SCCPMD: Probability matrix decomposition method subject to corrected similarity constraints for inferring long non-coding RNA–disease associations

Accumulating evidence has demonstrated various associations of long non-coding RNAs (lncRNAs) with human diseases, such as abnormal expression due to microbial influences that cause disease. Gaining a deeper understanding of lncRNA–disease associations is essential for disease diagnosis, treatment,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Frontiers in microbiology Jg. 13; S. 1093615
Hauptverfasser: Lin, Lieqing, Chen, Ruibin, Zhu, Yinting, Xie, Weijie, Jing, Huaiguo, Chen, Langcheng, Zou, Minqing
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Switzerland Frontiers Media S.A 11.01.2023
Schlagworte:
ISSN:1664-302X, 1664-302X
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Accumulating evidence has demonstrated various associations of long non-coding RNAs (lncRNAs) with human diseases, such as abnormal expression due to microbial influences that cause disease. Gaining a deeper understanding of lncRNA–disease associations is essential for disease diagnosis, treatment, and prevention. In recent years, many matrix decomposition methods have also been used to predict potential lncRNA-disease associations. However, these methods do not consider the use of microbe-disease association information to enrich disease similarity, and also do not make more use of similarity information in the decomposition process. To address these issues, we here propose a correction-based similarity-constrained probability matrix decomposition method (SCCPMD) to predict lncRNA–disease associations. The microbe-disease associations are first used to enrich the disease semantic similarity matrix, and then the logistic function is used to correct the lncRNA and disease similarity matrix, and then these two corrected similarity matrices are added to the probability matrix decomposition as constraints to finally predict the potential lncRNA–disease associations. The experimental results show that SCCPMD outperforms the five advanced comparison algorithms. In addition, SCCPMD demonstrated excellent prediction performance in a case study for breast cancer, lung cancer, and renal cell carcinoma, with prediction accuracy reaching 80, 100, and 100%, respectively. Therefore, SCCPMD shows excellent predictive performance in identifying unknown lncRNA–disease associations.
AbstractList Accumulating evidence has demonstrated various associations of long non-coding RNAs (lncRNAs) with human diseases, such as abnormal expression due to microbial influences that cause disease. Gaining a deeper understanding of lncRNA–disease associations is essential for disease diagnosis, treatment, and prevention. In recent years, many matrix decomposition methods have also been used to predict potential lncRNA-disease associations. However, these methods do not consider the use of microbe-disease association information to enrich disease similarity, and also do not make more use of similarity information in the decomposition process. To address these issues, we here propose a correction-based similarity-constrained probability matrix decomposition method (SCCPMD) to predict lncRNA–disease associations. The microbe-disease associations are first used to enrich the disease semantic similarity matrix, and then the logistic function is used to correct the lncRNA and disease similarity matrix, and then these two corrected similarity matrices are added to the probability matrix decomposition as constraints to finally predict the potential lncRNA–disease associations. The experimental results show that SCCPMD outperforms the five advanced comparison algorithms. In addition, SCCPMD demonstrated excellent prediction performance in a case study for breast cancer, lung cancer, and renal cell carcinoma, with prediction accuracy reaching 80, 100, and 100%, respectively. Therefore, SCCPMD shows excellent predictive performance in identifying unknown lncRNA–disease associations.
Accumulating evidence has demonstrated various associations of long non-coding RNAs (lncRNAs) with human diseases, such as abnormal expression due to microbial influences that cause disease. Gaining a deeper understanding of lncRNA-disease associations is essential for disease diagnosis, treatment, and prevention. In recent years, many matrix decomposition methods have also been used to predict potential lncRNA-disease associations. However, these methods do not consider the use of microbe-disease association information to enrich disease similarity, and also do not make more use of similarity information in the decomposition process. To address these issues, we here propose a correction-based similarity-constrained probability matrix decomposition method (SCCPMD) to predict lncRNA-disease associations. The microbe-disease associations are first used to enrich the disease semantic similarity matrix, and then the logistic function is used to correct the lncRNA and disease similarity matrix, and then these two corrected similarity matrices are added to the probability matrix decomposition as constraints to finally predict the potential lncRNA-disease associations. The experimental results show that SCCPMD outperforms the five advanced comparison algorithms. In addition, SCCPMD demonstrated excellent prediction performance in a case study for breast cancer, lung cancer, and renal cell carcinoma, with prediction accuracy reaching 80, 100, and 100%, respectively. Therefore, SCCPMD shows excellent predictive performance in identifying unknown lncRNA-disease associations.Accumulating evidence has demonstrated various associations of long non-coding RNAs (lncRNAs) with human diseases, such as abnormal expression due to microbial influences that cause disease. Gaining a deeper understanding of lncRNA-disease associations is essential for disease diagnosis, treatment, and prevention. In recent years, many matrix decomposition methods have also been used to predict potential lncRNA-disease associations. However, these methods do not consider the use of microbe-disease association information to enrich disease similarity, and also do not make more use of similarity information in the decomposition process. To address these issues, we here propose a correction-based similarity-constrained probability matrix decomposition method (SCCPMD) to predict lncRNA-disease associations. The microbe-disease associations are first used to enrich the disease semantic similarity matrix, and then the logistic function is used to correct the lncRNA and disease similarity matrix, and then these two corrected similarity matrices are added to the probability matrix decomposition as constraints to finally predict the potential lncRNA-disease associations. The experimental results show that SCCPMD outperforms the five advanced comparison algorithms. In addition, SCCPMD demonstrated excellent prediction performance in a case study for breast cancer, lung cancer, and renal cell carcinoma, with prediction accuracy reaching 80, 100, and 100%, respectively. Therefore, SCCPMD shows excellent predictive performance in identifying unknown lncRNA-disease associations.
Author Chen, Ruibin
Zhu, Yinting
Jing, Huaiguo
Lin, Lieqing
Chen, Langcheng
Zou, Minqing
Xie, Weijie
AuthorAffiliation 1 Center of Campus Network & Modern Educational Technology, Guangdong University of Technology , Guangzhou , China
2 School of Computer, Guangdong University of Technology , Guangzhou , China
4 Department of Experiment Teaching, Guangdong University of Technology , Guangzhou , China
3 Sports Department, Guangdong University of Technology , Guangzhou , China
AuthorAffiliation_xml – name: 1 Center of Campus Network & Modern Educational Technology, Guangdong University of Technology , Guangzhou , China
– name: 4 Department of Experiment Teaching, Guangdong University of Technology , Guangzhou , China
– name: 2 School of Computer, Guangdong University of Technology , Guangzhou , China
– name: 3 Sports Department, Guangdong University of Technology , Guangzhou , China
Author_xml – sequence: 1
  givenname: Lieqing
  surname: Lin
  fullname: Lin, Lieqing
– sequence: 2
  givenname: Ruibin
  surname: Chen
  fullname: Chen, Ruibin
– sequence: 3
  givenname: Yinting
  surname: Zhu
  fullname: Zhu, Yinting
– sequence: 4
  givenname: Weijie
  surname: Xie
  fullname: Xie, Weijie
– sequence: 5
  givenname: Huaiguo
  surname: Jing
  fullname: Jing, Huaiguo
– sequence: 6
  givenname: Langcheng
  surname: Chen
  fullname: Chen, Langcheng
– sequence: 7
  givenname: Minqing
  surname: Zou
  fullname: Zou, Minqing
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36713213$$D View this record in MEDLINE/PubMed
BookMark eNp9UsluFDEQtVAQCSE_wAH5yGUGr-02B6Ro2CIFiFgkbpa3nnjU3Z7YHkRu_AN8IV-Ce2aCEg74UK4q13slV72H4GCMowfgMUZzSlv5rBuCNXOCCJljJGmD-T1whJuGzSgiXw9u-YfgJOcVqochUu0DcEgbgSnB9Aj8-rRYXLx7-RxepGi0CX0o13DQJYXv0Hkbh3XMoYQ4wsGXy-hg3piVtwWWCG1Mqbq-JsMQep0mrI1jLkmHsWTYxQTD2PmUwriEfaym_mJmo5vij-9Pf__46UL2Onuoc4426KlVfgTud7rP_mR_H4Mvr199XrydnX94c7Y4PZ9Z1rRlJohDGlMvtdHCcMmZEx1GFBPGCZKo1Q0XnFHZECNwK6XjnRSGSsIwpy2jx-Bsx-uiXql1CoNO1yrqoLaJmJZKpxJs7xXxqDHYS94hzIxFWhBDkBFUSOdcM3G92HGtN2bwzvqxTqG_Q3r3ZQyXahm_KdkKJhmpBE_3BClebXwuagjZ-r7Xo4-brIgQGLWMC1lLn9zu9bfJzVprQbsrsCnmnHynbCjb2U6r6RVGahKR2opITSJSexFVKPkHesP-H9AfNMLOew
CitedBy_id crossref_primary_10_1007_s12204_024_2575_9
crossref_primary_10_1038_s41598_024_55957_y
crossref_primary_10_1109_TCBBIO_2025_3574189
crossref_primary_10_1186_s12859_024_05950_z
Cites_doi 10.1007/978-3-030-20301-6_4
10.1111/1759-7714.13256
10.3390/ijms21041508
10.1016/j.mbs.2019.108229
10.1109/JBHI.2019.2958389
10.2147/OTT.S261973
10.3389/fonc.2019.01459
10.1007/s12539-021-00458-z
10.1093/bib/bbaa186
10.1016/j.omtn.2020.10.040
10.1109/TCBB.2020.3034910
10.1371/journal.pcbi.1006418
10.1007/s12539-019-00351-w
10.1093/bfgp/ely031
10.1093/bioinformatics/btx794
10.1016/j.ygeno.2021.02.002
10.1109/TCBB.2019.2934958
10.1002/jcb.27389
10.1186/s12859-021-04104-9
10.1016/j.cca.2018.07.004
10.1016/j.ccm.2019.10.001
10.3389/fgene.2020.00250
10.1016/j.neucom.2020.02.062
10.1016/j.biopha.2020.111158
10.1371/journal.pcbi.1007209
10.1039/c4mb00478g
10.1093/bioinformatics/bty503
10.1093/abbs/gmy129
10.1093/bib/bbz159
10.1007/s12539-021-00455-2
10.1242/dmm.047662
10.3390/ijms20061284
10.1007/s11596-015-1467-5
10.26355/eurrev_201902_16988
10.1097/01.NURSE.0000753972
10.1139/bcb-2019-0435
10.1093/bib/bbw060
10.1038/cgt.2017.16
10.1109/JBHI.2020.2988720
10.1186/s12859-020-03868-w
10.1093/bib/bbab286
10.1093/nar/gky905
10.1371/journal.pcbi.1000641
10.1093/bib/bbx130
10.1093/bib/bbac397
10.3892/ol.2019.11063
10.18632/oncotarget.17757
10.2147/OTT.S208830
10.1093/bib/bbac463
10.1186/s12859-020-03721-0
10.1093/bib/bbac358
10.1039/c3mb70608g
10.18632/oncotarget.19588
10.3390/genes10020126
10.1093/bib/bbac266
10.1093/bib/bbac407
10.1159/000491974
10.1093/bioinformatics/btt426
10.1093/bib/bbac527
ContentType Journal Article
Copyright Copyright © 2023 Lin, Chen, Zhu, Xie, Jing, Chen and Zou.
Copyright © 2023 Lin, Chen, Zhu, Xie, Jing, Chen and Zou. 2023 Lin, Chen, Zhu, Xie, Jing, Chen and Zou
Copyright_xml – notice: Copyright © 2023 Lin, Chen, Zhu, Xie, Jing, Chen and Zou.
– notice: Copyright © 2023 Lin, Chen, Zhu, Xie, Jing, Chen and Zou. 2023 Lin, Chen, Zhu, Xie, Jing, Chen and Zou
DBID AAYXX
CITATION
NPM
7X8
5PM
DOA
DOI 10.3389/fmicb.2022.1093615
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList CrossRef

MEDLINE - Academic
PubMed

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Open Access Full Text
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1664-302X
ExternalDocumentID oai_doaj_org_article_2e06b1e95f014bc0a72b20b7379ddd64
PMC9874942
36713213
10_3389_fmicb_2022_1093615
Genre Journal Article
GrantInformation_xml – fundername: ;
GroupedDBID 53G
5VS
9T4
AAFWJ
AAKDD
AAYXX
ACGFO
ACGFS
ADBBV
ADRAZ
AENEX
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BCNDV
CITATION
DIK
ECGQY
GROUPED_DOAJ
GX1
HYE
KQ8
M48
M~E
O5R
O5S
OK1
PGMZT
RNS
RPM
ACXDI
IAO
IEA
IHR
IPNFZ
NPM
RIG
7X8
5PM
ID FETCH-LOGICAL-c468t-72d0a13e9aba7b5954d7f103124520908a657543962b71899d5f97b3924153843
IEDL.DBID DOA
ISICitedReferencesCount 6
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000922273500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1664-302X
IngestDate Fri Oct 03 12:26:46 EDT 2025
Thu Aug 21 18:38:41 EDT 2025
Thu Sep 04 18:49:04 EDT 2025
Thu Jan 02 22:38:52 EST 2025
Sat Nov 29 02:12:31 EST 2025
Tue Nov 18 22:16:58 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords similarity correction
associations prediction
disease
lncRNA-long noncoding RNA
constraint probability matrix decomposition
Language English
License Copyright © 2023 Lin, Chen, Zhu, Xie, Jing, Chen and Zou.
This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c468t-72d0a13e9aba7b5954d7f103124520908a657543962b71899d5f97b3924153843
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Edited by: Qi Zhao, University of Science and Technology Liaoning, China
This article was submitted to Systems Microbiology, a section of the journal Frontiers in Microbiology
Reviewed by: Chun-Chun Wang, China University of Mining and Technology, China; Li Zhang, Liaoning University, China
OpenAccessLink https://doaj.org/article/2e06b1e95f014bc0a72b20b7379ddd64
PMID 36713213
PQID 2771084579
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_2e06b1e95f014bc0a72b20b7379ddd64
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9874942
proquest_miscellaneous_2771084579
pubmed_primary_36713213
crossref_citationtrail_10_3389_fmicb_2022_1093615
crossref_primary_10_3389_fmicb_2022_1093615
PublicationCentury 2000
PublicationDate 2023-01-11
PublicationDateYYYYMMDD 2023-01-11
PublicationDate_xml – month: 01
  year: 2023
  text: 2023-01-11
  day: 11
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
PublicationTitle Frontiers in microbiology
PublicationTitleAlternate Front Microbiol
PublicationYear 2023
Publisher Frontiers Media S.A
Publisher_xml – name: Frontiers Media S.A
References Zhu (ref59) 2021; 22
Sun (ref32) 2014; 10
Xie (ref42) 2021; 13
Lu (ref26) 2020; 24
Zhang (ref49); 20
Chen (ref4); 22
Sun (ref33) 2022; 23
Vanunu (ref34) 2010; 6
Wang (ref39) 2020; 13
Ding (ref13) 2018; 119
Xing (ref43) 2021; 134
Zhang (ref50); 315
Zaimy (ref47) 2017; 24
Salama (ref31) 2020; 9
Yuan (ref46) 2019; 12
Huang (ref20); 23
Yu (ref45) 2017; 8
Wang (ref40); 424
Bao (ref2) 2019; 47
Wang (ref36) 2015; 35
Chen (ref5); 18
Lan (ref21) 2022; 19
Pan (ref28) 2020; 98
Chen (ref11); 14
Chen (ref7); 34
Zhu (ref58) 2020; 19
Huang (ref18); 23
Wang (ref37); 485
Chen (ref6); 22
Ma (ref27) 2020; 11
Pullen (ref29) 2021; 51
Li (ref22) 2021; 18
Zhang (ref51); 113
Liu (ref25) 2021; 22
Chen (ref8); 20
Wang (ref35); 22
Fahad (ref14) 2019; 1152
Wang (ref41) 2022; 23
Huang (ref19); 23
Zhang (ref54); 21
Gao (ref16) 2021; 25
Fu (ref15) 2018; 34
Zhou (ref57) 2021; 23
Hill (ref17) 2021; 14
Cao (ref3) 2019; 23
Chen (ref10) 2017; 18
Wang (ref38); 50
Zhao (ref55) 2022
Zhang (ref53); 13
Li (ref23) 2020; 11
Bade (ref1) 2020; 41
Zhang (ref48); 21
Zhang (ref52); 12
Zhao (ref56) 2015; 11
Chen (ref12); 15
Liu (ref24) 2017; 8
Chen (ref9) 2013; 29
Xuan (ref44) 2019; 10
Qu (ref30) 2018; 48
References_xml – volume: 1152
  start-page: 51
  year: 2019
  ident: ref14
  article-title: Breast cancer: current perspectives on the disease status[J]
  publication-title: Breast Cancer Metastasis and Drug Resistance.
  doi: 10.1007/978-3-030-20301-6_4
– volume: 11
  start-page: 295
  year: 2020
  ident: ref23
  article-title: LncRNA SNHG1 influences cell proliferation, migration, invasion, and apoptosis of non-small cell lung cancer cells via the miR-361-3p/FRAT1 axis[J]
  publication-title: Thoracic Cancer.
  doi: 10.1111/1759-7714.13256
– volume: 21
  start-page: 1508
  ident: ref48
  article-title: LDAI-ISPS: LncRNA–disease associations inference based on integrated space projection scores[J]
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms21041508
– volume: 315
  start-page: 108229
  ident: ref50
  article-title: Predicting lncRNA-disease associations using network topological similarity based on deep mining heterogeneous networks[J]
  publication-title: Math. Biosci.
  doi: 10.1016/j.mbs.2019.108229
– volume: 24
  start-page: 2420
  year: 2020
  ident: ref26
  article-title: Predicting human lncRNA-disease associations based on geometric matrix completion[J]
  publication-title: IEEE J. Biomed. Health Inform.
  doi: 10.1109/JBHI.2019.2958389
– volume: 13
  start-page: 10641
  year: 2020
  ident: ref39
  article-title: Long noncoding RNA CDKN2B-AS1 facilitates lung cancer development through regulating miR-378b/NR2C2[J]
  publication-title: Onco. Targets. Ther.
  doi: 10.2147/OTT.S261973
– volume: 9
  start-page: 1459
  year: 2020
  ident: ref31
  article-title: XIST and TSIX: novel cancer immune biomarkers in PD-L1-overexpressing breast cancer patients[J]
  publication-title: Front. Oncol.
  doi: 10.3389/fonc.2019.01459
– volume: 13
  start-page: 535
  ident: ref53
  article-title: Using network distance analysis to predict lncRNA–miRNA interactions[J]
  publication-title: Interdisciplinary Sciences: Computational Life Sciences.
  doi: 10.1007/s12539-021-00458-z
– volume: 22
  start-page: bbaa186
  ident: ref4
  article-title: Deep-belief network for predicting potential miRNA-disease associations[J]
  publication-title: Brief. Bioinform.
  doi: 10.1093/bib/bbaa186
– volume: 23
  start-page: 277
  year: 2021
  ident: ref57
  article-title: Prediction of lncRNA-disease associations via an embedding learning HOPE in heterogeneous information networks[J]
  publication-title: Molecular Therapy-Nucleic Acids.
  doi: 10.1016/j.omtn.2020.10.040
– volume: 19
  start-page: 1715
  year: 2022
  ident: ref21
  article-title: LDICDL: LncRNA-disease association identification based on collaborative deep learning[J]
  publication-title: IEEE/ACM Trans. Comput. Biol. Bioinform.
  doi: 10.1109/TCBB.2020.3034910
– volume: 14
  start-page: e1006418
  ident: ref11
  article-title: MDHGI: matrix decomposition and heterogeneous graph inference for miRNA-disease association prediction[J]
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.1006418
– volume: 12
  start-page: 82
  ident: ref52
  article-title: Plant miRNA–lncRNA interaction prediction with the ensemble of CNN and IndRNN[J]
  publication-title: Interdisciplinary Sciences: Computational Life Sciences.
  doi: 10.1007/s12539-019-00351-w
– volume: 18
  start-page: 58
  ident: ref5
  article-title: Computational models for lncRNA function prediction and functional similarity calculation[J]
  publication-title: Brief. Funct. Genomics
  doi: 10.1093/bfgp/ely031
– volume: 34
  start-page: 1529
  year: 2018
  ident: ref15
  article-title: Matrix factorization-based data fusion for the prediction of lncRNA–disease associations[J]
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btx794
– volume: 113
  start-page: 874
  ident: ref51
  article-title: Predicting lncRNA–miRNA interactions based on interactome network and graphlet interaction[J]
  publication-title: Genomics
  doi: 10.1016/j.ygeno.2021.02.002
– volume: 18
  start-page: 1049
  year: 2021
  ident: ref22
  article-title: A novel approach for potential human LncRNA-disease association prediction based on local random walk[J]
  publication-title: IEEE/ACM Trans. Comput. Biol. Bioinform.
  doi: 10.1109/TCBB.2019.2934958
– volume: 119
  start-page: 10406
  year: 2018
  ident: ref13
  article-title: LncRNA CRNDE is a biomarker for clinical progression and poor prognosis in clear cell renal cell carcinoma[J]
  publication-title: J. Cell. Biochem.
  doi: 10.1002/jcb.27389
– volume: 22
  start-page: 175
  year: 2021
  ident: ref59
  article-title: IPCARF: improving lncRNA-disease association prediction using incremental principal component analysis feature selection and a random forest classifier[J]
  publication-title: BMC bioinformatics.
  doi: 10.1186/s12859-021-04104-9
– volume: 485
  start-page: 229
  ident: ref37
  article-title: LncRNA HOXA-AS2 and its molecular mechanisms in human cancer[J]
  publication-title: Clin. Chim. Acta
  doi: 10.1016/j.cca.2018.07.004
– volume: 41
  start-page: 1
  year: 2020
  ident: ref1
  article-title: Lung cancer 2020: epidemiology, etiology, and prevention[J]
  publication-title: Clin. Chest Med.
  doi: 10.1016/j.ccm.2019.10.001
– volume: 11
  start-page: 250
  year: 2020
  ident: ref27
  article-title: LncRNA NEAT1 interacted with DNMT1 to regulate malignant phenotype of cancer cell and cytotoxic T cell infiltration via epigenetic inhibition of p53, cGAS, and STING in lung cancer[J]
  publication-title: Front. Genet.
  doi: 10.3389/fgene.2020.00250
– volume: 424
  start-page: 236
  ident: ref40
  article-title: LDGRNMF: LncRNA-disease associations prediction based on graph regularized non-negative matrix factorization[J]
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2020.02.062
– volume: 134
  start-page: 111158
  year: 2021
  ident: ref43
  article-title: Role of lncRNA LUCAT1 in cancer[J]
  publication-title: Biomed. Pharmacother.
  doi: 10.1016/j.biopha.2020.111158
– volume: 15
  start-page: e1007209
  ident: ref12
  article-title: Ensemble of decision tree reveals potential miRNA-disease associations[J]
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.1007209
– volume: 11
  start-page: 126
  year: 2015
  ident: ref56
  article-title: Identification of cancer-related lncRNAs through integrating genome, regulome and transcriptome features[J]
  publication-title: Mol. BioSyst.
  doi: 10.1039/c4mb00478g
– volume: 34
  start-page: 4256
  ident: ref7
  article-title: Predicting miRNA–disease association based on inductive matrix completion[J]
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bty503
– volume: 50
  start-page: 1211
  ident: ref38
  article-title: PVT1 affects EMT and cell proliferation and migration via regulating p21 in triple-negative breast cancer cells cultured with mature adipogenic medium[J]
  publication-title: Acta Biochim. Biophys. Sin.
  doi: 10.1093/abbs/gmy129
– volume: 22
  start-page: 485
  ident: ref6
  article-title: NCMCMDA: miRNA–disease association prediction through neighborhood constraint matrix completion[J]
  publication-title: Brief. Bioinform.
  doi: 10.1093/bib/bbz159
– volume: 13
  start-page: 582
  year: 2021
  ident: ref42
  article-title: Predicting circRNA-disease associations based on deep matrix factorization with multi-source fusion[J]
  publication-title: Interdisciplinary Sciences: Computational Life Sciences.
  doi: 10.1007/s12539-021-00455-2
– volume: 14
  start-page: dmm047662
  year: 2021
  ident: ref17
  article-title: miRNA interplay: mechanisms and consequences in cancer[J]
  publication-title: Dis. Model. Mech.
  doi: 10.1242/dmm.047662
– volume: 20
  start-page: 1284
  ident: ref49
  article-title: Long noncoding RNA and protein interactions: from experimental results to computational models based on network methods[J]
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms20061284
– volume: 35
  start-page: 541
  year: 2015
  ident: ref36
  article-title: Long non-coding RNA MEG3 induces renal cell carcinoma cells apoptosis by activating the mitochondrial pathway[J]
  publication-title: J. Huazhong Univ. Sci. Technolog. Med. Sci.
  doi: 10.1007/s11596-015-1467-5
– volume: 23
  start-page: 1012
  year: 2019
  ident: ref3
  article-title: lncRNA-RMRP promotes proliferation, migration and invasion of bladder cancer via miR-206[J]
  publication-title: Eur. Rev. Med. Pharmacol. Sci.
  doi: 10.26355/eurrev_201902_16988
– volume: 51
  start-page: 34
  year: 2021
  ident: ref29
  article-title: Renal cell carcinoma, part 1[J]
  publication-title: Nursing
  doi: 10.1097/01.NURSE.0000753972
– volume: 98
  start-page: 676
  year: 2020
  ident: ref28
  article-title: Amplified LncRNA PVT1 promotes lung cancer proliferation and metastasis by facilitating VEGFC expression[J]
  publication-title: Biochem. Cell Biol.
  doi: 10.1139/bcb-2019-0435
– volume: 18
  start-page: 558
  year: 2017
  ident: ref10
  article-title: Long non-coding RNAs and complex diseases: from experimental results to computational models[J]
  publication-title: Brief. Bioinform.
  doi: 10.1093/bib/bbw060
– volume: 24
  start-page: 233
  year: 2017
  ident: ref47
  article-title: New methods in the diagnosis of cancer and gene therapy of cancer based on nanoparticles[J]
  publication-title: Cancer Gene Ther.
  doi: 10.1038/cgt.2017.16
– volume: 25
  start-page: 881
  year: 2021
  ident: ref16
  article-title: Multi-label fusion collaborative matrix factorization for predicting LncRNA-disease associations[J]
  publication-title: IEEE J. Biomed. Health Inform.
  doi: 10.1109/JBHI.2020.2988720
– volume: 22
  start-page: 241
  year: 2021
  ident: ref25
  article-title: DSCMF: prediction of LncRNA-disease associations based on dual sparse collaborative matrix factorization[J]
  publication-title: BMC bioinformatics.
  doi: 10.1186/s12859-020-03868-w
– volume: 22
  start-page: bbab286
  ident: ref35
  article-title: Circular RNAs and complex diseases: from experimental results to computational models[J]
  publication-title: Brief. Bioinform.
  doi: 10.1093/bib/bbab286
– volume: 47
  start-page: D1034
  year: 2019
  ident: ref2
  article-title: LncRNADisease 2.0: an updated database of long non-coding RNA-associated diseases[J]
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gky905
– volume: 6
  start-page: e1000641
  year: 2010
  ident: ref34
  article-title: Associating genes and protein complexes with disease via network propagation[J]
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.1000641
– volume: 20
  start-page: 515
  ident: ref8
  article-title: MicroRNAs and complex diseases: from experimental results to computational models[J]
  publication-title: Brief. Bioinform.
  doi: 10.1093/bib/bbx130
– volume: 23
  start-page: bbac397
  ident: ref18
  article-title: Updated review of advances in microRNAs and complex diseases: experimental results, databases, webservers and data fusion[J]
  publication-title: Brief. Bioinform.
  doi: 10.1093/bib/bbac397
– volume: 19
  start-page: 221
  year: 2020
  ident: ref58
  article-title: Identification of a four-long non-coding RNA signature in predicting breast cancer survival[J]
  publication-title: Oncol. Lett.
  doi: 10.3892/ol.2019.11063
– volume: 8
  start-page: 62927
  year: 2017
  ident: ref24
  article-title: The long non-coding RNA NEAT1 enhances epithelial-to-mesenchymal transition and chemoresistance via the miR-34a/c-met axis in renal cell carcinoma[J]
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.17757
– volume: 12
  start-page: 4883
  year: 2019
  ident: ref46
  article-title: Long noncoding RNA LINC01089 predicts clinical prognosis and inhibits cell proliferation and invasion through the Wnt/β-catenin signaling pathway in breast cancer[J]
  publication-title: Onco. Targets. Ther.
  doi: 10.2147/OTT.S208830
– volume: 23
  start-page: bbac463
  year: 2022
  ident: ref41
  article-title: Predicting the potential human lncRNA–miRNA interactions based on graph convolution network with conditional random field[J]
  publication-title: Brief. Bioinform.
  doi: 10.1093/bib/bbac463
– volume: 21
  start-page: 377
  ident: ref54
  article-title: LDNFSGB: prediction of long non-coding rna and disease association using network feature similarity and gradient boosting[J]
  publication-title: BMC bioinformatics.
  doi: 10.1186/s12859-020-03721-0
– volume: 23
  start-page: bbac358
  ident: ref19
  article-title: Updated review of advances in microRNAs and complex diseases: taxonomy, trends and challenges of computational models[J]
  publication-title: Brief. Bioinform.
  doi: 10.1093/bib/bbac358
– volume: 10
  start-page: 2074
  year: 2014
  ident: ref32
  article-title: Inferring novel lncRNA–disease associations based on a random walk model of a lncRNA functional similarity network[J]
  publication-title: Mol. BioSyst.
  doi: 10.1039/c3mb70608g
– volume: 8
  start-page: 60429
  year: 2017
  ident: ref45
  article-title: BRWLDA: bi-random walks for predicting lncRNA-disease associations[J]
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.19588
– volume: 10
  start-page: 126
  year: 2019
  ident: ref44
  article-title: A probabilistic matrix factorization method for identifying lncRNA-disease associations[J]
  publication-title: Genes.
  doi: 10.3390/genes10020126
– volume: 23
  start-page: bbac266
  year: 2022
  ident: ref33
  article-title: A deep learning method for predicting metabolite–disease associations via graph neural network[J]
  publication-title: Brief. Bioinform.
  doi: 10.1093/bib/bbac266
– volume: 23
  start-page: bbac407
  ident: ref20
  article-title: Updated review of advances in microRNAs and complex diseases: towards systematic evaluation of computational models[J]
  publication-title: Brief. Bioinform.
  doi: 10.1093/bib/bbac407
– volume: 48
  start-page: 1075
  year: 2018
  ident: ref30
  article-title: Upregulation of MIAT regulates LOXL2 expression by competitively binding MiR-29c in clear cell renal cell carcinoma[J]
  publication-title: Cell. Physiol. Biochem.
  doi: 10.1159/000491974
– volume: 29
  start-page: 2617
  year: 2013
  ident: ref9
  article-title: Novel human lncRNA–disease association inference based on lncRNA expression profiles[J]
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btt426
– year: 2022
  ident: ref55
  article-title: Predicting potential interactions between lncRNAs and proteins via combined graph auto-encoder methods
  publication-title: Brief. Bioinform.
  doi: 10.1093/bib/bbac527
SSID ssj0000402000
Score 2.366643
Snippet Accumulating evidence has demonstrated various associations of long non-coding RNAs (lncRNAs) with human diseases, such as abnormal expression due to microbial...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 1093615
SubjectTerms associations prediction
constraint probability matrix decomposition
disease
lncRNA-long noncoding RNA
Microbiology
similarity correction
Title SCCPMD: Probability matrix decomposition method subject to corrected similarity constraints for inferring long non-coding RNA–disease associations
URI https://www.ncbi.nlm.nih.gov/pubmed/36713213
https://www.proquest.com/docview/2771084579
https://pubmed.ncbi.nlm.nih.gov/PMC9874942
https://doaj.org/article/2e06b1e95f014bc0a72b20b7379ddd64
Volume 13
WOSCitedRecordID wos000922273500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Open Access Full Text
  customDbUrl:
  eissn: 1664-302X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000402000
  issn: 1664-302X
  databaseCode: DOA
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1664-302X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000402000
  issn: 1664-302X
  databaseCode: M~E
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELagAokL4k14VEbihiJix45jbmVpxYGuVry0t8iviEhtgjZZRC-I_wC_kF_CjJMuuwjBhYsPiS07nrH9jWfyDSGPbcG59bVNpfIhFY6J1LrapMwIaYugJI882-9fqfm8XC71YivVF8aEjfTA48Q95SErLAta1gDmrcuM4pZnVuVKe--LyAQKqGfLmIp7MJpFWTb-JQNWmAYxNc6CPch5ZFAqMA_u1kkUCfv_hDJ_D5bcOn2OrpGrE2ykB-Nwr5MLob1BLo-JJM9uku9vZrPF8YtndLGC9RnjXc_oKbLvf6Y-YNj4FJtFx4zRtF9bvIChQ0cd5udwADxp35w2YOhiW4ewEbNHDD0FWEsxZmuFV4D0pIOi7drUdXjs0dfzgx9fv01-Hmp-Sbu_Rd4dHb6dvUynfAupE0U5pIr7zLA8aGONslJL4VWNaSDQO5vprDTopQEEU3ALR5rWXtZaWUBYAvdNkd8me9B_uEuosdoonwcvPZhgZa15YXOuZe6hqWMsIex87is3kZHjV51UYJSgvKoorwrlVU3ySsiTTZuPIxXHX2s_R5FuaiKNdnwAylVNylX9S7kS8uhcISpYduhLMW3o1n3FFUCzUkilE3JnVJBNV3kBlj9neULUjursjGX3Tdt8iNTeulRCC37vfwz-PrkCE4LRciljD8jesFqHh-SS-zQ0_WqfXFTLcj-uGiiPvxz-BFapIAo
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SCCPMD%3A+Probability+matrix+decomposition+method+subject+to+corrected+similarity+constraints+for+inferring+long+non-coding+RNA%E2%80%93disease+associations&rft.jtitle=Frontiers+in+microbiology&rft.au=Lin%2C+Lieqing&rft.au=Chen%2C+Ruibin&rft.au=Zhu%2C+Yinting&rft.au=Xie%2C+Weijie&rft.date=2023-01-11&rft.issn=1664-302X&rft.eissn=1664-302X&rft.volume=13&rft_id=info:doi/10.3389%2Ffmicb.2022.1093615&rft.externalDBID=n%2Fa&rft.externalDocID=10_3389_fmicb_2022_1093615
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1664-302X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1664-302X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1664-302X&client=summon