Mn(III)-mediated bisphenol a degradation: Mechanisms and products

•Mn(III) associated with the surface of MnO2 contributes to BPA degradation.•Mn(III)- and MnO2-mediated degradation of BPA differ mechanistically.•Mechanistic differences lead to products with distinct toxicological profiles.•Mn(III)-mediated BPA degradation should be considered in natural attenuati...

Full description

Saved in:
Bibliographic Details
Published in:Water research (Oxford) Vol. 235; no. 1; p. 119787
Main Authors: Sun, Yanchen, Wang, Chao, May, Amanda L., Chen, Gao, Yin, Yongchao, Xie, Yongchao, Lato, Ashley M., Im, Jeongdae, Löffler, Frank E.
Format: Journal Article
Language:English
Published: England Elsevier Ltd 15.05.2023
Elsevier
Subjects:
ISSN:0043-1354, 1879-2448, 1879-2448
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract •Mn(III) associated with the surface of MnO2 contributes to BPA degradation.•Mn(III)- and MnO2-mediated degradation of BPA differ mechanistically.•Mechanistic differences lead to products with distinct toxicological profiles.•Mn(III)-mediated BPA degradation should be considered in natural attenuation assessments. Bisphenol A (BPA) is a high production volume chemical with potential estrogenic effects susceptible to abiotic degradation by MnO2. BPA transformation products and reaction mechanisms with MnO2 have been investigated, but detailed process understanding of Mn(III)-mediated degradation has not been attained. Rapid consumption of BPA occurred in batch reaction vessels with 1 mM Mn(III) and 63.9 ± 0.7% of 1.76 ± 0.02 μmol BPA was degraded in 1 hour at circumneutral pH. BPA was consumed at 1.86 ± 0.09-fold higher rates in vessels with synthetic MnO2 comprising approximately 13 mol% surface-associated Mn(III) versus surface-Mn(III)-free MnO2, and 10–35% of BPA transformation could be attributed to Mn(III) during the initial 10-min reaction phase. High-resolution tandem mass spectrometry (HRMS/MS) analysis detected eight transformation intermediates in reactions with Mn(III), and quantum calculations proposed 14 BPA degradation products, nine of which had not been observed during MnO2-mediated BPA degradation, suggesting mechanistic differences between Mn(III)- versus MnO2-mediated BPA degradation. The findings demonstrate that both Mn(III) and Mn(IV) can effectively degrade BPA and indicate that surface-associated Mn(III) increases the reactivity of synthetic MnO2, offering opportunities for engineering more reactive oxidized Mn species for BPA removal. [Display omitted]
AbstractList Bisphenol A (BPA) is a high production volume chemical with potential estrogenic effects susceptible to abiotic degradation by MnO2. BPA transformation products and reaction mechanisms with MnO2 have been investigated, but detailed process understanding of Mn(III)-mediated degradation has not been attained. Rapid consumption of BPA occurred in batch reaction vessels with 1 mM Mn(III) and 63.9 ± 0.7% of 1.76 ± 0.02 μmol BPA was degraded in 1 hour at circumneutral pH. BPA was consumed at 1.86 ± 0.09-fold higher rates in vessels with synthetic MnO2 comprising approximately 13 mol% surface-associated Mn(III) versus surface-Mn(III)-free MnO2, and 10-35% of BPA transformation could be attributed to Mn(III) during the initial 10-min reaction phase. High-resolution tandem mass spectrometry (HRMS/MS) analysis detected eight transformation intermediates in reactions with Mn(III), and quantum calculations proposed 14 BPA degradation products, nine of which had not been observed during MnO2-mediated BPA degradation, suggesting mechanistic differences between Mn(III)- versus MnO2-mediated BPA degradation. The findings demonstrate that both Mn(III) and Mn(IV) can effectively degrade BPA and indicate that surface-associated Mn(III) increases the reactivity of synthetic MnO2, offering opportunities for engineering more reactive oxidized Mn species for BPA removal.Bisphenol A (BPA) is a high production volume chemical with potential estrogenic effects susceptible to abiotic degradation by MnO2. BPA transformation products and reaction mechanisms with MnO2 have been investigated, but detailed process understanding of Mn(III)-mediated degradation has not been attained. Rapid consumption of BPA occurred in batch reaction vessels with 1 mM Mn(III) and 63.9 ± 0.7% of 1.76 ± 0.02 μmol BPA was degraded in 1 hour at circumneutral pH. BPA was consumed at 1.86 ± 0.09-fold higher rates in vessels with synthetic MnO2 comprising approximately 13 mol% surface-associated Mn(III) versus surface-Mn(III)-free MnO2, and 10-35% of BPA transformation could be attributed to Mn(III) during the initial 10-min reaction phase. High-resolution tandem mass spectrometry (HRMS/MS) analysis detected eight transformation intermediates in reactions with Mn(III), and quantum calculations proposed 14 BPA degradation products, nine of which had not been observed during MnO2-mediated BPA degradation, suggesting mechanistic differences between Mn(III)- versus MnO2-mediated BPA degradation. The findings demonstrate that both Mn(III) and Mn(IV) can effectively degrade BPA and indicate that surface-associated Mn(III) increases the reactivity of synthetic MnO2, offering opportunities for engineering more reactive oxidized Mn species for BPA removal.
•Mn(III) associated with the surface of MnO2 contributes to BPA degradation.•Mn(III)- and MnO2-mediated degradation of BPA differ mechanistically.•Mechanistic differences lead to products with distinct toxicological profiles.•Mn(III)-mediated BPA degradation should be considered in natural attenuation assessments. Bisphenol A (BPA) is a high production volume chemical with potential estrogenic effects susceptible to abiotic degradation by MnO2. BPA transformation products and reaction mechanisms with MnO2 have been investigated, but detailed process understanding of Mn(III)-mediated degradation has not been attained. Rapid consumption of BPA occurred in batch reaction vessels with 1 mM Mn(III) and 63.9 ± 0.7% of 1.76 ± 0.02 μmol BPA was degraded in 1 hour at circumneutral pH. BPA was consumed at 1.86 ± 0.09-fold higher rates in vessels with synthetic MnO2 comprising approximately 13 mol% surface-associated Mn(III) versus surface-Mn(III)-free MnO2, and 10–35% of BPA transformation could be attributed to Mn(III) during the initial 10-min reaction phase. High-resolution tandem mass spectrometry (HRMS/MS) analysis detected eight transformation intermediates in reactions with Mn(III), and quantum calculations proposed 14 BPA degradation products, nine of which had not been observed during MnO2-mediated BPA degradation, suggesting mechanistic differences between Mn(III)- versus MnO2-mediated BPA degradation. The findings demonstrate that both Mn(III) and Mn(IV) can effectively degrade BPA and indicate that surface-associated Mn(III) increases the reactivity of synthetic MnO2, offering opportunities for engineering more reactive oxidized Mn species for BPA removal. [Display omitted]
Bisphenol A (BPA) is a high production volume chemical with potential estrogenic effects susceptible to abiotic degradation by MnO2. BPA transformation products and reaction mechanisms with MnO2 have been investigated, but detailed process understanding of Mn(III)-mediated degradation has not been attained. Rapid consumption of BPA occurred in batch reaction vessels with 1 mM Mn(III) and 63.9 ± 0.7% of 1.76 ± 0.02 μmol BPA was degraded in 1 hour at circumneutral pH. BPA was consumed at 1.86 ± 0.09-fold higher rates in vessels with synthetic MnO2 comprising approximately 13 mol% surface-associated Mn(III) versus surface-Mn(III)-free MnO2, and 10–35% of BPA transformation could be attributed to Mn(III) during the initial 10-min reaction phase. High-resolution tandem mass spectrometry (HRMS/MS) analysis detected eight transformation intermediates in reactions with Mn(III), and quantum calculations proposed 14 BPA degradation products, nine of which had not been observed during MnO2-mediated BPA degradation, suggesting mechanistic differences between Mn(III)- versus MnO2-mediated BPA degradation. Finally, the findings demonstrate that both Mn(III) and Mn(IV) can effectively degrade BPA and indicate that surface-associated Mn(III) increases the reactivity of synthetic MnO2, offering opportunities for engineering more reactive oxidized Mn species for BPA removal.
Bisphenol A (BPA) is a high production volume chemical with potential estrogenic effects susceptible to abiotic degradation by MnO . BPA transformation products and reaction mechanisms with MnO have been investigated, but detailed process understanding of Mn(III)-mediated degradation has not been attained. Rapid consumption of BPA occurred in batch reaction vessels with 1 mM Mn(III) and 63.9 ± 0.7% of 1.76 ± 0.02 μmol BPA was degraded in 1 hour at circumneutral pH. BPA was consumed at 1.86 ± 0.09-fold higher rates in vessels with synthetic MnO comprising approximately 13 mol% surface-associated Mn(III) versus surface-Mn(III)-free MnO , and 10-35% of BPA transformation could be attributed to Mn(III) during the initial 10-min reaction phase. High-resolution tandem mass spectrometry (HRMS/MS) analysis detected eight transformation intermediates in reactions with Mn(III), and quantum calculations proposed 14 BPA degradation products, nine of which had not been observed during MnO -mediated BPA degradation, suggesting mechanistic differences between Mn(III)- versus MnO -mediated BPA degradation. The findings demonstrate that both Mn(III) and Mn(IV) can effectively degrade BPA and indicate that surface-associated Mn(III) increases the reactivity of synthetic MnO , offering opportunities for engineering more reactive oxidized Mn species for BPA removal.
Bisphenol A (BPA) is a high production volume chemical with potential estrogenic effects susceptible to abiotic degradation by MnO₂. BPA transformation products and reaction mechanisms with MnO₂ have been investigated, but detailed process understanding of Mn(III)-mediated degradation has not been attained. Rapid consumption of BPA occurred in batch reaction vessels with 1 mM Mn(III) and 63.9 ± 0.7% of 1.76 ± 0.02 μmol BPA was degraded in 1 hour at circumneutral pH. BPA was consumed at 1.86 ± 0.09-fold higher rates in vessels with synthetic MnO₂ comprising approximately 13 mol% surface-associated Mn(III) versus surface-Mn(III)-free MnO₂, and 10–35% of BPA transformation could be attributed to Mn(III) during the initial 10-min reaction phase. High-resolution tandem mass spectrometry (HRMS/MS) analysis detected eight transformation intermediates in reactions with Mn(III), and quantum calculations proposed 14 BPA degradation products, nine of which had not been observed during MnO₂-mediated BPA degradation, suggesting mechanistic differences between Mn(III)- versus MnO₂-mediated BPA degradation. The findings demonstrate that both Mn(III) and Mn(IV) can effectively degrade BPA and indicate that surface-associated Mn(III) increases the reactivity of synthetic MnO₂, offering opportunities for engineering more reactive oxidized Mn species for BPA removal.
ArticleNumber 119787
Author Xie, Yongchao
Lato, Ashley M.
Yin, Yongchao
Wang, Chao
Sun, Yanchen
Im, Jeongdae
Löffler, Frank E.
Chen, Gao
May, Amanda L.
Author_xml – sequence: 1
  givenname: Yanchen
  orcidid: 0000-0003-1265-2738
  surname: Sun
  fullname: Sun, Yanchen
  organization: Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States
– sequence: 2
  givenname: Chao
  surname: Wang
  fullname: Wang, Chao
  organization: State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
– sequence: 3
  givenname: Amanda L.
  surname: May
  fullname: May, Amanda L.
  organization: Center for Environmental Biotechnology, University of Tennessee, Knoxville, Tennessee 37996, United States
– sequence: 4
  givenname: Gao
  orcidid: 0000-0002-8767-3130
  surname: Chen
  fullname: Chen, Gao
  organization: Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States
– sequence: 5
  givenname: Yongchao
  orcidid: 0000-0001-8191-8013
  surname: Yin
  fullname: Yin, Yongchao
  organization: Center for Environmental Biotechnology, University of Tennessee, Knoxville, Tennessee 37996, United States
– sequence: 6
  givenname: Yongchao
  surname: Xie
  fullname: Xie, Yongchao
  organization: Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States
– sequence: 7
  givenname: Ashley M.
  surname: Lato
  fullname: Lato, Ashley M.
  organization: Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
– sequence: 8
  givenname: Jeongdae
  surname: Im
  fullname: Im, Jeongdae
  organization: Department of Civil Engineering, Kansas State University, Manhattan, Kansas 66506, United States
– sequence: 9
  givenname: Frank E.
  orcidid: 0000-0002-9797-4279
  surname: Löffler
  fullname: Löffler, Frank E.
  email: frank.loeffler@utk.edu
  organization: Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36917870$$D View this record in MEDLINE/PubMed
https://www.osti.gov/servlets/purl/1961943$$D View this record in Osti.gov
BookMark eNqFkT1PHDEURS0ECgvJP0DRiIoUs_HXjm0KJIQCrASiIbXlsd8Er2btxfYmyr-PNwMNBVSvOffq6dwjtB9iAIROCJ4TTLrvq_kfUxLkOcWUzQlRQoo9NCNSqJZyLvfRDGPOWsIW_BAd5bzCGFPK1Cd0yDpFKo5n6PI-nC2Xy2_tGpw3BVzT-7x5ghDHxjQOfiXjTPExnDf3YJ9M8HmdGxNcs0nRbW3Jn9HBYMYMX17uMfp5_ePx6ra9e7hZXl3etZZ3srREKqukc8oJCrJTYsBisD1Wji4kASo7TlzfM2edGfqOOylgEBikkEqRQbBjdDr1xly8ztaX-o-NIYAtmqiOKM4qdDZB9bvnLeSi1z5bGEcTIG6zppJximUn5MdoFUQJV3xR0a8v6LavnvQm-bVJf_WrxgqcT4BNMecEg67v_ddWkvGjJljvNtMrPW2md5vpabMa5m_Cr_0fxC6mGFTpvz2knRMItu6Ydkpc9O8X_AOsV7Bd
CitedBy_id crossref_primary_10_1016_j_watres_2024_122666
crossref_primary_10_1093_lambio_ovaf044
crossref_primary_10_1016_j_jhazmat_2024_137013
crossref_primary_10_1016_j_cej_2024_157135
crossref_primary_10_1016_j_ces_2024_120698
crossref_primary_10_1016_j_chemosphere_2023_140054
crossref_primary_10_1016_j_cej_2024_156402
crossref_primary_10_1016_j_cej_2024_155810
crossref_primary_10_1007_s13762_025_06351_2
crossref_primary_10_1016_j_envres_2024_120156
crossref_primary_10_1016_j_jhazmat_2023_132427
crossref_primary_10_1016_j_apsusc_2025_164161
crossref_primary_10_1007_s11164_024_05324_3
crossref_primary_10_1016_j_jenvman_2024_122591
crossref_primary_10_1016_j_biortech_2024_131106
crossref_primary_10_1016_j_jece_2025_118900
crossref_primary_10_1016_j_jece_2024_113157
crossref_primary_10_1016_j_jece_2023_111771
crossref_primary_10_1016_j_surfin_2024_104886
crossref_primary_10_1016_j_jece_2024_114945
crossref_primary_10_1016_j_jece_2024_112446
crossref_primary_10_1016_j_jwpe_2023_104388
crossref_primary_10_1016_j_jhazmat_2025_138373
crossref_primary_10_1016_j_jhazmat_2025_138839
crossref_primary_10_1016_j_jhazmat_2023_132596
crossref_primary_10_1016_j_jhazmat_2025_138977
crossref_primary_10_1016_j_jhazmat_2024_134213
crossref_primary_10_1016_j_watres_2024_122198
crossref_primary_10_1016_j_seppur_2023_125960
crossref_primary_10_1016_j_biortech_2025_133233
crossref_primary_10_1016_j_jwpe_2024_105090
crossref_primary_10_1016_j_jhazmat_2024_135209
Cites_doi 10.1346/CCMN.1992.0400204
10.1021/acs.est.7b03889
10.1021/es200588w
10.1021/es303191g
10.1128/AEM.00663-16
10.1063/1.1740412
10.1103/RevModPhys.65.599
10.1016/j.chemosphere.2014.09.008
10.1021/es050036x
10.1021/es011500a
10.1021/acs.est.9b03456
10.1016/S0043-1354(01)00367-0
10.1016/j.watres.2012.11.054
10.1016/j.gca.2011.07.026
10.1038/nchembio.2512
10.1063/1.1700523
10.1021/acs.est.6b00877
10.1021/jp9122198
10.1007/s11356-014-2535-2
10.1021/es900235f
10.1021/acs.est.8b04116
10.1021/es991462j
10.1016/j.apcatb.2009.12.002
10.1021/es303895w
10.1021/es50001a011
10.1016/j.watres.2018.04.038
10.1021/es4037308
10.1021/es026190q
10.1021/acs.est.8b00120
10.1021/es001848q
10.1016/j.gca.2010.03.005
10.1021/acs.joc.8b03229
10.1021/acs.est.8b03791
10.1021/acs.est.6b05904
10.1016/j.gca.2006.06.1551
10.1021/acs.est.8b01830
10.1021/acs.est.8b03383
10.1016/j.watres.2018.03.057
10.1016/j.watres.2018.06.029
10.1021/acs.est.5b03111
10.1021/acs.est.5b00372
10.1021/es030576z
10.1021/es1006675
10.1021/acs.est.1c06551
10.1016/S0016-7037(03)00217-5
10.1016/S0016-7037(99)00229-X
10.1126/science.1241396
10.1126/science.1132876
10.1016/j.toxlet.2011.03.010
10.1016/S0045-6535(97)10133-3
10.1021/acs.est.2c07399
10.1021/es980308e
10.1016/j.jhazmat.2021.125987
ContentType Journal Article
Copyright 2023 Elsevier Ltd
Copyright © 2023 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2023 Elsevier Ltd
– notice: Copyright © 2023 Elsevier Ltd. All rights reserved.
CorporateAuthor Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)
CorporateAuthor_xml – name: Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
OIOZB
OTOTI
DOI 10.1016/j.watres.2023.119787
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
OSTI.GOV - Hybrid
OSTI.GOV
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic


MEDLINE
AGRICOLA
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-2448
ExternalDocumentID 1961943
36917870
10_1016_j_watres_2023_119787
S0043135423002221
Genre Journal Article
GroupedDBID ---
--K
--M
-DZ
-~X
.DC
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABFRF
ABFYP
ABJNI
ABLST
ABMAC
ABQEM
ABQYD
ABYKQ
ACDAQ
ACGFO
ACGFS
ACLVX
ACRLP
ACSBN
ADBBV
ADEZE
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ATOGT
AXJTR
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
IMUCA
J1W
KCYFY
KOM
LY3
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SCU
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSE
SSJ
SSZ
T5K
TAE
TN5
TWZ
WH7
XPP
ZCA
ZMT
~02
~G-
~KM
.55
186
29R
6TJ
9DU
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABWVN
ABXDB
ACKIV
ACLOT
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEGFY
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HMA
HMC
HVGLF
HZ~
H~9
MVM
OHT
R2-
SEN
SEP
WUQ
X7M
XOL
YHZ
YV5
ZXP
ZY4
~A~
~HD
AGCQF
AGRNS
BNPGV
CGR
CUY
CVF
ECM
EIF
NPM
SSH
7X8
7S9
L.6
OIOZB
OTOTI
RIG
ID FETCH-LOGICAL-c468t-189c98dd9d72e8697f07fcb09d2581e28641dbb3dcdafb64d87ef70e878991f73
ISICitedReferencesCount 37
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001010417900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0043-1354
1879-2448
IngestDate Mon Mar 04 05:08:47 EST 2024
Sun Sep 28 08:36:37 EDT 2025
Sun Sep 28 03:14:31 EDT 2025
Mon Jul 21 06:03:29 EDT 2025
Sat Nov 29 07:30:54 EST 2025
Tue Nov 18 21:46:57 EST 2025
Fri Feb 23 02:37:27 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords MnO2
Bisphenol A
Quantum chemical calculations
Mn(III)
Degradation pathway
MnO
Language English
License Copyright © 2023 Elsevier Ltd. All rights reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c468t-189c98dd9d72e8697f07fcb09d2581e28641dbb3dcdafb64d87ef70e878991f73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
USDOE
Polycarbonate/BPA Global Group of the American Chemistry Council (ACC)
AC05-00OR22725
ORCID 0000-0001-8191-8013
0000-0002-8767-3130
0000-0003-1265-2738
0000-0002-9797-4279
0000000287673130
0000000181918013
0000000312652738
0000000297974279
OpenAccessLink https://www.osti.gov/servlets/purl/1961943
PMID 36917870
PQID 2787214945
PQPubID 23479
ParticipantIDs osti_scitechconnect_1961943
proquest_miscellaneous_2834208678
proquest_miscellaneous_2787214945
pubmed_primary_36917870
crossref_citationtrail_10_1016_j_watres_2023_119787
crossref_primary_10_1016_j_watres_2023_119787
elsevier_sciencedirect_doi_10_1016_j_watres_2023_119787
PublicationCentury 2000
PublicationDate 2023-05-15
PublicationDateYYYYMMDD 2023-05-15
PublicationDate_xml – month: 05
  year: 2023
  text: 2023-05-15
  day: 15
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: United States
PublicationTitle Water research (Oxford)
PublicationTitleAlternate Water Res
PublicationYear 2023
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Chempath, Boncella, Pratt, Henson, Pivovar (bib0004) 2010; 114
Wang, Stone (bib0055) 2006; 70
Fukui, Yonezawa, Nagata, Shingu (bib0013) 1954; 22
Suzuki, Nakagawa, Takano, Yaguchi, Yasuda (bib0048) 2004; 38
Wang, Wang, Qu, Ge, Wang, Gu (bib0054) 2018; 52
Chen, Liu, Boyd, Teppen, Li (bib0006) 2013; 47
Kalmykova, Björklund, Strömvall, Blom (bib0024) 2013; 47
Frisch, Trucks, Schlegel, Scuseria, Robb, Cheeseman, Scalmani, Barone, Mennucci, Petersson (bib0010) 2009; 32
Blotevogel, Borch, Desyaterik, Mayeno, Sale (bib0003) 2010; 44
Fleck, Hett, Brode, Meyer, Richert, Schiemann (bib0009) 2019; 84
(accessed Aug 18, 2022).
Sun, Im, Shobnam, Fanourakis, He, Anovitz, Erickson, Sun, Zhuang, Löffler (bib0047) 2021; 55
Wang, Xiong, Tebo, Giammar (bib0056) 2014; 48
Li, Pang, Zhou, Sun, Wang, Wang, Gao, Yang, Jiang (bib0029) 2018; 143
Gao, Jiang, Zhou, Pang, Jiang, Guo, Duan (bib0015) 2018; 52
Fromme, Küchler, Otto, Pilz, Müller, Wenzel (bib0011) 2002; 36
An, Yang, Li, Song, Cooper, Nie (bib0001) 2010; 94
Learman, Wankel, Webb, Martinez, Madden, Hansel (bib0028) 2011; 75
Trouwborst, Clement, Tebo, Glazer, Luther (bib0049) 2006; 313
Research and Markets 2021. Global bisphenol A (BPA) market report and forecast 2021-2026
Sun, Guan, Fang, Tratnyek (bib0046) 2015; 49
Wang, Chen, Sun, Sun, Qiao, Guan (bib0053) 2022; 57
Im, Prevatte, Lee, Campagna, Löffler (bib0021) 2014; 117
Xu, Chen, Wang, Ge, Qu, Feng, Sharma, Wang (bib0058) 2018; 138
Feng, Zhu, Ginder-Vogel, Ni, Parikh, Sparks (bib0008) 2010; 74
Johnson, McCann, Wilkinson, Jones, Tebo, West, Elgy, Clarke, Gowdy, Hudson-Edwards (bib0022) 2018; 140
Balgooyen, Alaimo, Remucal, Ginder-Vogel (bib0002) 2017; 51
Huang, Weber (bib0018) 2005; 39
McCormick, Es, Cooper, White, Häggblom (bib0036) 2011; 45
USEPA 2022. Estimating toxicity of industrial chemicals to aquatic organisms using the ECOSAR (ecological structure activity relationship) class program
Zhang, Huang (bib0060) 2003; 37
Wright, Farooqui, White, Greene (bib0057) 2016; 82
Marcus (bib0035) 1993; 65
Klewicki, Morgan (bib0026) 1998; 32
Nico, Zasoski (bib0039) 2000; 34
Lowe, Peterson (bib0033) 2006
Zhang, Hedtke, Wang, Wang, Cao, Elimelech, Kim (bib0061) 2021; 55
Madison, Tebo, Mucci, Sundby, Luther (bib0034) 2013; 341
Yan, Bi, Bourdon, Farmer, Wang, Molenda, Quaile, Jiang, Yang, Yin, Şimşir, Campagna, Edwards, Löffler (bib0059) 2018; 14
Ohko, Iuchi, Niwa, Tatsuma, Nakashima, Iguchi, Kubota, Fujishima (bib0041) 2002; 36
Kostka, Luther, Nealson (bib0027) 1995; 59
Im, Prevatte, Campagna, Löffler (bib0020) 2015; 49
Jones, Nico, Ying, Regier, Thieme, Keiluweit (bib0023) 2018; 52
Huang, Zhao, Liu, Sun (bib0016) 2014; 21
Nakamura, Tezuka, Ushiyama, Kawashima, Kitagawara, Takahashi, Ohta, Mashino (bib0038) 2011; 203
Liu, Sun, Qiao, Guan (bib0032) 2019; 53
Huang, Zhong, Dai, Liu, Zhang (bib0017) 2018; 52
Chen, Wu, Xu, Qu, Li, Pan, Wei, Wang (bib0005) 2018; 52
Shobnam, Sun, Mahmood, Löffler, Im (bib0043) 2021
Villalobos, Toner, Bargar, Sposito (bib0052) 2003; 67
Stone (bib0045) 1987; 21
Liao, Liu, Moon, Yamashita, Yun, Kannan (bib0030) 2012; 46
Klewicki, Morgan (bib0025) 1999; 63
Ukrainczyk, McBride (bib0050) 1992; 40
Fukui (bib0012) 1975
Choi, Lee (bib0007) 2017; 51
(accessed Aug 31, 2022).
Fukui, Yonezawa, Shingu (bib0014) 1952; 20
Lin, Liu, Gan (bib0031) 2009; 43
Nico, Zasoski (bib0040) 2001; 35
Staples, Dome, Klecka, Oblock, Harris (bib0044) 1998; 36
Im, Löffler (bib0019) 2016; 50
Metzler-Nolte, Kraatz (bib0037) 2006
Klewicki (10.1016/j.watres.2023.119787_bib0026) 1998; 32
Jones (10.1016/j.watres.2023.119787_bib0023) 2018; 52
Nico (10.1016/j.watres.2023.119787_bib0040) 2001; 35
Shobnam (10.1016/j.watres.2023.119787_bib0043) 2021
Suzuki (10.1016/j.watres.2023.119787_bib0048) 2004; 38
Ukrainczyk (10.1016/j.watres.2023.119787_bib0050) 1992; 40
Fleck (10.1016/j.watres.2023.119787_bib0009) 2019; 84
Huang (10.1016/j.watres.2023.119787_bib0018) 2005; 39
Klewicki (10.1016/j.watres.2023.119787_bib0025) 1999; 63
Kostka (10.1016/j.watres.2023.119787_bib0027) 1995; 59
Wang (10.1016/j.watres.2023.119787_bib0055) 2006; 70
Wang (10.1016/j.watres.2023.119787_bib0056) 2014; 48
Chen (10.1016/j.watres.2023.119787_bib0005) 2018; 52
Im (10.1016/j.watres.2023.119787_bib0021) 2014; 117
Im (10.1016/j.watres.2023.119787_bib0020) 2015; 49
Kalmykova (10.1016/j.watres.2023.119787_bib0024) 2013; 47
Liao (10.1016/j.watres.2023.119787_bib0030) 2012; 46
Fukui (10.1016/j.watres.2023.119787_bib0013) 1954; 22
Li (10.1016/j.watres.2023.119787_bib0029) 2018; 143
Learman (10.1016/j.watres.2023.119787_bib0028) 2011; 75
Frisch (10.1016/j.watres.2023.119787_bib0010) 2009; 32
Lin (10.1016/j.watres.2023.119787_bib0031) 2009; 43
Ohko (10.1016/j.watres.2023.119787_bib0041) 2002; 36
Gao (10.1016/j.watres.2023.119787_bib0015) 2018; 52
10.1016/j.watres.2023.119787_bib0042
Fromme (10.1016/j.watres.2023.119787_bib0011) 2002; 36
Stone (10.1016/j.watres.2023.119787_bib0045) 1987; 21
Fukui (10.1016/j.watres.2023.119787_bib0014) 1952; 20
Im (10.1016/j.watres.2023.119787_bib0019) 2016; 50
Chempath (10.1016/j.watres.2023.119787_bib0004) 2010; 114
Wang (10.1016/j.watres.2023.119787_bib0053) 2022; 57
Sun (10.1016/j.watres.2023.119787_bib0046) 2015; 49
Balgooyen (10.1016/j.watres.2023.119787_bib0002) 2017; 51
McCormick (10.1016/j.watres.2023.119787_bib0036) 2011; 45
Zhang (10.1016/j.watres.2023.119787_bib0060) 2003; 37
Trouwborst (10.1016/j.watres.2023.119787_bib0049) 2006; 313
Staples (10.1016/j.watres.2023.119787_bib0044) 1998; 36
An (10.1016/j.watres.2023.119787_bib0001) 2010; 94
Fukui (10.1016/j.watres.2023.119787_bib0012) 1975
Liu (10.1016/j.watres.2023.119787_bib0032) 2019; 53
Zhang (10.1016/j.watres.2023.119787_bib0061) 2021; 55
Huang (10.1016/j.watres.2023.119787_bib0017) 2018; 52
Marcus (10.1016/j.watres.2023.119787_bib0035) 1993; 65
Nakamura (10.1016/j.watres.2023.119787_bib0038) 2011; 203
10.1016/j.watres.2023.119787_bib0051
Wang (10.1016/j.watres.2023.119787_bib0054) 2018; 52
Xu (10.1016/j.watres.2023.119787_bib0058) 2018; 138
Huang (10.1016/j.watres.2023.119787_bib0016) 2014; 21
Nico (10.1016/j.watres.2023.119787_bib0039) 2000; 34
Metzler-Nolte (10.1016/j.watres.2023.119787_bib0037) 2006
Chen (10.1016/j.watres.2023.119787_bib0006) 2013; 47
Villalobos (10.1016/j.watres.2023.119787_bib0052) 2003; 67
Johnson (10.1016/j.watres.2023.119787_bib0022) 2018; 140
Wright (10.1016/j.watres.2023.119787_bib0057) 2016; 82
Sun (10.1016/j.watres.2023.119787_bib0047) 2021; 55
Feng (10.1016/j.watres.2023.119787_bib0008) 2010; 74
Choi (10.1016/j.watres.2023.119787_bib0007) 2017; 51
Yan (10.1016/j.watres.2023.119787_bib0059) 2018; 14
Lowe (10.1016/j.watres.2023.119787_bib0033) 2006
Madison (10.1016/j.watres.2023.119787_bib0034) 2013; 341
Blotevogel (10.1016/j.watres.2023.119787_bib0003) 2010; 44
References_xml – volume: 65
  start-page: 599
  year: 1993
  ident: bib0035
  article-title: Electron transfer reactions in chemistry. Theory and experiment
  publication-title: Rev. Mod. Phys.
– volume: 21
  start-page: 5818
  year: 2014
  end-page: 5826
  ident: bib0016
  article-title: Characteristics, sources, and transport of tetrabromobisphenol A and bisphenol A in soils from a typical e-waste recycling area in South China
  publication-title: Environ. Sci. Pollut. Res.
– volume: 21
  start-page: 979
  year: 1987
  end-page: 988
  ident: bib0045
  article-title: Reductive dissolution of manganese (III/IV) oxides by substituted phenols
  publication-title: Environ. Sci. Technol.
– volume: 43
  start-page: 3860
  year: 2009
  end-page: 3864
  ident: bib0031
  article-title: Oxidative removal of bisphenol A by manganese dioxide: efficacy, products, and pathways
  publication-title: Environ. Sci. Technol.
– year: 2006
  ident: bib0037
  article-title: Concepts and Models in Bioinorganic Chemistry
– volume: 94
  start-page: 288
  year: 2010
  end-page: 294
  ident: bib0001
  article-title: Kinetics and mechanism of advanced oxidation processes (AOPs) in degradation of ciprofloxacin in water
  publication-title: Appl. Catal. B: Environ.
– volume: 22
  start-page: 1433
  year: 1954
  end-page: 1442
  ident: bib0013
  article-title: Molecular orbital theory of orientation in aromatic, heteroaromatic, and other conjugated molecules
  publication-title: J. Chem. Phys.
– volume: 55
  start-page: 13014
  year: 2021
  end-page: 13023
  ident: bib0047
  article-title: Degradation of adsorbed bisphenol A by soluble Mn(III)
  publication-title: Environ. Sci. Technol.
– reference: (accessed Aug 31, 2022).
– volume: 20
  start-page: 722
  year: 1952
  end-page: 725
  ident: bib0014
  article-title: A molecular orbital theory of reactivity in aromatic hydrocarbons
  publication-title: J. Chem. Phys.
– volume: 341
  start-page: 875
  year: 2013
  end-page: 878
  ident: bib0034
  article-title: Abundant porewater Mn (III) is a major component of the sedimentary redox system
  publication-title: Science
– volume: 39
  start-page: 6029
  year: 2005
  end-page: 6036
  ident: bib0018
  article-title: Transformation and removal of bisphenol A from aqueous phase via peroxidase-mediated oxidative coupling reactions: efficacy, products, and pathways
  publication-title: Environ. Sci. Technol.
– volume: 52
  start-page: 12592
  year: 2018
  end-page: 12601
  ident: bib0005
  article-title: Fe (VI)-mediated single-electron coupling processes for the removal of chlorophene: a combined experimental and computational study
  publication-title: Environ. Sci. Technol.
– volume: 34
  start-page: 3363
  year: 2000
  end-page: 3367
  ident: bib0039
  article-title: Importance of Mn (III) availability on the rate of Cr (III) oxidation on
  publication-title: Environ. Sci. Technol.
– volume: 138
  start-page: 293
  year: 2018
  end-page: 300
  ident: bib0058
  article-title: Degradation kinetics and transformation products of chlorophene by aqueous permanganate
  publication-title: Water Res.
– volume: 52
  start-page: 4785
  year: 2018
  end-page: 4793
  ident: bib0015
  article-title: Does soluble Mn (III) oxidant formed in situ account for enhanced transformation of triclosan by Mn (VII) in the presence of ligands?
  publication-title: Environ. Sci. Technol.
– volume: 44
  start-page: 5868
  year: 2010
  end-page: 5874
  ident: bib0003
  article-title: Quantum chemical prediction of redox reactivity and degradation pathways for aqueous phase contaminants: an example with HMPA
  publication-title: Environ. Sci. Technol.
– volume: 84
  start-page: 3293
  year: 2019
  end-page: 3303
  ident: bib0009
  article-title: C–C cross-coupling reactions of trityl radicals: spin density delocalization, exchange coupling, and a spin label
  publication-title: J. Org. Chem.
– volume: 57
  start-page: 997
  year: 2022
  end-page: 1005
  ident: bib0053
  article-title: Roles of MnO
  publication-title: Environ. Sci. Technol.
– volume: 48
  start-page: 289
  year: 2014
  end-page: 298
  ident: bib0056
  article-title: Oxidative UO
  publication-title: Environ. Sci. Technol.
– volume: 36
  start-page: 4175
  year: 2002
  end-page: 4181
  ident: bib0041
  article-title: 17
  publication-title: Environ. Sci. Technol.
– volume: 117
  start-page: 521
  year: 2014
  end-page: 526
  ident: bib0021
  article-title: 4-Methylphenol produced in freshwater sediment microcosms is not a bisphenol A metabolite
  publication-title: Chemosphere
– volume: 35
  start-page: 3338
  year: 2001
  end-page: 3343
  ident: bib0040
  article-title: Mn (III) center availability as a rate controlling factor in the oxidation of phenol and sulfide on
  publication-title: Environ. Sci. Technol.
– volume: 70
  start-page: 4463
  year: 2006
  end-page: 4476
  ident: bib0055
  article-title: The citric acid–Mn
  publication-title: Geochim. Cosmochim. Acta
– volume: 52
  start-page: 11309
  year: 2018
  end-page: 11318
  ident: bib0017
  article-title: Effect of MnO
  publication-title: Environ. Sci. Technol.
– volume: 36
  start-page: 2149
  year: 1998
  end-page: 2173
  ident: bib0044
  article-title: A review of the environmental fate, effects, and exposures of bisphenol A
  publication-title: Chemosphere
– volume: 47
  start-page: 1317
  year: 2013
  end-page: 1328
  ident: bib0024
  article-title: Partitioning of polycyclic aromatic hydrocarbons, alkylphenols, bisphenol A and phthalates in landfill leachates and stormwater
  publication-title: Water Res.
– volume: 143
  start-page: 47
  year: 2018
  end-page: 55
  ident: bib0029
  article-title: Transformation of bisphenol AF and bisphenol S by manganese dioxide and effect of iodide
  publication-title: Water Res.
– volume: 74
  start-page: 3232
  year: 2010
  end-page: 3245
  ident: bib0008
  article-title: Formation of nano-crystalline todorokite from biogenic Mn oxides
  publication-title: Geochim. Cosmochim. Acta
– volume: 37
  start-page: 2421
  year: 2003
  end-page: 2430
  ident: bib0060
  article-title: Oxidative transformation of triclosan and chlorophene by manganese oxides
  publication-title: Environ. Sci. Technol.
– volume: 53
  start-page: 10227
  year: 2019
  end-page: 10235
  ident: bib0032
  article-title: Influence of pyrophosphate on the generation of soluble Mn (III) from reactions involving Mn oxides and Mn (VII)
  publication-title: Environ. Sci. Technol.
– year: 2006
  ident: bib0033
  article-title: Quantum Chemistry
– volume: 52
  start-page: 13222
  year: 2018
  end-page: 13230
  ident: bib0054
  article-title: Enhanced removal of chlorophene and 17
  publication-title: Environ. Sci. Technol.
– volume: 114
  start-page: 11977
  year: 2010
  end-page: 11983
  ident: bib0004
  article-title: Density functional theory study of degradation of tetraalkylammonium hydroxides
  publication-title: J. Phys. Chem. C
– volume: 47
  start-page: 1357
  year: 2013
  end-page: 1364
  ident: bib0006
  article-title: Reduction of carbadox mediated by reaction of Mn (III) with oxalic acid
  publication-title: Environ. Sci. Technol.
– reference: Research and Markets 2021. Global bisphenol A (BPA) market report and forecast 2021-2026;
– volume: 46
  start-page: 11558
  year: 2012
  end-page: 11565
  ident: bib0030
  article-title: Bisphenol analogues in sediments from industrialized areas in the United States, Japan, and Korea: spatial and temporal distributions
  publication-title: Environ. Sci. Technol.
– volume: 313
  start-page: 1955
  year: 2006
  end-page: 1957
  ident: bib0049
  article-title: Soluble Mn (III) in suboxic zones
  publication-title: Science
– volume: 52
  start-page: 12349
  year: 2018
  end-page: 12357
  ident: bib0023
  article-title: Manganese-driven carbon oxidation at oxic–anoxic interfaces
  publication-title: Environ. Sci. Technol.
– volume: 45
  start-page: 6567
  year: 2011
  end-page: 6574
  ident: bib0036
  article-title: Microbially mediated
  publication-title: Environ. Sci. Technol.
– volume: 49
  start-page: 12414
  year: 2015
  end-page: 12421
  ident: bib0046
  article-title: Activation of manganese oxidants with bisulfite for enhanced oxidation of organic contaminants: the involvement of Mn (III)
  publication-title: Environ. Sci. Technol.
– volume: 59
  start-page: 885
  year: 1995
  end-page: 894
  ident: bib0027
  article-title: Chemical and biological reduction of Mn (III)-pyrophosphate complexes: potential importance of dissolved Mn (III) as an environmental oxidant
  publication-title: Geochim. Cosmochim. Acta.
– year: 2021
  ident: bib0043
  article-title: Biologically mediated abiotic degradation (BMAD) of bisphenol A by manganese-oxidizing bacteria
  publication-title: J. Hazard. Mater.
– volume: 82
  start-page: 5402
  year: 2016
  end-page: 5409
  ident: bib0057
  article-title: Production of manganese oxide nanoparticles by
  publication-title: Appl. Environ. Microbiol.
– volume: 14
  start-page: 8
  year: 2018
  ident: bib0059
  article-title: Purinyl-cobamide is a native prosthetic group of reductive dehalogenases
  publication-title: Nat. Chem. Biol.
– volume: 51
  start-page: 13698
  year: 2017
  end-page: 13704
  ident: bib0007
  article-title: Aerobic soil biodegradation of bisphenol (BPA) alternatives bisphenol S and bisphenol AF compared to BPA
  publication-title: Environ. Sci. Technol.
– volume: 140
  start-page: 181
  year: 2018
  end-page: 190
  ident: bib0022
  article-title: Dissolved Mn (III) in water treatment works: prevalence and significance
  publication-title: Water Res.
– volume: 40
  start-page: 157
  year: 1992
  end-page: 166
  ident: bib0050
  article-title: Oxidation of phenol in acidic aqueous suspensions of manganese oxides
  publication-title: Clays Clay Miner.
– volume: 51
  start-page: 6053
  year: 2017
  end-page: 6062
  ident: bib0002
  article-title: Structural transformation of MnO
  publication-title: Environ. Sci. Technol.
– volume: 36
  start-page: 1429
  year: 2002
  end-page: 1438
  ident: bib0011
  article-title: Occurrence of phthalates and bisphenol A and F in the environment
  publication-title: Water Res.
– volume: 203
  start-page: 92
  year: 2011
  end-page: 95
  ident: bib0038
  article-title: substitution of bisphenol A catalyzed by microsomal cytochrome P450 and enhancement of estrogenic activity
  publication-title: Toxicol. Lett.
– reference: USEPA 2022. Estimating toxicity of industrial chemicals to aquatic organisms using the ECOSAR (ecological structure activity relationship) class program;
– volume: 38
  start-page: 2389
  year: 2004
  end-page: 2396
  ident: bib0048
  article-title: Environmental fate of bisphenol A and its biological metabolites in river water and their xeno-estrogenic activity
  publication-title: Environ. Sci. Technol.
– volume: 55
  start-page: 16708
  year: 2021
  end-page: 16715
  ident: bib0061
  article-title: Engineered nanoconfinement accelerating spontaneous manganese-catalyzed degradation of organic contaminants
  publication-title: Environ. Sci. Technol.
– volume: 49
  start-page: 6214
  year: 2015
  end-page: 6221
  ident: bib0020
  article-title: Identification of 4-hydroxycumyl alcohol as the major MnO
  publication-title: Environ. Sci. Technol.
– volume: 67
  start-page: 2649
  year: 2003
  end-page: 2662
  ident: bib0052
  article-title: Characterization of the manganese oxide produced by
  publication-title: Geochim. Cosmochim. Acta
– volume: 50
  start-page: 8403
  year: 2016
  end-page: 8416
  ident: bib0019
  article-title: Fate of bisphenol A in terrestrial and aquatic environments
  publication-title: Environ. Sci. Technol.
– volume: 75
  start-page: 6048
  year: 2011
  end-page: 6063
  ident: bib0028
  article-title: Coupled biotic–abiotic Mn (II) oxidation pathway mediates the formation and structural evolution of biogenic Mn oxides
  publication-title: Geochim. Cosmochim. Acta
– volume: 63
  start-page: 3017
  year: 1999
  end-page: 3024
  ident: bib0025
  article-title: Dissolution of
  publication-title: Geochim. Cosmochim. Acta.
– volume: 32
  start-page: 5648
  year: 2009
  end-page: 5652
  ident: bib0010
  publication-title: Gaussian 09
– reference: (accessed Aug 18, 2022).
– year: 1975
  ident: bib0012
  article-title: Theory of Orientation and Stereoselection
– volume: 32
  start-page: 2916
  year: 1998
  end-page: 2922
  ident: bib0026
  article-title: Kinetic behavior of Mn (III) complexes of pyrophosphate, EDTA, and citrate
  publication-title: Environ. Sci. Technol.
– volume: 40
  start-page: 157
  issue: 2
  year: 1992
  ident: 10.1016/j.watres.2023.119787_bib0050
  article-title: Oxidation of phenol in acidic aqueous suspensions of manganese oxides
  publication-title: Clays Clay Miner.
  doi: 10.1346/CCMN.1992.0400204
– volume: 51
  start-page: 13698
  issue: 23
  year: 2017
  ident: 10.1016/j.watres.2023.119787_bib0007
  article-title: Aerobic soil biodegradation of bisphenol (BPA) alternatives bisphenol S and bisphenol AF compared to BPA
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.7b03889
– volume: 45
  start-page: 6567
  issue: 15
  year: 2011
  ident: 10.1016/j.watres.2023.119787_bib0036
  article-title: Microbially mediated o-methylation of bisphenol A results in metabolites with increased toxicity to the developing zebrafish (Danio rerio) embryo
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es200588w
– volume: 46
  start-page: 11558
  issue: 21
  year: 2012
  ident: 10.1016/j.watres.2023.119787_bib0030
  article-title: Bisphenol analogues in sediments from industrialized areas in the United States, Japan, and Korea: spatial and temporal distributions
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es303191g
– volume: 82
  start-page: 5402
  issue: 17
  year: 2016
  ident: 10.1016/j.watres.2023.119787_bib0057
  article-title: Production of manganese oxide nanoparticles by Shewanella species
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.00663-16
– volume: 22
  start-page: 1433
  issue: 8
  year: 1954
  ident: 10.1016/j.watres.2023.119787_bib0013
  article-title: Molecular orbital theory of orientation in aromatic, heteroaromatic, and other conjugated molecules
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1740412
– year: 1975
  ident: 10.1016/j.watres.2023.119787_bib0012
– volume: 65
  start-page: 599
  issue: 3
  year: 1993
  ident: 10.1016/j.watres.2023.119787_bib0035
  article-title: Electron transfer reactions in chemistry. Theory and experiment
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.65.599
– volume: 117
  start-page: 521
  year: 2014
  ident: 10.1016/j.watres.2023.119787_bib0021
  article-title: 4-Methylphenol produced in freshwater sediment microcosms is not a bisphenol A metabolite
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2014.09.008
– volume: 39
  start-page: 6029
  issue: 16
  year: 2005
  ident: 10.1016/j.watres.2023.119787_bib0018
  article-title: Transformation and removal of bisphenol A from aqueous phase via peroxidase-mediated oxidative coupling reactions: efficacy, products, and pathways
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es050036x
– volume: 36
  start-page: 4175
  issue: 19
  year: 2002
  ident: 10.1016/j.watres.2023.119787_bib0041
  article-title: 17β-Estradiol degradation by TiO2 photocatalysis as a means of reducing estrogenic activity
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es011500a
– volume: 53
  start-page: 10227
  issue: 17
  year: 2019
  ident: 10.1016/j.watres.2023.119787_bib0032
  article-title: Influence of pyrophosphate on the generation of soluble Mn (III) from reactions involving Mn oxides and Mn (VII)
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.9b03456
– year: 2006
  ident: 10.1016/j.watres.2023.119787_bib0033
– volume: 55
  start-page: 13014
  issue: 19
  year: 2021
  ident: 10.1016/j.watres.2023.119787_bib0047
  article-title: Degradation of adsorbed bisphenol A by soluble Mn(III)
  publication-title: Environ. Sci. Technol.
– volume: 36
  start-page: 1429
  issue: 6
  year: 2002
  ident: 10.1016/j.watres.2023.119787_bib0011
  article-title: Occurrence of phthalates and bisphenol A and F in the environment
  publication-title: Water Res.
  doi: 10.1016/S0043-1354(01)00367-0
– volume: 47
  start-page: 1317
  issue: 3
  year: 2013
  ident: 10.1016/j.watres.2023.119787_bib0024
  article-title: Partitioning of polycyclic aromatic hydrocarbons, alkylphenols, bisphenol A and phthalates in landfill leachates and stormwater
  publication-title: Water Res.
  doi: 10.1016/j.watres.2012.11.054
– volume: 75
  start-page: 6048
  issue: 20
  year: 2011
  ident: 10.1016/j.watres.2023.119787_bib0028
  article-title: Coupled biotic–abiotic Mn (II) oxidation pathway mediates the formation and structural evolution of biogenic Mn oxides
  publication-title: Geochim. Cosmochim. Acta
  doi: 10.1016/j.gca.2011.07.026
– volume: 14
  start-page: 8
  issue: 1
  year: 2018
  ident: 10.1016/j.watres.2023.119787_bib0059
  article-title: Purinyl-cobamide is a native prosthetic group of reductive dehalogenases
  publication-title: Nat. Chem. Biol.
  doi: 10.1038/nchembio.2512
– volume: 59
  start-page: 885
  issue: 5
  year: 1995
  ident: 10.1016/j.watres.2023.119787_bib0027
  article-title: Chemical and biological reduction of Mn (III)-pyrophosphate complexes: potential importance of dissolved Mn (III) as an environmental oxidant
  publication-title: Geochim. Cosmochim. Acta.
– volume: 20
  start-page: 722
  issue: 4
  year: 1952
  ident: 10.1016/j.watres.2023.119787_bib0014
  article-title: A molecular orbital theory of reactivity in aromatic hydrocarbons
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1700523
– volume: 50
  start-page: 8403
  issue: 16
  year: 2016
  ident: 10.1016/j.watres.2023.119787_bib0019
  article-title: Fate of bisphenol A in terrestrial and aquatic environments
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.6b00877
– volume: 114
  start-page: 11977
  issue: 27
  year: 2010
  ident: 10.1016/j.watres.2023.119787_bib0004
  article-title: Density functional theory study of degradation of tetraalkylammonium hydroxides
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp9122198
– volume: 21
  start-page: 5818
  issue: 9
  year: 2014
  ident: 10.1016/j.watres.2023.119787_bib0016
  article-title: Characteristics, sources, and transport of tetrabromobisphenol A and bisphenol A in soils from a typical e-waste recycling area in South China
  publication-title: Environ. Sci. Pollut. Res.
  doi: 10.1007/s11356-014-2535-2
– volume: 43
  start-page: 3860
  issue: 10
  year: 2009
  ident: 10.1016/j.watres.2023.119787_bib0031
  article-title: Oxidative removal of bisphenol A by manganese dioxide: efficacy, products, and pathways
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es900235f
– volume: 52
  start-page: 13222
  issue: 22
  year: 2018
  ident: 10.1016/j.watres.2023.119787_bib0054
  article-title: Enhanced removal of chlorophene and 17β-estradiol by Mn (III) in a mixture solution with humic acid: investigation of reaction kinetics and formation of co-oligomerization products
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.8b04116
– volume: 34
  start-page: 3363
  issue: 16
  year: 2000
  ident: 10.1016/j.watres.2023.119787_bib0039
  article-title: Importance of Mn (III) availability on the rate of Cr (III) oxidation on δ-MnO2
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es991462j
– volume: 94
  start-page: 288
  issue: 3–4
  year: 2010
  ident: 10.1016/j.watres.2023.119787_bib0001
  article-title: Kinetics and mechanism of advanced oxidation processes (AOPs) in degradation of ciprofloxacin in water
  publication-title: Appl. Catal. B: Environ.
  doi: 10.1016/j.apcatb.2009.12.002
– volume: 47
  start-page: 1357
  issue: 3
  year: 2013
  ident: 10.1016/j.watres.2023.119787_bib0006
  article-title: Reduction of carbadox mediated by reaction of Mn (III) with oxalic acid
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es303895w
– volume: 21
  start-page: 979
  issue: 10
  year: 1987
  ident: 10.1016/j.watres.2023.119787_bib0045
  article-title: Reductive dissolution of manganese (III/IV) oxides by substituted phenols
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es50001a011
– volume: 140
  start-page: 181
  year: 2018
  ident: 10.1016/j.watres.2023.119787_bib0022
  article-title: Dissolved Mn (III) in water treatment works: prevalence and significance
  publication-title: Water Res.
  doi: 10.1016/j.watres.2018.04.038
– volume: 48
  start-page: 289
  issue: 1
  year: 2014
  ident: 10.1016/j.watres.2023.119787_bib0056
  article-title: Oxidative UO2 dissolution induced by soluble Mn (III)
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es4037308
– volume: 37
  start-page: 2421
  issue: 11
  year: 2003
  ident: 10.1016/j.watres.2023.119787_bib0060
  article-title: Oxidative transformation of triclosan and chlorophene by manganese oxides
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es026190q
– volume: 52
  start-page: 4785
  issue: 8
  year: 2018
  ident: 10.1016/j.watres.2023.119787_bib0015
  article-title: Does soluble Mn (III) oxidant formed in situ account for enhanced transformation of triclosan by Mn (VII) in the presence of ligands?
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.8b00120
– volume: 35
  start-page: 3338
  issue: 16
  year: 2001
  ident: 10.1016/j.watres.2023.119787_bib0040
  article-title: Mn (III) center availability as a rate controlling factor in the oxidation of phenol and sulfide on δ-MnO2
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es001848q
– ident: 10.1016/j.watres.2023.119787_bib0042
– volume: 74
  start-page: 3232
  issue: 11
  year: 2010
  ident: 10.1016/j.watres.2023.119787_bib0008
  article-title: Formation of nano-crystalline todorokite from biogenic Mn oxides
  publication-title: Geochim. Cosmochim. Acta
  doi: 10.1016/j.gca.2010.03.005
– volume: 84
  start-page: 3293
  issue: 6
  year: 2019
  ident: 10.1016/j.watres.2023.119787_bib0009
  article-title: C–C cross-coupling reactions of trityl radicals: spin density delocalization, exchange coupling, and a spin label
  publication-title: J. Org. Chem.
  doi: 10.1021/acs.joc.8b03229
– volume: 52
  start-page: 12349
  issue: 21
  year: 2018
  ident: 10.1016/j.watres.2023.119787_bib0023
  article-title: Manganese-driven carbon oxidation at oxic–anoxic interfaces
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.8b03791
– volume: 51
  start-page: 6053
  issue: 11
  year: 2017
  ident: 10.1016/j.watres.2023.119787_bib0002
  article-title: Structural transformation of MnO2 during the oxidation of bisphenol A
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.6b05904
– volume: 70
  start-page: 4463
  issue: 17
  year: 2006
  ident: 10.1016/j.watres.2023.119787_bib0055
  article-title: The citric acid–MnIII,IVO2(birnessite) reaction. Electron transfer, complex formation, and autocatalytic feedback
  publication-title: Geochim. Cosmochim. Acta
  doi: 10.1016/j.gca.2006.06.1551
– volume: 52
  start-page: 12592
  issue: 21
  year: 2018
  ident: 10.1016/j.watres.2023.119787_bib0005
  article-title: Fe (VI)-mediated single-electron coupling processes for the removal of chlorophene: a combined experimental and computational study
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.8b01830
– volume: 52
  start-page: 11309
  issue: 19
  year: 2018
  ident: 10.1016/j.watres.2023.119787_bib0017
  article-title: Effect of MnO2 phase structure on the oxidative reactivity toward bisphenol A degradation
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.8b03383
– volume: 138
  start-page: 293
  year: 2018
  ident: 10.1016/j.watres.2023.119787_bib0058
  article-title: Degradation kinetics and transformation products of chlorophene by aqueous permanganate
  publication-title: Water Res.
  doi: 10.1016/j.watres.2018.03.057
– volume: 143
  start-page: 47
  year: 2018
  ident: 10.1016/j.watres.2023.119787_bib0029
  article-title: Transformation of bisphenol AF and bisphenol S by manganese dioxide and effect of iodide
  publication-title: Water Res.
  doi: 10.1016/j.watres.2018.06.029
– volume: 49
  start-page: 12414
  issue: 20
  year: 2015
  ident: 10.1016/j.watres.2023.119787_bib0046
  article-title: Activation of manganese oxidants with bisulfite for enhanced oxidation of organic contaminants: the involvement of Mn (III)
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.5b03111
– volume: 49
  start-page: 6214
  issue: 10
  year: 2015
  ident: 10.1016/j.watres.2023.119787_bib0020
  article-title: Identification of 4-hydroxycumyl alcohol as the major MnO2-mediated bisphenol A transformation product and evaluation of its environmental fate
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.5b00372
– volume: 38
  start-page: 2389
  issue: 8
  year: 2004
  ident: 10.1016/j.watres.2023.119787_bib0048
  article-title: Environmental fate of bisphenol A and its biological metabolites in river water and their xeno-estrogenic activity
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es030576z
– volume: 32
  start-page: 5648
  year: 2009
  ident: 10.1016/j.watres.2023.119787_bib0010
– volume: 44
  start-page: 5868
  issue: 15
  year: 2010
  ident: 10.1016/j.watres.2023.119787_bib0003
  article-title: Quantum chemical prediction of redox reactivity and degradation pathways for aqueous phase contaminants: an example with HMPA
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es1006675
– volume: 55
  start-page: 16708
  issue: 24
  year: 2021
  ident: 10.1016/j.watres.2023.119787_bib0061
  article-title: Engineered nanoconfinement accelerating spontaneous manganese-catalyzed degradation of organic contaminants
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.1c06551
– ident: 10.1016/j.watres.2023.119787_bib0051
– volume: 67
  start-page: 2649
  issue: 14
  year: 2003
  ident: 10.1016/j.watres.2023.119787_bib0052
  article-title: Characterization of the manganese oxide produced by Pseudomonas putida strain MnB1
  publication-title: Geochim. Cosmochim. Acta
  doi: 10.1016/S0016-7037(03)00217-5
– volume: 63
  start-page: 3017
  issue: 19–20
  year: 1999
  ident: 10.1016/j.watres.2023.119787_bib0025
  article-title: Dissolution of β-MnOOH particles by ligands: pyrophosphate, ethylenediaminetetraacetate, and citrate
  publication-title: Geochim. Cosmochim. Acta.
  doi: 10.1016/S0016-7037(99)00229-X
– volume: 341
  start-page: 875
  issue: 6148
  year: 2013
  ident: 10.1016/j.watres.2023.119787_bib0034
  article-title: Abundant porewater Mn (III) is a major component of the sedimentary redox system
  publication-title: Science
  doi: 10.1126/science.1241396
– volume: 313
  start-page: 1955
  issue: 5795
  year: 2006
  ident: 10.1016/j.watres.2023.119787_bib0049
  article-title: Soluble Mn (III) in suboxic zones
  publication-title: Science
  doi: 10.1126/science.1132876
– volume: 203
  start-page: 92
  issue: 1
  year: 2011
  ident: 10.1016/j.watres.2023.119787_bib0038
  article-title: Ipso substitution of bisphenol A catalyzed by microsomal cytochrome P450 and enhancement of estrogenic activity
  publication-title: Toxicol. Lett.
  doi: 10.1016/j.toxlet.2011.03.010
– volume: 36
  start-page: 2149
  issue: 10
  year: 1998
  ident: 10.1016/j.watres.2023.119787_bib0044
  article-title: A review of the environmental fate, effects, and exposures of bisphenol A
  publication-title: Chemosphere
  doi: 10.1016/S0045-6535(97)10133-3
– volume: 57
  start-page: 997
  issue: 2
  year: 2022
  ident: 10.1016/j.watres.2023.119787_bib0053
  article-title: Roles of MnO2 colloids and Mn (III) during the oxidation of organic contaminants by permanganate
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.2c07399
– year: 2006
  ident: 10.1016/j.watres.2023.119787_bib0037
– volume: 32
  start-page: 2916
  issue: 19
  year: 1998
  ident: 10.1016/j.watres.2023.119787_bib0026
  article-title: Kinetic behavior of Mn (III) complexes of pyrophosphate, EDTA, and citrate
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es980308e
– year: 2021
  ident: 10.1016/j.watres.2023.119787_bib0043
  article-title: Biologically mediated abiotic degradation (BMAD) of bisphenol A by manganese-oxidizing bacteria
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2021.125987
SSID ssj0002239
Score 2.5853834
Snippet •Mn(III) associated with the surface of MnO2 contributes to BPA degradation.•Mn(III)- and MnO2-mediated degradation of BPA differ mechanistically.•Mechanistic...
Bisphenol A (BPA) is a high production volume chemical with potential estrogenic effects susceptible to abiotic degradation by MnO . BPA transformation...
Bisphenol A (BPA) is a high production volume chemical with potential estrogenic effects susceptible to abiotic degradation by MnO2. BPA transformation...
Bisphenol A (BPA) is a high production volume chemical with potential estrogenic effects susceptible to abiotic degradation by MnO₂. BPA transformation...
SourceID osti
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 119787
SubjectTerms Benzhydryl Compounds - chemistry
Bisphenol A
Degradation pathway
INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY
Manganese Compounds - chemistry
Mn(III)
MnO2
oxidation
Oxidation-Reduction
Oxides - chemistry
Phenols - chemistry
Quantum chemical calculations
species
tandem mass spectrometry
water
Title Mn(III)-mediated bisphenol a degradation: Mechanisms and products
URI https://dx.doi.org/10.1016/j.watres.2023.119787
https://www.ncbi.nlm.nih.gov/pubmed/36917870
https://www.proquest.com/docview/2787214945
https://www.proquest.com/docview/2834208678
https://www.osti.gov/servlets/purl/1961943
Volume 235
WOSCitedRecordID wos001010417900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-2448
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002239
  issn: 0043-1354
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdYxwM8THzTDaYgIQSqUtX5ss1bVXVQtBYkOq08RXacqJ22tCwt9M_nLnbSojE2HniJIssfre9yvjvf_Y6Q1zoK0JLouFxTMFBYKF1OE-ZKpRDwW6qIZ2WxCTYa8clEfLHhtkVZToDlOV-vxeK_khragNiYOvsP5K4nhQZ4B6LDE8gOz1sRfojBHYPBAGx8t8wLQZ1SzQoM5pqft2RLIz6ErqM6hikm_86Ki8KCBpQQsMW21noqEUrR4gJNS4TStQmKr90IX1el-PoGTDTdZJedWm90byrnG993SdfuBfowWrXvuWfTRD7YntYT4ZVxfyYX0wpPzvC2xiBnttM_tFmJ6_nhlszEi0xz6F4R58azcNb-KTFxpo2Ltjfdf0fPHn2Oj06Oj-NxfzJ-s_juYmExvIC3VVZ2yK7HQsEbZLc76E8-1cc16EdoI9U_tMqvLIMAry58nf7SmINIvt5MKdWV8QOyZ-0Mp2v44yG5k-aPyP0t9MnHpDvM3wKfvKu5xKm5xJHOFpe8dzY84gDVnIpHnpCTo_6499G1FTXcJIj40qVcJIJrLTTzUh4JlnVYlqiO0F7IaerxKKBaKV8nWmYqCjRnacY6KWdgltOM-U9JI5_n6XPiKBUp7UVSSrTgGeea65DCPDJSKhO0Sfxqn-LEws1j1ZPzuIorPIvN7sa4u7HZ3SZx61ELA7dyQ39WkSC2KqNRBWNgoRtGHiDFcBSiJScYVgbD4ECiIvCb5FVFyBjkLV6iyTydr2AKGOvRQAThX_pwH6NWQA9skmeGC-p_40eC4iG5f4sVDsi9zXf2gjSWl6v0Jbmb_FjOistDssMm_NCy8y_6j7KH
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mn%28III%29-mediated+bisphenol+a+degradation%3A+Mechanisms+and+products&rft.jtitle=Water+research+%28Oxford%29&rft.au=Sun%2C+Yanchen&rft.au=Wang%2C+Chao&rft.au=May%2C+Amanda+L&rft.au=Chen%2C+Gao&rft.date=2023-05-15&rft.issn=1879-2448&rft.eissn=1879-2448&rft.volume=235&rft.spage=119787&rft_id=info:doi/10.1016%2Fj.watres.2023.119787&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0043-1354&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0043-1354&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0043-1354&client=summon