference: AhmadGNFatimaHUllahSSalah SaidiAImdadullahEfficient medical diagnosis of human heart diseases using machine learning techniques with and without GridSearchCVIEEE Access202210801518017310.1109/ACCESS.2022.3165792
– reference: Fisher, D., Caird, J., & Rizzo, M. (2011). Handbook of driving simulation for engineering, medicine and psychology. In Handbook of driving simulation for engineering, medicine, and psychology. https://doi.org/10.1201/b10836-2
– reference: Liu, H. (2021). Data mining and processing for train unmanned driving systems. In Unmanned driving systems for smart trains (pp. 211–252). Elsevier. https://doi.org/10.1016/B978-0-12-822830-2.00005-2
– reference: van SchagenISagbergFThe potential benefits of naturalistic driving for road safety research: Theoretical and empirical considerations and challenges for the futureProcedia: Social and Behavioral Sciences20124869270110.1016/j.sbspro.2012.06.1047
– reference: BananANasiriATaheri-GaravandADeep learning-based appearance features extraction for automated carp species identificationAquacultural Engineering20208910.1016/j.aquaeng.2020.102053
– reference: ChenWSharifraziDLiangGBandSSChauKWMosaviAAccurate discharge coefficient prediction of streamlined weirs by coupling linear regression and deep convolutional gated recurrent unitEngineering Applications of Computational Fluid Mechanics202216196597610.1080/19942060.2022.2053786
– reference: CardioID Technologies. (2023). https://www.cardio-id.com/automotive/
– reference: NajiHAHXueQLyuNDuanXLiTRisk levels classification of near-crashes in naturalistic driving dataSustainability20221410603210.3390/su14106032
– reference: Zhang, C., Patel, M., Buthpitiya, S., Lyons, K., Harrison, B., & Abowd, G. D. (2016). Driver classification based on driving behaviors. In Proceedings of the 21st international conference on intelligent user interfaces (pp. 80–84). https://doi.org/10.1145/2856767.2856806
– reference: Roy, K., Kar, S., & Das, R. N. (2015). Selected statistical methods in QSAR. In Understanding the basics of QSAR for applications in pharmaceutical sciences and risk assessment (pp. 191–229). Elsevier. https://doi.org/10.1016/B978-0-12-801505-6.00006-5
– reference: Ghosh, S., Dasgupta, A., & Swetapadma, A. (2019). A study on support vector machine based linear and non-linear pattern classification. In 2019 International conference on intelligent sustainable systems (ICISS) (pp. 24–28). https://doi.org/10.1109/ISS1.2019.8908018
– reference: PapadimitriouEArgyropoulouATselentisDIYannisGAnalysis of driver behaviour through smartphone data: The case of mobile phone use while drivingSafety Science2019119919710.1016/j.ssci.2019.05.059
– reference: DingNZhuSJiaoNLiuBEffects of peripheral transverse line markings on drivers’ speed and headway choice and crash risk in car-following: A naturalistic observation studyAccident Analysis and Prevention202014610.1016/j.aap.2020.105701
– reference: World Health Organization. (2023). Global status report on road safety 2023. World Health Organization. https://www.who.int/publications/i/item/9789240086517
– reference: Knipling, R. R., Mironer, M., Hendricks, D. L., Tijeripa, L., Everson, J., Allen, J. C., Wilson, C., et al. (1993). Assessment of IVHS countermeasures for collision avoidance: Rear-end crashes.
– reference: He, H., Bai, Y., Garcia, E. A., & Li, S. (2008). ADASYN: Adaptive synthetic sampling approach for imbalanced learning. In 2008 IEEE international joint conference on neural networks (IEEE world congress on computational intelligence) (pp. 1322–1328). https://doi.org/10.1109/IJCNN.2008.4633969
– reference: GhandourRPotamsAJBoulkaibetINejiBAl BarakehZDriver behavior classification system analysis using machine learning methodsApplied Sciences2021112210.3390/app112210562
– reference: WangCLiuLXuCLvWPredicting future driving risk of crash-involved drivers based on a systematic machine learning frameworkInternational Journal of Environmental Research and Public Health201916333410.3390/ijerph16030334
– reference: XiaYSunJChapter eleven—Correlation and association analyses in microbiome study integrating multiomics in health and diseaseProgress in molecular biology and translational science2020Academic Press309491
– reference: OsmanOAHajijMKarbalaiealiSIshakSA hierarchical machine learning classification approach for secondary task identification from observed driving behavior dataAccident Analysis and Prevention201912327428110.1016/j.aap.2018.12.005
– reference: AbiramiSChitraPEnergy-efficient edge based real-time healthcare support systemAdvances in Computers2020117133936810.1016/bs.adcom.2019.09.007
– reference: WangXXuRZhangSZhuangYWangYDriver distraction detection based on vehicle dynamics using naturalistic driving dataTransportation Research Part C: Emerging Technologies202213610.1016/j.trc.2022.103561
– reference: Valverde-AlbaceteFJPeláez-MorenoC100% classification accuracy considered harmful: The normalized information transfer factor explains the accuracy paradoxPLoS ONE201491e84217e8421710.1371/journal.pone.0084217
– reference: ShangguanQFuTWangJLuoTFangSAn integrated methodology for real-time driving risk status prediction using naturalistic driving dataAccident Analysis and Prevention202115610.1016/j.aap.2021.106122
– reference: MisraSLiHMisraSLiHHeJChapter 9—Noninvasive fracture characterization based on the classification of sonic wave travel timesMachine learning for subsurface characterization2020Gulf Professional Publishing24328710.1016/B978-0-12-817736-5.00009-0
– reference: Molnar, C., Freiesleben, T., König, G., Casalicchio, G., Wright, M. N., & Bischl, B. (2021). Relating the partial dependence plot and permutation feature importance to the data generating process. arXiv. https://doi.org/10.48550/ARXIV.2109.01433
– reference: ShiXWongYDLiMZ-FPalanisamyCChaiCA feature learning approach based on XGBoost for driving assessment and risk predictionAccident Analysis and Prevention201912917017910.1016/j.aap.2019.05.005
– reference: TiptonEHedgesLVaden-KiernanMBormanGSullivanKCaverlySSample selection in randomized experiments: A new method using propensity score stratified samplingJournal of Research on Educational Effectiveness20147111413510.1080/19345747.2013.831154
– reference: KennedyRSDuration and exposure to virtual environments: sickness curves during and across sessionsPresence: Teleoperators & Virtual Environments20009546347210.1162/105474600566952
– volume: 41
  start-page: 1025
  issue: 5
  year: 2009
  ident: 691_CR2
  publication-title: Accident Analysis and Prevention
  doi: 10.1016/j.aap.2009.06.014
– ident: 691_CR17
– volume: 9
  start-page: 463
  issue: 5
  year: 2000
  ident: 691_CR23
  publication-title: Presence: Teleoperators & Virtual Environments
  doi: 10.1162/105474600566952
– volume: 4
  start-page: 91
  year: 1993
  ident: 691_CR18
  publication-title: Vision in Vehicles
– ident: 691_CR35
  doi: 10.1109/IJCNN.2008.4633969
– volume: 136
  year: 2022
  ident: 691_CR8
  publication-title: Transportation Research Part C: Emerging Technologies
  doi: 10.1016/j.trc.2022.103561
– start-page: 243
  volume-title: Machine learning for subsurface characterization
  year: 2020
  ident: 691_CR30
  doi: 10.1016/B978-0-12-817736-5.00009-0
– volume: 2023
  start-page: 1
  year: 2023
  ident: 691_CR36
  publication-title: Journal of Advanced Transportation
  doi: 10.1155/2023/7641472
– volume: 129
  start-page: 170
  year: 2019
  ident: 691_CR12
  publication-title: Accident Analysis and Prevention
  doi: 10.1016/j.aap.2019.05.005
– volume: 2020
  start-page: 1
  year: 2020
  ident: 691_CR37
  publication-title: Journal of Advanced Transportation
  doi: 10.1155/2020/1257627
– ident: 691_CR25
– ident: 691_CR28
  doi: 10.1109/ISS1.2019.8908018
– volume: 14
  start-page: 6032
  issue: 10
  year: 2022
  ident: 691_CR42
  publication-title: Sustainability
  doi: 10.3390/su14106032
– ident: 691_CR4
– volume: 156
  year: 2021
  ident: 691_CR11
  publication-title: Accident Analysis and Prevention
  doi: 10.1016/j.aap.2021.106122
– volume: 7
  start-page: 114
  issue: 1
  year: 2014
  ident: 691_CR22
  publication-title: Journal of Research on Educational Effectiveness
  doi: 10.1080/19345747.2013.831154
– volume: 123
  start-page: 274
  year: 2019
  ident: 691_CR5
  publication-title: Accident Analysis and Prevention
  doi: 10.1016/j.aap.2018.12.005
– start-page: 309
  volume-title: Progress in molecular biology and translational science
  year: 2020
  ident: 691_CR29
– ident: 691_CR31
  doi: 10.1016/B978-0-12-822830-2.00005-2
– volume: 16
  start-page: 965
  issue: 1
  year: 2022
  ident: 691_CR40
  publication-title: Engineering Applications of Computational Fluid Mechanics
  doi: 10.1080/19942060.2022.2053786
– volume: 23
  start-page: 6027
  issue: 7
  year: 2022
  ident: 691_CR7
  publication-title: IEEE Transactions on Intelligent Transportation Systems
  doi: 10.1109/TITS.2021.3076140
– volume: 153
  year: 2021
  ident: 691_CR13
  publication-title: Accident Analysis and Prevention
  doi: 10.1016/j.aap.2021.106038
– volume: 129
  start-page: 108
  year: 2019
  ident: 691_CR6
  publication-title: Accident Analysis and Prevention
  doi: 10.1016/j.aap.2019.04.017
– volume: 119
  start-page: 91
  year: 2019
  ident: 691_CR10
  publication-title: Safety Science
  doi: 10.1016/j.ssci.2019.05.059
– ident: 691_CR21
  doi: 10.1201/b10836-2
– volume: 16
  start-page: 334
  issue: 3
  year: 2019
  ident: 691_CR26
  publication-title: International Journal of Environmental Research and Public Health
  doi: 10.3390/ijerph16030334
– ident: 691_CR15
  doi: 10.1145/2856767.2856806
– volume: 10
  start-page: 80151
  year: 2022
  ident: 691_CR33
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3165792
– ident: 691_CR20
  doi: 10.48550/ARXIV.2109.01433
– ident: 691_CR14
  doi: 10.1109/MT-ITS49943.2021.9529309
– ident: 691_CR41
  doi: 10.1109/ITSC.2017.8317835
– volume: 11
  issue: 22
  year: 2021
  ident: 691_CR9
  publication-title: Applied Sciences
  doi: 10.3390/app112210562
– volume: 146
  year: 2020
  ident: 691_CR38
  publication-title: Accident Analysis and Prevention
  doi: 10.1016/j.aap.2020.105701
– ident: 691_CR27
  doi: 10.1016/B978-0-12-801505-6.00006-5
– volume: 7
  start-page: 13
  issue: 1
  year: 2023
  ident: 691_CR3
  publication-title: International Journal of Information and Cybersecurity
– ident: 691_CR24
– volume: 9
  start-page: e84217
  issue: 1
  year: 2014
  ident: 691_CR34
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0084217
– ident: 691_CR1
– volume: 48
  start-page: 692
  year: 2012
  ident: 691_CR16
  publication-title: Procedia: Social and Behavioral Sciences
  doi: 10.1016/j.sbspro.2012.06.1047
– volume: 3
  start-page: 55
  issue: 2
  year: 2000
  ident: 691_CR19
  publication-title: Transportation Research Part F: Traffic Psychology and Behaviour
  doi: 10.1016/S1369-8478(00)00015-2
– volume: 89
  year: 2020
  ident: 691_CR39
  publication-title: Aquacultural Engineering
  doi: 10.1016/j.aquaeng.2020.102053
– volume: 117
  start-page: 339
  issue: 1
  year: 2020
  ident: 691_CR32
  publication-title: Advances in Computers
  doi: 10.1016/bs.adcom.2019.09.007
SSID ssj0000315833
ssib044736607
Score 2.340111
Snippet Road safety is a subject of significant concern and substantially affects individuals across the globe. Thus, real-time, and post-trip interventions have...
Abstract Road safety is a subject of significant concern and substantially affects individuals across the globe. Thus, real-time, and post-trip interventions...
SourceID doaj
proquest
gale
crossref
springer
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 65
SubjectTerms Acceleration
Accuracy
Algorithms
Automotive Engineering
Cellular telephones
Civil Engineering
Classification
Classification algorithms
Driver behavior
Driving ability
Driving behavior
Driving simulator study
Engineering
Headways
Machine learning
Machine learning models
Multilayer perceptrons
Naturalistic driving study
Neural networks
Original Paper
Random forests
Real time
Regional/Spatial Science
Risk factors
Robust control
Speed limits
Support vector machines
TRA 2024 Dublin - Transport Transitions (Highlights of the 2024 Transport Research Arena conference)
Traffic accidents & safety
Traffic safety
Transportation
SummonAdditionalLinks – databaseName: Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NaxUxEA9SBL1I_cK1VXIQPGjoZneTTbxVsXiQ0oNCb2HyJQ9eX8vuq-DR_9yZ7G5bKerFaza7zGYmyUwy8_sx9sp0PiljvKiTthigmE6YhigBowQfPPEhFcj8z_3xsTk9tSc3qL4oJ2yCB54G7qAB6FQ0nczeYixQG19nsL6JBlLjYynzRa_nRjBV1uBWUjnRUiVj9MEoCYxL4JYkCJ1XCvvbTlQA-28vy7fuR8u2c7TLHsz-Ij-c5HzI7qTNI3ZvKSceH7OfJwPdtVD2Mqc88R88Dis6JeBLBT6ns1YeyE2mvKCiCg7rb-cDtp-N7zhG3Jfr7cip1IQDX1NyuBhReYmXBDdRqD04bCIfV2fE94UfvaYGeMK-Hn388uGTmHkVROi02Yq-gy5DD-jtQRvQJQi1rmNUsUuQtdXRW5WSBRpEsDqYLHVqg-qzybkOTfuU7WzON-kZ46BsDjZFIGA_lb1pU4uKgSb1tUlKVUwuY-zCDDpO3BdrV4IPo92kF4d6cUUvzlbszdU7FxPkxl97vyfVXfUkuOzSgEbkZiNy_zKiir0mxTua1ChegLk2AX-S4LHcoZFEtIm-XsX2F9tw82wfXSvRSW4sbvMVe7vYy_XjPwv__H8Iv8fuN2TWJcdmn-1sh8v0gt0N37ercXhZ5sUv6b0RuA
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: SpringerLINK
  dbid: C24
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5BQaIceJSiBgryAYkDWMRJnIx7KxUVB1T1AFJvlp_VSttdlGwrceSf1-NNWqoCElwTO5p4xuOxPd83AG-wsUEiWl6GVqUNCjYcKyoJ6IWxzlI9pEyZ_6U7OsKTE3U8gsKGKdt9upLMnjpPa2w_DILYtHhaUzjR6wqu7sI9KVCRXR-MGIfsf2tBUKIJIfPbrjdWoUzWf9sl37obzUvO4eP_E_YJPBpDTLa_tomncCcstuDBhEAetuDhLySEz-DncU-XNZT-zCjR_Afz_YyOGdgE4Wd0WMscxdmUWJR1ycz8dNmn52fDHktb9vP5amCEVWGGzSm7nA9J-4HlDDmea4Mws_BsmJ1RwbD00evaAtvw7fDT14PPfCzMwF3T4op3jWmi6UwKF03tUkzhyrb0XvommNiq1lslQ1CGNGFU6zCKNtROdhFjLF1VP4eNxXIRdoAZqaJTwRtiBpTRYh1qNMFUoSsxSFmAmBSl3chaTsUz5jrvXrDV66HWaah1HmqtCnh31ef7mrPjr60_kv6vWhLfdn6w7E_1OH11ZUwjPTYiWpV2pCXaMhplK59krazHAt6S9WjyCkk8Z0ZwQ_pJ4tfS-yioUmcKFgvYnQxMj-5i0LVIUXalUpxQwPvJoK5f_1n4F__W_CVsVmSTOR1nFzZW_Xl4BffdxWo29K_zNLoETqIZHA
  priority: 102
  providerName: Springer Nature
Title Predicting risky driving behavior with classification algorithms: results from a large-scale field-trial and simulator experiment
URI https://link.springer.com/article/10.1186/s12544-024-00691-9
https://www.proquest.com/docview/3131029718
https://doaj.org/article/2aa45d841fb940108b0fa9b2d8ae2bd8
Volume 16
WOSCitedRecordID wos001359466700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1866-8887
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000315833
  issn: 1866-8887
  databaseCode: DOA
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1866-8887
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssib044736607
  issn: 1866-8887
  databaseCode: M~E
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ABI/INFORM Collection
  customDbUrl:
  eissn: 1866-8887
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000315833
  issn: 1866-8887
  databaseCode: 7WY
  dateStart: 20240101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/abicomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ABI/INFORM Global
  customDbUrl:
  eissn: 1866-8887
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000315833
  issn: 1866-8887
  databaseCode: M0C
  dateStart: 20240101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/abiglobal
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1866-8887
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000315833
  issn: 1866-8887
  databaseCode: M7S
  dateStart: 20240101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central - New (Subscription)
  customDbUrl:
  eissn: 1866-8887
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000315833
  issn: 1866-8887
  databaseCode: BENPR
  dateStart: 20240101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1866-8887
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000315833
  issn: 1866-8887
  databaseCode: PIMPY
  dateStart: 20240101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK
  customDbUrl:
  eissn: 1866-8887
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000315833
  issn: 1866-8887
  databaseCode: C24
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9swEBdrOthe9j3mrgt6GOxhE7VsWZb2MtqQssEazD5Y-yRkSe4CadLa7mAvg_3n0ylywyjry14ESRRb5s6nu9Pd74fQS8FqVwhRk9Rx6QMUwYjIgBLQUl2bGviQAmT-x3I2E8fHsooJty6WVQ42MRhquzKQI9_LqXdEMulN6bvzCwKsUXC6Gik0ttA2IJWxEdo-mM6qT4NGMVbmnMcAJ9jmnEKbEURhgkOOjpZDJ43gex0FwC7ity0CCL6UyL92qwDqf910XztDDVvT4f3_fagH6F50SvH-Woseoltu-QjdGXqWu8fod9XCgQ6USGMoRv-JbTuHVAQe2vwxJHSxAV8cio-CvLFenPq79d_PurfYh_WXi77D0M-CNV5ABTrpvIY4HKroSOAPwXppcTc_A1Ixf9EN_8AT9PVw-mXynkTyBmIYFz0pmWaNLrV3KXVuvN9hUp5aW1jmdMMlt7UsnJMaJKIlN6Kh3OWmKBvRNKnJ8qdotFwt3TOEdSEbI53VgB5YNLXIXS6005krU-GKIkF0EJIyEdkcCDYWKkQ4gqu1YJUXrAqCVTJBr6_-c77G9bhx9gHI_momYHKHL1btqYqvuMq0ZoUVjDa19FFrKuq00bLOrF9rVluRoFegOQosh1-e0bEBwj8kYHCpfUGBzdM7lAnaHdRFRZPSqY2uJOjNoHCbn_-9-J2br_Yc3c1A40OJzi4a9e2le4Fumx_9vGvHaKv8djKOr5X_NMnYOOQt_HiUTmAsP8P4a-pnVR-OqpM_ttItSw
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELaqglQuvFEDBXwAcQCreTiOjYRQKVStuqx6KFJvxs-y0na3xCmoR_4QvxGPN-kKVfTWA9fEsZzk84zHnvk-hF5wql3NuSa5YyIGKJwSXoIkoC2UNhr0kBJl_qgZj_nRkThYQb-HWhhIqxxsYjLUdm5gj3yzKuJCpBTRlL4__U5ANQpOVwcJjQUs9t35zxiyhXd7H-P_fVmWO58Ot3dJrypADGW8Iw1V1KtGxbWOqkx0iCZnubW1pU55JpjVonZOKJA_UIIZ7gvmKlM3nnufGyA6iCb_BqWxAaQK5tsDfiltKsb6cCp5gtgFT2r2QBsHtULNULfD2WYogB6MRCdJgC-4IOIv35gkBC47iksntskR7tz53z7hXXS7X3LjrcUcuYdW3Ow-WhsqssMD9OugheMqSADHkGp_jm07gY0WPJAYYNiuxgYiDUitSmjGanoc3677dhLe4taFs2kXMFTrYIWnkF9PQsS_wylHkCR1FKxmFofJCUimxU6X6goP0Zdr-QKP0OpsPnPrCKtaeCOcVcCNWHvNK1dx5VTpmpy7us5QMYBCmp63HeRDpjLFb5zJBZBkBJJMQJIiQ68vnjldsJZc2foDYO2iJTCOpwvz9lj2BkyWStHaclp4LWJMnnOdeyV0aeNYS215hl4BUiXYxTg8o_ryjviSwDAmt3gBWqVxuZyhjQGesjeYQS6xmaE3A8CXt_89-MdX9_Ycre0efh7J0d54_wm6VcJsS8lIG2i1a8_cU3TT_OgmoX2WpjJGX68b-H8AFCCCxA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELaqgoALb0SggA8gDmBtHo5jIyFUKCuqVqs9gCgn4_jRrrTdbZMtqEf-Fr-OGW_SFarorQeuSdZyst_MeOyZ7yPkueS1L6WsWeqFggRFciZzlAR0maltjXpIkTJ_txqN5N6eGq-R330vDJZV9j4xOmo3t7hHPigyWIjkClzpIHRlEeOt4bujY4YKUnjS2stpLCGy409_QvrWvt3egv_6RZ4PP37-8Il1CgPMciEXrOKGB1MZWPeYwkJwtKlInSsd9yYIJVytSu-VQSkEo4SVIRO-sGUVZAipRdIDcP9XKsQ92FL19VuPZc6rQogutYpRAYaQUdkeKeSwb6jqe3ikGLQZUoUxCJgMuYMzpv6Kk1FO4HzQOHd6G4Pi8Nb__Dlvk5vdUpxuLm3nDlnzs7vket-p3d4jv8YNHmNhYTjFEvxT6poJbsDQntyA4jY2tZiBYMlVRDk10314u8XBYfuGNr49mS5ail081NAp1t2zFuzC01g7yKJqCjUzR9vJIUqpwaAr1YX75MulfIEHZH02n_mHhJpSBau8M8iZWIZaFr6QxpvcV6n0ZZmQrAeIth2fO8qKTHXM66TQS1BpAJWOoNIqIa_OfnO0ZDO58On3iLuzJ5GJPF6YN_u6c2w6N4aXTvIs1Apy9VTWaTCqzh3MNa-dTMhLRK1GfwnTs6Zr-4CXROYxvSkz1DCFZXRCNnqo6s6RtnqF04S87sG-uv3vyT-6eLRn5BrgXe9uj3Yekxs5Gl6sUdog64vmxD8hV-2PxaRtnkarpuT7ZeP-D_qqi-E
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Predicting+risky+driving+behavior+with+classification+algorithms%3A+results+from+a+large-scale+field-trial+and+simulator+experiment&rft.jtitle=European+transport+research+review&rft.au=Garefalakis%2C+Thodoris&rft.au=Michelaraki%2C+Eva&rft.au=Roussou%2C+Stella&rft.au=Katrakazas%2C+Christos&rft.date=2024-12-01&rft.issn=1866-8887&rft.eissn=1866-8887&rft.volume=16&rft.issue=1&rft_id=info:doi/10.1186%2Fs12544-024-00691-9&rft.externalDBID=n%2Fa&rft.externalDocID=10_1186_s12544_024_00691_9
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1866-8887&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1866-8887&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1866-8887&client=summon