Radiomics and machine learning applied to STIR sequence for prediction of quantitative parameters in facioscapulohumeral disease

Quantitative Muscle MRI (qMRI) is a valuable and non-invasive tool to assess disease involvement and progression in neuromuscular disorders being able to detect even subtle changes in muscle pathology. The aim of this study is to evaluate the feasibility of using a conventional short-tau inversion r...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Frontiers in neurology Ročník 14; s. 1105276
Hlavní autoři: Colelli, Giulia, Barzaghi, Leonardo, Paoletti, Matteo, Monforte, Mauro, Bergsland, Niels, Manco, Giulia, Deligianni, Xeni, Santini, Francesco, Ricci, Enzo, Tasca, Giorgio, Mira, Antonietta, Figini, Silvia, Pichiecchio, Anna
Médium: Journal Article
Jazyk:angličtina
Vydáno: Switzerland Frontiers Media S.A 24.02.2023
Témata:
ISSN:1664-2295, 1664-2295
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Quantitative Muscle MRI (qMRI) is a valuable and non-invasive tool to assess disease involvement and progression in neuromuscular disorders being able to detect even subtle changes in muscle pathology. The aim of this study is to evaluate the feasibility of using a conventional short-tau inversion recovery (STIR) sequence to predict fat fraction (FF) and water T2 (wT2) in skeletal muscle introducing a radiomic workflow with standardized feature extraction combined with machine learning algorithms. Twenty-five patients with facioscapulohumeral muscular dystrophy (FSHD) were scanned at calf level using conventional STIR sequence and qMRI techniques. We applied and compared three different radiomics workflows ( ), combined with seven Machine Learning regression algorithms (linear, ridge and lasso regression, tree, random forest, k-nearest neighbor and support vector machine), on conventional STIR images to predict FF and wT2 for six calf muscles. The combination of WF3 and K-nearest neighbor resulted to be the best predictor model of qMRI parameters with a mean absolute error about ± 5 for FF and ± 1.8 for wT2. This pilot study demonstrated the possibility to predict qMRI parameters in a cohort of FSHD subjects starting from conventional STIR sequence.
AbstractList PurposeQuantitative Muscle MRI (qMRI) is a valuable and non-invasive tool to assess disease involvement and progression in neuromuscular disorders being able to detect even subtle changes in muscle pathology. The aim of this study is to evaluate the feasibility of using a conventional short-tau inversion recovery (STIR) sequence to predict fat fraction (FF) and water T2 (wT2) in skeletal muscle introducing a radiomic workflow with standardized feature extraction combined with machine learning algorithms.MethodsTwenty-five patients with facioscapulohumeral muscular dystrophy (FSHD) were scanned at calf level using conventional STIR sequence and qMRI techniques. We applied and compared three different radiomics workflows (WF1, WF2, WF3), combined with seven Machine Learning regression algorithms (linear, ridge and lasso regression, tree, random forest, k-nearest neighbor and support vector machine), on conventional STIR images to predict FF and wT2 for six calf muscles.ResultsThe combination of WF3 and K-nearest neighbor resulted to be the best predictor model of qMRI parameters with a mean absolute error about ± 5 pp for FF and ± 1.8 ms for wT2.ConclusionThis pilot study demonstrated the possibility to predict qMRI parameters in a cohort of FSHD subjects starting from conventional STIR sequence.
Quantitative Muscle MRI (qMRI) is a valuable and non-invasive tool to assess disease involvement and progression in neuromuscular disorders being able to detect even subtle changes in muscle pathology. The aim of this study is to evaluate the feasibility of using a conventional short-tau inversion recovery (STIR) sequence to predict fat fraction (FF) and water T2 (wT2) in skeletal muscle introducing a radiomic workflow with standardized feature extraction combined with machine learning algorithms.PurposeQuantitative Muscle MRI (qMRI) is a valuable and non-invasive tool to assess disease involvement and progression in neuromuscular disorders being able to detect even subtle changes in muscle pathology. The aim of this study is to evaluate the feasibility of using a conventional short-tau inversion recovery (STIR) sequence to predict fat fraction (FF) and water T2 (wT2) in skeletal muscle introducing a radiomic workflow with standardized feature extraction combined with machine learning algorithms.Twenty-five patients with facioscapulohumeral muscular dystrophy (FSHD) were scanned at calf level using conventional STIR sequence and qMRI techniques. We applied and compared three different radiomics workflows (WF1, WF2, WF3), combined with seven Machine Learning regression algorithms (linear, ridge and lasso regression, tree, random forest, k-nearest neighbor and support vector machine), on conventional STIR images to predict FF and wT2 for six calf muscles.MethodsTwenty-five patients with facioscapulohumeral muscular dystrophy (FSHD) were scanned at calf level using conventional STIR sequence and qMRI techniques. We applied and compared three different radiomics workflows (WF1, WF2, WF3), combined with seven Machine Learning regression algorithms (linear, ridge and lasso regression, tree, random forest, k-nearest neighbor and support vector machine), on conventional STIR images to predict FF and wT2 for six calf muscles.The combination of WF3 and K-nearest neighbor resulted to be the best predictor model of qMRI parameters with a mean absolute error about ± 5 pp for FF and ± 1.8 ms for wT2.ResultsThe combination of WF3 and K-nearest neighbor resulted to be the best predictor model of qMRI parameters with a mean absolute error about ± 5 pp for FF and ± 1.8 ms for wT2.This pilot study demonstrated the possibility to predict qMRI parameters in a cohort of FSHD subjects starting from conventional STIR sequence.ConclusionThis pilot study demonstrated the possibility to predict qMRI parameters in a cohort of FSHD subjects starting from conventional STIR sequence.
Quantitative Muscle MRI (qMRI) is a valuable and non-invasive tool to assess disease involvement and progression in neuromuscular disorders being able to detect even subtle changes in muscle pathology. The aim of this study is to evaluate the feasibility of using a conventional short-tau inversion recovery (STIR) sequence to predict fat fraction (FF) and water T2 (wT2) in skeletal muscle introducing a radiomic workflow with standardized feature extraction combined with machine learning algorithms. Twenty-five patients with facioscapulohumeral muscular dystrophy (FSHD) were scanned at calf level using conventional STIR sequence and qMRI techniques. We applied and compared three different radiomics workflows ( ), combined with seven Machine Learning regression algorithms (linear, ridge and lasso regression, tree, random forest, k-nearest neighbor and support vector machine), on conventional STIR images to predict FF and wT2 for six calf muscles. The combination of WF3 and K-nearest neighbor resulted to be the best predictor model of qMRI parameters with a mean absolute error about ± 5 for FF and ± 1.8 for wT2. This pilot study demonstrated the possibility to predict qMRI parameters in a cohort of FSHD subjects starting from conventional STIR sequence.
Author Mira, Antonietta
Paoletti, Matteo
Barzaghi, Leonardo
Figini, Silvia
Tasca, Giorgio
Monforte, Mauro
Santini, Francesco
Pichiecchio, Anna
Deligianni, Xeni
Colelli, Giulia
Ricci, Enzo
Manco, Giulia
Bergsland, Niels
AuthorAffiliation 4 UOC di Neurologia, Fondazione Policlinico Universitario A. Gemelli IRCCS , Rome , Italy
2 Neuroradiology Department, Advanced Imaging and Radiomics Center, IRCCS Mondino Foundation , Pavia , Italy
5 Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, Buffalo Neuroimaging Analysis Center, University of Buffalo, The State University of New York , Buffalo, NY , United States
6 IRCCS, Fondazione Don Carlo Gnocchi ONLUS , Milan , Italy
12 Department of Political and Social Sciences, University of Pavia , Pavia , Italy
14 Department of Brain and Behavioural Sciences, University of Pavia , Pavia , Italy
8 Basel Muscle MRI, Department of Biomedical Engineering, University of Basel , Basel , Switzerland
9 John Walton Muscular Dystrophy Research Centre, Newcastle University and Newcastle Hospitals NHS Foundation Trusts , Newcastle upon Tyne , United Kingdom
3 INFN, Group of Pavia , Pavia , Italy
11 Department of Science and High Technology, University of Insubria , Como , Italy
1
AuthorAffiliation_xml – name: 7 Department of Radiology, University Hospital Basel , Basel , Switzerland
– name: 10 Data Science Lab, Università della Svizzera italiana , Lugano , Switzerland
– name: 13 BioData Science Center, IRCCS Mondino Foundation , Pavia , Italy
– name: 14 Department of Brain and Behavioural Sciences, University of Pavia , Pavia , Italy
– name: 4 UOC di Neurologia, Fondazione Policlinico Universitario A. Gemelli IRCCS , Rome , Italy
– name: 12 Department of Political and Social Sciences, University of Pavia , Pavia , Italy
– name: 2 Neuroradiology Department, Advanced Imaging and Radiomics Center, IRCCS Mondino Foundation , Pavia , Italy
– name: 8 Basel Muscle MRI, Department of Biomedical Engineering, University of Basel , Basel , Switzerland
– name: 9 John Walton Muscular Dystrophy Research Centre, Newcastle University and Newcastle Hospitals NHS Foundation Trusts , Newcastle upon Tyne , United Kingdom
– name: 6 IRCCS, Fondazione Don Carlo Gnocchi ONLUS , Milan , Italy
– name: 1 Department of Mathematics, University of Pavia , Pavia , Italy
– name: 3 INFN, Group of Pavia , Pavia , Italy
– name: 5 Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, Buffalo Neuroimaging Analysis Center, University of Buffalo, The State University of New York , Buffalo, NY , United States
– name: 11 Department of Science and High Technology, University of Insubria , Como , Italy
Author_xml – sequence: 1
  givenname: Giulia
  surname: Colelli
  fullname: Colelli, Giulia
– sequence: 2
  givenname: Leonardo
  surname: Barzaghi
  fullname: Barzaghi, Leonardo
– sequence: 3
  givenname: Matteo
  surname: Paoletti
  fullname: Paoletti, Matteo
– sequence: 4
  givenname: Mauro
  surname: Monforte
  fullname: Monforte, Mauro
– sequence: 5
  givenname: Niels
  surname: Bergsland
  fullname: Bergsland, Niels
– sequence: 6
  givenname: Giulia
  surname: Manco
  fullname: Manco, Giulia
– sequence: 7
  givenname: Xeni
  surname: Deligianni
  fullname: Deligianni, Xeni
– sequence: 8
  givenname: Francesco
  surname: Santini
  fullname: Santini, Francesco
– sequence: 9
  givenname: Enzo
  surname: Ricci
  fullname: Ricci, Enzo
– sequence: 10
  givenname: Giorgio
  surname: Tasca
  fullname: Tasca, Giorgio
– sequence: 11
  givenname: Antonietta
  surname: Mira
  fullname: Mira, Antonietta
– sequence: 12
  givenname: Silvia
  surname: Figini
  fullname: Figini, Silvia
– sequence: 13
  givenname: Anna
  surname: Pichiecchio
  fullname: Pichiecchio, Anna
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36908599$$D View this record in MEDLINE/PubMed
BookMark eNp9kk1v3CAQhq0qVZOm-QM9VBx72a0xGMOlUhU16UqRKqXpGc3CeJfIBgdwpN7608t-NEp66FxAwzvPAPO-rU588FhV72m9ZEyqT73HOS6bumFLSuu26cSr6owKwRdNo9qTZ_vT6iKl-7oEU4oJ9qY6ZULVslXqrPp9C9aF0ZlEwFsygtk6j2RAiN75DYFpGhxakgP5cbe6JQkfZvQGSR8imSJaZ7ILnoSePMzgs8uQ3SOSCSKMmDEm4jzpwbiQDEzzELbziBEGYl1CSPiuet3DkPDiuJ5XP6--3l1-W9x8v15dfrlZGC5kXjDFuRESkXdM2LXpkaJqOw6m61XfGIsMZY1UGgsNByHakmvXJQOCgZHsvFoduDbAvZ6iGyH-0gGc3idC3GiI2ZkBddfVFEorqRjnHXBZG8OB9XJNC7-xhfX5wJrm9YjWoM_lRS-gL0-82-pNeNSqRE27Avh4BMRQ_jNlPbpkcBjAY5iTbjop2jJWtZN-eN7rqcnfERZBcxCYGFKK2D9JaK13VtF7q-idVfTRKqVI_lNk9pMLu_u64X-lfwAMsMkE
CitedBy_id crossref_primary_10_1016_j_nmd_2025_105274
crossref_primary_10_17816_DD633978
crossref_primary_10_1093_bjr_tqaf171
crossref_primary_10_1038_s41598_025_09516_8
Cites_doi 10.1186/s12891-020-03910-1
10.1109/TIT.1967.1053964
10.1111/j.2517-6161.1996.tb02080.x
10.1212/01.wnl.0000324927.28817.9b
10.1023/A:1010933404324
10.1002/ana.25804
10.1158/0008-5472.CAN-18-0125
10.1002/jmri.24619
10.1053/ejpn.2002.0617
10.1016/j.ejrad.2020.109460
10.1038/s41598-022-04817-8
10.1212/WNL.0000000000002640
10.1186/2044-5040-4-12
10.1007/s10334-021-00967-4
10.1002/wics.101
10.1002/jcsm.12473
10.1007/s00330-015-3890-1
10.2214/AJR.11.8233
10.1212/WNL.0000000000001783
10.1093/pnasnexus/pgac039
10.1002/jmri.20804
10.3389/fneur.2021.630387
10.1212/WNL.0000000000000828
10.3233/JND-160145
10.1016/j.neuroimage.2008.10.055
10.1016/j.neurol.2016.08.002
10.1212/WNL.0000000000000785
10.1186/s13244-020-00887-2
10.3389/fneur.2019.00078
10.1002/mus.23370
10.1016/j.mri.2012.05.001
10.1002/nbm.2851
10.1007/s00415-016-8361-3
10.1038/s41598-021-89311-3
10.1007/s00330-022-08862-9
10.1080/00401706.1970.10488634
10.1007/BF00868438
ContentType Journal Article
Copyright Copyright © 2023 Colelli, Barzaghi, Paoletti, Monforte, Bergsland, Manco, Deligianni, Santini, Ricci, Tasca, Mira, Figini and Pichiecchio.
Copyright © 2023 Colelli, Barzaghi, Paoletti, Monforte, Bergsland, Manco, Deligianni, Santini, Ricci, Tasca, Mira, Figini and Pichiecchio. 2023 Colelli, Barzaghi, Paoletti, Monforte, Bergsland, Manco, Deligianni, Santini, Ricci, Tasca, Mira, Figini and Pichiecchio
Copyright_xml – notice: Copyright © 2023 Colelli, Barzaghi, Paoletti, Monforte, Bergsland, Manco, Deligianni, Santini, Ricci, Tasca, Mira, Figini and Pichiecchio.
– notice: Copyright © 2023 Colelli, Barzaghi, Paoletti, Monforte, Bergsland, Manco, Deligianni, Santini, Ricci, Tasca, Mira, Figini and Pichiecchio. 2023 Colelli, Barzaghi, Paoletti, Monforte, Bergsland, Manco, Deligianni, Santini, Ricci, Tasca, Mira, Figini and Pichiecchio
DBID AAYXX
CITATION
NPM
7X8
5PM
DOA
DOI 10.3389/fneur.2023.1105276
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1664-2295
ExternalDocumentID oai_doaj_org_article_7701a8ee893447a480cc4a3f8b118c2d
PMC9999017
36908599
10_3389_fneur_2023_1105276
Genre Journal Article
GrantInformation_xml – fundername: ;
  grantid: RC 2017- 2019; RC 2020-2021; RF 2016-02362914
GroupedDBID 53G
5VS
9T4
AAFWJ
AAKDD
AAYXX
ACGFO
ACGFS
ADBBV
ADRAZ
AENEX
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BCNDV
CITATION
DIK
E3Z
EMOBN
F5P
GROUPED_DOAJ
GX1
HYE
KQ8
M48
M~E
O5R
O5S
OK1
P2P
PGMZT
RNS
RPM
ACXDI
IPNFZ
NPM
RIG
7X8
5PM
ID FETCH-LOGICAL-c468t-3944c68ee4736dbcfe1e9574ac7f9f2cde3e80e18cda24a6652cd5b0e1a63ac83
IEDL.DBID DOA
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000946257500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1664-2295
IngestDate Fri Oct 03 12:53:47 EDT 2025
Thu Aug 21 18:37:44 EDT 2025
Sun Nov 09 13:56:22 EST 2025
Mon Jul 21 06:00:50 EDT 2025
Sat Nov 29 06:40:00 EST 2025
Tue Nov 18 22:26:20 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords FSHD
radiomics
muscle MRI
machine learning
stir
Language English
License Copyright © 2023 Colelli, Barzaghi, Paoletti, Monforte, Bergsland, Manco, Deligianni, Santini, Ricci, Tasca, Mira, Figini and Pichiecchio.
This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c468t-3944c68ee4736dbcfe1e9574ac7f9f2cde3e80e18cda24a6652cd5b0e1a63ac83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Edited by: Jordi Diaz-Manera, University of Newcastle, United Kingdom
These authors share last authorship
Reviewed by: Teresa Gerhalter, University Hospital Erlangen, Germany; Jorge Alonso-Pérez, Hospital Santa Creu i Sant Pau, Spain; José Verdú-Díaz, Newcastle University, United Kingdom
These authors share first authorship
This article was submitted to Applied Neuroimaging, a section of the journal Frontiers in Neurology
OpenAccessLink https://doaj.org/article/7701a8ee893447a480cc4a3f8b118c2d
PMID 36908599
PQID 2786511097
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_7701a8ee893447a480cc4a3f8b118c2d
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9999017
proquest_miscellaneous_2786511097
pubmed_primary_36908599
crossref_primary_10_3389_fneur_2023_1105276
crossref_citationtrail_10_3389_fneur_2023_1105276
PublicationCentury 2000
PublicationDate 2023-02-24
PublicationDateYYYYMMDD 2023-02-24
PublicationDate_xml – month: 02
  year: 2023
  text: 2023-02-24
  day: 24
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
PublicationTitle Frontiers in neurology
PublicationTitleAlternate Front Neurol
PublicationYear 2023
Publisher Frontiers Media S.A
Publisher_xml – name: Frontiers Media S.A
References Hoerl (B35) 1970; 12
Janssen (B19) 2016; 86
B44
Agosti (B27) 2022; 35
Gerevini (B12) 2016; 26
Tawil (B8) 2014; 4
Cover (B37) 1967; 13
Fatehi (B13) 2016; 172
Van Timmeren (B21) 2020; 11
Mercuri (B16) 2007; 25
Andersen (B6) 2017; 264
Felisaz (B24) 2021; 134
Jolliffe (B33) 2002
Dahlqvist (B41) 2020; 88
Smith (B30) 2013
Breiman (B39) 2017
Locher (B20) 2022; 32
Arpan (B29) 2013; 26
Weigel (B31) 2015; 41
Wang (B15) 2021; 22
Fedorov (B26) 2012; 30
Woolrich (B28) 2009; 45
Drucker (B38) 1996; 9
Ulbrich (B43) 2012; 199
Tawil (B7) 2015; 85
Glielmo (B23) 2022; 1
Mercuri (B11) 2002; 6
Costa (B5) 2012; 46
Santini (B32) 2021; 248
Paoletti (B1) 2019; 10
Carlier (B3) 2016; 3
Nagawa (B42) 2021; 11
Fischer (B17) 2008; 71
Monforte (B14) 2019; 10
Diaz-Manera (B2) 2015; 34
Dahlqvist (B9) 2014; 83
Reimers (B10) 1994; 241
Nioche (B25) 2018; 78
Abdi (B22) 2010; 2
Breiman (B40) 2001; 45
Van den Heuvel (B18) 2022; 12
Hollingsworth (B4) 2014; 83
Friedman (B34) 2001
Tibshirani (B36) 1996; 58
References_xml – volume: 22
  start-page: 56
  year: 2021
  ident: B15
  article-title: Adapting MRI as a clinical outcome measure for a facioscapulohumeral muscular dystrophy trial of prednisone and tacrolimus: case report
  publication-title: BMC Musculoskelet Disord
  doi: 10.1186/s12891-020-03910-1
– volume: 13
  start-page: 21
  year: 1967
  ident: B37
  article-title: Nearest neighbor pattern classification
  publication-title: IEEE Transact Inform Theory
  doi: 10.1109/TIT.1967.1053964
– volume: 58
  start-page: 267
  year: 1996
  ident: B36
  article-title: Regression shrinkage and selection via the lasso
  publication-title: J Royal Stat Soc Series B
  doi: 10.1111/j.2517-6161.1996.tb02080.x
– volume: 71
  start-page: 758
  year: 2008
  ident: B17
  article-title: Distinct muscle imaging patterns in myofibrillar myopathies
  publication-title: Neurology
  doi: 10.1212/01.wnl.0000324927.28817.9b
– volume: 45
  start-page: 5
  year: 2001
  ident: B40
  article-title: Random forests
  publication-title: Mach Learn
  doi: 10.1023/A:1010933404324
– volume: 88
  start-page: 669
  year: 2020
  ident: B41
  article-title: MRI in neuromuscular diseases: an emerging diagnostic tool and biomarker for prognosis and efficacy
  publication-title: Ann Neurol
  doi: 10.1002/ana.25804
– volume: 34
  start-page: 2
  year: 2015
  ident: B2
  article-title: Muscle MRI in muscular dystrophies
  publication-title: Acta Myologica.
– volume: 78
  start-page: 4786
  year: 2018
  ident: B25
  article-title: LIFEx: a freeware for radiomic feature calculation in multimodality imaging to accelerate advances in the characterization of tumor heterogeneity
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-18-0125
– volume: 41
  start-page: 266
  year: 2015
  ident: B31
  article-title: Extended phase graphs: dephasing RF pulses and echoes-pure and simple
  publication-title: J Mag Res Imag
  doi: 10.1002/jmri.24619
– volume: 6
  start-page: 305
  year: 2002
  ident: B11
  article-title: A short protocol for muscle MRI in children with muscular dystrophies
  publication-title: Eur J Paed Neurol
  doi: 10.1053/ejpn.2002.0617
– volume: 134
  start-page: 109460
  year: 2021
  ident: B24
  article-title: Texture analysis and machine learning to predict water T2 and fat fraction from non-quantitative MRI of thigh muscles in Facioscapulohumeral muscular dystrophy
  publication-title: Eur J Radiol
  doi: 10.1016/j.ejrad.2020.109460
– volume: 12
  start-page: 1426
  year: 2022
  ident: B18
  article-title: Facioscapulohumeral dystrophy transcriptome signatures correlate with different stages of disease and are marked by different MRI biomarkers
  publication-title: Sci Rep
  doi: 10.1038/s41598-022-04817-8
– volume: 86
  start-page: 1700
  year: 2016
  ident: B19
  article-title: Quantitative MRI reveals decelerated fatty infiltration in muscles of active FSHD patients
  publication-title: Neurology.
  doi: 10.1212/WNL.0000000000002640
– volume: 4
  start-page: 1
  year: 2014
  ident: B8
  article-title: Facioscapulohumeral dystrophy: the path to consensus on pathophysiology
  publication-title: Skeletal Muscle
  doi: 10.1186/2044-5040-4-12
– volume: 35
  start-page: 467
  year: 2022
  ident: B27
  article-title: Deep learning for automatic segmentation of thigh and leg muscles
  publication-title: Mag Res Mat Physics Biol Med
  doi: 10.1007/s10334-021-00967-4
– volume: 2
  start-page: 433
  year: 2010
  ident: B22
  article-title: Principal component analysis. Wiley interdisciplinary reviews
  publication-title: Computat Stat
  doi: 10.1002/wics.101
– volume: 9
  start-page: 5
  year: 1996
  ident: B38
  article-title: Support vector regression machines
  publication-title: Adv Neural Inform Process Systems
– volume: 10
  start-page: 1258
  year: 2019
  ident: B14
  article-title: R, Pichiecchio A, Tasca G, Ricci E. Tracking muscle wasting and disease activity in facioscapulohumeral muscular dystrophy by qualitative longitudinal imaging
  publication-title: J Cachexia Sarcopenia Muscle
  doi: 10.1002/jcsm.12473
– volume: 26
  start-page: 693
  year: 2016
  ident: B12
  article-title: Muscle MRI findings in facioscapulohumeral muscular dystrophy
  publication-title: Eur Radiol
  doi: 10.1007/s00330-015-3890-1
– volume: 199
  start-page: W735
  year: 2012
  ident: B43
  article-title: sequence with increased receiver bandwidth of the inversion pulse for reduction of metallic artifacts
  publication-title: AJR Am J Roentgenol.
  doi: 10.2214/AJR.11.8233
– volume: 85
  start-page: 357
  year: 2015
  ident: B7
  article-title: Evidence-based guideline summary: evaluation diagnosis and management of facioscapulohumeral muscular dystrophy: report of the guideline development dissemination and implementation subcommittee of the American academy of neurology and the practice issues review panel of the american association of neuromuscular abd electrodiagnostic medicine
  publication-title: Neurology
  doi: 10.1212/WNL.0000000000001783
– volume: 1
  start-page: 039
  year: 2022
  ident: B23
  article-title: Ranking the information content of distance measures
  publication-title: PNAS Nexus
  doi: 10.1093/pnasnexus/pgac039
– volume: 25
  start-page: 433
  year: 2007
  ident: B16
  article-title: Muscle MRI in inherited neuromuscular disorders: past present and future
  publication-title: J Int Soc Mag Reson Med
  doi: 10.1002/jmri.20804
– year: 2017
  ident: B39
  article-title: Classification and regression trees
  publication-title: Routledge.
– volume: 248
  start-page: 387
  year: 2021
  ident: B32
  article-title: Fast open-source toolkit for water T2 mapping in the presence of fat from multi-echo spin-echo acquisitions for muscle MRI
  publication-title: Front Neurol
  doi: 10.3389/fneur.2021.630387
– volume: 83
  start-page: 1178
  year: 2014
  ident: B9
  article-title: Severe paraspinal muscle involvement in facioscapulohumeral muscular dystrophy
  publication-title: Neurology
  doi: 10.1212/WNL.0000000000000828
– ident: B44
– volume: 3
  start-page: 1
  year: 2016
  ident: B3
  article-title: Skeletal muscle quantitative nuclear magnetic resonance imaging and spectroscopy as an outcome measure for clinical trials
  publication-title: J Neuromusc Dis
  doi: 10.3233/JND-160145
– volume: 45
  start-page: S173
  year: 2009
  ident: B28
  article-title: W, Jbabdi S, Patenaude B, Chappell M, Makni S, Behrens T, Smith SM. Bayesian analysis of neuroimaging data in FSL
  publication-title: Neuroimage.
  doi: 10.1016/j.neuroimage.2008.10.055
– volume-title: Principal Component Analysis for Special Types of Data.
  year: 2002
  ident: B33
– volume: 172
  start-page: 566
  year: 2016
  ident: B13
  article-title: Muscle MRI of facioscapulohumeral dystrophy (FSHD): A growing demand and a promising approach
  publication-title: Revue Neurologique
  doi: 10.1016/j.neurol.2016.08.002
– volume: 83
  start-page: 956
  year: 2014
  ident: B4
  article-title: Quantitative MRI in muscular dystrophy: an indispensable trial endpoint?
  publication-title: Neurology
  doi: 10.1212/WNL.0000000000000785
– volume: 11
  start-page: 1
  year: 2020
  ident: B21
  article-title: Radiomics in medical imaging—“how-to” guide and critical reflection
  publication-title: Insights Imag
  doi: 10.1186/s13244-020-00887-2
– year: 2001
  ident: B34
  article-title: The Elements of Statistical Learning (Vol. 1)
– volume: 10
  start-page: 78
  year: 2019
  ident: B1
  article-title: Advances in quantitative imaging of genetic and acquired myopathies: clinical applications and perspectives
  publication-title: Front Neurol
  doi: 10.3389/fneur.2019.00078
– volume: 46
  start-page: 465
  year: 2012
  ident: B5
  article-title: Magnetic resonance imaging of muscle disease: a pattern-based approach
  publication-title: Muscle Nerve
  doi: 10.1002/mus.23370
– volume: 30
  start-page: 1323
  year: 2012
  ident: B26
  article-title: 3D Slicer as an image computing platform for the quantitative imaging network
  publication-title: Mag Resonan Imag
  doi: 10.1016/j.mri.2012.05.001
– volume: 26
  start-page: 320
  year: 2013
  ident: B29
  article-title: T2 mapping provides multiple approaches for the characterization of muscle involvement in neuromuscular diseases: a cross-sectional study of lower leg muscles in 5–15-year-old boys with Duchenne muscular dystrophy
  publication-title: NMR Biomed
  doi: 10.1002/nbm.2851
– volume: 264
  start-page: 438
  year: 2017
  ident: B6
  article-title: MRI as outcome measure in facioscapulohumeral muscular dystrophy: 1-year follow-up of 45 patients
  publication-title: J Neurol
  doi: 10.1007/s00415-016-8361-3
– volume: 11
  start-page: 9821
  year: 2021
  ident: B42
  article-title: Texture analysis of muscle MRI: machine learning-based classifications in idiopathic inflammatory myopathies
  publication-title: Sci Rep
  doi: 10.1038/s41598-021-89311-3
– year: 2013
  ident: B30
  article-title: Optimization of fat-water separation algorithm selection and options using image-based metrics with validation by ISMRM fat-water challenge datasets
  publication-title: Proceedings of the 21st Annual Meeting of the International Society for Magnetic Resonance in Medicine Salt Lake City Utah
– volume: 32
  start-page: 7910
  year: 2022
  ident: B20
  article-title: Quantitative water T2 relaxometry in the early detection of neuromuscular diseases: a retrospective biopsy-controlled analysis
  publication-title: Eur Radiol.
  doi: 10.1007/s00330-022-08862-9
– volume: 12
  start-page: 55
  year: 1970
  ident: B35
  article-title: Ridge regression: Biased estimation for nonorthogonal problems
  publication-title: Technometrics
  doi: 10.1080/00401706.1970.10488634
– volume: 241
  start-page: 306
  year: 1994
  ident: B10
  article-title: Magnetic resonance imaging of skeletal muscles in idiopathic inflammatory myopathies of adults
  publication-title: J Neurol
  doi: 10.1007/BF00868438
SSID ssj0000399363
Score 2.3111517
Snippet Quantitative Muscle MRI (qMRI) is a valuable and non-invasive tool to assess disease involvement and progression in neuromuscular disorders being able to...
PurposeQuantitative Muscle MRI (qMRI) is a valuable and non-invasive tool to assess disease involvement and progression in neuromuscular disorders being able...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 1105276
SubjectTerms FSHD
machine learning
muscle MRI
Neurology
radiomics
stir
Title Radiomics and machine learning applied to STIR sequence for prediction of quantitative parameters in facioscapulohumeral disease
URI https://www.ncbi.nlm.nih.gov/pubmed/36908599
https://www.proquest.com/docview/2786511097
https://pubmed.ncbi.nlm.nih.gov/PMC9999017
https://doaj.org/article/7701a8ee893447a480cc4a3f8b118c2d
Volume 14
WOSCitedRecordID wos000946257500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1664-2295
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000399363
  issn: 1664-2295
  databaseCode: DOA
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1664-2295
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000399363
  issn: 1664-2295
  databaseCode: M~E
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELagQogLankGaGUkbig0Gz9zBNQKJFqhUtDeolnHbiO1ybLZcET89M442dUuQnDhkoPjJNbMZB72zDeMvZoFEBrj49ShPUnR4mcpOK_SKgjCnaxUiPsd3z6Z01M7nRafN1p9UU7YAA88EO7QmGwC1nu0q1IakDZzToIIdoauscsr0r6ZKTaCqaiDye5qMVTJYBRWHAbCh3xDzcIp813lBDKyYYkiYP-fvMzfkyU3rM_xLrs_uo387bDcPXbLNw_Y3ZPxYPwh-3UGVU0Fxh2HpuLXMUXS87EnxAWHwdnky5Z_Of94xlcZ1Bx9Vj5f0HuIQ7wN_HsPTaw8Qz3ICRn8mjJmOl43PICr287BvL9qL_u4ncXHE55H7Ovx0fn7D-nYXCF1UttlSgWxTiNhpRG6mrngJ75QRoIzoQi5q7zwNvNI4wpyCVorHFMzHAEtwFnxmO00beOfMl5N0I8LVsk8E6h3MwuA9jB4hdF1oaxL2GRF6NKNyOPUAOOqxAiEmFNG5pTEnHJkTsJer5-ZD7gbf539jvi3nkmY2XEAJakcJan8lyQl7OWK-yX-Y3RwAo1v-67MjdWKoFlNwp4M0rD-lNAFYcQVCTNbcrK1lu07TX0ZcbzRN0dvzDz7H4t_zu4RQWKxvXzBdpaL3u-zO-7Hsu4WB-y2mdqD-Ivg9eTn0Q1KwBkh
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Radiomics+and+machine+learning+applied+to+STIR+sequence+for+prediction+of+quantitative+parameters+in+facioscapulohumeral+disease&rft.jtitle=Frontiers+in+neurology&rft.au=Giulia+Colelli&rft.au=Giulia+Colelli&rft.au=Giulia+Colelli&rft.au=Leonardo+Barzaghi&rft.date=2023-02-24&rft.pub=Frontiers+Media+S.A&rft.eissn=1664-2295&rft.volume=14&rft_id=info:doi/10.3389%2Ffneur.2023.1105276&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_7701a8ee893447a480cc4a3f8b118c2d
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1664-2295&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1664-2295&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1664-2295&client=summon