A 3D SPH–FE coupling for FSI problems and its application to tire hydroplaning simulations on rough ground

A 3D fluid–structure coupling between Smoothed Particle Hydrodynamics (SPH) and Finite Element (FE) methods is proposed in this paper, with its application to complex tire hydroplaning simulations on rough ground. The purpose of this work is to analyze the SPH–FE coupling capabilities for modeling e...

Full description

Saved in:
Bibliographic Details
Published in:Computer methods in applied mechanics and engineering Vol. 355; pp. 558 - 590
Main Authors: Hermange, C., Oger, G., Le Chenadec, Y., Le Touzé, D.
Format: Journal Article
Language:English
Published: Amsterdam Elsevier B.V 01.10.2019
Elsevier BV
Elsevier
Subjects:
ISSN:0045-7825, 1879-2138
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract A 3D fluid–structure coupling between Smoothed Particle Hydrodynamics (SPH) and Finite Element (FE) methods is proposed in this paper, with its application to complex tire hydroplaning simulations on rough ground. The purpose of this work is to analyze the SPH–FE coupling capabilities for modeling efficiently such a complex phenomenon. On the fluid side, the SPH method is able to handle the three complex interfaces of the hydroplaning phenomenon: free-surface, ground/fluid and fluid/tire interfaces. On the solid side, the FE method is used for its ability to treat tire–ground contact. A new algorithm dedicated to such SPH–FE coupling strategies is proposed to optimize the computational efficiency through the use of differed time steps between fluid and solid solvers. This way, the number of calls to the FE solver is minimized while maintaining the accuracy and stability of the coupling. The ratio between these respective time steps relies on a control procedure based on pressure loading. The present 3D SPH–FE model is first validated with different academic test cases and experimental data before considering the complex problem of the 3D hydroplaning simulations. Hydroplaning simulations are performed and analyzed on 3D configurations involving both smooth and rough grounds. •A 3D fluid–structure coupling between Smoothed Particle Hydrodynamics (SPH) and Finite Element (FE) methods is carried out to model hydroplaning problems.•An optimized cost-reducing coupling algorithm is proposed with a control based on pressure loading to preserve the accuracy and stability of the coupling.•A methodology is proposed to model the hydroplaning problem helping in understanding the mechanisms at the origin of the phenomenon showing a significant contribution of the road type.•It is emphasized that the road roughness leads to an increase of the fluid loading which are responsible for a loss of contact between the tire and the ground.
AbstractList A 3D fluid–structure coupling between Smoothed Particle Hydrodynamics (SPH) and Finite Element (FE) methods is proposed in this paper, with its application to complex tire hydroplaning simulations on rough ground. The purpose of this work is to analyze the SPH–FE coupling capabilities for modeling efficiently such a complex phenomenon. On the fluid side, the SPH method is able to handle the three complex interfaces of the hydroplaning phenomenon: free-surface, ground/fluid and fluid/tire interfaces. On the solid side, the FE method is used for its ability to treat tire–ground contact. A new algorithm dedicated to such SPH–FE coupling strategies is proposed to optimize the computational efficiency through the use of differed time steps between fluid and solid solvers. This way, the number of calls to the FE solver is minimized while maintaining the accuracy and stability of the coupling. The ratio between these respective time steps relies on a control procedure based on pressure loading. The present 3D SPH–FE model is first validated with different academic test cases and experimental data before considering the complex problem of the 3D hydroplaning simulations. Hydroplaning simulations are performed and analyzed on 3D configurations involving both smooth and rough grounds. •A 3D fluid–structure coupling between Smoothed Particle Hydrodynamics (SPH) and Finite Element (FE) methods is carried out to model hydroplaning problems.•An optimized cost-reducing coupling algorithm is proposed with a control based on pressure loading to preserve the accuracy and stability of the coupling.•A methodology is proposed to model the hydroplaning problem helping in understanding the mechanisms at the origin of the phenomenon showing a significant contribution of the road type.•It is emphasized that the road roughness leads to an increase of the fluid loading which are responsible for a loss of contact between the tire and the ground.
A 3D fluid–structure coupling between Smoothed Particle Hydrodynamics (SPH) and Finite Element (FE) methods is proposed in this paper, with its application to complex tire hydroplaning simulations on rough ground. The purpose of this work is to analyze the SPH–FE coupling capabilities for modeling efficiently such a complex phenomenon. On the fluid side, the SPH method is able to handle the three complex interfaces of the hydroplaning phenomenon: free-surface, ground/fluid and fluid/tire interfaces. On the solid side, the FE method is used for its ability to treat tire–ground contact. A new algorithm dedicated to such SPH–FE coupling strategies is proposed to optimize the computational efficiency through the use of differed time steps between fluid and solid solvers. This way, the number of calls to the FE solver is minimized while maintaining the accuracy and stability of the coupling. The ratio between these respective time steps relies on a control procedure based on pressure loading. The present 3D SPH–FE model is first validated with different academic test cases and experimental data before considering the complex problem of the 3D hydroplaning simulations. Hydroplaning simulations are performed and analyzed on 3D configurations involving both smooth and rough grounds.
Author Le Chenadec, Y.
Oger, G.
Le Touzé, D.
Hermange, C.
Author_xml – sequence: 1
  givenname: C.
  surname: Hermange
  fullname: Hermange, C.
  organization: École Centrale Nantes, LHEEA res. dept. (ECN and CNRS), Nantes, France
– sequence: 2
  givenname: G.
  surname: Oger
  fullname: Oger, G.
  email: guillaume.oger@ec-nantes.fr
  organization: École Centrale Nantes, LHEEA res. dept. (ECN and CNRS), Nantes, France
– sequence: 3
  givenname: Y.
  surname: Le Chenadec
  fullname: Le Chenadec, Y.
  organization: La Manufacture Francaise des Pneumatiques MICHELIN, Clermont-Ferrand, France
– sequence: 4
  givenname: D.
  orcidid: 0000-0003-3315-7306
  surname: Le Touzé
  fullname: Le Touzé, D.
  organization: École Centrale Nantes, LHEEA res. dept. (ECN and CNRS), Nantes, France
BackLink https://hal.science/hal-02456192$$DView record in HAL
BookMark eNp9kUFOAyEYhYnRxFo9gDsSVy5mBGaGgbhq1FqTJpqoa0IZpqWZwgiMiTvv4A09idQaFy5k8xJ43x_-947AvnVWA3CKUY4RphfrXG1kThDmOaI5Koo9MMKs5hnBBdsHI4TKKqsZqQ7BUQhrlA7DZAS6CSyu4ePD7PP9Y3oDlRv6ztglbJ2H08c72Hu36PQmQGkbaGLSPhmUjMZZGB2Mxmu4emu86ztpt2Qwm6H7fg8webwbliu4TGKbY3DQyi7okx8dg-fpzdPVLJvf395dTeaZKimLGW4V0y2rq0JySRlrMWkLUpakJGkjxknJEZGkpXqBeUmVVAuGJaoRqxhdYFSMwflu7kp2ovdmI_2bcNKI2WQutneIlBXFnLzi5D3bedOmL4MOUazd4G36niCE8YpylNIcA7xzKe9C8Lr9HYuR2BYg1iIVILYFCERFQhJT_2GUid_BRC9N9y95uSN1CunVaC-CMtoq3aS0VRSNM__QXyC0oLI
CitedBy_id crossref_primary_10_1080_10298436_2023_2229479
crossref_primary_10_1016_j_cma_2023_116412
crossref_primary_10_1007_s40722_020_00163_x
crossref_primary_10_1007_s11433_021_1694_8
crossref_primary_10_1016_j_euromechflu_2021_12_001
crossref_primary_10_1016_j_cma_2020_113653
crossref_primary_10_1016_j_oceaneng_2024_119636
crossref_primary_10_1016_j_cma_2023_115915
crossref_primary_10_1016_j_euromechflu_2022_04_005
crossref_primary_10_1002_fld_5083
crossref_primary_10_1016_j_marstruc_2023_103531
crossref_primary_10_1080_00423114_2021_1901941
crossref_primary_10_1016_j_cma_2020_113538
crossref_primary_10_1016_j_jcp_2023_112056
crossref_primary_10_1016_j_cma_2022_115356
crossref_primary_10_1016_j_jfluidstructs_2025_104366
crossref_primary_10_1016_j_cma_2024_117179
crossref_primary_10_1016_j_oceaneng_2022_112026
crossref_primary_10_1016_j_apor_2020_102268
crossref_primary_10_3390_jmse9101110
crossref_primary_10_1002_fld_4878
crossref_primary_10_1063_5_0226161
crossref_primary_10_1007_s12650_022_00848_5
crossref_primary_10_1515_geo_2022_0407
crossref_primary_10_3390_jmse11091685
crossref_primary_10_1080_14680629_2022_2106294
crossref_primary_10_1016_j_jfluidstructs_2025_104295
crossref_primary_10_1080_13632469_2022_2104959
crossref_primary_10_1016_j_jcp_2021_110786
crossref_primary_10_3390_jmse11050978
crossref_primary_10_1016_j_oceaneng_2023_115889
crossref_primary_10_1016_j_triboint_2021_107157
crossref_primary_10_1007_s42241_022_0052_1
crossref_primary_10_1016_j_apor_2021_102734
crossref_primary_10_1088_1755_1315_769_4_042052
crossref_primary_10_3390_buildings14103140
crossref_primary_10_1016_j_apor_2021_102775
crossref_primary_10_1371_journal_pone_0292701
crossref_primary_10_1016_j_enganabound_2023_05_011
crossref_primary_10_1016_j_euromechflu_2022_07_007
crossref_primary_10_1016_j_istruc_2022_12_100
crossref_primary_10_1016_j_cma_2020_113634
crossref_primary_10_1016_j_cma_2022_114728
crossref_primary_10_1016_j_oceaneng_2020_108119
crossref_primary_10_1007_s11431_019_1519_9
crossref_primary_10_1016_j_apor_2021_102774
crossref_primary_10_1016_j_euromechflu_2022_09_002
crossref_primary_10_1016_j_jcp_2022_111762
crossref_primary_10_1007_s10483_023_3054_8
crossref_primary_10_1063_5_0276643
crossref_primary_10_1016_j_heliyon_2023_e17922
crossref_primary_10_1016_j_oceaneng_2020_108552
crossref_primary_10_1016_j_ast_2023_108570
crossref_primary_10_1016_j_cej_2020_127497
crossref_primary_10_1007_s11709_024_0969_2
crossref_primary_10_1016_j_euromechflu_2022_02_014
crossref_primary_10_1016_j_jcp_2023_112233
crossref_primary_10_1016_j_cma_2022_115573
crossref_primary_10_1016_j_apor_2021_102822
crossref_primary_10_1016_j_apor_2025_104433
crossref_primary_10_1016_j_jfluidstructs_2022_103555
crossref_primary_10_1016_j_jfluidstructs_2023_103855
crossref_primary_10_1016_j_oceaneng_2024_119061
crossref_primary_10_3389_fphy_2023_1325294
crossref_primary_10_1016_j_cma_2020_113425
crossref_primary_10_1080_17445302_2024_2317040
Cites_doi 10.1016/j.jcp.2014.05.040
10.1006/jcph.1993.1199
10.1016/S0045-7825(99)00206-6
10.1016/0029-5493(94)90143-0
10.1016/j.engstruct.2010.10.020
10.1016/0021-9991(83)90036-0
10.1016/j.cpc.2017.04.005
10.1080/00221686.2010.9641246
10.1016/j.compstruc.2008.05.005
10.1002/nme.1617
10.1007/s12206-007-1004-y
10.1007/BF02123482
10.1007/s00466-015-1131-8
10.1142/S0218202599000117
10.1016/j.cma.2010.02.019
10.1080/21664250.2018.1436243
10.1016/j.jcp.2010.10.006
10.1016/j.jfluidstructs.2011.08.003
10.1016/j.jcp.2017.10.041
10.1016/j.jfluidstructs.2014.07.007
10.2514/6.2018-0783
10.1016/j.jfluidstructs.2013.05.010
10.1016/j.jcp.2007.01.039
10.1016/j.cpc.2018.05.012
10.1016/j.sbspro.2012.09.951
10.1080/00221686.2010.9641244
10.1016/j.euromechsol.2006.02.007
10.1016/S0021-9991(03)00324-3
10.1002/cnm.1341
10.1016/0029-5493(94)90136-8
10.1007/s00466-008-0245-7
10.1016/j.oceaneng.2017.12.008
10.1016/j.cpc.2018.08.001
10.1016/j.cpc.2015.08.021
10.1016/j.oceaneng.2014.04.016
10.1002/fld.3786
10.1016/j.oceaneng.2012.06.031
10.1002/nme.5331
10.2346/1.2137544
10.1086/112164
10.1016/j.apor.2018.10.020
10.1016/j.ijimpeng.2004.04.017
10.1016/j.compstruc.2007.01.002
10.1093/mnras/181.3.375
10.1016/j.compfluid.2003.06.006
10.1016/j.jcp.2016.02.039
10.1016/j.jcp.2013.03.011
ContentType Journal Article
Copyright 2019 Elsevier B.V.
Copyright Elsevier BV Oct 1, 2019
Attribution - NonCommercial
Copyright_xml – notice: 2019 Elsevier B.V.
– notice: Copyright Elsevier BV Oct 1, 2019
– notice: Attribution - NonCommercial
DBID AAYXX
CITATION
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
1XC
VOOES
DOI 10.1016/j.cma.2019.06.033
DatabaseName CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
EISSN 1879-2138
EndPage 590
ExternalDocumentID oai:HAL:hal-02456192v1
10_1016_j_cma_2019_06_033
S0045782519303767
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABAOU
ABBOA
ABFNM
ABJNI
ABMAC
ABYKQ
ACAZW
ACDAQ
ACGFS
ACIWK
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ARUGR
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
JJJVA
KOM
LG9
LY7
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SST
SSV
SSW
SSZ
T5K
TN5
WH7
XPP
ZMT
~02
~G-
29F
9DU
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADIYS
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
SBC
SET
SEW
VH1
VOH
WUQ
ZY4
~HD
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
1XC
VOOES
ID FETCH-LOGICAL-c468t-1fc8ef8753a9a688f12f32442428798924902a2f6eb1946cacb81a0708586b103
ISICitedReferencesCount 76
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000480605100024&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0045-7825
IngestDate Tue Oct 14 20:41:42 EDT 2025
Sun Nov 30 05:15:52 EST 2025
Tue Nov 18 20:05:59 EST 2025
Sat Nov 29 07:28:14 EST 2025
Fri Feb 23 02:20:30 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Fluid–structure interactions
Tire hydroplaning
SPH–FE coupling
Language English
License Attribution - NonCommercial: http://creativecommons.org/licenses/by-nc
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c468t-1fc8ef8753a9a688f12f32442428798924902a2f6eb1946cacb81a0708586b103
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-3315-7306
OpenAccessLink https://hal.science/hal-02456192
PQID 2289569003
PQPubID 2045269
PageCount 33
ParticipantIDs hal_primary_oai_HAL_hal_02456192v1
proquest_journals_2289569003
crossref_primary_10_1016_j_cma_2019_06_033
crossref_citationtrail_10_1016_j_cma_2019_06_033
elsevier_sciencedirect_doi_10_1016_j_cma_2019_06_033
PublicationCentury 2000
PublicationDate 2019-10-01
2019-10-00
20191001
2019-10
PublicationDateYYYYMMDD 2019-10-01
PublicationDate_xml – month: 10
  year: 2019
  text: 2019-10-01
  day: 01
PublicationDecade 2010
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Computer methods in applied mechanics and engineering
PublicationYear 2019
Publisher Elsevier B.V
Elsevier BV
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier BV
– name: Elsevier
References Yang (b35) 2012
Marongiu (b47) 2007
Botia-Vera (b60) 2015
Barcarolo, Oger, Le Touzé (b61) 2014; 273
Vincent, Sarthou, Caltagirone, Sonilhac, Février, Mignot, Pianet (b4) 2011; 230
F. Biesse, Analysis of wet road usage with a driving safety concern, in: 21st Technical Congress of the VDA, 2019.
Nakajima, Seta, Kamegawa, Ogawa (b10) 2000; 1
Oger, Marrone, Le Touzé, De Leffe (b54) 2016; 313
Gingold, Monaghan (b16) 1977; 181
Chiron, Oger, De Leffe, Le Touzé (b63) 2017; 354
Chiron (b62) 2017
De Vuyst (b30) 2005; 31
J. Leduc, F. Leboeuf, M. Lance, Improvement of multiphase model using preconditioned riemann solvers. Proceeding of the 5th international SPHERIC workshop, 2010.
Hwang, Khayyer, Gotoh, Park (b24) 2014
Gotoh, Khayyer (b17) 2018; 60
Yang, Jones, Mccue (b65) 2012; 55
Zhu, Liu, Cao, Huang (b13) 2017
Michler, Hulshoff, Van Brummelen, De Borst (b36) 2004; 33
Caleyron, Chuzel-Marmot, Combescure (b33) 2009; 27
Q. Qu, T. Liu, P. Liu, R. Agarwal, Simulation of water spray generated by pneumatic aircraft tire on flooded runway, in: Conference AIAA Aerospace Sciences Meeting, 2018.
Paik, Carrica (b68) 2014; 84
Bouscasse, Colagrossi, Marrone, Antuono (b50) 2013; 42
Grogger, Weiss (b2) 1997; 25
Chiron, De Leffe, Oger, Le Touzé (b52) 2019; 234
Degroote, Bruggeman, Haelterman, Vierendeels (b37) 2008; 86
Vila (b41) 1999; 9
De Leffe (b49) 2009
Oger, Doring, Alessandrini, Ferrant (b44) 2007; 225
Li, Leduc, Nunez-Ramirez, Combescure, Marongiu (b14) 2015; 55
Degroote, Souto-Iglesias, Van Paepegem, Annerel, Bruggeman, Vierendeels (b67) 2010; 199
Zhang, Decheng (b22) 2018; 152
Khayyer, Gotoh, Falahaty, Shimizu (b23) 2018; 232
D. Barcarolo, J. Candelier, D. Guibert, M. De Leffe, Hydrodynamics performance simulations using SPH for automotive applications, in: Proceedings of the 9th SPHERIC Conference, 2014.
Marrone, Colagrossi, Antuono, Colicchio, Graziani (b56) 2013; 245
Fourey (b34) 2012
Bathe (b1) 1995
Groenenboom, Cartwright (b31) 2010; 48
Li (b38) 2013
Fourey, Hermange, Oger, Le Touzé (b20) 2017
Oger, Le Touzé, Guibert, De Leffe, Biddiscombe, Soumagne, Piccinali (b53) 2016; 200
Anupam (b11) 2012
Monaghan, Gingold (b64) 1983; 52
Khayyer, Tsuruta, Shimizu, Gotoh (b21) 2019; 82
Li, Combescure, Leboeuf (b58) 2013; 72
Antoci, Gallati, Sibilla (b26) 2007; 85
Colagrossi, Landrini (b46) 2003; 191
Antoci (b57) 2006
Idelsohn, Marti, Souto-Iglesias, Onate (b59) 2008; 43
Wendland (b40) 1995; 4
Farhat, Lesoinne (b55) 2000; 182
Zhang, Qiang, Gao (b32) 2011; 33
Okano, Koishi (b9) 2001
Quinlan, Basa, Lastiwka (b43) 2006; 66
Libersky, Petschek, Carney, Hipp, Allahdadi (b45) 1993; 109
Cho, Lee, Sohn, Kim, Woo (b3) 2006; 25
Attaway, Heinstein, Swegle (b29) 1994; 150
Nunez Ramirez, Marongiu, Brun, Combescure (b39) 2016; 109
Gilbert (b66) 2015
Marongiu, Leboeuf, Caro, Parkison (b48) 2010; 48
Kumar, Anupam, Scarpas, Kasbergen (b5) 2012; 53
Deuff (b25) 2007
Oh, Kim, Jeong, Park, Kim (b6) 2008; 22
Marrone, Colagrossi, Antuono, Lugni, Tulin (b51) 2011; 27
Todoroff, Paupy, Biesse, Le Chenadec (b70) 2018
M. Koishi, T. Okano, L. Olovsson, H. Saito, M. Makino, Hydroplaning simulation using fluid–structure interaction in LS-DYNA, in: LS-DYNA Conference, 2001.
Johnson (b28) 1994; 150
Kim, Jeong (b7) 2010; 11
Lucy (b15) 1977; 82
Hermange, Oger, Le Touzé (b27) 2019
El Gindy, El Sayegh (b18) 2017; 12
Botia-Vera (10.1016/j.cma.2019.06.033_b60) 2015
Hwang (10.1016/j.cma.2019.06.033_b24) 2014
Gotoh (10.1016/j.cma.2019.06.033_b17) 2018; 60
Bathe (10.1016/j.cma.2019.06.033_b1) 1995
Anupam (10.1016/j.cma.2019.06.033_b11) 2012
Li (10.1016/j.cma.2019.06.033_b38) 2013
Gingold (10.1016/j.cma.2019.06.033_b16) 1977; 181
Vincent (10.1016/j.cma.2019.06.033_b4) 2011; 230
10.1016/j.cma.2019.06.033_b8
Chiron (10.1016/j.cma.2019.06.033_b52) 2019; 234
Grogger (10.1016/j.cma.2019.06.033_b2) 1997; 25
10.1016/j.cma.2019.06.033_b12
Idelsohn (10.1016/j.cma.2019.06.033_b59) 2008; 43
Farhat (10.1016/j.cma.2019.06.033_b55) 2000; 182
Li (10.1016/j.cma.2019.06.033_b14) 2015; 55
10.1016/j.cma.2019.06.033_b19
Nunez Ramirez (10.1016/j.cma.2019.06.033_b39) 2016; 109
Oh (10.1016/j.cma.2019.06.033_b6) 2008; 22
Caleyron (10.1016/j.cma.2019.06.033_b33) 2009; 27
Degroote (10.1016/j.cma.2019.06.033_b37) 2008; 86
Li (10.1016/j.cma.2019.06.033_b58) 2013; 72
Yang (10.1016/j.cma.2019.06.033_b65) 2012; 55
Fourey (10.1016/j.cma.2019.06.033_b34) 2012
De Leffe (10.1016/j.cma.2019.06.033_b49) 2009
Zhang (10.1016/j.cma.2019.06.033_b22) 2018; 152
Zhang (10.1016/j.cma.2019.06.033_b32) 2011; 33
Okano (10.1016/j.cma.2019.06.033_b9) 2001
Antoci (10.1016/j.cma.2019.06.033_b26) 2007; 85
Todoroff (10.1016/j.cma.2019.06.033_b70) 2018
Khayyer (10.1016/j.cma.2019.06.033_b21) 2019; 82
Marrone (10.1016/j.cma.2019.06.033_b56) 2013; 245
Attaway (10.1016/j.cma.2019.06.033_b29) 1994; 150
Vila (10.1016/j.cma.2019.06.033_b41) 1999; 9
10.1016/j.cma.2019.06.033_b69
Hermange (10.1016/j.cma.2019.06.033_b27) 2019
Cho (10.1016/j.cma.2019.06.033_b3) 2006; 25
Chiron (10.1016/j.cma.2019.06.033_b62) 2017
El Gindy (10.1016/j.cma.2019.06.033_b18) 2017; 12
Bouscasse (10.1016/j.cma.2019.06.033_b50) 2013; 42
Quinlan (10.1016/j.cma.2019.06.033_b43) 2006; 66
Oger (10.1016/j.cma.2019.06.033_b53) 2016; 200
Paik (10.1016/j.cma.2019.06.033_b68) 2014; 84
Zhu (10.1016/j.cma.2019.06.033_b13) 2017
Barcarolo (10.1016/j.cma.2019.06.033_b61) 2014; 273
Chiron (10.1016/j.cma.2019.06.033_b63) 2017; 354
Deuff (10.1016/j.cma.2019.06.033_b25) 2007
De Vuyst (10.1016/j.cma.2019.06.033_b30) 2005; 31
Colagrossi (10.1016/j.cma.2019.06.033_b46) 2003; 191
Monaghan (10.1016/j.cma.2019.06.033_b64) 1983; 52
Libersky (10.1016/j.cma.2019.06.033_b45) 1993; 109
Yang (10.1016/j.cma.2019.06.033_b35) 2012
Gilbert (10.1016/j.cma.2019.06.033_b66) 2015
Antoci (10.1016/j.cma.2019.06.033_b57) 2006
Wendland (10.1016/j.cma.2019.06.033_b40) 1995; 4
Johnson (10.1016/j.cma.2019.06.033_b28) 1994; 150
Marongiu (10.1016/j.cma.2019.06.033_b48) 2010; 48
Nakajima (10.1016/j.cma.2019.06.033_b10) 2000; 1
Degroote (10.1016/j.cma.2019.06.033_b67) 2010; 199
Fourey (10.1016/j.cma.2019.06.033_b20) 2017
Michler (10.1016/j.cma.2019.06.033_b36) 2004; 33
Groenenboom (10.1016/j.cma.2019.06.033_b31) 2010; 48
Marongiu (10.1016/j.cma.2019.06.033_b47) 2007
Oger (10.1016/j.cma.2019.06.033_b44) 2007; 225
Oger (10.1016/j.cma.2019.06.033_b54) 2016; 313
Kumar (10.1016/j.cma.2019.06.033_b5) 2012; 53
Khayyer (10.1016/j.cma.2019.06.033_b23) 2018; 232
Marrone (10.1016/j.cma.2019.06.033_b51) 2011; 27
Kim (10.1016/j.cma.2019.06.033_b7) 2010; 11
Lucy (10.1016/j.cma.2019.06.033_b15) 1977; 82
10.1016/j.cma.2019.06.033_b42
References_xml – year: 2017
  ident: b20
  article-title: An efficient FSI coupling strategy between smoothed particle hydrodynamics and finite element methods
  publication-title: Comput. Phys. Comm.
– year: 2017
  ident: b62
  article-title: Couplages et améliorations de la méthode SPH pour traiter des écoulements à multi-échelles temporelles et spatiales
– volume: 25
  start-page: 914
  year: 2006
  end-page: 926
  ident: b3
  article-title: Numerical investigation of hydroplaning characteristics of three-dimensional patterned tire
  publication-title: Eur. J. Mech. A Solids
– volume: 33
  start-page: 839
  year: 2004
  end-page: 848
  ident: b36
  article-title: A monolithic approach to fluid–structure interaction
  publication-title: Comput. & Fluids
– volume: 86
  start-page: 2224
  year: 2008
  end-page: 2234
  ident: b37
  article-title: Stability of a coupling technique for partitioned solvers in FSI applications
  publication-title: Comput. Struct.
– year: 2014
  ident: b24
  article-title: Development of a fully lagrangian MPS-based coupled method for simulation of fluid–structure interaction problems
  publication-title: J. Fluids Struct.
– year: 2006
  ident: b57
  article-title: Simulazione numerica dell’interazione fluido-struttura con la tecnica SPH
– volume: 27
  start-page: 882
  year: 2009
  end-page: 898
  ident: b33
  article-title: Modeling of reinforced concrete trough SPH-FE coupling and its application to the simulation of a projectile’s impact onto a slab
  publication-title: Int. J. Numer. Methods Biomed. Eng.
– volume: 199
  start-page: 2085
  year: 2010
  end-page: 2098
  ident: b67
  article-title: Partitioned simulation of the interaction between an elastic structure and free surface flow
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 55
  start-page: 697
  year: 2015
  end-page: 718
  ident: b14
  article-title: A non-intrusive partitioned approach to couple smoothed particle hydrodynamics and finite element methods for transient fluid–structure interaction problems with large interface motion
  publication-title: Comput. Mech.
– year: 2001
  ident: b9
  article-title: Hydroplaning Simulation using msc.dytran
– volume: 232
  start-page: 139
  year: 2018
  end-page: 164
  ident: b23
  article-title: An enhanced isph-sph coupled method for simulation of incompressible fluid-elastic structure interactions
  publication-title: Comput. Phys. Comm.
– year: 2015
  ident: b60
  article-title: Experimental and statistical investigation of canonical problems in sloshing
– year: 2012
  ident: b11
  article-title: Numerical simulation of vehicle hydroplaning and skid resistance on grooved pavement
– volume: 12
  start-page: 143
  year: 2017
  end-page: 161
  ident: b18
  article-title: Sensitivity analysis of truck tyre hydroplaning speed using FEA-SPH model
  publication-title: Int. J. Veh. Syst. Model. Test.
– volume: 152
  start-page: 416
  year: 2018
  end-page: 427
  ident: b22
  article-title: MPS-FEM coupled method for sloshing flows in an elastic tank
  publication-title: Ocean Eng.
– reference: M. Koishi, T. Okano, L. Olovsson, H. Saito, M. Makino, Hydroplaning simulation using fluid–structure interaction in LS-DYNA, in: LS-DYNA Conference, 2001.
– volume: 82
  start-page: 1013
  year: 1977
  end-page: 1024
  ident: b15
  article-title: A numerical approach to the testing of the fission hypothesis
  publication-title: Astron. J.
– year: 2007
  ident: b47
  article-title: Méthode numérique lagrangienne pour la simulation d’écoulements à surface libre. Application aux turbines Pelton
– volume: 9
  year: 1999
  ident: b41
  article-title: On particle weighted methods and Smooth Particle Hydrodynamics
  publication-title: Math. Models Methods Appl. Sci.
– volume: 84
  start-page: 201
  year: 2014
  end-page: 212
  ident: b68
  article-title: Fluid–structure interaction for an elastic structure interacting with free surface in a rolling tank
  publication-title: Ocean Eng.
– volume: 48
  start-page: 40
  year: 2010
  end-page: 49
  ident: b48
  article-title: Free surface flows simulations in Pelton turbines using an hybrid SPH-ALE method
  publication-title: J. Hydraul. Res.
– volume: 60
  start-page: 79
  year: 2018
  end-page: 103
  ident: b17
  article-title: On the state-of-the-art of particle methods for coastal and ocean engineering
  publication-title: Coast. Eng. J.
– volume: 72
  start-page: 1286
  year: 2013
  end-page: 1306
  ident: b58
  article-title: Coupling of Finite Volume and Finite Element subdomains using different time integrators
  publication-title: Int. J. Numer. Methods Fluids
– volume: 191
  start-page: 448
  year: 2003
  end-page: 475
  ident: b46
  article-title: Numerical simulation of interfacial flows by smoothed particle hydrodynamics
  publication-title: J. Comput. Phys.
– volume: 48
  start-page: 61
  year: 2010
  end-page: 73
  ident: b31
  article-title: Hydrodynamics and fluid–structure interaction by coupled SPH-FE method
  publication-title: J. Hydraul. Res.
– volume: 33
  start-page: 255
  year: 2011
  end-page: 264
  ident: b32
  article-title: Coupling of Smoothed Particle Hydrodynamics and Finite Element method for impact dynamics simulation
  publication-title: Eng. Struct.
– year: 2017
  ident: b13
  article-title: Numerical study of tire hydroplaning based on power spectrum of asphalt pavement and kinetic friction coefficient
  publication-title: Adv. Mater. Sci. Eng.
– volume: 82
  start-page: 397
  year: 2019
  end-page: 414
  ident: b21
  article-title: Multi-resolution MPS for incompressible fluid-elastic structure interactions in ocean engineering
  publication-title: Appl. Ocean Res.
– volume: 182
  start-page: 499
  year: 2000
  end-page: 515
  ident: b55
  article-title: Two efficient staggered algorithms for the serial and parallel solution of three dimensional nonlinear transient aeroelastic problems
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 313
  start-page: 76
  year: 2016
  end-page: 98
  ident: b54
  article-title: SPH accuracy improvement through the combination of a quasi-Lagrangian shifting transport velocity and consistent ALE formalisms
  publication-title: J. Comput. Phys.
– volume: 109
  start-page: 67
  year: 1993
  end-page: 75
  ident: b45
  article-title: High strain Lagrangian hydrodynamics: A three-dimensional SPH code for dynamic material response
  publication-title: J. Comput. Phys.
– year: 2009
  ident: b49
  article-title: Modélisation d’écoulements visqueux par méthode SPH en vue d’application à l’hydrodynamique navale
– volume: 109
  start-page: 1391
  year: 2016
  end-page: 1417
  ident: b39
  article-title: A partitioned approach for the coupling of SPH and FE methods for transient nonlinear FSI problems with incompatible time-steps
  publication-title: Int. J. Numer. Methods Eng.
– year: 1995
  ident: b1
  article-title: Finite Element Procedures
– volume: 53
  start-page: 1020
  year: 2012
  end-page: 1028
  ident: b5
  article-title: Study of hydroplaning risk on rolling and sliding passenger car
  publication-title: Proc. Soc. Behav. Sci.
– volume: 150
  start-page: 199
  year: 1994
  end-page: 205
  ident: b29
  article-title: Coupling of Smooth Particle Hydrodynamics with the Finite Element method
  publication-title: Nucl. Eng. Des.
– volume: 4
  start-page: 389
  year: 1995
  end-page: 396
  ident: b40
  article-title: Piecewise polynomial, positive definite and compactly supported radial function of minimal degree
  publication-title: Adv. Comput. Math.
– year: 2012
  ident: b35
  article-title: SPH Simulation of fluid structure interaction problems with application to hovercraft
– year: 2013
  ident: b38
  article-title: Développement d’une méthode de simulation de couplage fluide structure à l’aide de la méthode SPH
– reference: D. Barcarolo, J. Candelier, D. Guibert, M. De Leffe, Hydrodynamics performance simulations using SPH for automotive applications, in: Proceedings of the 9th SPHERIC Conference, 2014.
– volume: 85
  start-page: 879
  year: 2007
  end-page: 890
  ident: b26
  article-title: Numérical Simulation of fluid structure interaction by SPH
  publication-title: IOP Comput. Struct.
– volume: 42
  start-page: 112
  year: 2013
  end-page: 129
  ident: b50
  article-title: Nonlinear water wave interaction with floating bodies in SPH
  publication-title: J. Fluids Struct.
– volume: 273
  start-page: 640
  year: 2014
  end-page: 657
  ident: b61
  article-title: Adaptive particle refinement and derefinement applied to Smoothed Particle Hydrodynamics method
  publication-title: J. Comput. Phys.
– volume: 43
  start-page: 125
  year: 2008
  end-page: 132
  ident: b59
  article-title: Interaction between an elastic structure and free-surface flows: experimental versus numerical comparisons using the PFEM
  publication-title: Comput. Mech.
– volume: 31
  start-page: 1054
  year: 2005
  end-page: 1064
  ident: b30
  article-title: Coupling between meshless and Finite Element methods
  publication-title: Int. J. Impact Eng.
– year: 2019
  ident: b27
  article-title: Energy considerations in the SPH method with deformable boundaries and application to FSI problems
  publication-title: J. Comput. Phys. X
– volume: 66
  start-page: 2064
  year: 2006
  end-page: 2085
  ident: b43
  article-title: Tuncation errors in mesh-free particle methods
  publication-title: Internat. J. Numer. Methods Engrg.
– start-page: 1
  year: 2018
  end-page: 20
  ident: b70
  article-title: The mechanisms involved during the wet braking of new and worn tires
  publication-title: Veh. Syst. Dyn.
– volume: 234
  start-page: 93
  year: 2019
  end-page: 111
  ident: b52
  article-title: Fast an accurate SPH modelling of 3d complex wall boundaries in viscous and non viscous flows
  publication-title: Comput. Phys. Comm.
– volume: 181
  start-page: 375
  year: 1977
  end-page: 389
  ident: b16
  article-title: Smoothed Particle Hydrodynamics: theory and application to non-spherical stars
  publication-title: Mon. Not. R. Astron. Soc.
– year: 2015
  ident: b66
  article-title: Accelerating an SPH-FEM solver using heterogeneous computing for use in fluid-structure interaction problems
– volume: 230
  start-page: 956
  year: 2011
  end-page: 983
  ident: b4
  article-title: Augmented Lagrangian and penalty methods for the simulation of two phase flows interacting with moving solids. Application to hydroplaning flows interacting with real tire tread patterns
  publication-title: J. Comput. Phys.
– reference: Q. Qu, T. Liu, P. Liu, R. Agarwal, Simulation of water spray generated by pneumatic aircraft tire on flooded runway, in: Conference AIAA Aerospace Sciences Meeting, 2018.
– volume: 27
  start-page: 1199
  year: 2011
  end-page: 1215
  ident: b51
  article-title: A 2D+t SPH model to study the breaking wave pattern generated by fast ships
  publication-title: J. Fluids Struct.
– volume: 1
  start-page: 26
  year: 2000
  end-page: 34
  ident: b10
  article-title: Hydroplaning analysis by FEM and FVM - effect of tire rolling and tire pattern on hydroplaning
  publication-title: Int. J. Automot. Technol.
– volume: 225
  start-page: 1472
  year: 2007
  end-page: 1492
  ident: b44
  article-title: An improved SPH method: Towards higher order convergence
  publication-title: J. Comput. Phys.
– volume: 150
  start-page: 265
  year: 1994
  end-page: 274
  ident: b28
  article-title: Linking of lagrangian particle methods to standard finite element methods for high velocity impact computations
  publication-title: Nucl. Eng. Des.
– volume: 245
  start-page: 456
  year: 2013
  end-page: 475
  ident: b56
  article-title: An accurate SPH modeling of viscous flows around bodies at low and moderate Reynolds numbers
  publication-title: J. Comput. Phys.
– reference: J. Leduc, F. Leboeuf, M. Lance, Improvement of multiphase model using preconditioned riemann solvers. Proceeding of the 5th international SPHERIC workshop, 2010.
– reference: F. Biesse, Analysis of wet road usage with a driving safety concern, in: 21st Technical Congress of the VDA, 2019.
– year: 2012
  ident: b34
  article-title: Développement d’une méthode de couplage fluide structure SPH Eléments Finis en vue de son application á l’hydrodynamique navale
– volume: 200
  start-page: 1
  year: 2016
  end-page: 14
  ident: b53
  article-title: On distributed memory MPI-based parallelization of SPH codes in massive HPC context
  publication-title: Comput. Phys. Comm.
– volume: 25
  start-page: 265
  year: 1997
  end-page: 287
  ident: b2
  article-title: Calculation of the hydroplaning of a deformable smooth-shaped and longitudinally-grooved tire
  publication-title: Tire Sci. Technol.
– volume: 354
  start-page: 552
  year: 2017
  end-page: 575
  ident: b63
  article-title: Analysis and improvements of adaptive particle refinement (APR) through CPU time, accuracy and robustness considerations
  publication-title: J. Comput. Phys.
– volume: 11
  start-page: 901
  year: 2010
  end-page: 908
  ident: b7
  article-title: Hydroplaning simulation for tires using FEM, FDM and an asymptotic method
  publication-title: J. Mech. Sci. Technol.
– volume: 55
  start-page: 136
  year: 2012
  end-page: 147
  ident: b65
  article-title: Free-surface flow interactions with deformable structures using an SPH-FEM model
  publication-title: Ocean Eng.
– volume: 22
  start-page: 34
  year: 2008
  end-page: 40
  ident: b6
  article-title: Hydroplaning simulation for a straight-grooved tire by using FDM, FEM and an asymptotic method
  publication-title: J. Mech. Sci. Technol.
– year: 2007
  ident: b25
  article-title: Extrapolation au réel des mesures de pressions obtenues sur des cuves modèle réduit
– volume: 52
  start-page: 374
  year: 1983
  end-page: 389
  ident: b64
  article-title: Shock simulation by the particle method SPH
  publication-title: J. Comput. Phys.
– volume: 273
  start-page: 640
  year: 2014
  ident: 10.1016/j.cma.2019.06.033_b61
  article-title: Adaptive particle refinement and derefinement applied to Smoothed Particle Hydrodynamics method
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2014.05.040
– volume: 109
  start-page: 67
  year: 1993
  ident: 10.1016/j.cma.2019.06.033_b45
  article-title: High strain Lagrangian hydrodynamics: A three-dimensional SPH code for dynamic material response
  publication-title: J. Comput. Phys.
  doi: 10.1006/jcph.1993.1199
– volume: 182
  start-page: 499
  year: 2000
  ident: 10.1016/j.cma.2019.06.033_b55
  article-title: Two efficient staggered algorithms for the serial and parallel solution of three dimensional nonlinear transient aeroelastic problems
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/S0045-7825(99)00206-6
– volume: 150
  start-page: 265
  year: 1994
  ident: 10.1016/j.cma.2019.06.033_b28
  article-title: Linking of lagrangian particle methods to standard finite element methods for high velocity impact computations
  publication-title: Nucl. Eng. Des.
  doi: 10.1016/0029-5493(94)90143-0
– volume: 33
  start-page: 255
  year: 2011
  ident: 10.1016/j.cma.2019.06.033_b32
  article-title: Coupling of Smoothed Particle Hydrodynamics and Finite Element method for impact dynamics simulation
  publication-title: Eng. Struct.
  doi: 10.1016/j.engstruct.2010.10.020
– volume: 52
  start-page: 374
  year: 1983
  ident: 10.1016/j.cma.2019.06.033_b64
  article-title: Shock simulation by the particle method SPH
  publication-title: J. Comput. Phys.
  doi: 10.1016/0021-9991(83)90036-0
– year: 2017
  ident: 10.1016/j.cma.2019.06.033_b20
  article-title: An efficient FSI coupling strategy between smoothed particle hydrodynamics and finite element methods
  publication-title: Comput. Phys. Comm.
  doi: 10.1016/j.cpc.2017.04.005
– year: 2019
  ident: 10.1016/j.cma.2019.06.033_b27
  article-title: Energy considerations in the SPH method with deformable boundaries and application to FSI problems
  publication-title: J. Comput. Phys. X
– volume: 48
  start-page: 61
  year: 2010
  ident: 10.1016/j.cma.2019.06.033_b31
  article-title: Hydrodynamics and fluid–structure interaction by coupled SPH-FE method
  publication-title: J. Hydraul. Res.
  doi: 10.1080/00221686.2010.9641246
– volume: 86
  start-page: 2224
  year: 2008
  ident: 10.1016/j.cma.2019.06.033_b37
  article-title: Stability of a coupling technique for partitioned solvers in FSI applications
  publication-title: Comput. Struct.
  doi: 10.1016/j.compstruc.2008.05.005
– volume: 66
  start-page: 2064
  year: 2006
  ident: 10.1016/j.cma.2019.06.033_b43
  article-title: Tuncation errors in mesh-free particle methods
  publication-title: Internat. J. Numer. Methods Engrg.
  doi: 10.1002/nme.1617
– volume: 22
  start-page: 34
  issue: 1
  year: 2008
  ident: 10.1016/j.cma.2019.06.033_b6
  article-title: Hydroplaning simulation for a straight-grooved tire by using FDM, FEM and an asymptotic method
  publication-title: J. Mech. Sci. Technol.
  doi: 10.1007/s12206-007-1004-y
– volume: 4
  start-page: 389
  year: 1995
  ident: 10.1016/j.cma.2019.06.033_b40
  article-title: Piecewise polynomial, positive definite and compactly supported radial function of minimal degree
  publication-title: Adv. Comput. Math.
  doi: 10.1007/BF02123482
– year: 2017
  ident: 10.1016/j.cma.2019.06.033_b62
– volume: 55
  start-page: 697
  issue: 4
  year: 2015
  ident: 10.1016/j.cma.2019.06.033_b14
  article-title: A non-intrusive partitioned approach to couple smoothed particle hydrodynamics and finite element methods for transient fluid–structure interaction problems with large interface motion
  publication-title: Comput. Mech.
  doi: 10.1007/s00466-015-1131-8
– volume: 1
  start-page: 26
  issue: 1
  year: 2000
  ident: 10.1016/j.cma.2019.06.033_b10
  article-title: Hydroplaning analysis by FEM and FVM - effect of tire rolling and tire pattern on hydroplaning
  publication-title: Int. J. Automot. Technol.
– volume: 9
  issue: 2
  year: 1999
  ident: 10.1016/j.cma.2019.06.033_b41
  article-title: On particle weighted methods and Smooth Particle Hydrodynamics
  publication-title: Math. Models Methods Appl. Sci.
  doi: 10.1142/S0218202599000117
– volume: 199
  start-page: 2085
  year: 2010
  ident: 10.1016/j.cma.2019.06.033_b67
  article-title: Partitioned simulation of the interaction between an elastic structure and free surface flow
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/j.cma.2010.02.019
– volume: 60
  start-page: 79
  issue: 1
  year: 2018
  ident: 10.1016/j.cma.2019.06.033_b17
  article-title: On the state-of-the-art of particle methods for coastal and ocean engineering
  publication-title: Coast. Eng. J.
  doi: 10.1080/21664250.2018.1436243
– volume: 230
  start-page: 956
  year: 2011
  ident: 10.1016/j.cma.2019.06.033_b4
  article-title: Augmented Lagrangian and penalty methods for the simulation of two phase flows interacting with moving solids. Application to hydroplaning flows interacting with real tire tread patterns
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2010.10.006
– year: 2006
  ident: 10.1016/j.cma.2019.06.033_b57
– start-page: 1
  year: 2018
  ident: 10.1016/j.cma.2019.06.033_b70
  article-title: The mechanisms involved during the wet braking of new and worn tires
  publication-title: Veh. Syst. Dyn.
– ident: 10.1016/j.cma.2019.06.033_b12
– volume: 12
  start-page: 143
  year: 2017
  ident: 10.1016/j.cma.2019.06.033_b18
  article-title: Sensitivity analysis of truck tyre hydroplaning speed using FEA-SPH model
  publication-title: Int. J. Veh. Syst. Model. Test.
– year: 2007
  ident: 10.1016/j.cma.2019.06.033_b47
– year: 1995
  ident: 10.1016/j.cma.2019.06.033_b1
– volume: 27
  start-page: 1199
  issue: 8
  year: 2011
  ident: 10.1016/j.cma.2019.06.033_b51
  article-title: A 2D+t SPH model to study the breaking wave pattern generated by fast ships
  publication-title: J. Fluids Struct.
  doi: 10.1016/j.jfluidstructs.2011.08.003
– year: 2012
  ident: 10.1016/j.cma.2019.06.033_b11
– volume: 354
  start-page: 552
  year: 2017
  ident: 10.1016/j.cma.2019.06.033_b63
  article-title: Analysis and improvements of adaptive particle refinement (APR) through CPU time, accuracy and robustness considerations
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2017.10.041
– year: 2014
  ident: 10.1016/j.cma.2019.06.033_b24
  article-title: Development of a fully lagrangian MPS-based coupled method for simulation of fluid–structure interaction problems
  publication-title: J. Fluids Struct.
  doi: 10.1016/j.jfluidstructs.2014.07.007
– ident: 10.1016/j.cma.2019.06.033_b19
  doi: 10.2514/6.2018-0783
– volume: 42
  start-page: 112
  year: 2013
  ident: 10.1016/j.cma.2019.06.033_b50
  article-title: Nonlinear water wave interaction with floating bodies in SPH
  publication-title: J. Fluids Struct.
  doi: 10.1016/j.jfluidstructs.2013.05.010
– year: 2012
  ident: 10.1016/j.cma.2019.06.033_b35
– volume: 225
  start-page: 1472
  year: 2007
  ident: 10.1016/j.cma.2019.06.033_b44
  article-title: An improved SPH method: Towards higher order convergence
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2007.01.039
– volume: 232
  start-page: 139
  year: 2018
  ident: 10.1016/j.cma.2019.06.033_b23
  article-title: An enhanced isph-sph coupled method for simulation of incompressible fluid-elastic structure interactions
  publication-title: Comput. Phys. Comm.
  doi: 10.1016/j.cpc.2018.05.012
– volume: 53
  start-page: 1020
  year: 2012
  ident: 10.1016/j.cma.2019.06.033_b5
  article-title: Study of hydroplaning risk on rolling and sliding passenger car
  publication-title: Proc. Soc. Behav. Sci.
  doi: 10.1016/j.sbspro.2012.09.951
– volume: 48
  start-page: 40
  year: 2010
  ident: 10.1016/j.cma.2019.06.033_b48
  article-title: Free surface flows simulations in Pelton turbines using an hybrid SPH-ALE method
  publication-title: J. Hydraul. Res.
  doi: 10.1080/00221686.2010.9641244
– volume: 25
  start-page: 914
  year: 2006
  ident: 10.1016/j.cma.2019.06.033_b3
  article-title: Numerical investigation of hydroplaning characteristics of three-dimensional patterned tire
  publication-title: Eur. J. Mech. A Solids
  doi: 10.1016/j.euromechsol.2006.02.007
– ident: 10.1016/j.cma.2019.06.033_b69
– volume: 191
  start-page: 448
  year: 2003
  ident: 10.1016/j.cma.2019.06.033_b46
  article-title: Numerical simulation of interfacial flows by smoothed particle hydrodynamics
  publication-title: J. Comput. Phys.
  doi: 10.1016/S0021-9991(03)00324-3
– volume: 27
  start-page: 882
  year: 2009
  ident: 10.1016/j.cma.2019.06.033_b33
  article-title: Modeling of reinforced concrete trough SPH-FE coupling and its application to the simulation of a projectile’s impact onto a slab
  publication-title: Int. J. Numer. Methods Biomed. Eng.
  doi: 10.1002/cnm.1341
– year: 2015
  ident: 10.1016/j.cma.2019.06.033_b60
– volume: 150
  start-page: 199
  year: 1994
  ident: 10.1016/j.cma.2019.06.033_b29
  article-title: Coupling of Smooth Particle Hydrodynamics with the Finite Element method
  publication-title: Nucl. Eng. Des.
  doi: 10.1016/0029-5493(94)90136-8
– ident: 10.1016/j.cma.2019.06.033_b8
– volume: 43
  start-page: 125
  year: 2008
  ident: 10.1016/j.cma.2019.06.033_b59
  article-title: Interaction between an elastic structure and free-surface flows: experimental versus numerical comparisons using the PFEM
  publication-title: Comput. Mech.
  doi: 10.1007/s00466-008-0245-7
– volume: 152
  start-page: 416
  year: 2018
  ident: 10.1016/j.cma.2019.06.033_b22
  article-title: MPS-FEM coupled method for sloshing flows in an elastic tank
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2017.12.008
– volume: 234
  start-page: 93
  year: 2019
  ident: 10.1016/j.cma.2019.06.033_b52
  article-title: Fast an accurate SPH modelling of 3d complex wall boundaries in viscous and non viscous flows
  publication-title: Comput. Phys. Comm.
  doi: 10.1016/j.cpc.2018.08.001
– year: 2001
  ident: 10.1016/j.cma.2019.06.033_b9
– volume: 200
  start-page: 1
  year: 2016
  ident: 10.1016/j.cma.2019.06.033_b53
  article-title: On distributed memory MPI-based parallelization of SPH codes in massive HPC context
  publication-title: Comput. Phys. Comm.
  doi: 10.1016/j.cpc.2015.08.021
– volume: 84
  start-page: 201
  year: 2014
  ident: 10.1016/j.cma.2019.06.033_b68
  article-title: Fluid–structure interaction for an elastic structure interacting with free surface in a rolling tank
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2014.04.016
– volume: 11
  start-page: 901
  issue: 6
  year: 2010
  ident: 10.1016/j.cma.2019.06.033_b7
  article-title: Hydroplaning simulation for tires using FEM, FDM and an asymptotic method
  publication-title: J. Mech. Sci. Technol.
– volume: 72
  start-page: 1286
  year: 2013
  ident: 10.1016/j.cma.2019.06.033_b58
  article-title: Coupling of Finite Volume and Finite Element subdomains using different time integrators
  publication-title: Int. J. Numer. Methods Fluids
  doi: 10.1002/fld.3786
– year: 2012
  ident: 10.1016/j.cma.2019.06.033_b34
– volume: 55
  start-page: 136
  year: 2012
  ident: 10.1016/j.cma.2019.06.033_b65
  article-title: Free-surface flow interactions with deformable structures using an SPH-FEM model
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2012.06.031
– year: 2013
  ident: 10.1016/j.cma.2019.06.033_b38
– volume: 109
  start-page: 1391
  year: 2016
  ident: 10.1016/j.cma.2019.06.033_b39
  article-title: A partitioned approach for the coupling of SPH and FE methods for transient nonlinear FSI problems with incompatible time-steps
  publication-title: Int. J. Numer. Methods Eng.
  doi: 10.1002/nme.5331
– volume: 25
  start-page: 265
  year: 1997
  ident: 10.1016/j.cma.2019.06.033_b2
  article-title: Calculation of the hydroplaning of a deformable smooth-shaped and longitudinally-grooved tire
  publication-title: Tire Sci. Technol.
  doi: 10.2346/1.2137544
– volume: 82
  start-page: 1013
  year: 1977
  ident: 10.1016/j.cma.2019.06.033_b15
  article-title: A numerical approach to the testing of the fission hypothesis
  publication-title: Astron. J.
  doi: 10.1086/112164
– volume: 82
  start-page: 397
  year: 2019
  ident: 10.1016/j.cma.2019.06.033_b21
  article-title: Multi-resolution MPS for incompressible fluid-elastic structure interactions in ocean engineering
  publication-title: Appl. Ocean Res.
  doi: 10.1016/j.apor.2018.10.020
– volume: 31
  start-page: 1054
  year: 2005
  ident: 10.1016/j.cma.2019.06.033_b30
  article-title: Coupling between meshless and Finite Element methods
  publication-title: Int. J. Impact Eng.
  doi: 10.1016/j.ijimpeng.2004.04.017
– volume: 85
  start-page: 879
  issue: 11–14
  year: 2007
  ident: 10.1016/j.cma.2019.06.033_b26
  article-title: Numérical Simulation of fluid structure interaction by SPH
  publication-title: IOP Comput. Struct.
  doi: 10.1016/j.compstruc.2007.01.002
– ident: 10.1016/j.cma.2019.06.033_b42
– year: 2017
  ident: 10.1016/j.cma.2019.06.033_b13
  article-title: Numerical study of tire hydroplaning based on power spectrum of asphalt pavement and kinetic friction coefficient
  publication-title: Adv. Mater. Sci. Eng.
– volume: 181
  start-page: 375
  year: 1977
  ident: 10.1016/j.cma.2019.06.033_b16
  article-title: Smoothed Particle Hydrodynamics: theory and application to non-spherical stars
  publication-title: Mon. Not. R. Astron. Soc.
  doi: 10.1093/mnras/181.3.375
– year: 2007
  ident: 10.1016/j.cma.2019.06.033_b25
– volume: 33
  start-page: 839
  year: 2004
  ident: 10.1016/j.cma.2019.06.033_b36
  article-title: A monolithic approach to fluid–structure interaction
  publication-title: Comput. & Fluids
  doi: 10.1016/j.compfluid.2003.06.006
– volume: 313
  start-page: 76
  year: 2016
  ident: 10.1016/j.cma.2019.06.033_b54
  article-title: SPH accuracy improvement through the combination of a quasi-Lagrangian shifting transport velocity and consistent ALE formalisms
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2016.02.039
– volume: 245
  start-page: 456
  year: 2013
  ident: 10.1016/j.cma.2019.06.033_b56
  article-title: An accurate SPH modeling of viscous flows around bodies at low and moderate Reynolds numbers
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2013.03.011
– year: 2015
  ident: 10.1016/j.cma.2019.06.033_b66
– year: 2009
  ident: 10.1016/j.cma.2019.06.033_b49
SSID ssj0000812
Score 2.5710096
Snippet A 3D fluid–structure coupling between Smoothed Particle Hydrodynamics (SPH) and Finite Element (FE) methods is proposed in this paper, with its application to...
SourceID hal
proquest
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 558
SubjectTerms Algorithms
Computational fluid dynamics
Computer simulation
Coupling
Engineering Sciences
Finite element method
Fluid flow
Fluid–structure interactions
Free surfaces
Hydroplaning
Simulation
Smooth particle hydrodynamics
Solvers
SPH–FE coupling
Three dimensional models
Tire hydroplaning
Title A 3D SPH–FE coupling for FSI problems and its application to tire hydroplaning simulations on rough ground
URI https://dx.doi.org/10.1016/j.cma.2019.06.033
https://www.proquest.com/docview/2289569003
https://hal.science/hal-02456192
Volume 355
WOSCitedRecordID wos000480605100024&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-2138
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000812
  issn: 0045-7825
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LbtNAFB2lKQtY8ChUpBQ0QogFlpHtsZ3xMmoTpShKKzVF2Y3sybhplTppXiqs-Ad-gS_jS7jjmbGdIiJYsLGsie1Eucdz3-ci9C5NQieVdWE0FOCgJAG3EyJ8m7pukhLRTEnE82ETzX6fDofRWa32w_TCrCfNLKN3d9Hsv4oa1kDYsnX2H8RdPBQW4ByEDkcQOxz_SvAtixxb52ddU8ZAOm2LT1eziamZ7JyfWHqOzKLIHVQS2bk5CjuhNf4ymk9nkzgPnSyublZF3Vxmqek-sick2xj1aaZE6NHUebVtrC3dGyHbjA0ttCiZEMuArGxhuBQb0dvTS4WqYghYT1hHY5HFI8FLBaLWB9PVV5X6L4uZdUjDjYriOB1nK3ptPle3bj-wwZwJqls3CYLK5hsoEvjflIKKT1x_5DnRlBvlhK2KfmOTgLt_yjoXvR4btIeD97NbW84mkzl8PahlB-16zSCidbTbOmkPP5Uan7qKlV7_RJM9z-sI733rn-yfnbEsxL1nD-RGzuApeqy9E9xSqHqGaiLbQ0-0p4K1HljsoUcVGsvnaNLC5BgD5H5--95pYwM2DGDDADZswIZB7BjAhitgw8splmDDVbDhCtgwXJODDSuwvUAXnfbgqGvrKR4290O6tN2UU5FKtziO4pDS1PVSsOJ9TzrrEZX-v-PFXhqC1RD5IY95Qt0YNBENaJi4DtlH9WyaiZcIg7JJEmfkgkGV-mIk4jh1OBn5YNInHPyYBnLMf8u4priXk1YmzNQyXjMQB5PiYLKek5AG-lDcMlP8Ltsu9o3AmDZQleHJAGrbbnsLwi0eLwndu60ek2uy8EGGMNZuAx0a2TO9myyY59EoCGWy4WD7x6_Qw_JFOkT15XwlXqMHfL28WszfaLz-AtwMwug
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+3D+SPH%E2%80%93FE+coupling+for+FSI+problems+and+its+application+to+tire+hydroplaning+simulations+on+rough+ground&rft.jtitle=Computer+methods+in+applied+mechanics+and+engineering&rft.au=Hermange%2C+C&rft.au=Oger%2C+G&rft.au=Le+Chenadec%2C+Y&rft.au=Le+Touz%C3%A9%2C+D&rft.date=2019-10-01&rft.pub=Elsevier+BV&rft.issn=0045-7825&rft.volume=355&rft.spage=558&rft_id=info:doi/10.1016%2Fj.cma.2019.06.033&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0045-7825&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0045-7825&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0045-7825&client=summon