DIR-Net: Deep Residual Polar Decoding Network Based on Information Refinement
Polar codes are closer to the Shannon limit with lower complexity in coding and decoding. As traditional decoding techniques suffer from high latency and low throughput, with the development of deep learning technology, some deep learning-based decoding methods have been proposed to solve these prob...
Gespeichert in:
| Veröffentlicht in: | Entropy (Basel, Switzerland) Jg. 24; H. 12; S. 1809 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Switzerland
MDPI AG
12.12.2022
MDPI |
| Schlagworte: | |
| ISSN: | 1099-4300, 1099-4300 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Polar codes are closer to the Shannon limit with lower complexity in coding and decoding. As traditional decoding techniques suffer from high latency and low throughput, with the development of deep learning technology, some deep learning-based decoding methods have been proposed to solve these problems. Usually, the deep neural network is treated as a black box and learns to map the polar codes with noise to the original information code directly. In fact, it is difficult for the network to distinguish between valid and interfering information, which leads to limited BER performance. In this paper, a deep residual network based on information refinement (DIR-NET) is proposed for decoding polar-coded short packets. The proposed method works to fully distinguish the effective and interference information in the codewords, thus obtaining a lower bit error rate. To achieve this goal, we design a two-stage decoding network, including a denoising subnetwork and decoding subnetwork. This structure can further improve the accuracy of the decoding method. Furthermore, we construct the whole network solely on the basis of the attention mechanism. It has a stronger information extraction ability than the traditional neural network structure. Benefiting from cascaded attention modules, information can be filtered and refined step-by-step, thus obtaining a low bit error rate. The simulation results show that DIR-Net outperforms existing decoding methods in terms of BER performance under both AWGN channels and flat fading channels. |
|---|---|
| AbstractList | Polar codes are closer to the Shannon limit with lower complexity in coding and decoding. As traditional decoding techniques suffer from high latency and low throughput, with the development of deep learning technology, some deep learning-based decoding methods have been proposed to solve these problems. Usually, the deep neural network is treated as a black box and learns to map the polar codes with noise to the original information code directly. In fact, it is difficult for the network to distinguish between valid and interfering information, which leads to limited BER performance. In this paper, a deep residual network based on information refinement (DIR-NET) is proposed for decoding polar-coded short packets. The proposed method works to fully distinguish the effective and interference information in the codewords, thus obtaining a lower bit error rate. To achieve this goal, we design a two-stage decoding network, including a denoising subnetwork and decoding subnetwork. This structure can further improve the accuracy of the decoding method. Furthermore, we construct the whole network solely on the basis of the attention mechanism. It has a stronger information extraction ability than the traditional neural network structure. Benefiting from cascaded attention modules, information can be filtered and refined step-by-step, thus obtaining a low bit error rate. The simulation results show that DIR-Net outperforms existing decoding methods in terms of BER performance under both AWGN channels and flat fading channels.Polar codes are closer to the Shannon limit with lower complexity in coding and decoding. As traditional decoding techniques suffer from high latency and low throughput, with the development of deep learning technology, some deep learning-based decoding methods have been proposed to solve these problems. Usually, the deep neural network is treated as a black box and learns to map the polar codes with noise to the original information code directly. In fact, it is difficult for the network to distinguish between valid and interfering information, which leads to limited BER performance. In this paper, a deep residual network based on information refinement (DIR-NET) is proposed for decoding polar-coded short packets. The proposed method works to fully distinguish the effective and interference information in the codewords, thus obtaining a lower bit error rate. To achieve this goal, we design a two-stage decoding network, including a denoising subnetwork and decoding subnetwork. This structure can further improve the accuracy of the decoding method. Furthermore, we construct the whole network solely on the basis of the attention mechanism. It has a stronger information extraction ability than the traditional neural network structure. Benefiting from cascaded attention modules, information can be filtered and refined step-by-step, thus obtaining a low bit error rate. The simulation results show that DIR-Net outperforms existing decoding methods in terms of BER performance under both AWGN channels and flat fading channels. Polar codes are closer to the Shannon limit with lower complexity in coding and decoding. As traditional decoding techniques suffer from high latency and low throughput, with the development of deep learning technology, some deep learning-based decoding methods have been proposed to solve these problems. Usually, the deep neural network is treated as a black box and learns to map the polar codes with noise to the original information code directly. In fact, it is difficult for the network to distinguish between valid and interfering information, which leads to limited BER performance. In this paper, a deep residual network based on information refinement (DIR-NET) is proposed for decoding polar-coded short packets. The proposed method works to fully distinguish the effective and interference information in the codewords, thus obtaining a lower bit error rate. To achieve this goal, we design a two-stage decoding network, including a denoising subnetwork and decoding subnetwork. This structure can further improve the accuracy of the decoding method. Furthermore, we construct the whole network solely on the basis of the attention mechanism. It has a stronger information extraction ability than the traditional neural network structure. Benefiting from cascaded attention modules, information can be filtered and refined step-by-step, thus obtaining a low bit error rate. The simulation results show that DIR-Net outperforms existing decoding methods in terms of BER performance under both AWGN channels and flat fading channels. |
| Audience | Academic |
| Author | Wang, Yang Feng, Yongxin Song, Bixue |
| AuthorAffiliation | School of Information Science and Engineering, Shenyang Ligong University, Shenyang 110159, China |
| AuthorAffiliation_xml | – name: School of Information Science and Engineering, Shenyang Ligong University, Shenyang 110159, China |
| Author_xml | – sequence: 1 givenname: Bixue surname: Song fullname: Song, Bixue – sequence: 2 givenname: Yongxin surname: Feng fullname: Feng, Yongxin – sequence: 3 givenname: Yang surname: Wang fullname: Wang, Yang |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36554214$$D View this record in MEDLINE/PubMed |
| BookMark | eNpdkltvFCEYholpYw964R8wk3ijF1thYDh4YVJbrZvUQza9Jwx8rKwzsMKMxn8vdeumNVzw5eXhhe9wgg5iioDQM4LPKFX4NbSMtERi9QgdE6zUglGMD-7FR-iklA3GLW0Jf4yOKO861hJ2jD5dLleLzzC9aS4Bts0KSnCzGZqvaTC5aja5ENdNJX6l_L15Zwq4JsVmGX3Ko5lCjVfgQ4QR4vQEHXozFHh6t5-imw_vby4-Lq6_XC0vzq8XlnE5LQj3WJEeO--op1YpzAFLL70XFrseOqqcJUS2pOeECW_6VnqDWdWg7w09RcudrUtmo7c5jCb_1skE_VdIea1NnoIdQGNGVaeo6L1ijHJsBLGsZU6ZWgKKXfV6u_Pazv0IztYsshkemD48ieGbXqefWgkhOKPV4OWdQU4_ZiiTHkOxMAwmQpqLbkUnCaGk4xV98R-6SXOOtVK3FOeyWopKne2otakJhFro-q6ty8EYbO28D1U_F6wTWEki64Xn91PY__1flyvwagfYnErJ4PcIwfp2gvR-gugfoXW0-g |
| Cites_doi | 10.1109/PIMRC.2019.8904878 10.1109/TWC.2019.2962113 10.1002/9781119562306.ch15 10.1109/CompComm.2018.8780605 10.3115/v1/D14-1179 10.1109/ICCNC.2018.8390279 10.1109/BMSB47279.2019.8971888 10.4236/jcc.2020.87008 10.1007/978-3-319-24574-4_28 10.1109/VTCSpring.2016.7504469 10.1109/SPAWC.2019.8815542 10.1109/ACCESS.2020.2971526 10.1109/TVT.2020.3000345 10.3390/e23070863 10.1109/TIT.2009.2021379 10.1109/ICAIIC.2019.8669025 10.1109/TSP.2020.3023582 10.1109/TVT.2021.3077757 10.1109/JETCAS.2020.2995962 10.1109/TWC.2020.3022922 10.1109/ICASSP.2019.8683778 10.1109/SPAWC.2018.8445986 10.1109/ICASSP40776.2020.9053222 10.1109/ICC.2018.8422289 10.1109/TSP.2020.3040897 10.1038/323533a0 10.1109/JSSC.2020.3005763 10.1038/nature14539 10.1109/ACCESS.2020.3041290 10.1109/ACCESS.2020.3022176 10.1109/WSCE49000.2019.9040920 10.1109/LCOMM.2019.2918535 10.1109/CVPR.2016.90 10.3390/info9100254 10.1109/COMST.2020.2967127 10.1109/TCOMM.2020.3014946 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2022 MDPI AG 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2022 by the authors. 2022 |
| Copyright_xml | – notice: COPYRIGHT 2022 MDPI AG – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2022 by the authors. 2022 |
| DBID | AAYXX CITATION NPM 7TB 8FD 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU DWQXO FR3 HCIFZ KR7 L6V M7S PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS 7X8 5PM DOA |
| DOI | 10.3390/e24121809 |
| DatabaseName | CrossRef PubMed Mechanical & Transportation Engineering Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Technology collection ProQuest One Community College ProQuest Central Engineering Research Database SciTech Premium Collection Civil Engineering Abstracts ProQuest Engineering Collection Engineering Database ProQuest Central Premium ProQuest One Academic (New) ProQuest - Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ: Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Engineering Collection Civil Engineering Abstracts Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic CrossRef Publicly Available Content Database PubMed |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| EISSN | 1099-4300 |
| ExternalDocumentID | oai_doaj_org_article_04395937bf944360a71c424d9a65530d PMC9777643 A745709818 36554214 10_3390_e24121809 |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: central government leads local science and technology development projects grantid: 2022020128-JH6/1001 – fundername: Shenyang Natural Science Foundation grantid: 22-315-6-10 – fundername: National Natural Science Foundation of China grantid: 61971291 – fundername: science and technology funds from Liaoning Education Department grantid: LJKZ0242 |
| GroupedDBID | 29G 2WC 5GY 5VS 8FE 8FG AADQD AAFWJ AAYXX ABDBF ABJCF ACIWK ACUHS ADBBV AEGXH AENEX AFFHD AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS BCNDV BENPR BGLVJ CCPQU CITATION CS3 DU5 E3Z ESX F5P GROUPED_DOAJ GX1 HCIFZ HH5 IAO ITC J9A KQ8 L6V M7S MODMG M~E OK1 OVT PGMZT PHGZM PHGZT PIMPY PQGLB PROAC PTHSS RNS RPM TR2 TUS XSB ~8M NPM 7TB 8FD ABUWG AZQEC DWQXO FR3 KR7 PKEHL PQEST PQQKQ PQUKI PRINS 7X8 PUEGO 5PM |
| ID | FETCH-LOGICAL-c468t-16f091b0dfd3f3c9906e08f8ff7c0dbe539dc11821b6147fab28fa04c11ebba3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000902717300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1099-4300 |
| IngestDate | Fri Oct 03 12:51:02 EDT 2025 Tue Nov 04 02:06:56 EST 2025 Thu Oct 02 05:08:39 EDT 2025 Fri Jul 25 12:00:19 EDT 2025 Tue Nov 04 18:16:22 EST 2025 Thu Jan 02 22:54:49 EST 2025 Sat Nov 29 07:17:43 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 12 |
| Keywords | denoising subnetwork deep learning polar codes decoding subnetwork attention mechanism DIR-Net |
| Language | English |
| License | Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c468t-16f091b0dfd3f3c9906e08f8ff7c0dbe539dc11821b6147fab28fa04c11ebba3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | https://doaj.org/article/04395937bf944360a71c424d9a65530d |
| PMID | 36554214 |
| PQID | 2756687777 |
| PQPubID | 2032401 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_04395937bf944360a71c424d9a65530d pubmedcentral_primary_oai_pubmedcentral_nih_gov_9777643 proquest_miscellaneous_2758113156 proquest_journals_2756687777 gale_infotracacademiconefile_A745709818 pubmed_primary_36554214 crossref_primary_10_3390_e24121809 |
| PublicationCentury | 2000 |
| PublicationDate | 20221212 |
| PublicationDateYYYYMMDD | 2022-12-12 |
| PublicationDate_xml | – month: 12 year: 2022 text: 20221212 day: 12 |
| PublicationDecade | 2020 |
| PublicationPlace | Switzerland |
| PublicationPlace_xml | – name: Switzerland – name: Basel |
| PublicationTitle | Entropy (Basel, Switzerland) |
| PublicationTitleAlternate | Entropy (Basel) |
| PublicationYear | 2022 |
| Publisher | MDPI AG MDPI |
| Publisher_xml | – name: MDPI AG – name: MDPI |
| References | Tao (ref_9) 2020; 56 Bioglio (ref_2) 2020; 23 ref_36 ref_35 ref_34 ref_11 Xu (ref_21) 2020; 10 ref_30 Xiang (ref_12) 2021; 70 Fang (ref_16) 2020; 8 ref_19 ref_17 ref_15 Jalali (ref_3) 2020; 19 Yang (ref_8) 2020; 8 Gross (ref_31) 2020; 2020 Miloslavskaya (ref_10) 2020; 68 Gazi (ref_14) 2019; 23 Arikan (ref_1) 2009; 55 ref_25 Zhu (ref_29) 2020; 69 ref_24 ref_23 ref_22 Teng (ref_18) 2020; 69 Mondelli (ref_5) 2020; 20 ref_20 Wang (ref_7) 2020; 8 Rumelhart (ref_33) 1986; 323 ref_28 ref_27 ref_26 Ercan (ref_6) 2020; 68 ref_4 Gao (ref_13) 2020; 8 LeCun (ref_32) 2015; 521 |
| References_xml | – ident: ref_23 doi: 10.1109/PIMRC.2019.8904878 – volume: 19 start-page: 2066 year: 2020 ident: ref_3 article-title: Joint detection and decoding of polar coded 5G control channels publication-title: IEEE Trans. Wirel. Commun. doi: 10.1109/TWC.2019.2962113 – volume: 2020 start-page: 287 year: 2020 ident: ref_31 article-title: Deep learning techniques for decoding polar codes publication-title: Mach. Learn. Future Wirel. Commun. doi: 10.1002/9781119562306.ch15 – ident: ref_22 doi: 10.1109/CompComm.2018.8780605 – ident: ref_36 doi: 10.3115/v1/D14-1179 – ident: ref_26 doi: 10.1109/ICCNC.2018.8390279 – ident: ref_25 doi: 10.1109/BMSB47279.2019.8971888 – volume: 8 start-page: 90 year: 2020 ident: ref_16 article-title: Improved Polar Decoder Utilizing Neural Network in Fast Simplified Successive-Cancellation Decoding publication-title: J. Comput. Commun. doi: 10.4236/jcc.2020.87008 – ident: ref_35 doi: 10.1007/978-3-319-24574-4_28 – ident: ref_11 doi: 10.1109/VTCSpring.2016.7504469 – ident: ref_19 doi: 10.1109/SPAWC.2019.8815542 – volume: 8 start-page: 27210 year: 2020 ident: ref_13 article-title: Learning to decode polar codes with one-bit quantizer publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2971526 – volume: 69 start-page: 8725 year: 2020 ident: ref_29 article-title: Learning to denoise and decode: A novel residual neural network decoder for polar codes publication-title: IEEE Trans. Veh. Technol. doi: 10.1109/TVT.2020.3000345 – ident: ref_30 doi: 10.3390/e23070863 – volume: 55 start-page: 3051 year: 2009 ident: ref_1 article-title: Channel polarization: A method for constructing capacity-achieving codes for symmetric binary-input memoryless channels publication-title: IEEE Trans. Inf. Theory doi: 10.1109/TIT.2009.2021379 – ident: ref_27 doi: 10.1109/ICAIIC.2019.8669025 – volume: 68 start-page: 5441 year: 2020 ident: ref_6 article-title: Practical dynamic SC-flip polar decoders: Algorithm and implementation publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2020.3023582 – volume: 70 start-page: 6238 year: 2021 ident: ref_12 article-title: Soft-Output Successive Cancellation Stack Polar Decoder publication-title: IEEE Trans. Veh. Technol. doi: 10.1109/TVT.2021.3077757 – volume: 10 start-page: 189 year: 2020 ident: ref_21 article-title: Deep learning-aided belief propagation decoder for polar codes publication-title: IEEE J. Emerging Sel. Top. Circuits Syst. doi: 10.1109/JETCAS.2020.2995962 – volume: 20 start-page: 18 year: 2020 ident: ref_5 article-title: Sublinear latency for simplified successive cancellation decoding of polar codes publication-title: IEEE Trans. Wirel. Commun. doi: 10.1109/TWC.2020.3022922 – ident: ref_24 doi: 10.1109/ICASSP.2019.8683778 – ident: ref_15 doi: 10.1109/SPAWC.2018.8445986 – ident: ref_17 doi: 10.1109/ICASSP40776.2020.9053222 – ident: ref_28 doi: 10.1109/ICC.2018.8422289 – volume: 69 start-page: 300 year: 2020 ident: ref_18 article-title: Convolutional neural network-aided tree-based bit-flipping framework for polar decoder using imitation learning publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2020.3040897 – volume: 323 start-page: 533 year: 1986 ident: ref_33 article-title: Learning representations by back-propagating errors publication-title: Nature doi: 10.1038/323533a0 – volume: 56 start-page: 612 year: 2020 ident: ref_9 article-title: A configurable successive-cancellation list Polar decoder using split-tree architecture publication-title: IEEE J. Solid-State Circuits doi: 10.1109/JSSC.2020.3005763 – volume: 521 start-page: 436 year: 2015 ident: ref_32 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 – volume: 8 start-page: 222572 year: 2020 ident: ref_7 article-title: An Improved SC Flip Decoding Algorithm of Polar Codes Based on Genetic Algorithm publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3041290 – volume: 8 start-page: 163758 year: 2020 ident: ref_8 article-title: Error-aware SCFlip decoding of polar codes publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3022176 – ident: ref_20 doi: 10.1109/WSCE49000.2019.9040920 – volume: 23 start-page: 1285 year: 2019 ident: ref_14 article-title: Noise-aided belief propagation list decoding of polar codes publication-title: IEEE Commun. Lett. doi: 10.1109/LCOMM.2019.2918535 – ident: ref_34 doi: 10.1109/CVPR.2016.90 – ident: ref_4 doi: 10.3390/info9100254 – volume: 23 start-page: 29 year: 2020 ident: ref_2 article-title: Design of polar codes in 5G new radio publication-title: IEEE Commun. Surv. Tutor. doi: 10.1109/COMST.2020.2967127 – volume: 68 start-page: 6657 year: 2020 ident: ref_10 article-title: Design of short polar codes for SCL decoding publication-title: IEEE Trans. Commun. doi: 10.1109/TCOMM.2020.3014946 |
| SSID | ssj0023216 |
| Score | 2.2872584 |
| Snippet | Polar codes are closer to the Shannon limit with lower complexity in coding and decoding. As traditional decoding techniques suffer from high latency and low... |
| SourceID | doaj pubmedcentral proquest gale pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database |
| StartPage | 1809 |
| SubjectTerms | Algorithms Artificial neural networks attention mechanism Bit error rate Channels Codes Communication Computational linguistics Computer simulation Decoding decoding subnetwork Deep learning denoising subnetwork DIR-Net Error correction & detection Evaluation Fading channels Information retrieval Language processing Machine learning Methods Natural language interfaces Neural networks polar codes |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5By4ELFPEKFBQQEqeocey1Ey5Vl7YCCaLVqofeIj9LL8myu-X3M5N400ZIXCrl5DjSxJ_HM2N7vgH4ZKm2tC9mmdbCZaIURaZ5abPghOFVsN7pnl3_h6rr8vKyWsQNt028VrlbE_uF2nWW9siPiKZcEnmdOl79zqhqFJ2uxhIaD2GfmMpwnu_Pz-rFcgy5eMHkwCfEMbg_8mivCmKsmlihnqz_3yX5jk2a3pe8Y4DOn95X9AN4El3P9GSYK8_ggW-fw8_T78us9tsv6an3q3TpN312VrqgkBfbbEfGLa2H2-LpHI2eS7s2jWlMBCt-FNBXpW3GF3Bxfnbx9VsWSyxkVshymzEZ0GEwuQuOB27RNEmfl6EMQdncGT_jlbMUgzCDdlwFbYoy6FxgmzdG85ew13atfw1pScxqXDomrcRBDsZZzgrlRWUsy61N4ONuxJvVQKTRYABCsDQjLAnMCYuxA3Ff9w3d-qqJqtRQMu8MvSoTKiG4zLViVhTCVVpSDSSXwGdCsiENRbisjokGKCdxXTUnSsxUXqGnksDhDrAmqu6muUUrgQ_ja1Q6OknRre9u-j4lYxxj3wReDXNjlJmjFKJgIgE1mTWTn5q-aa9_9cTe6Isr9BDf_F-st_C4oBwMRs8h7G3XN_4dPLJ_tteb9fuoAX8BHscRJQ priority: 102 providerName: ProQuest |
| Title | DIR-Net: Deep Residual Polar Decoding Network Based on Information Refinement |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/36554214 https://www.proquest.com/docview/2756687777 https://www.proquest.com/docview/2758113156 https://pubmed.ncbi.nlm.nih.gov/PMC9777643 https://doaj.org/article/04395937bf944360a71c424d9a65530d |
| Volume | 24 |
| WOSCitedRecordID | wos000902717300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1099-4300 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023216 issn: 1099-4300 databaseCode: DOA dateStart: 20160101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1099-4300 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023216 issn: 1099-4300 databaseCode: M~E dateStart: 19990101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Engineering Database (subscription) customDbUrl: eissn: 1099-4300 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023216 issn: 1099-4300 databaseCode: M7S dateStart: 19990301 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1099-4300 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023216 issn: 1099-4300 databaseCode: BENPR dateStart: 19990301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1099-4300 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023216 issn: 1099-4300 databaseCode: PIMPY dateStart: 19990301 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEB5B4cAFgXiZtpFBSJyser2b3TW3pk1FJWpZoYdwsvap9uJUTcqR394Z24liceCCZPmwu5bGM15_M_bMNwBfHPWWDsU0M0b4TGhRZIZrl0UvLC-jC9507Po_VFXp5bKs91p9UU5YTw_cK-6ESjeniKE2lkJwmRvFnCiEL42kjjee3r65KrfB1BBq8YLJnkeIY1B_EhCnCmKqGqFPR9L_96t4D4vGeZJ7wHPxCl4OHmN62kv6Gp6E9g1cnV8usipsvqXnIdyli7DuiqrSmiJVHHMrwqS06pO80xlilU9XbTpUH5E18KKILiZ9HXwL1xfz67Pv2dAZIXNC6k3GZESct7mPnkfuEFFkyHXUMSqXexumvPSOQgdmEX5VNLbQ0eQCx4K1hr-Dg3bVhg-QaiJE49Iz6STqKFrvOCtUEKV1LHcugc9bhTV3Pf9Fg3EDabXZaTWBGalyt4Aoq7sBNGQzGLL5lyET-EqGaGhjobadGeoDUE6iqGpOlZiqvEQHI4Gjra2aYcetG6Kxl0RuqBL4tJvGvUI_QEwbVg_dGs0Yx5A1gfe9aXcyc5RCFEwkoEZGH93UeKa9ven4uNGFVujYffwfWjiEFwUVWDA6juBgc_8QjuG5-725Xd9P4Kla6gk8m82rejHpHvkJZav-pPOfOc7Ul1f1r0fSzwYl |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VFAkuPAQUQwGDQJyseh_xAwmhllA1amJFVQ7ltFrvA3qxQ5KC-FH8R2ZsxzRC4tYDkk-7trX2fjvfjL3zDcBrQ7WlHR9GWksbyUzySIvMRN7KUuTeOKsbdf1JWhTZ-Xk-24Ffm1wY2la5sYmNoba1oW_kByRTnpB4Xfph8S2iqlH0d3VTQqOFxan7-QNDttX78Qjn9w3nx5_mH0-irqpAZGSSrSOWeOTIMrbeCi8MWuPExZnPvE9NbEs3FLk15HazEqkr9brkmdexxDZXllrgbW_ArkSsxwPYnY2ns899hCc4S1r5IiHy-MAhPXISyNoivaY2wN8McIUCt7dnXuG747v_2Zu6B3c6xzo8bFfCfdhx1QOYjsZnUeHW78KRc4vwzK2a3LNwRgE9tpmaqDss2r3w4RFSug3rKuyStAi0eJFHT5w-oj6E-XU8wCMYVHXlHkOYkW6cSCxLTIJz6ktrBOOpk3lpWGxMAK82E6wWrUyIwvCKUKB6FARwRFPfn0DK3k1DvfyiOkOhKFV5iD5j6XMpRRLrlBnJpc11QhWebABvCTiK7A-iw-gujQLHSUpe6jCVwzTO0Q8LYH-DD9UZppX6A44AXvbdaFLoP5GuXH3ZnJMxJjCyD2CvhWI_ZoGjkJzJANItkG491HZPdfG1kS3HSCNF__fJv4f1Am6dzKcTNRkXp0_hNqdsE0bHPgzWy0v3DG6a7-uL1fJ5t_hCUNcM4t-DzG9t |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VghAXHuJlKGAQiJMV7yO7NhJCLSEiaomi0kNvq_U-oBc7JCmIn8a_Y8Z2QiMkbj0g-bR-aO39PN-MPfMNwEtHvaUDH2bWSp_JQvLMisJl0ctKlNEFb1t1_SM9nRanp-VsB36ta2EorXJtE1tD7RtH38gHJFOuSLxOD2KfFjEbjd_Nv2XUQYr-tK7baXQQOQw_f2D4tnw7GeFav-J8_OHk_ces7zCQOamKVcZURL6sch-9iMKhZVYhL2IRo3a5r8JQlN6RC84qpDEdbcWLaHOJY6GqrMDLXoGrWqpctlmDnzexnuBMdUJGQpT5ICBRcpLK2qK_tkvA31xwgQy3EzUvMN_41n_8zG7Dzd7dTve79-MO7IT6LnwaTY6zaVi9SUchzNPjsGwr0tIZhfk45hoi9HTaZcinB0j0Pm3qtC_dIijjSRH9c_q0eg9OLuMG7sNu3dThIaQFqckJ5ZlyCtc3Vt4JxnWQZeVY7lwCL9aLbeadeIjBoIsQYTaISOCAYLA5gPS-24Fm8cX05sNQAfMQPckqllIKlVvNnOTSl1ZR3yefwGsCkSGrhEhxti-uwHmSvpfZ13Ko8xK9swT21lgxvblamj9ASeD5ZjcaGvp7ZOvQnLfHFIwJjPcTeNDBcjNngbOQnMkE9BZgt25qe0999rUVM8f4Q6NX_Ojf03oG1xG55mgyPXwMNziVoDDa9mB3tTgPT-Ca-746Wy6etm9hCuaSEfwb0zV2vQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=DIR-Net%3A+Deep+Residual+Polar+Decoding+Network+Based+on+Information+Refinement&rft.jtitle=Entropy+%28Basel%2C+Switzerland%29&rft.au=Song%2C+Bixue&rft.au=Feng%2C+Yongxin&rft.au=Wang%2C+Yang&rft.date=2022-12-12&rft.pub=MDPI+AG&rft.issn=1099-4300&rft.eissn=1099-4300&rft.volume=24&rft.issue=12&rft_id=info:doi/10.3390%2Fe24121809&rft.externalDocID=A745709818 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1099-4300&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1099-4300&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1099-4300&client=summon |