A 3D SPH–FE coupling for FSI problems and its application to tire hydroplaning simulations on rough ground
A 3D fluid–structure coupling between Smoothed Particle Hydrodynamics (SPH) and Finite Element (FE) methods is proposed in this paper, with its application to complex tire hydroplaning simulations on rough ground. The purpose of this work is to analyze the SPH–FE coupling capabilities for modeling e...
Saved in:
| Published in: | Computer methods in applied mechanics and engineering Vol. 355; pp. 558 - 590 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Amsterdam
Elsevier B.V
01.10.2019
Elsevier BV Elsevier |
| Subjects: | |
| ISSN: | 0045-7825, 1879-2138 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | A 3D fluid–structure coupling between Smoothed Particle Hydrodynamics (SPH) and Finite Element (FE) methods is proposed in this paper, with its application to complex tire hydroplaning simulations on rough ground. The purpose of this work is to analyze the SPH–FE coupling capabilities for modeling efficiently such a complex phenomenon. On the fluid side, the SPH method is able to handle the three complex interfaces of the hydroplaning phenomenon: free-surface, ground/fluid and fluid/tire interfaces. On the solid side, the FE method is used for its ability to treat tire–ground contact. A new algorithm dedicated to such SPH–FE coupling strategies is proposed to optimize the computational efficiency through the use of differed time steps between fluid and solid solvers. This way, the number of calls to the FE solver is minimized while maintaining the accuracy and stability of the coupling. The ratio between these respective time steps relies on a control procedure based on pressure loading. The present 3D SPH–FE model is first validated with different academic test cases and experimental data before considering the complex problem of the 3D hydroplaning simulations. Hydroplaning simulations are performed and analyzed on 3D configurations involving both smooth and rough grounds.
•A 3D fluid–structure coupling between Smoothed Particle Hydrodynamics (SPH) and Finite Element (FE) methods is carried out to model hydroplaning problems.•An optimized cost-reducing coupling algorithm is proposed with a control based on pressure loading to preserve the accuracy and stability of the coupling.•A methodology is proposed to model the hydroplaning problem helping in understanding the mechanisms at the origin of the phenomenon showing a significant contribution of the road type.•It is emphasized that the road roughness leads to an increase of the fluid loading which are responsible for a loss of contact between the tire and the ground. |
|---|---|
| AbstractList | A 3D fluid–structure coupling between Smoothed Particle Hydrodynamics (SPH) and Finite Element (FE) methods is proposed in this paper, with its application to complex tire hydroplaning simulations on rough ground. The purpose of this work is to analyze the SPH–FE coupling capabilities for modeling efficiently such a complex phenomenon. On the fluid side, the SPH method is able to handle the three complex interfaces of the hydroplaning phenomenon: free-surface, ground/fluid and fluid/tire interfaces. On the solid side, the FE method is used for its ability to treat tire–ground contact. A new algorithm dedicated to such SPH–FE coupling strategies is proposed to optimize the computational efficiency through the use of differed time steps between fluid and solid solvers. This way, the number of calls to the FE solver is minimized while maintaining the accuracy and stability of the coupling. The ratio between these respective time steps relies on a control procedure based on pressure loading. The present 3D SPH–FE model is first validated with different academic test cases and experimental data before considering the complex problem of the 3D hydroplaning simulations. Hydroplaning simulations are performed and analyzed on 3D configurations involving both smooth and rough grounds.
•A 3D fluid–structure coupling between Smoothed Particle Hydrodynamics (SPH) and Finite Element (FE) methods is carried out to model hydroplaning problems.•An optimized cost-reducing coupling algorithm is proposed with a control based on pressure loading to preserve the accuracy and stability of the coupling.•A methodology is proposed to model the hydroplaning problem helping in understanding the mechanisms at the origin of the phenomenon showing a significant contribution of the road type.•It is emphasized that the road roughness leads to an increase of the fluid loading which are responsible for a loss of contact between the tire and the ground. A 3D fluid–structure coupling between Smoothed Particle Hydrodynamics (SPH) and Finite Element (FE) methods is proposed in this paper, with its application to complex tire hydroplaning simulations on rough ground. The purpose of this work is to analyze the SPH–FE coupling capabilities for modeling efficiently such a complex phenomenon. On the fluid side, the SPH method is able to handle the three complex interfaces of the hydroplaning phenomenon: free-surface, ground/fluid and fluid/tire interfaces. On the solid side, the FE method is used for its ability to treat tire–ground contact. A new algorithm dedicated to such SPH–FE coupling strategies is proposed to optimize the computational efficiency through the use of differed time steps between fluid and solid solvers. This way, the number of calls to the FE solver is minimized while maintaining the accuracy and stability of the coupling. The ratio between these respective time steps relies on a control procedure based on pressure loading. The present 3D SPH–FE model is first validated with different academic test cases and experimental data before considering the complex problem of the 3D hydroplaning simulations. Hydroplaning simulations are performed and analyzed on 3D configurations involving both smooth and rough grounds. |
| Author | Le Chenadec, Y. Oger, G. Le Touzé, D. Hermange, C. |
| Author_xml | – sequence: 1 givenname: C. surname: Hermange fullname: Hermange, C. organization: École Centrale Nantes, LHEEA res. dept. (ECN and CNRS), Nantes, France – sequence: 2 givenname: G. surname: Oger fullname: Oger, G. email: guillaume.oger@ec-nantes.fr organization: École Centrale Nantes, LHEEA res. dept. (ECN and CNRS), Nantes, France – sequence: 3 givenname: Y. surname: Le Chenadec fullname: Le Chenadec, Y. organization: La Manufacture Francaise des Pneumatiques MICHELIN, Clermont-Ferrand, France – sequence: 4 givenname: D. orcidid: 0000-0003-3315-7306 surname: Le Touzé fullname: Le Touzé, D. organization: École Centrale Nantes, LHEEA res. dept. (ECN and CNRS), Nantes, France |
| BackLink | https://hal.science/hal-02456192$$DView record in HAL |
| BookMark | eNp9kUFOAyEYhYnRxFo9gDsSVy5mBGaGgbhq1FqTJpqoa0IZpqWZwgiMiTvv4A09idQaFy5k8xJ43x_-947AvnVWA3CKUY4RphfrXG1kThDmOaI5Koo9MMKs5hnBBdsHI4TKKqsZqQ7BUQhrlA7DZAS6CSyu4ePD7PP9Y3oDlRv6ztglbJ2H08c72Hu36PQmQGkbaGLSPhmUjMZZGB2Mxmu4emu86ztpt2Qwm6H7fg8webwbliu4TGKbY3DQyi7okx8dg-fpzdPVLJvf395dTeaZKimLGW4V0y2rq0JySRlrMWkLUpakJGkjxknJEZGkpXqBeUmVVAuGJaoRqxhdYFSMwflu7kp2ovdmI_2bcNKI2WQutneIlBXFnLzi5D3bedOmL4MOUazd4G36niCE8YpylNIcA7xzKe9C8Lr9HYuR2BYg1iIVILYFCERFQhJT_2GUid_BRC9N9y95uSN1CunVaC-CMtoq3aS0VRSNM__QXyC0oLI |
| CitedBy_id | crossref_primary_10_1080_10298436_2023_2229479 crossref_primary_10_1016_j_cma_2023_116412 crossref_primary_10_1007_s40722_020_00163_x crossref_primary_10_1007_s11433_021_1694_8 crossref_primary_10_1016_j_euromechflu_2021_12_001 crossref_primary_10_1016_j_cma_2020_113653 crossref_primary_10_1016_j_oceaneng_2024_119636 crossref_primary_10_1016_j_cma_2023_115915 crossref_primary_10_1016_j_euromechflu_2022_04_005 crossref_primary_10_1002_fld_5083 crossref_primary_10_1016_j_marstruc_2023_103531 crossref_primary_10_1080_00423114_2021_1901941 crossref_primary_10_1016_j_cma_2020_113538 crossref_primary_10_1016_j_jcp_2023_112056 crossref_primary_10_1016_j_cma_2022_115356 crossref_primary_10_1016_j_jfluidstructs_2025_104366 crossref_primary_10_1016_j_cma_2024_117179 crossref_primary_10_1016_j_oceaneng_2022_112026 crossref_primary_10_1016_j_apor_2020_102268 crossref_primary_10_3390_jmse9101110 crossref_primary_10_1002_fld_4878 crossref_primary_10_1063_5_0226161 crossref_primary_10_1007_s12650_022_00848_5 crossref_primary_10_1515_geo_2022_0407 crossref_primary_10_3390_jmse11091685 crossref_primary_10_1080_14680629_2022_2106294 crossref_primary_10_1016_j_jfluidstructs_2025_104295 crossref_primary_10_1080_13632469_2022_2104959 crossref_primary_10_1016_j_jcp_2021_110786 crossref_primary_10_3390_jmse11050978 crossref_primary_10_1016_j_oceaneng_2023_115889 crossref_primary_10_1016_j_triboint_2021_107157 crossref_primary_10_1007_s42241_022_0052_1 crossref_primary_10_1016_j_apor_2021_102734 crossref_primary_10_1088_1755_1315_769_4_042052 crossref_primary_10_3390_buildings14103140 crossref_primary_10_1016_j_apor_2021_102775 crossref_primary_10_1371_journal_pone_0292701 crossref_primary_10_1016_j_enganabound_2023_05_011 crossref_primary_10_1016_j_euromechflu_2022_07_007 crossref_primary_10_1016_j_istruc_2022_12_100 crossref_primary_10_1016_j_cma_2020_113634 crossref_primary_10_1016_j_cma_2022_114728 crossref_primary_10_1016_j_oceaneng_2020_108119 crossref_primary_10_1007_s11431_019_1519_9 crossref_primary_10_1016_j_apor_2021_102774 crossref_primary_10_1016_j_euromechflu_2022_09_002 crossref_primary_10_1016_j_jcp_2022_111762 crossref_primary_10_1007_s10483_023_3054_8 crossref_primary_10_1063_5_0276643 crossref_primary_10_1016_j_heliyon_2023_e17922 crossref_primary_10_1016_j_oceaneng_2020_108552 crossref_primary_10_1016_j_ast_2023_108570 crossref_primary_10_1016_j_cej_2020_127497 crossref_primary_10_1007_s11709_024_0969_2 crossref_primary_10_1016_j_euromechflu_2022_02_014 crossref_primary_10_1016_j_jcp_2023_112233 crossref_primary_10_1016_j_cma_2022_115573 crossref_primary_10_1016_j_apor_2021_102822 crossref_primary_10_1016_j_apor_2025_104433 crossref_primary_10_1016_j_jfluidstructs_2022_103555 crossref_primary_10_1016_j_jfluidstructs_2023_103855 crossref_primary_10_1016_j_oceaneng_2024_119061 crossref_primary_10_3389_fphy_2023_1325294 crossref_primary_10_1016_j_cma_2020_113425 crossref_primary_10_1080_17445302_2024_2317040 |
| Cites_doi | 10.1016/j.jcp.2014.05.040 10.1006/jcph.1993.1199 10.1016/S0045-7825(99)00206-6 10.1016/0029-5493(94)90143-0 10.1016/j.engstruct.2010.10.020 10.1016/0021-9991(83)90036-0 10.1016/j.cpc.2017.04.005 10.1080/00221686.2010.9641246 10.1016/j.compstruc.2008.05.005 10.1002/nme.1617 10.1007/s12206-007-1004-y 10.1007/BF02123482 10.1007/s00466-015-1131-8 10.1142/S0218202599000117 10.1016/j.cma.2010.02.019 10.1080/21664250.2018.1436243 10.1016/j.jcp.2010.10.006 10.1016/j.jfluidstructs.2011.08.003 10.1016/j.jcp.2017.10.041 10.1016/j.jfluidstructs.2014.07.007 10.2514/6.2018-0783 10.1016/j.jfluidstructs.2013.05.010 10.1016/j.jcp.2007.01.039 10.1016/j.cpc.2018.05.012 10.1016/j.sbspro.2012.09.951 10.1080/00221686.2010.9641244 10.1016/j.euromechsol.2006.02.007 10.1016/S0021-9991(03)00324-3 10.1002/cnm.1341 10.1016/0029-5493(94)90136-8 10.1007/s00466-008-0245-7 10.1016/j.oceaneng.2017.12.008 10.1016/j.cpc.2018.08.001 10.1016/j.cpc.2015.08.021 10.1016/j.oceaneng.2014.04.016 10.1002/fld.3786 10.1016/j.oceaneng.2012.06.031 10.1002/nme.5331 10.2346/1.2137544 10.1086/112164 10.1016/j.apor.2018.10.020 10.1016/j.ijimpeng.2004.04.017 10.1016/j.compstruc.2007.01.002 10.1093/mnras/181.3.375 10.1016/j.compfluid.2003.06.006 10.1016/j.jcp.2016.02.039 10.1016/j.jcp.2013.03.011 |
| ContentType | Journal Article |
| Copyright | 2019 Elsevier B.V. Copyright Elsevier BV Oct 1, 2019 Attribution - NonCommercial |
| Copyright_xml | – notice: 2019 Elsevier B.V. – notice: Copyright Elsevier BV Oct 1, 2019 – notice: Attribution - NonCommercial |
| DBID | AAYXX CITATION 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D 1XC VOOES |
| DOI | 10.1016/j.cma.2019.06.033 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
| DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Civil Engineering Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Engineering |
| EISSN | 1879-2138 |
| EndPage | 590 |
| ExternalDocumentID | oai:HAL:hal-02456192v1 10_1016_j_cma_2019_06_033 S0045782519303767 |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO AAYFN ABAOU ABBOA ABFNM ABJNI ABMAC ABYKQ ACAZW ACDAQ ACGFS ACIWK ACRLP ACZNC ADBBV ADEZE ADGUI ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIGVJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ARUGR AXJTR BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ IHE J1W JJJVA KOM LG9 LY7 M41 MHUIS MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 RIG RNS ROL RPZ SDF SDG SDP SES SPC SPCBC SST SSV SSW SSZ T5K TN5 WH7 XPP ZMT ~02 ~G- 29F 9DU AAQXK AATTM AAXKI AAYWO AAYXX ABEFU ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADIYS ADJOM ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS FEDTE FGOYB G-2 HLZ HVGLF HZ~ R2- SBC SET SEW VH1 VOH WUQ ZY4 ~HD 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D 1XC VOOES |
| ID | FETCH-LOGICAL-c468t-1fc8ef8753a9a688f12f32442428798924902a2f6eb1946cacb81a0708586b103 |
| ISICitedReferencesCount | 76 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000480605100024&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0045-7825 |
| IngestDate | Tue Oct 14 20:41:42 EDT 2025 Sun Nov 30 05:15:52 EST 2025 Tue Nov 18 20:05:59 EST 2025 Sat Nov 29 07:28:14 EST 2025 Fri Feb 23 02:20:30 EST 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Fluid–structure interactions Tire hydroplaning SPH–FE coupling |
| Language | English |
| License | Attribution - NonCommercial: http://creativecommons.org/licenses/by-nc |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c468t-1fc8ef8753a9a688f12f32442428798924902a2f6eb1946cacb81a0708586b103 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-3315-7306 |
| OpenAccessLink | https://hal.science/hal-02456192 |
| PQID | 2289569003 |
| PQPubID | 2045269 |
| PageCount | 33 |
| ParticipantIDs | hal_primary_oai_HAL_hal_02456192v1 proquest_journals_2289569003 crossref_primary_10_1016_j_cma_2019_06_033 crossref_citationtrail_10_1016_j_cma_2019_06_033 elsevier_sciencedirect_doi_10_1016_j_cma_2019_06_033 |
| PublicationCentury | 2000 |
| PublicationDate | 2019-10-01 2019-10-00 20191001 2019-10 |
| PublicationDateYYYYMMDD | 2019-10-01 |
| PublicationDate_xml | – month: 10 year: 2019 text: 2019-10-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Amsterdam |
| PublicationPlace_xml | – name: Amsterdam |
| PublicationTitle | Computer methods in applied mechanics and engineering |
| PublicationYear | 2019 |
| Publisher | Elsevier B.V Elsevier BV Elsevier |
| Publisher_xml | – name: Elsevier B.V – name: Elsevier BV – name: Elsevier |
| References | Yang (b35) 2012 Marongiu (b47) 2007 Botia-Vera (b60) 2015 Barcarolo, Oger, Le Touzé (b61) 2014; 273 Vincent, Sarthou, Caltagirone, Sonilhac, Février, Mignot, Pianet (b4) 2011; 230 F. Biesse, Analysis of wet road usage with a driving safety concern, in: 21st Technical Congress of the VDA, 2019. Nakajima, Seta, Kamegawa, Ogawa (b10) 2000; 1 Oger, Marrone, Le Touzé, De Leffe (b54) 2016; 313 Gingold, Monaghan (b16) 1977; 181 Chiron, Oger, De Leffe, Le Touzé (b63) 2017; 354 Chiron (b62) 2017 De Vuyst (b30) 2005; 31 J. Leduc, F. Leboeuf, M. Lance, Improvement of multiphase model using preconditioned riemann solvers. Proceeding of the 5th international SPHERIC workshop, 2010. Hwang, Khayyer, Gotoh, Park (b24) 2014 Gotoh, Khayyer (b17) 2018; 60 Yang, Jones, Mccue (b65) 2012; 55 Zhu, Liu, Cao, Huang (b13) 2017 Michler, Hulshoff, Van Brummelen, De Borst (b36) 2004; 33 Caleyron, Chuzel-Marmot, Combescure (b33) 2009; 27 Q. Qu, T. Liu, P. Liu, R. Agarwal, Simulation of water spray generated by pneumatic aircraft tire on flooded runway, in: Conference AIAA Aerospace Sciences Meeting, 2018. Paik, Carrica (b68) 2014; 84 Bouscasse, Colagrossi, Marrone, Antuono (b50) 2013; 42 Grogger, Weiss (b2) 1997; 25 Chiron, De Leffe, Oger, Le Touzé (b52) 2019; 234 Degroote, Bruggeman, Haelterman, Vierendeels (b37) 2008; 86 Vila (b41) 1999; 9 De Leffe (b49) 2009 Oger, Doring, Alessandrini, Ferrant (b44) 2007; 225 Li, Leduc, Nunez-Ramirez, Combescure, Marongiu (b14) 2015; 55 Degroote, Souto-Iglesias, Van Paepegem, Annerel, Bruggeman, Vierendeels (b67) 2010; 199 Zhang, Decheng (b22) 2018; 152 Khayyer, Gotoh, Falahaty, Shimizu (b23) 2018; 232 D. Barcarolo, J. Candelier, D. Guibert, M. De Leffe, Hydrodynamics performance simulations using SPH for automotive applications, in: Proceedings of the 9th SPHERIC Conference, 2014. Marrone, Colagrossi, Antuono, Colicchio, Graziani (b56) 2013; 245 Fourey (b34) 2012 Bathe (b1) 1995 Groenenboom, Cartwright (b31) 2010; 48 Li (b38) 2013 Fourey, Hermange, Oger, Le Touzé (b20) 2017 Oger, Le Touzé, Guibert, De Leffe, Biddiscombe, Soumagne, Piccinali (b53) 2016; 200 Anupam (b11) 2012 Monaghan, Gingold (b64) 1983; 52 Khayyer, Tsuruta, Shimizu, Gotoh (b21) 2019; 82 Li, Combescure, Leboeuf (b58) 2013; 72 Antoci, Gallati, Sibilla (b26) 2007; 85 Colagrossi, Landrini (b46) 2003; 191 Antoci (b57) 2006 Idelsohn, Marti, Souto-Iglesias, Onate (b59) 2008; 43 Wendland (b40) 1995; 4 Farhat, Lesoinne (b55) 2000; 182 Zhang, Qiang, Gao (b32) 2011; 33 Okano, Koishi (b9) 2001 Quinlan, Basa, Lastiwka (b43) 2006; 66 Libersky, Petschek, Carney, Hipp, Allahdadi (b45) 1993; 109 Cho, Lee, Sohn, Kim, Woo (b3) 2006; 25 Attaway, Heinstein, Swegle (b29) 1994; 150 Nunez Ramirez, Marongiu, Brun, Combescure (b39) 2016; 109 Gilbert (b66) 2015 Marongiu, Leboeuf, Caro, Parkison (b48) 2010; 48 Kumar, Anupam, Scarpas, Kasbergen (b5) 2012; 53 Deuff (b25) 2007 Oh, Kim, Jeong, Park, Kim (b6) 2008; 22 Marrone, Colagrossi, Antuono, Lugni, Tulin (b51) 2011; 27 Todoroff, Paupy, Biesse, Le Chenadec (b70) 2018 M. Koishi, T. Okano, L. Olovsson, H. Saito, M. Makino, Hydroplaning simulation using fluid–structure interaction in LS-DYNA, in: LS-DYNA Conference, 2001. Johnson (b28) 1994; 150 Kim, Jeong (b7) 2010; 11 Lucy (b15) 1977; 82 Hermange, Oger, Le Touzé (b27) 2019 El Gindy, El Sayegh (b18) 2017; 12 Botia-Vera (10.1016/j.cma.2019.06.033_b60) 2015 Hwang (10.1016/j.cma.2019.06.033_b24) 2014 Gotoh (10.1016/j.cma.2019.06.033_b17) 2018; 60 Bathe (10.1016/j.cma.2019.06.033_b1) 1995 Anupam (10.1016/j.cma.2019.06.033_b11) 2012 Li (10.1016/j.cma.2019.06.033_b38) 2013 Gingold (10.1016/j.cma.2019.06.033_b16) 1977; 181 Vincent (10.1016/j.cma.2019.06.033_b4) 2011; 230 10.1016/j.cma.2019.06.033_b8 Chiron (10.1016/j.cma.2019.06.033_b52) 2019; 234 Grogger (10.1016/j.cma.2019.06.033_b2) 1997; 25 10.1016/j.cma.2019.06.033_b12 Idelsohn (10.1016/j.cma.2019.06.033_b59) 2008; 43 Farhat (10.1016/j.cma.2019.06.033_b55) 2000; 182 Li (10.1016/j.cma.2019.06.033_b14) 2015; 55 10.1016/j.cma.2019.06.033_b19 Nunez Ramirez (10.1016/j.cma.2019.06.033_b39) 2016; 109 Oh (10.1016/j.cma.2019.06.033_b6) 2008; 22 Caleyron (10.1016/j.cma.2019.06.033_b33) 2009; 27 Degroote (10.1016/j.cma.2019.06.033_b37) 2008; 86 Li (10.1016/j.cma.2019.06.033_b58) 2013; 72 Yang (10.1016/j.cma.2019.06.033_b65) 2012; 55 Fourey (10.1016/j.cma.2019.06.033_b34) 2012 De Leffe (10.1016/j.cma.2019.06.033_b49) 2009 Zhang (10.1016/j.cma.2019.06.033_b22) 2018; 152 Zhang (10.1016/j.cma.2019.06.033_b32) 2011; 33 Okano (10.1016/j.cma.2019.06.033_b9) 2001 Antoci (10.1016/j.cma.2019.06.033_b26) 2007; 85 Todoroff (10.1016/j.cma.2019.06.033_b70) 2018 Khayyer (10.1016/j.cma.2019.06.033_b21) 2019; 82 Marrone (10.1016/j.cma.2019.06.033_b56) 2013; 245 Attaway (10.1016/j.cma.2019.06.033_b29) 1994; 150 Vila (10.1016/j.cma.2019.06.033_b41) 1999; 9 10.1016/j.cma.2019.06.033_b69 Hermange (10.1016/j.cma.2019.06.033_b27) 2019 Cho (10.1016/j.cma.2019.06.033_b3) 2006; 25 Chiron (10.1016/j.cma.2019.06.033_b62) 2017 El Gindy (10.1016/j.cma.2019.06.033_b18) 2017; 12 Bouscasse (10.1016/j.cma.2019.06.033_b50) 2013; 42 Quinlan (10.1016/j.cma.2019.06.033_b43) 2006; 66 Oger (10.1016/j.cma.2019.06.033_b53) 2016; 200 Paik (10.1016/j.cma.2019.06.033_b68) 2014; 84 Zhu (10.1016/j.cma.2019.06.033_b13) 2017 Barcarolo (10.1016/j.cma.2019.06.033_b61) 2014; 273 Chiron (10.1016/j.cma.2019.06.033_b63) 2017; 354 Deuff (10.1016/j.cma.2019.06.033_b25) 2007 De Vuyst (10.1016/j.cma.2019.06.033_b30) 2005; 31 Colagrossi (10.1016/j.cma.2019.06.033_b46) 2003; 191 Monaghan (10.1016/j.cma.2019.06.033_b64) 1983; 52 Libersky (10.1016/j.cma.2019.06.033_b45) 1993; 109 Yang (10.1016/j.cma.2019.06.033_b35) 2012 Gilbert (10.1016/j.cma.2019.06.033_b66) 2015 Antoci (10.1016/j.cma.2019.06.033_b57) 2006 Wendland (10.1016/j.cma.2019.06.033_b40) 1995; 4 Johnson (10.1016/j.cma.2019.06.033_b28) 1994; 150 Marongiu (10.1016/j.cma.2019.06.033_b48) 2010; 48 Nakajima (10.1016/j.cma.2019.06.033_b10) 2000; 1 Degroote (10.1016/j.cma.2019.06.033_b67) 2010; 199 Fourey (10.1016/j.cma.2019.06.033_b20) 2017 Michler (10.1016/j.cma.2019.06.033_b36) 2004; 33 Groenenboom (10.1016/j.cma.2019.06.033_b31) 2010; 48 Marongiu (10.1016/j.cma.2019.06.033_b47) 2007 Oger (10.1016/j.cma.2019.06.033_b44) 2007; 225 Oger (10.1016/j.cma.2019.06.033_b54) 2016; 313 Kumar (10.1016/j.cma.2019.06.033_b5) 2012; 53 Khayyer (10.1016/j.cma.2019.06.033_b23) 2018; 232 Marrone (10.1016/j.cma.2019.06.033_b51) 2011; 27 Kim (10.1016/j.cma.2019.06.033_b7) 2010; 11 Lucy (10.1016/j.cma.2019.06.033_b15) 1977; 82 10.1016/j.cma.2019.06.033_b42 |
| References_xml | – year: 2017 ident: b20 article-title: An efficient FSI coupling strategy between smoothed particle hydrodynamics and finite element methods publication-title: Comput. Phys. Comm. – year: 2017 ident: b62 article-title: Couplages et améliorations de la méthode SPH pour traiter des écoulements à multi-échelles temporelles et spatiales – volume: 25 start-page: 914 year: 2006 end-page: 926 ident: b3 article-title: Numerical investigation of hydroplaning characteristics of three-dimensional patterned tire publication-title: Eur. J. Mech. A Solids – volume: 33 start-page: 839 year: 2004 end-page: 848 ident: b36 article-title: A monolithic approach to fluid–structure interaction publication-title: Comput. & Fluids – volume: 86 start-page: 2224 year: 2008 end-page: 2234 ident: b37 article-title: Stability of a coupling technique for partitioned solvers in FSI applications publication-title: Comput. Struct. – year: 2014 ident: b24 article-title: Development of a fully lagrangian MPS-based coupled method for simulation of fluid–structure interaction problems publication-title: J. Fluids Struct. – year: 2006 ident: b57 article-title: Simulazione numerica dell’interazione fluido-struttura con la tecnica SPH – volume: 27 start-page: 882 year: 2009 end-page: 898 ident: b33 article-title: Modeling of reinforced concrete trough SPH-FE coupling and its application to the simulation of a projectile’s impact onto a slab publication-title: Int. J. Numer. Methods Biomed. Eng. – volume: 199 start-page: 2085 year: 2010 end-page: 2098 ident: b67 article-title: Partitioned simulation of the interaction between an elastic structure and free surface flow publication-title: Comput. Methods Appl. Mech. Engrg. – volume: 55 start-page: 697 year: 2015 end-page: 718 ident: b14 article-title: A non-intrusive partitioned approach to couple smoothed particle hydrodynamics and finite element methods for transient fluid–structure interaction problems with large interface motion publication-title: Comput. Mech. – year: 2001 ident: b9 article-title: Hydroplaning Simulation using msc.dytran – volume: 232 start-page: 139 year: 2018 end-page: 164 ident: b23 article-title: An enhanced isph-sph coupled method for simulation of incompressible fluid-elastic structure interactions publication-title: Comput. Phys. Comm. – year: 2015 ident: b60 article-title: Experimental and statistical investigation of canonical problems in sloshing – year: 2012 ident: b11 article-title: Numerical simulation of vehicle hydroplaning and skid resistance on grooved pavement – volume: 12 start-page: 143 year: 2017 end-page: 161 ident: b18 article-title: Sensitivity analysis of truck tyre hydroplaning speed using FEA-SPH model publication-title: Int. J. Veh. Syst. Model. Test. – volume: 152 start-page: 416 year: 2018 end-page: 427 ident: b22 article-title: MPS-FEM coupled method for sloshing flows in an elastic tank publication-title: Ocean Eng. – reference: M. Koishi, T. Okano, L. Olovsson, H. Saito, M. Makino, Hydroplaning simulation using fluid–structure interaction in LS-DYNA, in: LS-DYNA Conference, 2001. – volume: 82 start-page: 1013 year: 1977 end-page: 1024 ident: b15 article-title: A numerical approach to the testing of the fission hypothesis publication-title: Astron. J. – year: 2007 ident: b47 article-title: Méthode numérique lagrangienne pour la simulation d’écoulements à surface libre. Application aux turbines Pelton – volume: 9 year: 1999 ident: b41 article-title: On particle weighted methods and Smooth Particle Hydrodynamics publication-title: Math. Models Methods Appl. Sci. – volume: 84 start-page: 201 year: 2014 end-page: 212 ident: b68 article-title: Fluid–structure interaction for an elastic structure interacting with free surface in a rolling tank publication-title: Ocean Eng. – volume: 48 start-page: 40 year: 2010 end-page: 49 ident: b48 article-title: Free surface flows simulations in Pelton turbines using an hybrid SPH-ALE method publication-title: J. Hydraul. Res. – volume: 60 start-page: 79 year: 2018 end-page: 103 ident: b17 article-title: On the state-of-the-art of particle methods for coastal and ocean engineering publication-title: Coast. Eng. J. – volume: 72 start-page: 1286 year: 2013 end-page: 1306 ident: b58 article-title: Coupling of Finite Volume and Finite Element subdomains using different time integrators publication-title: Int. J. Numer. Methods Fluids – volume: 191 start-page: 448 year: 2003 end-page: 475 ident: b46 article-title: Numerical simulation of interfacial flows by smoothed particle hydrodynamics publication-title: J. Comput. Phys. – volume: 48 start-page: 61 year: 2010 end-page: 73 ident: b31 article-title: Hydrodynamics and fluid–structure interaction by coupled SPH-FE method publication-title: J. Hydraul. Res. – volume: 33 start-page: 255 year: 2011 end-page: 264 ident: b32 article-title: Coupling of Smoothed Particle Hydrodynamics and Finite Element method for impact dynamics simulation publication-title: Eng. Struct. – year: 2017 ident: b13 article-title: Numerical study of tire hydroplaning based on power spectrum of asphalt pavement and kinetic friction coefficient publication-title: Adv. Mater. Sci. Eng. – volume: 82 start-page: 397 year: 2019 end-page: 414 ident: b21 article-title: Multi-resolution MPS for incompressible fluid-elastic structure interactions in ocean engineering publication-title: Appl. Ocean Res. – volume: 182 start-page: 499 year: 2000 end-page: 515 ident: b55 article-title: Two efficient staggered algorithms for the serial and parallel solution of three dimensional nonlinear transient aeroelastic problems publication-title: Comput. Methods Appl. Mech. Engrg. – volume: 313 start-page: 76 year: 2016 end-page: 98 ident: b54 article-title: SPH accuracy improvement through the combination of a quasi-Lagrangian shifting transport velocity and consistent ALE formalisms publication-title: J. Comput. Phys. – volume: 109 start-page: 67 year: 1993 end-page: 75 ident: b45 article-title: High strain Lagrangian hydrodynamics: A three-dimensional SPH code for dynamic material response publication-title: J. Comput. Phys. – year: 2009 ident: b49 article-title: Modélisation d’écoulements visqueux par méthode SPH en vue d’application à l’hydrodynamique navale – volume: 109 start-page: 1391 year: 2016 end-page: 1417 ident: b39 article-title: A partitioned approach for the coupling of SPH and FE methods for transient nonlinear FSI problems with incompatible time-steps publication-title: Int. J. Numer. Methods Eng. – year: 1995 ident: b1 article-title: Finite Element Procedures – volume: 53 start-page: 1020 year: 2012 end-page: 1028 ident: b5 article-title: Study of hydroplaning risk on rolling and sliding passenger car publication-title: Proc. Soc. Behav. Sci. – volume: 150 start-page: 199 year: 1994 end-page: 205 ident: b29 article-title: Coupling of Smooth Particle Hydrodynamics with the Finite Element method publication-title: Nucl. Eng. Des. – volume: 4 start-page: 389 year: 1995 end-page: 396 ident: b40 article-title: Piecewise polynomial, positive definite and compactly supported radial function of minimal degree publication-title: Adv. Comput. Math. – year: 2012 ident: b35 article-title: SPH Simulation of fluid structure interaction problems with application to hovercraft – year: 2013 ident: b38 article-title: Développement d’une méthode de simulation de couplage fluide structure à l’aide de la méthode SPH – reference: D. Barcarolo, J. Candelier, D. Guibert, M. De Leffe, Hydrodynamics performance simulations using SPH for automotive applications, in: Proceedings of the 9th SPHERIC Conference, 2014. – volume: 85 start-page: 879 year: 2007 end-page: 890 ident: b26 article-title: Numérical Simulation of fluid structure interaction by SPH publication-title: IOP Comput. Struct. – volume: 42 start-page: 112 year: 2013 end-page: 129 ident: b50 article-title: Nonlinear water wave interaction with floating bodies in SPH publication-title: J. Fluids Struct. – volume: 273 start-page: 640 year: 2014 end-page: 657 ident: b61 article-title: Adaptive particle refinement and derefinement applied to Smoothed Particle Hydrodynamics method publication-title: J. Comput. Phys. – volume: 43 start-page: 125 year: 2008 end-page: 132 ident: b59 article-title: Interaction between an elastic structure and free-surface flows: experimental versus numerical comparisons using the PFEM publication-title: Comput. Mech. – volume: 31 start-page: 1054 year: 2005 end-page: 1064 ident: b30 article-title: Coupling between meshless and Finite Element methods publication-title: Int. J. Impact Eng. – year: 2019 ident: b27 article-title: Energy considerations in the SPH method with deformable boundaries and application to FSI problems publication-title: J. Comput. Phys. X – volume: 66 start-page: 2064 year: 2006 end-page: 2085 ident: b43 article-title: Tuncation errors in mesh-free particle methods publication-title: Internat. J. Numer. Methods Engrg. – start-page: 1 year: 2018 end-page: 20 ident: b70 article-title: The mechanisms involved during the wet braking of new and worn tires publication-title: Veh. Syst. Dyn. – volume: 234 start-page: 93 year: 2019 end-page: 111 ident: b52 article-title: Fast an accurate SPH modelling of 3d complex wall boundaries in viscous and non viscous flows publication-title: Comput. Phys. Comm. – volume: 181 start-page: 375 year: 1977 end-page: 389 ident: b16 article-title: Smoothed Particle Hydrodynamics: theory and application to non-spherical stars publication-title: Mon. Not. R. Astron. Soc. – year: 2015 ident: b66 article-title: Accelerating an SPH-FEM solver using heterogeneous computing for use in fluid-structure interaction problems – volume: 230 start-page: 956 year: 2011 end-page: 983 ident: b4 article-title: Augmented Lagrangian and penalty methods for the simulation of two phase flows interacting with moving solids. Application to hydroplaning flows interacting with real tire tread patterns publication-title: J. Comput. Phys. – reference: Q. Qu, T. Liu, P. Liu, R. Agarwal, Simulation of water spray generated by pneumatic aircraft tire on flooded runway, in: Conference AIAA Aerospace Sciences Meeting, 2018. – volume: 27 start-page: 1199 year: 2011 end-page: 1215 ident: b51 article-title: A 2D+t SPH model to study the breaking wave pattern generated by fast ships publication-title: J. Fluids Struct. – volume: 1 start-page: 26 year: 2000 end-page: 34 ident: b10 article-title: Hydroplaning analysis by FEM and FVM - effect of tire rolling and tire pattern on hydroplaning publication-title: Int. J. Automot. Technol. – volume: 225 start-page: 1472 year: 2007 end-page: 1492 ident: b44 article-title: An improved SPH method: Towards higher order convergence publication-title: J. Comput. Phys. – volume: 150 start-page: 265 year: 1994 end-page: 274 ident: b28 article-title: Linking of lagrangian particle methods to standard finite element methods for high velocity impact computations publication-title: Nucl. Eng. Des. – volume: 245 start-page: 456 year: 2013 end-page: 475 ident: b56 article-title: An accurate SPH modeling of viscous flows around bodies at low and moderate Reynolds numbers publication-title: J. Comput. Phys. – reference: J. Leduc, F. Leboeuf, M. Lance, Improvement of multiphase model using preconditioned riemann solvers. Proceeding of the 5th international SPHERIC workshop, 2010. – reference: F. Biesse, Analysis of wet road usage with a driving safety concern, in: 21st Technical Congress of the VDA, 2019. – year: 2012 ident: b34 article-title: Développement d’une méthode de couplage fluide structure SPH Eléments Finis en vue de son application á l’hydrodynamique navale – volume: 200 start-page: 1 year: 2016 end-page: 14 ident: b53 article-title: On distributed memory MPI-based parallelization of SPH codes in massive HPC context publication-title: Comput. Phys. Comm. – volume: 25 start-page: 265 year: 1997 end-page: 287 ident: b2 article-title: Calculation of the hydroplaning of a deformable smooth-shaped and longitudinally-grooved tire publication-title: Tire Sci. Technol. – volume: 354 start-page: 552 year: 2017 end-page: 575 ident: b63 article-title: Analysis and improvements of adaptive particle refinement (APR) through CPU time, accuracy and robustness considerations publication-title: J. Comput. Phys. – volume: 11 start-page: 901 year: 2010 end-page: 908 ident: b7 article-title: Hydroplaning simulation for tires using FEM, FDM and an asymptotic method publication-title: J. Mech. Sci. Technol. – volume: 55 start-page: 136 year: 2012 end-page: 147 ident: b65 article-title: Free-surface flow interactions with deformable structures using an SPH-FEM model publication-title: Ocean Eng. – volume: 22 start-page: 34 year: 2008 end-page: 40 ident: b6 article-title: Hydroplaning simulation for a straight-grooved tire by using FDM, FEM and an asymptotic method publication-title: J. Mech. Sci. Technol. – year: 2007 ident: b25 article-title: Extrapolation au réel des mesures de pressions obtenues sur des cuves modèle réduit – volume: 52 start-page: 374 year: 1983 end-page: 389 ident: b64 article-title: Shock simulation by the particle method SPH publication-title: J. Comput. Phys. – volume: 273 start-page: 640 year: 2014 ident: 10.1016/j.cma.2019.06.033_b61 article-title: Adaptive particle refinement and derefinement applied to Smoothed Particle Hydrodynamics method publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2014.05.040 – volume: 109 start-page: 67 year: 1993 ident: 10.1016/j.cma.2019.06.033_b45 article-title: High strain Lagrangian hydrodynamics: A three-dimensional SPH code for dynamic material response publication-title: J. Comput. Phys. doi: 10.1006/jcph.1993.1199 – volume: 182 start-page: 499 year: 2000 ident: 10.1016/j.cma.2019.06.033_b55 article-title: Two efficient staggered algorithms for the serial and parallel solution of three dimensional nonlinear transient aeroelastic problems publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/S0045-7825(99)00206-6 – volume: 150 start-page: 265 year: 1994 ident: 10.1016/j.cma.2019.06.033_b28 article-title: Linking of lagrangian particle methods to standard finite element methods for high velocity impact computations publication-title: Nucl. Eng. Des. doi: 10.1016/0029-5493(94)90143-0 – volume: 33 start-page: 255 year: 2011 ident: 10.1016/j.cma.2019.06.033_b32 article-title: Coupling of Smoothed Particle Hydrodynamics and Finite Element method for impact dynamics simulation publication-title: Eng. Struct. doi: 10.1016/j.engstruct.2010.10.020 – volume: 52 start-page: 374 year: 1983 ident: 10.1016/j.cma.2019.06.033_b64 article-title: Shock simulation by the particle method SPH publication-title: J. Comput. Phys. doi: 10.1016/0021-9991(83)90036-0 – year: 2017 ident: 10.1016/j.cma.2019.06.033_b20 article-title: An efficient FSI coupling strategy between smoothed particle hydrodynamics and finite element methods publication-title: Comput. Phys. Comm. doi: 10.1016/j.cpc.2017.04.005 – year: 2019 ident: 10.1016/j.cma.2019.06.033_b27 article-title: Energy considerations in the SPH method with deformable boundaries and application to FSI problems publication-title: J. Comput. Phys. X – volume: 48 start-page: 61 year: 2010 ident: 10.1016/j.cma.2019.06.033_b31 article-title: Hydrodynamics and fluid–structure interaction by coupled SPH-FE method publication-title: J. Hydraul. Res. doi: 10.1080/00221686.2010.9641246 – volume: 86 start-page: 2224 year: 2008 ident: 10.1016/j.cma.2019.06.033_b37 article-title: Stability of a coupling technique for partitioned solvers in FSI applications publication-title: Comput. Struct. doi: 10.1016/j.compstruc.2008.05.005 – volume: 66 start-page: 2064 year: 2006 ident: 10.1016/j.cma.2019.06.033_b43 article-title: Tuncation errors in mesh-free particle methods publication-title: Internat. J. Numer. Methods Engrg. doi: 10.1002/nme.1617 – volume: 22 start-page: 34 issue: 1 year: 2008 ident: 10.1016/j.cma.2019.06.033_b6 article-title: Hydroplaning simulation for a straight-grooved tire by using FDM, FEM and an asymptotic method publication-title: J. Mech. Sci. Technol. doi: 10.1007/s12206-007-1004-y – volume: 4 start-page: 389 year: 1995 ident: 10.1016/j.cma.2019.06.033_b40 article-title: Piecewise polynomial, positive definite and compactly supported radial function of minimal degree publication-title: Adv. Comput. Math. doi: 10.1007/BF02123482 – year: 2017 ident: 10.1016/j.cma.2019.06.033_b62 – volume: 55 start-page: 697 issue: 4 year: 2015 ident: 10.1016/j.cma.2019.06.033_b14 article-title: A non-intrusive partitioned approach to couple smoothed particle hydrodynamics and finite element methods for transient fluid–structure interaction problems with large interface motion publication-title: Comput. Mech. doi: 10.1007/s00466-015-1131-8 – volume: 1 start-page: 26 issue: 1 year: 2000 ident: 10.1016/j.cma.2019.06.033_b10 article-title: Hydroplaning analysis by FEM and FVM - effect of tire rolling and tire pattern on hydroplaning publication-title: Int. J. Automot. Technol. – volume: 9 issue: 2 year: 1999 ident: 10.1016/j.cma.2019.06.033_b41 article-title: On particle weighted methods and Smooth Particle Hydrodynamics publication-title: Math. Models Methods Appl. Sci. doi: 10.1142/S0218202599000117 – volume: 199 start-page: 2085 year: 2010 ident: 10.1016/j.cma.2019.06.033_b67 article-title: Partitioned simulation of the interaction between an elastic structure and free surface flow publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/j.cma.2010.02.019 – volume: 60 start-page: 79 issue: 1 year: 2018 ident: 10.1016/j.cma.2019.06.033_b17 article-title: On the state-of-the-art of particle methods for coastal and ocean engineering publication-title: Coast. Eng. J. doi: 10.1080/21664250.2018.1436243 – volume: 230 start-page: 956 year: 2011 ident: 10.1016/j.cma.2019.06.033_b4 article-title: Augmented Lagrangian and penalty methods for the simulation of two phase flows interacting with moving solids. Application to hydroplaning flows interacting with real tire tread patterns publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2010.10.006 – year: 2006 ident: 10.1016/j.cma.2019.06.033_b57 – start-page: 1 year: 2018 ident: 10.1016/j.cma.2019.06.033_b70 article-title: The mechanisms involved during the wet braking of new and worn tires publication-title: Veh. Syst. Dyn. – ident: 10.1016/j.cma.2019.06.033_b12 – volume: 12 start-page: 143 year: 2017 ident: 10.1016/j.cma.2019.06.033_b18 article-title: Sensitivity analysis of truck tyre hydroplaning speed using FEA-SPH model publication-title: Int. J. Veh. Syst. Model. Test. – year: 2007 ident: 10.1016/j.cma.2019.06.033_b47 – year: 1995 ident: 10.1016/j.cma.2019.06.033_b1 – volume: 27 start-page: 1199 issue: 8 year: 2011 ident: 10.1016/j.cma.2019.06.033_b51 article-title: A 2D+t SPH model to study the breaking wave pattern generated by fast ships publication-title: J. Fluids Struct. doi: 10.1016/j.jfluidstructs.2011.08.003 – year: 2012 ident: 10.1016/j.cma.2019.06.033_b11 – volume: 354 start-page: 552 year: 2017 ident: 10.1016/j.cma.2019.06.033_b63 article-title: Analysis and improvements of adaptive particle refinement (APR) through CPU time, accuracy and robustness considerations publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2017.10.041 – year: 2014 ident: 10.1016/j.cma.2019.06.033_b24 article-title: Development of a fully lagrangian MPS-based coupled method for simulation of fluid–structure interaction problems publication-title: J. Fluids Struct. doi: 10.1016/j.jfluidstructs.2014.07.007 – ident: 10.1016/j.cma.2019.06.033_b19 doi: 10.2514/6.2018-0783 – volume: 42 start-page: 112 year: 2013 ident: 10.1016/j.cma.2019.06.033_b50 article-title: Nonlinear water wave interaction with floating bodies in SPH publication-title: J. Fluids Struct. doi: 10.1016/j.jfluidstructs.2013.05.010 – year: 2012 ident: 10.1016/j.cma.2019.06.033_b35 – volume: 225 start-page: 1472 year: 2007 ident: 10.1016/j.cma.2019.06.033_b44 article-title: An improved SPH method: Towards higher order convergence publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2007.01.039 – volume: 232 start-page: 139 year: 2018 ident: 10.1016/j.cma.2019.06.033_b23 article-title: An enhanced isph-sph coupled method for simulation of incompressible fluid-elastic structure interactions publication-title: Comput. Phys. Comm. doi: 10.1016/j.cpc.2018.05.012 – volume: 53 start-page: 1020 year: 2012 ident: 10.1016/j.cma.2019.06.033_b5 article-title: Study of hydroplaning risk on rolling and sliding passenger car publication-title: Proc. Soc. Behav. Sci. doi: 10.1016/j.sbspro.2012.09.951 – volume: 48 start-page: 40 year: 2010 ident: 10.1016/j.cma.2019.06.033_b48 article-title: Free surface flows simulations in Pelton turbines using an hybrid SPH-ALE method publication-title: J. Hydraul. Res. doi: 10.1080/00221686.2010.9641244 – volume: 25 start-page: 914 year: 2006 ident: 10.1016/j.cma.2019.06.033_b3 article-title: Numerical investigation of hydroplaning characteristics of three-dimensional patterned tire publication-title: Eur. J. Mech. A Solids doi: 10.1016/j.euromechsol.2006.02.007 – ident: 10.1016/j.cma.2019.06.033_b69 – volume: 191 start-page: 448 year: 2003 ident: 10.1016/j.cma.2019.06.033_b46 article-title: Numerical simulation of interfacial flows by smoothed particle hydrodynamics publication-title: J. Comput. Phys. doi: 10.1016/S0021-9991(03)00324-3 – volume: 27 start-page: 882 year: 2009 ident: 10.1016/j.cma.2019.06.033_b33 article-title: Modeling of reinforced concrete trough SPH-FE coupling and its application to the simulation of a projectile’s impact onto a slab publication-title: Int. J. Numer. Methods Biomed. Eng. doi: 10.1002/cnm.1341 – year: 2015 ident: 10.1016/j.cma.2019.06.033_b60 – volume: 150 start-page: 199 year: 1994 ident: 10.1016/j.cma.2019.06.033_b29 article-title: Coupling of Smooth Particle Hydrodynamics with the Finite Element method publication-title: Nucl. Eng. Des. doi: 10.1016/0029-5493(94)90136-8 – ident: 10.1016/j.cma.2019.06.033_b8 – volume: 43 start-page: 125 year: 2008 ident: 10.1016/j.cma.2019.06.033_b59 article-title: Interaction between an elastic structure and free-surface flows: experimental versus numerical comparisons using the PFEM publication-title: Comput. Mech. doi: 10.1007/s00466-008-0245-7 – volume: 152 start-page: 416 year: 2018 ident: 10.1016/j.cma.2019.06.033_b22 article-title: MPS-FEM coupled method for sloshing flows in an elastic tank publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2017.12.008 – volume: 234 start-page: 93 year: 2019 ident: 10.1016/j.cma.2019.06.033_b52 article-title: Fast an accurate SPH modelling of 3d complex wall boundaries in viscous and non viscous flows publication-title: Comput. Phys. Comm. doi: 10.1016/j.cpc.2018.08.001 – year: 2001 ident: 10.1016/j.cma.2019.06.033_b9 – volume: 200 start-page: 1 year: 2016 ident: 10.1016/j.cma.2019.06.033_b53 article-title: On distributed memory MPI-based parallelization of SPH codes in massive HPC context publication-title: Comput. Phys. Comm. doi: 10.1016/j.cpc.2015.08.021 – volume: 84 start-page: 201 year: 2014 ident: 10.1016/j.cma.2019.06.033_b68 article-title: Fluid–structure interaction for an elastic structure interacting with free surface in a rolling tank publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2014.04.016 – volume: 11 start-page: 901 issue: 6 year: 2010 ident: 10.1016/j.cma.2019.06.033_b7 article-title: Hydroplaning simulation for tires using FEM, FDM and an asymptotic method publication-title: J. Mech. Sci. Technol. – volume: 72 start-page: 1286 year: 2013 ident: 10.1016/j.cma.2019.06.033_b58 article-title: Coupling of Finite Volume and Finite Element subdomains using different time integrators publication-title: Int. J. Numer. Methods Fluids doi: 10.1002/fld.3786 – year: 2012 ident: 10.1016/j.cma.2019.06.033_b34 – volume: 55 start-page: 136 year: 2012 ident: 10.1016/j.cma.2019.06.033_b65 article-title: Free-surface flow interactions with deformable structures using an SPH-FEM model publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2012.06.031 – year: 2013 ident: 10.1016/j.cma.2019.06.033_b38 – volume: 109 start-page: 1391 year: 2016 ident: 10.1016/j.cma.2019.06.033_b39 article-title: A partitioned approach for the coupling of SPH and FE methods for transient nonlinear FSI problems with incompatible time-steps publication-title: Int. J. Numer. Methods Eng. doi: 10.1002/nme.5331 – volume: 25 start-page: 265 year: 1997 ident: 10.1016/j.cma.2019.06.033_b2 article-title: Calculation of the hydroplaning of a deformable smooth-shaped and longitudinally-grooved tire publication-title: Tire Sci. Technol. doi: 10.2346/1.2137544 – volume: 82 start-page: 1013 year: 1977 ident: 10.1016/j.cma.2019.06.033_b15 article-title: A numerical approach to the testing of the fission hypothesis publication-title: Astron. J. doi: 10.1086/112164 – volume: 82 start-page: 397 year: 2019 ident: 10.1016/j.cma.2019.06.033_b21 article-title: Multi-resolution MPS for incompressible fluid-elastic structure interactions in ocean engineering publication-title: Appl. Ocean Res. doi: 10.1016/j.apor.2018.10.020 – volume: 31 start-page: 1054 year: 2005 ident: 10.1016/j.cma.2019.06.033_b30 article-title: Coupling between meshless and Finite Element methods publication-title: Int. J. Impact Eng. doi: 10.1016/j.ijimpeng.2004.04.017 – volume: 85 start-page: 879 issue: 11–14 year: 2007 ident: 10.1016/j.cma.2019.06.033_b26 article-title: Numérical Simulation of fluid structure interaction by SPH publication-title: IOP Comput. Struct. doi: 10.1016/j.compstruc.2007.01.002 – ident: 10.1016/j.cma.2019.06.033_b42 – year: 2017 ident: 10.1016/j.cma.2019.06.033_b13 article-title: Numerical study of tire hydroplaning based on power spectrum of asphalt pavement and kinetic friction coefficient publication-title: Adv. Mater. Sci. Eng. – volume: 181 start-page: 375 year: 1977 ident: 10.1016/j.cma.2019.06.033_b16 article-title: Smoothed Particle Hydrodynamics: theory and application to non-spherical stars publication-title: Mon. Not. R. Astron. Soc. doi: 10.1093/mnras/181.3.375 – year: 2007 ident: 10.1016/j.cma.2019.06.033_b25 – volume: 33 start-page: 839 year: 2004 ident: 10.1016/j.cma.2019.06.033_b36 article-title: A monolithic approach to fluid–structure interaction publication-title: Comput. & Fluids doi: 10.1016/j.compfluid.2003.06.006 – volume: 313 start-page: 76 year: 2016 ident: 10.1016/j.cma.2019.06.033_b54 article-title: SPH accuracy improvement through the combination of a quasi-Lagrangian shifting transport velocity and consistent ALE formalisms publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2016.02.039 – volume: 245 start-page: 456 year: 2013 ident: 10.1016/j.cma.2019.06.033_b56 article-title: An accurate SPH modeling of viscous flows around bodies at low and moderate Reynolds numbers publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2013.03.011 – year: 2015 ident: 10.1016/j.cma.2019.06.033_b66 – year: 2009 ident: 10.1016/j.cma.2019.06.033_b49 |
| SSID | ssj0000812 |
| Score | 2.5710096 |
| Snippet | A 3D fluid–structure coupling between Smoothed Particle Hydrodynamics (SPH) and Finite Element (FE) methods is proposed in this paper, with its application to... |
| SourceID | hal proquest crossref elsevier |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 558 |
| SubjectTerms | Algorithms Computational fluid dynamics Computer simulation Coupling Engineering Sciences Finite element method Fluid flow Fluid–structure interactions Free surfaces Hydroplaning Simulation Smooth particle hydrodynamics Solvers SPH–FE coupling Three dimensional models Tire hydroplaning |
| Title | A 3D SPH–FE coupling for FSI problems and its application to tire hydroplaning simulations on rough ground |
| URI | https://dx.doi.org/10.1016/j.cma.2019.06.033 https://www.proquest.com/docview/2289569003 https://hal.science/hal-02456192 |
| Volume | 355 |
| WOSCitedRecordID | wos000480605100024&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1879-2138 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000812 issn: 0045-7825 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LbtNAFB2lKQtY8ChUpBQ0QogFlpHtsZ3xMmoTpShKKzVF2Y3sybhplTppXiqs-Ad-gS_jS7jjmbGdIiJYsLGsie1Eucdz3-ci9C5NQieVdWE0FOCgJAG3EyJ8m7pukhLRTEnE82ETzX6fDofRWa32w_TCrCfNLKN3d9Hsv4oa1kDYsnX2H8RdPBQW4ByEDkcQOxz_SvAtixxb52ddU8ZAOm2LT1eziamZ7JyfWHqOzKLIHVQS2bk5CjuhNf4ymk9nkzgPnSyublZF3Vxmqek-sick2xj1aaZE6NHUebVtrC3dGyHbjA0ttCiZEMuArGxhuBQb0dvTS4WqYghYT1hHY5HFI8FLBaLWB9PVV5X6L4uZdUjDjYriOB1nK3ptPle3bj-wwZwJqls3CYLK5hsoEvjflIKKT1x_5DnRlBvlhK2KfmOTgLt_yjoXvR4btIeD97NbW84mkzl8PahlB-16zSCidbTbOmkPP5Uan7qKlV7_RJM9z-sI733rn-yfnbEsxL1nD-RGzuApeqy9E9xSqHqGaiLbQ0-0p4K1HljsoUcVGsvnaNLC5BgD5H5--95pYwM2DGDDADZswIZB7BjAhitgw8splmDDVbDhCtgwXJODDSuwvUAXnfbgqGvrKR4290O6tN2UU5FKtziO4pDS1PVSsOJ9TzrrEZX-v-PFXhqC1RD5IY95Qt0YNBENaJi4DtlH9WyaiZcIg7JJEmfkgkGV-mIk4jh1OBn5YNInHPyYBnLMf8u4priXk1YmzNQyXjMQB5PiYLKek5AG-lDcMlP8Ltsu9o3AmDZQleHJAGrbbnsLwi0eLwndu60ek2uy8EGGMNZuAx0a2TO9myyY59EoCGWy4WD7x6_Qw_JFOkT15XwlXqMHfL28WszfaLz-AtwMwug |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+3D+SPH%E2%80%93FE+coupling+for+FSI+problems+and+its+application+to+tire+hydroplaning+simulations+on+rough+ground&rft.jtitle=Computer+methods+in+applied+mechanics+and+engineering&rft.au=Hermange%2C+C&rft.au=Oger%2C+G&rft.au=Le+Chenadec%2C+Y&rft.au=Le+Touz%C3%A9%2C+D&rft.date=2019-10-01&rft.pub=Elsevier+BV&rft.issn=0045-7825&rft.volume=355&rft.spage=558&rft_id=info:doi/10.1016%2Fj.cma.2019.06.033&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0045-7825&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0045-7825&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0045-7825&client=summon |