DIR-Net: Deep Residual Polar Decoding Network Based on Information Refinement

Polar codes are closer to the Shannon limit with lower complexity in coding and decoding. As traditional decoding techniques suffer from high latency and low throughput, with the development of deep learning technology, some deep learning-based decoding methods have been proposed to solve these prob...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Entropy (Basel, Switzerland) Jg. 24; H. 12; S. 1809
Hauptverfasser: Song, Bixue, Feng, Yongxin, Wang, Yang
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Switzerland MDPI AG 12.12.2022
MDPI
Schlagworte:
ISSN:1099-4300, 1099-4300
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Polar codes are closer to the Shannon limit with lower complexity in coding and decoding. As traditional decoding techniques suffer from high latency and low throughput, with the development of deep learning technology, some deep learning-based decoding methods have been proposed to solve these problems. Usually, the deep neural network is treated as a black box and learns to map the polar codes with noise to the original information code directly. In fact, it is difficult for the network to distinguish between valid and interfering information, which leads to limited BER performance. In this paper, a deep residual network based on information refinement (DIR-NET) is proposed for decoding polar-coded short packets. The proposed method works to fully distinguish the effective and interference information in the codewords, thus obtaining a lower bit error rate. To achieve this goal, we design a two-stage decoding network, including a denoising subnetwork and decoding subnetwork. This structure can further improve the accuracy of the decoding method. Furthermore, we construct the whole network solely on the basis of the attention mechanism. It has a stronger information extraction ability than the traditional neural network structure. Benefiting from cascaded attention modules, information can be filtered and refined step-by-step, thus obtaining a low bit error rate. The simulation results show that DIR-Net outperforms existing decoding methods in terms of BER performance under both AWGN channels and flat fading channels.
AbstractList Polar codes are closer to the Shannon limit with lower complexity in coding and decoding. As traditional decoding techniques suffer from high latency and low throughput, with the development of deep learning technology, some deep learning-based decoding methods have been proposed to solve these problems. Usually, the deep neural network is treated as a black box and learns to map the polar codes with noise to the original information code directly. In fact, it is difficult for the network to distinguish between valid and interfering information, which leads to limited BER performance. In this paper, a deep residual network based on information refinement (DIR-NET) is proposed for decoding polar-coded short packets. The proposed method works to fully distinguish the effective and interference information in the codewords, thus obtaining a lower bit error rate. To achieve this goal, we design a two-stage decoding network, including a denoising subnetwork and decoding subnetwork. This structure can further improve the accuracy of the decoding method. Furthermore, we construct the whole network solely on the basis of the attention mechanism. It has a stronger information extraction ability than the traditional neural network structure. Benefiting from cascaded attention modules, information can be filtered and refined step-by-step, thus obtaining a low bit error rate. The simulation results show that DIR-Net outperforms existing decoding methods in terms of BER performance under both AWGN channels and flat fading channels.Polar codes are closer to the Shannon limit with lower complexity in coding and decoding. As traditional decoding techniques suffer from high latency and low throughput, with the development of deep learning technology, some deep learning-based decoding methods have been proposed to solve these problems. Usually, the deep neural network is treated as a black box and learns to map the polar codes with noise to the original information code directly. In fact, it is difficult for the network to distinguish between valid and interfering information, which leads to limited BER performance. In this paper, a deep residual network based on information refinement (DIR-NET) is proposed for decoding polar-coded short packets. The proposed method works to fully distinguish the effective and interference information in the codewords, thus obtaining a lower bit error rate. To achieve this goal, we design a two-stage decoding network, including a denoising subnetwork and decoding subnetwork. This structure can further improve the accuracy of the decoding method. Furthermore, we construct the whole network solely on the basis of the attention mechanism. It has a stronger information extraction ability than the traditional neural network structure. Benefiting from cascaded attention modules, information can be filtered and refined step-by-step, thus obtaining a low bit error rate. The simulation results show that DIR-Net outperforms existing decoding methods in terms of BER performance under both AWGN channels and flat fading channels.
Polar codes are closer to the Shannon limit with lower complexity in coding and decoding. As traditional decoding techniques suffer from high latency and low throughput, with the development of deep learning technology, some deep learning-based decoding methods have been proposed to solve these problems. Usually, the deep neural network is treated as a black box and learns to map the polar codes with noise to the original information code directly. In fact, it is difficult for the network to distinguish between valid and interfering information, which leads to limited BER performance. In this paper, a deep residual network based on information refinement (DIR-NET) is proposed for decoding polar-coded short packets. The proposed method works to fully distinguish the effective and interference information in the codewords, thus obtaining a lower bit error rate. To achieve this goal, we design a two-stage decoding network, including a denoising subnetwork and decoding subnetwork. This structure can further improve the accuracy of the decoding method. Furthermore, we construct the whole network solely on the basis of the attention mechanism. It has a stronger information extraction ability than the traditional neural network structure. Benefiting from cascaded attention modules, information can be filtered and refined step-by-step, thus obtaining a low bit error rate. The simulation results show that DIR-Net outperforms existing decoding methods in terms of BER performance under both AWGN channels and flat fading channels.
Audience Academic
Author Wang, Yang
Feng, Yongxin
Song, Bixue
AuthorAffiliation School of Information Science and Engineering, Shenyang Ligong University, Shenyang 110159, China
AuthorAffiliation_xml – name: School of Information Science and Engineering, Shenyang Ligong University, Shenyang 110159, China
Author_xml – sequence: 1
  givenname: Bixue
  surname: Song
  fullname: Song, Bixue
– sequence: 2
  givenname: Yongxin
  surname: Feng
  fullname: Feng, Yongxin
– sequence: 3
  givenname: Yang
  surname: Wang
  fullname: Wang, Yang
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36554214$$D View this record in MEDLINE/PubMed
BookMark eNpdkltvFCEYholpYw964R8wk3ijF1thYDh4YVJbrZvUQza9Jwx8rKwzsMKMxn8vdeumNVzw5eXhhe9wgg5iioDQM4LPKFX4NbSMtERi9QgdE6zUglGMD-7FR-iklA3GLW0Jf4yOKO861hJ2jD5dLleLzzC9aS4Bts0KSnCzGZqvaTC5aja5ENdNJX6l_L15Zwq4JsVmGX3Ko5lCjVfgQ4QR4vQEHXozFHh6t5-imw_vby4-Lq6_XC0vzq8XlnE5LQj3WJEeO--op1YpzAFLL70XFrseOqqcJUS2pOeECW_6VnqDWdWg7w09RcudrUtmo7c5jCb_1skE_VdIea1NnoIdQGNGVaeo6L1ijHJsBLGsZU6ZWgKKXfV6u_Pazv0IztYsshkemD48ieGbXqefWgkhOKPV4OWdQU4_ZiiTHkOxMAwmQpqLbkUnCaGk4xV98R-6SXOOtVK3FOeyWopKne2otakJhFro-q6ty8EYbO28D1U_F6wTWEki64Xn91PY__1flyvwagfYnErJ4PcIwfp2gvR-gugfoXW0-g
Cites_doi 10.1109/PIMRC.2019.8904878
10.1109/TWC.2019.2962113
10.1002/9781119562306.ch15
10.1109/CompComm.2018.8780605
10.3115/v1/D14-1179
10.1109/ICCNC.2018.8390279
10.1109/BMSB47279.2019.8971888
10.4236/jcc.2020.87008
10.1007/978-3-319-24574-4_28
10.1109/VTCSpring.2016.7504469
10.1109/SPAWC.2019.8815542
10.1109/ACCESS.2020.2971526
10.1109/TVT.2020.3000345
10.3390/e23070863
10.1109/TIT.2009.2021379
10.1109/ICAIIC.2019.8669025
10.1109/TSP.2020.3023582
10.1109/TVT.2021.3077757
10.1109/JETCAS.2020.2995962
10.1109/TWC.2020.3022922
10.1109/ICASSP.2019.8683778
10.1109/SPAWC.2018.8445986
10.1109/ICASSP40776.2020.9053222
10.1109/ICC.2018.8422289
10.1109/TSP.2020.3040897
10.1038/323533a0
10.1109/JSSC.2020.3005763
10.1038/nature14539
10.1109/ACCESS.2020.3041290
10.1109/ACCESS.2020.3022176
10.1109/WSCE49000.2019.9040920
10.1109/LCOMM.2019.2918535
10.1109/CVPR.2016.90
10.3390/info9100254
10.1109/COMST.2020.2967127
10.1109/TCOMM.2020.3014946
ContentType Journal Article
Copyright COPYRIGHT 2022 MDPI AG
2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2022 by the authors. 2022
Copyright_xml – notice: COPYRIGHT 2022 MDPI AG
– notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2022 by the authors. 2022
DBID AAYXX
CITATION
NPM
7TB
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FR3
HCIFZ
KR7
L6V
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
7X8
5PM
DOA
DOI 10.3390/e24121809
DatabaseName CrossRef
PubMed
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
SciTech Premium Collection
Civil Engineering Abstracts
ProQuest Engineering Collection
Engineering Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest - Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ: Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Engineering Collection
Civil Engineering Abstracts
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

CrossRef

Publicly Available Content Database

PubMed
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
EISSN 1099-4300
ExternalDocumentID oai_doaj_org_article_04395937bf944360a71c424d9a65530d
PMC9777643
A745709818
36554214
10_3390_e24121809
Genre Journal Article
GrantInformation_xml – fundername: central government leads local science and technology development projects
  grantid: 2022020128-JH6/1001
– fundername: Shenyang Natural Science Foundation
  grantid: 22-315-6-10
– fundername: National Natural Science Foundation of China
  grantid: 61971291
– fundername: science and technology funds from Liaoning Education Department
  grantid: LJKZ0242
GroupedDBID 29G
2WC
5GY
5VS
8FE
8FG
AADQD
AAFWJ
AAYXX
ABDBF
ABJCF
ACIWK
ACUHS
ADBBV
AEGXH
AENEX
AFFHD
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BENPR
BGLVJ
CCPQU
CITATION
CS3
DU5
E3Z
ESX
F5P
GROUPED_DOAJ
GX1
HCIFZ
HH5
IAO
ITC
J9A
KQ8
L6V
M7S
MODMG
M~E
OK1
OVT
PGMZT
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
PTHSS
RNS
RPM
TR2
TUS
XSB
~8M
NPM
7TB
8FD
ABUWG
AZQEC
DWQXO
FR3
KR7
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c468t-16f091b0dfd3f3c9906e08f8ff7c0dbe539dc11821b6147fab28fa04c11ebba3
IEDL.DBID DOA
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000902717300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1099-4300
IngestDate Fri Oct 03 12:51:02 EDT 2025
Tue Nov 04 02:06:56 EST 2025
Thu Oct 02 05:08:39 EDT 2025
Fri Jul 25 12:00:19 EDT 2025
Tue Nov 04 18:16:22 EST 2025
Thu Jan 02 22:54:49 EST 2025
Sat Nov 29 07:17:43 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords denoising subnetwork
deep learning
polar codes
decoding subnetwork
attention mechanism
DIR-Net
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c468t-16f091b0dfd3f3c9906e08f8ff7c0dbe539dc11821b6147fab28fa04c11ebba3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://doaj.org/article/04395937bf944360a71c424d9a65530d
PMID 36554214
PQID 2756687777
PQPubID 2032401
ParticipantIDs doaj_primary_oai_doaj_org_article_04395937bf944360a71c424d9a65530d
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9777643
proquest_miscellaneous_2758113156
proquest_journals_2756687777
gale_infotracacademiconefile_A745709818
pubmed_primary_36554214
crossref_primary_10_3390_e24121809
PublicationCentury 2000
PublicationDate 20221212
PublicationDateYYYYMMDD 2022-12-12
PublicationDate_xml – month: 12
  year: 2022
  text: 20221212
  day: 12
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Entropy (Basel, Switzerland)
PublicationTitleAlternate Entropy (Basel)
PublicationYear 2022
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Tao (ref_9) 2020; 56
Bioglio (ref_2) 2020; 23
ref_36
ref_35
ref_34
ref_11
Xu (ref_21) 2020; 10
ref_30
Xiang (ref_12) 2021; 70
Fang (ref_16) 2020; 8
ref_19
ref_17
ref_15
Jalali (ref_3) 2020; 19
Yang (ref_8) 2020; 8
Gross (ref_31) 2020; 2020
Miloslavskaya (ref_10) 2020; 68
Gazi (ref_14) 2019; 23
Arikan (ref_1) 2009; 55
ref_25
Zhu (ref_29) 2020; 69
ref_24
ref_23
ref_22
Teng (ref_18) 2020; 69
Mondelli (ref_5) 2020; 20
ref_20
Wang (ref_7) 2020; 8
Rumelhart (ref_33) 1986; 323
ref_28
ref_27
ref_26
Ercan (ref_6) 2020; 68
ref_4
Gao (ref_13) 2020; 8
LeCun (ref_32) 2015; 521
References_xml – ident: ref_23
  doi: 10.1109/PIMRC.2019.8904878
– volume: 19
  start-page: 2066
  year: 2020
  ident: ref_3
  article-title: Joint detection and decoding of polar coded 5G control channels
  publication-title: IEEE Trans. Wirel. Commun.
  doi: 10.1109/TWC.2019.2962113
– volume: 2020
  start-page: 287
  year: 2020
  ident: ref_31
  article-title: Deep learning techniques for decoding polar codes
  publication-title: Mach. Learn. Future Wirel. Commun.
  doi: 10.1002/9781119562306.ch15
– ident: ref_22
  doi: 10.1109/CompComm.2018.8780605
– ident: ref_36
  doi: 10.3115/v1/D14-1179
– ident: ref_26
  doi: 10.1109/ICCNC.2018.8390279
– ident: ref_25
  doi: 10.1109/BMSB47279.2019.8971888
– volume: 8
  start-page: 90
  year: 2020
  ident: ref_16
  article-title: Improved Polar Decoder Utilizing Neural Network in Fast Simplified Successive-Cancellation Decoding
  publication-title: J. Comput. Commun.
  doi: 10.4236/jcc.2020.87008
– ident: ref_35
  doi: 10.1007/978-3-319-24574-4_28
– ident: ref_11
  doi: 10.1109/VTCSpring.2016.7504469
– ident: ref_19
  doi: 10.1109/SPAWC.2019.8815542
– volume: 8
  start-page: 27210
  year: 2020
  ident: ref_13
  article-title: Learning to decode polar codes with one-bit quantizer
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2971526
– volume: 69
  start-page: 8725
  year: 2020
  ident: ref_29
  article-title: Learning to denoise and decode: A novel residual neural network decoder for polar codes
  publication-title: IEEE Trans. Veh. Technol.
  doi: 10.1109/TVT.2020.3000345
– ident: ref_30
  doi: 10.3390/e23070863
– volume: 55
  start-page: 3051
  year: 2009
  ident: ref_1
  article-title: Channel polarization: A method for constructing capacity-achieving codes for symmetric binary-input memoryless channels
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.2009.2021379
– ident: ref_27
  doi: 10.1109/ICAIIC.2019.8669025
– volume: 68
  start-page: 5441
  year: 2020
  ident: ref_6
  article-title: Practical dynamic SC-flip polar decoders: Algorithm and implementation
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2020.3023582
– volume: 70
  start-page: 6238
  year: 2021
  ident: ref_12
  article-title: Soft-Output Successive Cancellation Stack Polar Decoder
  publication-title: IEEE Trans. Veh. Technol.
  doi: 10.1109/TVT.2021.3077757
– volume: 10
  start-page: 189
  year: 2020
  ident: ref_21
  article-title: Deep learning-aided belief propagation decoder for polar codes
  publication-title: IEEE J. Emerging Sel. Top. Circuits Syst.
  doi: 10.1109/JETCAS.2020.2995962
– volume: 20
  start-page: 18
  year: 2020
  ident: ref_5
  article-title: Sublinear latency for simplified successive cancellation decoding of polar codes
  publication-title: IEEE Trans. Wirel. Commun.
  doi: 10.1109/TWC.2020.3022922
– ident: ref_24
  doi: 10.1109/ICASSP.2019.8683778
– ident: ref_15
  doi: 10.1109/SPAWC.2018.8445986
– ident: ref_17
  doi: 10.1109/ICASSP40776.2020.9053222
– ident: ref_28
  doi: 10.1109/ICC.2018.8422289
– volume: 69
  start-page: 300
  year: 2020
  ident: ref_18
  article-title: Convolutional neural network-aided tree-based bit-flipping framework for polar decoder using imitation learning
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2020.3040897
– volume: 323
  start-page: 533
  year: 1986
  ident: ref_33
  article-title: Learning representations by back-propagating errors
  publication-title: Nature
  doi: 10.1038/323533a0
– volume: 56
  start-page: 612
  year: 2020
  ident: ref_9
  article-title: A configurable successive-cancellation list Polar decoder using split-tree architecture
  publication-title: IEEE J. Solid-State Circuits
  doi: 10.1109/JSSC.2020.3005763
– volume: 521
  start-page: 436
  year: 2015
  ident: ref_32
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– volume: 8
  start-page: 222572
  year: 2020
  ident: ref_7
  article-title: An Improved SC Flip Decoding Algorithm of Polar Codes Based on Genetic Algorithm
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3041290
– volume: 8
  start-page: 163758
  year: 2020
  ident: ref_8
  article-title: Error-aware SCFlip decoding of polar codes
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3022176
– ident: ref_20
  doi: 10.1109/WSCE49000.2019.9040920
– volume: 23
  start-page: 1285
  year: 2019
  ident: ref_14
  article-title: Noise-aided belief propagation list decoding of polar codes
  publication-title: IEEE Commun. Lett.
  doi: 10.1109/LCOMM.2019.2918535
– ident: ref_34
  doi: 10.1109/CVPR.2016.90
– ident: ref_4
  doi: 10.3390/info9100254
– volume: 23
  start-page: 29
  year: 2020
  ident: ref_2
  article-title: Design of polar codes in 5G new radio
  publication-title: IEEE Commun. Surv. Tutor.
  doi: 10.1109/COMST.2020.2967127
– volume: 68
  start-page: 6657
  year: 2020
  ident: ref_10
  article-title: Design of short polar codes for SCL decoding
  publication-title: IEEE Trans. Commun.
  doi: 10.1109/TCOMM.2020.3014946
SSID ssj0023216
Score 2.2872584
Snippet Polar codes are closer to the Shannon limit with lower complexity in coding and decoding. As traditional decoding techniques suffer from high latency and low...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage 1809
SubjectTerms Algorithms
Artificial neural networks
attention mechanism
Bit error rate
Channels
Codes
Communication
Computational linguistics
Computer simulation
Decoding
decoding subnetwork
Deep learning
denoising subnetwork
DIR-Net
Error correction & detection
Evaluation
Fading channels
Information retrieval
Language processing
Machine learning
Methods
Natural language interfaces
Neural networks
polar codes
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5By4ELFPEKFBQQEqeocey1Ey5Vl7YCCaLVqofeIj9LL8myu-X3M5N400ZIXCrl5DjSxJ_HM2N7vgH4ZKm2tC9mmdbCZaIURaZ5abPghOFVsN7pnl3_h6rr8vKyWsQNt028VrlbE_uF2nWW9siPiKZcEnmdOl79zqhqFJ2uxhIaD2GfmMpwnu_Pz-rFcgy5eMHkwCfEMbg_8mivCmKsmlihnqz_3yX5jk2a3pe8Y4DOn95X9AN4El3P9GSYK8_ggW-fw8_T78us9tsv6an3q3TpN312VrqgkBfbbEfGLa2H2-LpHI2eS7s2jWlMBCt-FNBXpW3GF3Bxfnbx9VsWSyxkVshymzEZ0GEwuQuOB27RNEmfl6EMQdncGT_jlbMUgzCDdlwFbYoy6FxgmzdG85ew13atfw1pScxqXDomrcRBDsZZzgrlRWUsy61N4ONuxJvVQKTRYABCsDQjLAnMCYuxA3Ff9w3d-qqJqtRQMu8MvSoTKiG4zLViVhTCVVpSDSSXwGdCsiENRbisjokGKCdxXTUnSsxUXqGnksDhDrAmqu6muUUrgQ_ja1Q6OknRre9u-j4lYxxj3wReDXNjlJmjFKJgIgE1mTWTn5q-aa9_9cTe6Isr9BDf_F-st_C4oBwMRs8h7G3XN_4dPLJ_tteb9fuoAX8BHscRJQ
  priority: 102
  providerName: ProQuest
Title DIR-Net: Deep Residual Polar Decoding Network Based on Information Refinement
URI https://www.ncbi.nlm.nih.gov/pubmed/36554214
https://www.proquest.com/docview/2756687777
https://www.proquest.com/docview/2758113156
https://pubmed.ncbi.nlm.nih.gov/PMC9777643
https://doaj.org/article/04395937bf944360a71c424d9a65530d
Volume 24
WOSCitedRecordID wos000902717300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1099-4300
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023216
  issn: 1099-4300
  databaseCode: DOA
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1099-4300
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023216
  issn: 1099-4300
  databaseCode: M~E
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Engineering Database (subscription)
  customDbUrl:
  eissn: 1099-4300
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023216
  issn: 1099-4300
  databaseCode: M7S
  dateStart: 19990301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1099-4300
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023216
  issn: 1099-4300
  databaseCode: BENPR
  dateStart: 19990301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1099-4300
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023216
  issn: 1099-4300
  databaseCode: PIMPY
  dateStart: 19990301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEB5B4cAFgXiZtpFBSJyser2b3TW3pk1FJWpZoYdwsvap9uJUTcqR394Z24liceCCZPmwu5bGM15_M_bMNwBfHPWWDsU0M0b4TGhRZIZrl0UvLC-jC9507Po_VFXp5bKs91p9UU5YTw_cK-6ESjeniKE2lkJwmRvFnCiEL42kjjee3r65KrfB1BBq8YLJnkeIY1B_EhCnCmKqGqFPR9L_96t4D4vGeZJ7wHPxCl4OHmN62kv6Gp6E9g1cnV8usipsvqXnIdyli7DuiqrSmiJVHHMrwqS06pO80xlilU9XbTpUH5E18KKILiZ9HXwL1xfz67Pv2dAZIXNC6k3GZESct7mPnkfuEFFkyHXUMSqXexumvPSOQgdmEX5VNLbQ0eQCx4K1hr-Dg3bVhg-QaiJE49Iz6STqKFrvOCtUEKV1LHcugc9bhTV3Pf9Fg3EDabXZaTWBGalyt4Aoq7sBNGQzGLL5lyET-EqGaGhjobadGeoDUE6iqGpOlZiqvEQHI4Gjra2aYcetG6Kxl0RuqBL4tJvGvUI_QEwbVg_dGs0Yx5A1gfe9aXcyc5RCFEwkoEZGH93UeKa9ven4uNGFVujYffwfWjiEFwUVWDA6juBgc_8QjuG5-725Xd9P4Kla6gk8m82rejHpHvkJZav-pPOfOc7Ul1f1r0fSzwYl
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VFAkuPAQUQwGDQJyseh_xAwmhllA1amJFVQ7ltFrvA3qxQ5KC-FH8R2ZsxzRC4tYDkk-7trX2fjvfjL3zDcBrQ7WlHR9GWksbyUzySIvMRN7KUuTeOKsbdf1JWhTZ-Xk-24Ffm1wY2la5sYmNoba1oW_kByRTnpB4Xfph8S2iqlH0d3VTQqOFxan7-QNDttX78Qjn9w3nx5_mH0-irqpAZGSSrSOWeOTIMrbeCi8MWuPExZnPvE9NbEs3FLk15HazEqkr9brkmdexxDZXllrgbW_ArkSsxwPYnY2ns899hCc4S1r5IiHy-MAhPXISyNoivaY2wN8McIUCt7dnXuG747v_2Zu6B3c6xzo8bFfCfdhx1QOYjsZnUeHW78KRc4vwzK2a3LNwRgE9tpmaqDss2r3w4RFSug3rKuyStAi0eJFHT5w-oj6E-XU8wCMYVHXlHkOYkW6cSCxLTIJz6ktrBOOpk3lpWGxMAK82E6wWrUyIwvCKUKB6FARwRFPfn0DK3k1DvfyiOkOhKFV5iD5j6XMpRRLrlBnJpc11QhWebABvCTiK7A-iw-gujQLHSUpe6jCVwzTO0Q8LYH-DD9UZppX6A44AXvbdaFLoP5GuXH3ZnJMxJjCyD2CvhWI_ZoGjkJzJANItkG491HZPdfG1kS3HSCNF__fJv4f1Am6dzKcTNRkXp0_hNqdsE0bHPgzWy0v3DG6a7-uL1fJ5t_hCUNcM4t-DzG9t
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VghAXHuJlKGAQiJMV7yO7NhJCLSEiaomi0kNvq_U-oBc7JCmIn8a_Y8Z2QiMkbj0g-bR-aO39PN-MPfMNwEtHvaUDH2bWSp_JQvLMisJl0ctKlNEFb1t1_SM9nRanp-VsB36ta2EorXJtE1tD7RtH38gHJFOuSLxOD2KfFjEbjd_Nv2XUQYr-tK7baXQQOQw_f2D4tnw7GeFav-J8_OHk_ces7zCQOamKVcZURL6sch-9iMKhZVYhL2IRo3a5r8JQlN6RC84qpDEdbcWLaHOJY6GqrMDLXoGrWqpctlmDnzexnuBMdUJGQpT5ICBRcpLK2qK_tkvA31xwgQy3EzUvMN_41n_8zG7Dzd7dTve79-MO7IT6LnwaTY6zaVi9SUchzNPjsGwr0tIZhfk45hoi9HTaZcinB0j0Pm3qtC_dIijjSRH9c_q0eg9OLuMG7sNu3dThIaQFqckJ5ZlyCtc3Vt4JxnWQZeVY7lwCL9aLbeadeIjBoIsQYTaISOCAYLA5gPS-24Fm8cX05sNQAfMQPckqllIKlVvNnOTSl1ZR3yefwGsCkSGrhEhxti-uwHmSvpfZ13Ko8xK9swT21lgxvblamj9ASeD5ZjcaGvp7ZOvQnLfHFIwJjPcTeNDBcjNngbOQnMkE9BZgt25qe0999rUVM8f4Q6NX_Ojf03oG1xG55mgyPXwMNziVoDDa9mB3tTgPT-Ca-746Wy6etm9hCuaSEfwb0zV2vQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=DIR-Net%3A+Deep+Residual+Polar+Decoding+Network+Based+on+Information+Refinement&rft.jtitle=Entropy+%28Basel%2C+Switzerland%29&rft.au=Song%2C+Bixue&rft.au=Feng%2C+Yongxin&rft.au=Wang%2C+Yang&rft.date=2022-12-12&rft.pub=MDPI+AG&rft.issn=1099-4300&rft.eissn=1099-4300&rft.volume=24&rft.issue=12&rft_id=info:doi/10.3390%2Fe24121809&rft.externalDocID=A745709818
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1099-4300&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1099-4300&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1099-4300&client=summon