Principles of Water Electrolysis and Recent Progress in Cobalt‐, Nickel‐, and Iron‐Based Oxides for the Oxygen Evolution Reaction

Water electrolysis that results in green hydrogen is the key process towards a circular economy. The supply of sustainable electricity and availability of oxygen evolution reaction (OER) electrocatalysts are the main bottlenecks of the process for large‐scale production of green hydrogen. A broad ra...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Angewandte Chemie International Edition Jg. 61; H. 1; S. e202103824 - n/a
Hauptverfasser: Yu, Mingquan, Budiyanto, Eko, Tüysüz, Harun
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Germany Wiley Subscription Services, Inc 03.01.2022
John Wiley and Sons Inc
Ausgabe:International ed. in English
Schlagworte:
ISSN:1433-7851, 1521-3773, 1521-3773
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Water electrolysis that results in green hydrogen is the key process towards a circular economy. The supply of sustainable electricity and availability of oxygen evolution reaction (OER) electrocatalysts are the main bottlenecks of the process for large‐scale production of green hydrogen. A broad range of OER electrocatalysts have been explored to decrease the overpotential and boost the kinetics of this sluggish half‐reaction. Co‐, Ni‐, and Fe‐based catalysts have been considered to be potential candidates to replace noble metals due to their tunable 3d electron configuration and spin state, versatility in terms of crystal and electronic structures, as well as abundance in nature. This Review provides some basic principles of water electrolysis, key aspects of OER, and significant criteria for the development of the catalysts. It provides also some insights on recent advances of Co‐, Ni‐, and Fe‐based oxides and a brief perspective on green hydrogen production and the challenges of water electrolysis. This Review describes the basic principles of water electrolysis, key aspects of the oxygen evolution reaction (OER), and significant criteria for the development of new catalysts. Recent advances in catalysts based on Co, Ni, and Fe oxides are described, and a brief perspective is given on green hydrogen production and the challenges of water electrolysis.
AbstractList Water electrolysis that results in green hydrogen is the key process towards a circular economy. The supply of sustainable electricity and availability of oxygen evolution reaction (OER) electrocatalysts are the main bottlenecks of the process for large‐scale production of green hydrogen. A broad range of OER electrocatalysts have been explored to decrease the overpotential and boost the kinetics of this sluggish half‐reaction. Co‐, Ni‐, and Fe‐based catalysts have been considered to be potential candidates to replace noble metals due to their tunable 3d electron configuration and spin state, versatility in terms of crystal and electronic structures, as well as abundance in nature. This Review provides some basic principles of water electrolysis, key aspects of OER, and significant criteria for the development of the catalysts. It provides also some insights on recent advances of Co‐, Ni‐, and Fe‐based oxides and a brief perspective on green hydrogen production and the challenges of water electrolysis. This Review describes the basic principles of water electrolysis, key aspects of the oxygen evolution reaction (OER), and significant criteria for the development of new catalysts. Recent advances in catalysts based on Co, Ni, and Fe oxides are described, and a brief perspective is given on green hydrogen production and the challenges of water electrolysis.
Water electrolysis that results in green hydrogen is the key process towards a circular economy. The supply of sustainable electricity and availability of oxygen evolution reaction (OER) electrocatalysts are the main bottlenecks of the process for large‐scale production of green hydrogen. A broad range of OER electrocatalysts have been explored to decrease the overpotential and boost the kinetics of this sluggish half‐reaction. Co‐, Ni‐, and Fe‐based catalysts have been considered to be potential candidates to replace noble metals due to their tunable 3d electron configuration and spin state, versatility in terms of crystal and electronic structures, as well as abundance in nature. This Review provides some basic principles of water electrolysis, key aspects of OER, and significant criteria for the development of the catalysts. It provides also some insights on recent advances of Co‐, Ni‐, and Fe‐based oxides and a brief perspective on green hydrogen production and the challenges of water electrolysis.
Water electrolysis that results in green hydrogen is the key process towards a circular economy. The supply of sustainable electricity and availability of oxygen evolution reaction (OER) electrocatalysts are the main bottlenecks of the process for large-scale production of green hydrogen. A broad range of OER electrocatalysts have been explored to decrease the overpotential and boost the kinetics of this sluggish half-reaction. Co-, Ni-, and Fe-based catalysts have been considered to be potential candidates to replace noble metals due to their tunable 3d electron configuration and spin state, versatility in terms of crystal and electronic structures, as well as abundance in nature. This Review provides some basic principles of water electrolysis, key aspects of OER, and significant criteria for the development of the catalysts. It provides also some insights on recent advances of Co-, Ni-, and Fe-based oxides and a brief perspective on green hydrogen production and the challenges of water electrolysis.Water electrolysis that results in green hydrogen is the key process towards a circular economy. The supply of sustainable electricity and availability of oxygen evolution reaction (OER) electrocatalysts are the main bottlenecks of the process for large-scale production of green hydrogen. A broad range of OER electrocatalysts have been explored to decrease the overpotential and boost the kinetics of this sluggish half-reaction. Co-, Ni-, and Fe-based catalysts have been considered to be potential candidates to replace noble metals due to their tunable 3d electron configuration and spin state, versatility in terms of crystal and electronic structures, as well as abundance in nature. This Review provides some basic principles of water electrolysis, key aspects of OER, and significant criteria for the development of the catalysts. It provides also some insights on recent advances of Co-, Ni-, and Fe-based oxides and a brief perspective on green hydrogen production and the challenges of water electrolysis.
Water electrolysis that results in green hydrogen is the key process towards a circular economy. The supply of sustainable electricity and availability of oxygen evolution reaction (OER) electrocatalysts are the main bottlenecks of the process for large‐scale production of green hydrogen. A broad range of OER electrocatalysts have been explored to decrease the overpotential and boost the kinetics of this sluggish half‐reaction. Co‐, Ni‐, and Fe‐based catalysts have been considered to be potential candidates to replace noble metals due to their tunable 3d electron configuration and spin state, versatility in terms of crystal and electronic structures, as well as abundance in nature. This Review provides some basic principles of water electrolysis, key aspects of OER, and significant criteria for the development of the catalysts. It provides also some insights on recent advances of Co‐, Ni‐, and Fe‐based oxides and a brief perspective on green hydrogen production and the challenges of water electrolysis. This Review describes the basic principles of water electrolysis, key aspects of the oxygen evolution reaction (OER), and significant criteria for the development of new catalysts. Recent advances in catalysts based on Co, Ni, and Fe oxides are described, and a brief perspective is given on green hydrogen production and the challenges of water electrolysis.
Author Budiyanto, Eko
Yu, Mingquan
Tüysüz, Harun
AuthorAffiliation 1 Department of Heterogeneous Catalysis Max-Planck-Institute für Kohlenforschung Kaiser-Wilhelm-Platz 1 45470 Mülheim an der Ruhr Germany
AuthorAffiliation_xml – name: 1 Department of Heterogeneous Catalysis Max-Planck-Institute für Kohlenforschung Kaiser-Wilhelm-Platz 1 45470 Mülheim an der Ruhr Germany
Author_xml – sequence: 1
  givenname: Mingquan
  surname: Yu
  fullname: Yu, Mingquan
  organization: Max-Planck-Institute für Kohlenforschung
– sequence: 2
  givenname: Eko
  orcidid: 0000-0001-6184-8863
  surname: Budiyanto
  fullname: Budiyanto, Eko
  organization: Max-Planck-Institute für Kohlenforschung
– sequence: 3
  givenname: Harun
  orcidid: 0000-0001-8552-7028
  surname: Tüysüz
  fullname: Tüysüz, Harun
  email: tueysuez@kofo.mpg.de
  organization: Max-Planck-Institute für Kohlenforschung
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34138511$$D View this record in MEDLINE/PubMed
BookMark eNqFkj1vFDEQhi2UiHxAS4ks0VCwh7_2q0EKp0s4KUoiBKK0vN7Zi4PPvti7IdfR0eY38kvi5ZIAkRBuPGM_76vxePbQlvMOEHpByYQSwt4qZ2DCCKOEV0w8Qbs0ZzTjZcm3Uiw4z8oqpztoL8aLxFcVKZ6iHS4oT8d0F_04C8Zps7IQse_wF9VDwDMLug_erqOJWLkWfwQNrsdnwS8CxIiNw1PfKNv__H7zBp8Y_RXsr3CE58G7lLxXEVp8em3aZN35gPtzSOl6AQ7PrrwdeuNdclZ6DJ6h7U7ZCM_v9n30-XD2afohOz49mk8PjjMtikpkTUlEQ0tVaqJZV5O8oQXvdKFULqqa6byihRJQqoIRolUteM04bdq8FKlBwPk-erfxXQ3NEtrxWUFZuQpmqcJaemXk3zfOnMuFv5I1q2nqcDJ4fWcQ_OUAsZdLEzVYqxz4IUqWC8YLQus6oa8eoRd-CC49T7KCCpZWRRL18s-KHkq5_6MEiA2gg48xQCe16dXYtFSgsZISOY6CHEdBPoxCkk0eye6d_ymoN4JvxsL6P7Q8OJnPfmtvAaEKyXE
CitedBy_id crossref_primary_10_1038_s41467_025_59771_6
crossref_primary_10_1016_j_jcis_2023_06_007
crossref_primary_10_1063_5_0253779
crossref_primary_10_1002_adma_202109321
crossref_primary_10_3389_fchem_2022_1047398
crossref_primary_10_1002_celc_202200958
crossref_primary_10_1039_D4SE00968A
crossref_primary_10_1002_aesr_202400281
crossref_primary_10_1007_s11244_021_01530_0
crossref_primary_10_1016_j_seppur_2023_124184
crossref_primary_10_1039_D5SE00267B
crossref_primary_10_1002_smll_202302925
crossref_primary_10_3390_catal13030586
crossref_primary_10_1002_aenm_202303360
crossref_primary_10_1002_cctc_202401749
crossref_primary_10_1051_e3sconf_202341401002
crossref_primary_10_1039_D4CC04775C
crossref_primary_10_3390_nano12223972
crossref_primary_10_1039_D3SC05891C
crossref_primary_10_1002_ange_202313886
crossref_primary_10_1002_smll_202306274
crossref_primary_10_3390_catal12060594
crossref_primary_10_1002_adfm_202315080
crossref_primary_10_1016_j_cej_2023_141457
crossref_primary_10_1021_jacs_4c14493
crossref_primary_10_70322_gct_2025_10012
crossref_primary_10_1007_s10800_024_02241_6
crossref_primary_10_1002_aoc_7240
crossref_primary_10_1002_cssc_202300468
crossref_primary_10_1002_anie_202209016
crossref_primary_10_1016_j_jechem_2023_08_005
crossref_primary_10_1039_D5NJ01208B
crossref_primary_10_1038_s41467_023_42696_3
crossref_primary_10_1039_D5CC01468A
crossref_primary_10_1021_acsami_5c05517
crossref_primary_10_1002_sstr_202200085
crossref_primary_10_1002_slct_202403890
crossref_primary_10_1007_s11581_024_05576_4
crossref_primary_10_1007_s10971_022_05882_1
crossref_primary_10_1016_j_apsusc_2023_156652
crossref_primary_10_1016_j_apsusc_2022_155283
crossref_primary_10_1039_D5DT00350D
crossref_primary_10_1039_D3QI02055J
crossref_primary_10_3390_coatings13040726
crossref_primary_10_1039_D4CY00066H
crossref_primary_10_3390_nano12121975
crossref_primary_10_1002_adsu_202400840
crossref_primary_10_1002_fuce_202300239
crossref_primary_10_1002_anie_202424074
crossref_primary_10_1016_j_applthermaleng_2024_124532
crossref_primary_10_3390_gels9030190
crossref_primary_10_1016_j_apcatb_2024_124506
crossref_primary_10_1073_pnas_2405846121
crossref_primary_10_1088_2053_1583_acbfcb
crossref_primary_10_1021_jacs_2c10823
crossref_primary_10_1039_D5TA02765A
crossref_primary_10_1021_jacs_4c08847
crossref_primary_10_1002_advs_202204800
crossref_primary_10_1016_j_jcis_2022_12_128
crossref_primary_10_1016_j_jece_2024_114887
crossref_primary_10_1002_smll_202401343
crossref_primary_10_1039_D3SE00679D
crossref_primary_10_1002_anie_202211543
crossref_primary_10_3390_catal11111394
crossref_primary_10_1002_cssc_202402270
crossref_primary_10_1002_anie_202203929
crossref_primary_10_1016_j_jcat_2024_115725
crossref_primary_10_3389_fchem_2022_1071274
crossref_primary_10_1039_D4NR05221H
crossref_primary_10_1007_s40820_022_00889_3
crossref_primary_10_1016_j_envres_2023_115601
crossref_primary_10_1021_acsaem_5c00488
crossref_primary_10_1016_j_jcat_2023_115278
crossref_primary_10_1002_adfm_202303073
crossref_primary_10_70749_ijbr_v3i1_479
crossref_primary_10_1155_2023_9881469
crossref_primary_10_1016_j_ccr_2022_214925
crossref_primary_10_1016_j_cej_2022_134699
crossref_primary_10_1002_celc_202300483
crossref_primary_10_1039_D5TA04042F
crossref_primary_10_1116_6_0002414
crossref_primary_10_1016_j_inoche_2022_109350
crossref_primary_10_3390_molecules28031475
crossref_primary_10_1016_j_jcis_2022_05_070
crossref_primary_10_1007_s12274_023_6303_9
crossref_primary_10_1021_acscatal_5c01947
crossref_primary_10_1016_j_cej_2023_142620
crossref_primary_10_1021_acsnano_5c12459
crossref_primary_10_1039_D2NR05783B
crossref_primary_10_1039_D2QI01238C
crossref_primary_10_3390_molecules30173529
crossref_primary_10_1007_s11664_024_11148_z
crossref_primary_10_1038_s41598_025_08306_6
crossref_primary_10_1002_ange_202424074
crossref_primary_10_1021_acsami_5c03491
crossref_primary_10_1002_cssc_202300384
crossref_primary_10_1002_aesr_202400233
crossref_primary_10_1016_j_catcom_2023_106659
crossref_primary_10_1039_D3CY00616F
crossref_primary_10_1002_cssc_202402178
crossref_primary_10_1002_adfm_202412979
crossref_primary_10_1002_smll_202203147
crossref_primary_10_1016_j_ijhydene_2023_11_089
crossref_primary_10_3390_molecules30092069
crossref_primary_10_1007_s40242_023_3108_z
crossref_primary_10_1002_aenm_202203886
crossref_primary_10_1016_j_cej_2023_143705
crossref_primary_10_1002_aenm_202202317
crossref_primary_10_1002_smll_202403310
crossref_primary_10_1016_j_ijhydene_2024_04_207
crossref_primary_10_1039_D4QM00312H
crossref_primary_10_1002_smll_202303912
crossref_primary_10_1002_ece2_91
crossref_primary_10_1002_celc_202300460
crossref_primary_10_1016_j_jclepro_2022_133960
crossref_primary_10_3390_coatings15070772
crossref_primary_10_1002_adfm_202503470
crossref_primary_10_1021_acsaem_5c00214
crossref_primary_10_1002_aenm_202200269
crossref_primary_10_1002_cctc_202400622
crossref_primary_10_1016_j_enconman_2025_119636
crossref_primary_10_1016_j_inoche_2023_110402
crossref_primary_10_1039_D2MH01143C
crossref_primary_10_1002_adfm_202214075
crossref_primary_10_1016_j_jcis_2024_03_184
crossref_primary_10_1016_j_fuel_2024_132484
crossref_primary_10_1038_s41427_025_00598_4
crossref_primary_10_1002_cctc_202300648
crossref_primary_10_1016_j_jcis_2022_03_152
crossref_primary_10_3390_batteries9010046
crossref_primary_10_1002_adfm_202401134
crossref_primary_10_1016_j_cej_2022_139263
crossref_primary_10_1007_s40820_023_01080_y
crossref_primary_10_1039_D5TA01363A
crossref_primary_10_1002_cssc_202300633
crossref_primary_10_1002_smll_202401394
crossref_primary_10_1039_D4NR03397C
crossref_primary_10_1155_er_4507049
crossref_primary_10_1016_j_apsusc_2023_158329
crossref_primary_10_1002_smll_202500121
crossref_primary_10_1016_j_jcis_2023_05_173
crossref_primary_10_1016_j_jcis_2024_11_023
crossref_primary_10_1016_j_jcis_2024_11_022
crossref_primary_10_1002_adsu_202500645
crossref_primary_10_1002_smll_202505810
crossref_primary_10_1002_adma_202418504
crossref_primary_10_1002_ange_202209016
crossref_primary_10_1021_acs_chemrev_4c00466
crossref_primary_10_1002_smll_202305905
crossref_primary_10_1016_j_ijhydene_2023_06_093
crossref_primary_10_1016_j_cej_2023_142253
crossref_primary_10_1039_D5QI00536A
crossref_primary_10_1002_smll_202302866
crossref_primary_10_1111_ijac_14262
crossref_primary_10_1002_slct_202202700
crossref_primary_10_1002_eem2_70136
crossref_primary_10_1039_D4TA08701A
crossref_primary_10_1038_s41467_023_37441_9
crossref_primary_10_1039_D5MH01137J
crossref_primary_10_1016_j_cej_2025_161462
crossref_primary_10_1039_D5NJ02455B
crossref_primary_10_1002_cctc_202501178
crossref_primary_10_1016_j_cej_2023_146710
crossref_primary_10_1002_anie_202117178
crossref_primary_10_1002_ange_202313571
crossref_primary_10_1016_j_elecom_2024_107836
crossref_primary_10_1002_ange_202314303
crossref_primary_10_1016_j_cej_2021_134330
crossref_primary_10_1002_ange_202203929
crossref_primary_10_1016_j_jcat_2024_115675
crossref_primary_10_1002_cssc_202300310
crossref_primary_10_1002_ange_202211543
crossref_primary_10_1002_smtd_202500103
crossref_primary_10_1007_s41918_024_00219_8
crossref_primary_10_1557_s43579_025_00744_7
crossref_primary_10_1016_j_mtsust_2023_100451
crossref_primary_10_1039_D2NR02203F
crossref_primary_10_3390_nano14201661
crossref_primary_10_1016_j_nanoen_2024_110020
crossref_primary_10_1002_cctc_202400564
crossref_primary_10_1002_cctc_202401653
crossref_primary_10_1088_1361_6528_ad0985
crossref_primary_10_3390_en17235975
crossref_primary_10_1039_D5EE01802A
crossref_primary_10_1016_j_progsolidstchem_2025_100532
crossref_primary_10_1002_ange_202416274
crossref_primary_10_1007_s11426_024_2453_2
crossref_primary_10_1002_anie_202214570
crossref_primary_10_1021_acsmaterialsau_5c00035
crossref_primary_10_1002_adfm_202308345
crossref_primary_10_1002_adfm_202308337
crossref_primary_10_1002_ente_202400941
crossref_primary_10_1016_j_est_2023_109127
crossref_primary_10_1016_j_ijhydene_2025_151097
crossref_primary_10_1007_s11581_022_04644_x
crossref_primary_10_1021_acs_energyfuels_5c00903
crossref_primary_10_1039_D3QM01156A
crossref_primary_10_1021_acs_langmuir_5c01501
crossref_primary_10_1039_D2NR03411E
crossref_primary_10_3390_polym14081510
crossref_primary_10_1016_j_jcis_2023_04_070
crossref_primary_10_1002_cctc_202400343
crossref_primary_10_1021_jacs_4c18390
crossref_primary_10_1039_D2QI01902G
crossref_primary_10_1039_D3QM01179H
crossref_primary_10_1016_j_matchemphys_2023_128007
crossref_primary_10_3390_en17071591
crossref_primary_10_1002_adma_202412598
crossref_primary_10_1016_j_fuel_2023_128391
crossref_primary_10_1016_j_ijhydene_2025_02_346
crossref_primary_10_1039_D5NR01892G
crossref_primary_10_1007_s11595_024_2886_6
crossref_primary_10_1021_jacs_4c06074
crossref_primary_10_1002_ange_202214570
crossref_primary_10_1016_j_jcis_2022_02_078
crossref_primary_10_1016_j_flatc_2024_100775
crossref_primary_10_1007_s11581_023_05190_w
crossref_primary_10_1002_aenm_202402786
crossref_primary_10_1039_D5EY00127G
crossref_primary_10_1002_cey2_485
crossref_primary_10_1002_smll_202408507
crossref_primary_10_1016_j_jelechem_2023_118012
crossref_primary_10_1016_j_jcis_2023_09_117
crossref_primary_10_1002_sstr_202300013
crossref_primary_10_1002_cctc_202301327
crossref_primary_10_3390_molecules27144598
crossref_primary_10_1007_s11814_025_00511_3
crossref_primary_10_1116_6_0002280
crossref_primary_10_1039_D3QI00112A
crossref_primary_10_3390_ijms23116036
crossref_primary_10_1021_acsanm_4c06793
crossref_primary_10_1016_j_ccr_2024_215840
crossref_primary_10_1002_smll_202407564
crossref_primary_10_1007_s11696_023_02837_w
crossref_primary_10_1002_smll_202407328
crossref_primary_10_1002_anie_202424743
crossref_primary_10_1007_s12274_022_4293_7
crossref_primary_10_1039_D4RA05547K
crossref_primary_10_1073_pnas_2317247121
crossref_primary_10_1002_elsa_202100213
crossref_primary_10_1016_j_flatc_2024_100750
crossref_primary_10_1016_j_ccr_2023_215639
crossref_primary_10_1002_smll_202301255
crossref_primary_10_1002_ange_202306333
crossref_primary_10_1016_j_watres_2024_122359
crossref_primary_10_1002_smll_202501715
crossref_primary_10_1016_j_apsusc_2023_158165
crossref_primary_10_1016_j_jpcs_2023_111836
crossref_primary_10_1007_s10562_022_04209_7
crossref_primary_10_1039_D3EE01981K
crossref_primary_10_1039_D4TA06599A
crossref_primary_10_1016_j_apsusc_2022_153522
crossref_primary_10_1016_j_jallcom_2025_179973
crossref_primary_10_1002_anie_202306333
crossref_primary_10_1039_D3CY01556D
crossref_primary_10_1021_acsaem_4c03268
crossref_primary_10_1002_adfm_202213304
crossref_primary_10_1039_D4NR00170B
crossref_primary_10_1016_j_jece_2024_114152
crossref_primary_10_1002_adma_202400572
crossref_primary_10_1002_anie_202408005
crossref_primary_10_1016_j_renene_2024_120159
crossref_primary_10_1002_cctc_202300562
crossref_primary_10_1016_j_cjche_2025_07_006
crossref_primary_10_1002_aic_17785
crossref_primary_10_1002_inf2_12494
crossref_primary_10_1002_cey2_679
crossref_primary_10_31613_ceramist_2025_00213
crossref_primary_10_1002_adsu_202300275
crossref_primary_10_1002_celc_202400656
crossref_primary_10_1002_smll_202302272
crossref_primary_10_1002_ange_202424743
crossref_primary_10_1039_D4SC04088K
crossref_primary_10_1073_pnas_2318652121
crossref_primary_10_1002_adfm_202312206
crossref_primary_10_1016_j_preme_2025_100019
crossref_primary_10_1002_ange_202302166
crossref_primary_10_1002_cssc_202401881
crossref_primary_10_1016_j_cej_2023_144241
crossref_primary_10_1039_D4SC02318H
crossref_primary_10_1021_jacs_3c10868
crossref_primary_10_1002_aenm_202400356
crossref_primary_10_1016_j_fuel_2023_129227
crossref_primary_10_1002_adma_202401648
crossref_primary_10_1002_ange_202408005
crossref_primary_10_26599_NR_2025_94907361
crossref_primary_10_3390_nano13131941
crossref_primary_10_1016_j_matlet_2023_134423
crossref_primary_10_1002_smll_202504175
crossref_primary_10_1039_D4EE00042K
crossref_primary_10_3390_molecules28114464
crossref_primary_10_1039_D4SC02840F
crossref_primary_10_1007_s00604_025_07235_5
crossref_primary_10_1007_s40242_025_5001_4
crossref_primary_10_1039_D4SE01204F
crossref_primary_10_1007_s10008_024_06029_8
crossref_primary_10_3390_nano15171356
crossref_primary_10_1016_j_jcis_2023_12_060
crossref_primary_10_1007_s40820_023_01024_6
crossref_primary_10_1002_cssc_202401425
crossref_primary_10_1002_anie_202216477
crossref_primary_10_1038_s41467_023_37775_4
crossref_primary_10_1039_D5TA03380B
crossref_primary_10_1038_s41467_024_54318_7
crossref_primary_10_1016_j_mtadv_2025_100560
crossref_primary_10_1002_celc_202300722
crossref_primary_10_1021_jacs_5c04262
crossref_primary_10_1002_ange_202216477
crossref_primary_10_1002_cctc_202500535
crossref_primary_10_1021_jacs_2c12295
crossref_primary_10_1016_j_surfin_2025_107169
crossref_primary_10_1002_anie_202302166
crossref_primary_10_1002_ange_202117178
crossref_primary_10_1016_j_cej_2023_148126
crossref_primary_10_1002_advs_202204742
crossref_primary_10_1002_advs_202405188
crossref_primary_10_1016_j_electacta_2024_145539
crossref_primary_10_1016_j_ccr_2023_215274
crossref_primary_10_1016_j_cej_2023_142705
crossref_primary_10_1016_j_colsurfa_2025_138144
crossref_primary_10_1002_adfm_202301075
crossref_primary_10_1016_j_jallcom_2022_166074
crossref_primary_10_1021_acs_energyfuels_4c04664
crossref_primary_10_3389_fenrg_2021_762346
crossref_primary_10_1002_smll_202303169
crossref_primary_10_3390_ijms232315405
crossref_primary_10_1002_adfm_202503842
crossref_primary_10_1007_s12274_022_4679_6
crossref_primary_10_1016_j_cej_2024_150953
crossref_primary_10_1002_anie_202313886
crossref_primary_10_1021_acs_energyfuels_5c02583
crossref_primary_10_1039_D2SC02019J
crossref_primary_10_1016_j_colsurfa_2022_129181
crossref_primary_10_1002_nano_70032
crossref_primary_10_1007_s43207_023_00328_y
crossref_primary_10_1002_smll_202206723
crossref_primary_10_1021_acs_inorgchem_5c01959
crossref_primary_10_3390_nano14171445
crossref_primary_10_2478_pjct_2024_0028
crossref_primary_10_1039_D3RA05158G
crossref_primary_10_1002_adma_202208337
crossref_primary_10_1016_j_cej_2024_156256
crossref_primary_10_1002_cey2_303
crossref_primary_10_1002_sstr_202200263
crossref_primary_10_1016_j_jcis_2023_09_172
crossref_primary_10_1002_ente_202401049
crossref_primary_10_1016_j_apsusc_2023_156934
crossref_primary_10_1016_j_cej_2023_145076
crossref_primary_10_1016_j_cej_2024_149706
crossref_primary_10_3390_polym17091281
crossref_primary_10_1016_j_fuel_2024_133028
crossref_primary_10_1002_cssc_202500281
crossref_primary_10_1002_idm2_12172
crossref_primary_10_1021_acs_jpcc_5c00493
crossref_primary_10_1039_D3EE02809G
crossref_primary_10_1002_adfm_202302014
crossref_primary_10_1002_cctc_202300040
crossref_primary_10_1039_D3EE03379A
crossref_primary_10_1016_j_ijhydene_2025_04_155
crossref_primary_10_1002_anie_202416274
crossref_primary_10_1002_aenm_202203150
crossref_primary_10_1021_acssuschemeng_5c03273
crossref_primary_10_1039_D5DT01397F
crossref_primary_10_1016_j_erss_2024_103685
crossref_primary_10_1021_acsanm_5c01785
crossref_primary_10_1016_j_jelechem_2022_116805
crossref_primary_10_1002_ejic_202400225
crossref_primary_10_1016_j_jallcom_2023_168792
crossref_primary_10_1016_j_jcis_2023_07_006
crossref_primary_10_1111_jace_20648
crossref_primary_10_1039_D3SE01632C
crossref_primary_10_1002_smll_202404927
crossref_primary_10_1016_j_matchemphys_2024_129553
crossref_primary_10_1007_s12678_025_00956_4
crossref_primary_10_1039_D2QM01349E
crossref_primary_10_1007_s10008_023_05718_0
crossref_primary_10_1007_s10800_022_01817_4
crossref_primary_10_1002_anie_202313571
crossref_primary_10_1002_celc_202200092
crossref_primary_10_1016_j_ijhydene_2025_04_373
crossref_primary_10_1039_D2NJ03200G
crossref_primary_10_1016_j_cej_2023_146490
crossref_primary_10_3390_nano15181434
crossref_primary_10_1002_cta_4277
crossref_primary_10_3390_coatings13061102
crossref_primary_10_1002_adfm_202410618
crossref_primary_10_1002_anie_202314303
crossref_primary_10_1021_acs_energyfuels_5c01435
crossref_primary_10_1021_acsami_5c05059
crossref_primary_10_1016_j_fuel_2023_129857
crossref_primary_10_1021_jacs_3c03481
crossref_primary_10_1002_smll_202411211
crossref_primary_10_1039_D2SE01200F
Cites_doi 10.1016/j.ijhydene.2019.09.205
10.1016/S1388-2481(03)00169-3
10.1002/anie.201915803
10.1021/acsaem.0c01201
10.1038/nenergy.2016.53
10.1002/ange.201813052
10.1002/ange.201903200
10.1016/j.ijhydene.2018.04.219
10.1021/cm403153u
10.1021/jacs.8b13701
10.1002/aenm.201700381
10.1016/j.pnsc.2018.07.005
10.1021/acscatal.8b04001
10.1016/S0013-4686(98)80013-3
10.3389/fchem.2014.00079
10.1038/s41598-017-13333-z
10.1021/acsnano.0c06066
10.1016/j.elecom.2018.11.022
10.1002/ange.202102452
10.1002/ange.202011388
10.1016/j.jcat.2017.10.027
10.1002/ange.202003801
10.1039/C5TA07586F
10.1038/ncomms9106
10.1149/1.2100463
10.1016/j.ijhydene.2020.01.241
10.3390/ma12081336
10.1038/s41929-018-0141-2
10.1002/ange.201804417
10.1007/s12274-012-0280-8
10.1351/pac199163050711
10.1021/acscatal.8b01046
10.1149/2.049306jes
10.1002/9780470381588
10.1038/s41467-020-16237-1
10.1002/cssc.201800932
10.1002/ange.201905501
10.1002/anie.201701280
10.1021/acs.jpclett.5b01928
10.1021/ja400555q
10.1002/anie.201914245
10.1038/srep13801
10.1126/science.aaf1525
10.1021/jacs.8b04546
10.1038/s41467-018-08144-3
10.1002/ange.201909475
10.1039/a902808k
10.1002/ange.201907595
10.1021/acscatal.9b01985
10.1021/jp3007415
10.1002/cssc.201701877
10.1016/0013-4686(66)80045-2
10.1002/cphc.201900511
10.1002/adfm.201303600
10.1002/anie.202013610
10.1038/s41467-017-01949-8
10.1021/acsaem.9b01183
10.1002/celc.201402262
10.1039/C8EE00927A
10.1002/anie.202101906
10.1002/anie.202102452
10.1002/cssc.201500872
10.1002/anie.201907595
10.1002/ange.201608601
10.1002/ange.201915803
10.1039/C9TA00023B
10.1002/smll.201700806
10.1126/science.1212858
10.1002/anie.201810104
10.1021/acscentsci.9b00053
10.1021/acs.chemmater.6b02645
10.1002/ange.201914245
10.1021/jacs.0c04867
10.1088/2515-7655/abee33
10.1002/ange.201701280
10.1038/s41467-018-05019-5
10.1126/science.1162018
10.1021/acscatal.7b01070
10.1007/s10008-016-3280-x
10.1002/adma.201804341
10.1002/anie.201900428
10.1149/2.0271611jes
10.1007/978-3-662-09291-0_4
10.1021/cs500713d
10.1002/anie.201909475
10.1002/adma.201901139
10.1126/science.aad4998
10.1002/smll.201904903
10.1038/s41558-020-0891-0
10.1021/acsaem.9b01952
10.3390/catal9110926
10.1002/ejic.201801162
10.1039/C9CY02345C
10.1021/acsenergylett.8b00908
10.1002/ange.202013610
10.1002/ange.202101906
10.1002/anie.201813052
10.1038/s41467-019-13415-8
10.1002/anie.201608601
10.1021/acscatal.6b02479
10.1038/s41586-020-2908-2
10.1002/cctc.201000397
10.1002/anie.201804417
10.1002/adma.201700404
10.1002/ange.201810104
10.1002/adfm.201904020
10.1021/acsenergylett.9b00686
10.1038/nmat3313
10.3390/molecules23040903
10.1038/s41467-020-18891-x
10.1016/j.resconrec.2020.104743
10.1021/jacs.5b00281
10.1002/adfm.201901217
10.1002/aenm.201600621
10.1038/nchem.1069
10.1126/science.aav3506
10.1002/cssc.201903186
10.1021/cs500606g
10.1016/0022-0728(82)85022-5
10.1016/j.apcatb.2018.11.046
10.1002/cctc.201901151
10.1016/j.jpowsour.2007.08.053
10.1021/ja502379c
10.1039/C7TA10728E
10.1002/aenm.201900796
10.1126/science.1258307
10.1021/acs.jpcc.5b00105
10.1038/ncomms5477
10.1039/C7EE03457A
10.1002/anie.202011388
10.1039/C5RA01739D
10.1039/C9TA07835E
10.1021/ja405351s
10.1126/science.1233638
10.1038/s41467-019-13052-1
10.1016/j.jelechem.2016.04.033
10.1021/ja510442p
10.1021/jacs.0c00257
10.1021/cr050182l
10.1021/acs.chemrev.6b00398
10.1021/acscatal.7b03509
10.1002/ange.202101698
10.1021/ja405997s
10.1016/j.ijhydene.2013.04.100
10.1021/ja200559j
10.1021/acsaem.9b01965
10.1002/ange.201900428
10.1021/acsaem.8b01769
10.1007/s10008-013-2313-y
10.1002/anie.201905281
10.1021/cm5023163
10.1038/ncomms9625
10.1016/j.elecom.2008.02.003
10.1002/smtd.201800001
10.1021/ja4027715
10.1021/jacs.7b07117
10.1021/acs.inorgchem.7b03168
10.1021/ja5096733
10.1016/j.joule.2018.05.003
10.1021/jacs.5b10699
10.1021/acs.chemmater.5b03148
10.1021/acsami.6b12005
10.1002/anie.201903200
10.1007/s10008-007-0484-0
10.1007/s12274-019-2389-5
10.1039/C6CS00328A
10.1021/jacs.6b00332
10.1515/zpch-2019-1466
10.1016/j.jelechem.2005.11.013
10.1016/j.ijhydene.2013.05.099
10.1002/anie.202101698
10.1021/acsami.7b02571
10.1021/ja01953a010
10.1002/anie.202003801
10.1016/j.ijhydene.2013.06.034
10.1021/cm5005888
10.1002/aenm.201502313
10.1016/j.ijhydene.2015.06.105
10.1021/ja511559d
10.1039/C8NR09740B
10.1021/jp904022e
10.1016/j.elecom.2009.03.034
10.1002/ange.201905281
10.1038/s41467-019-12994-w
10.1016/j.jelechem.2017.10.058
10.1038/s41598-018-37307-x
10.1038/s41467-020-16558-1
10.1021/acscatal.9b01940
10.1021/ja407115p
10.1007/s40820-020-00469-3
10.1002/celc.201900722
10.1002/anie.201905501
10.1016/j.est.2019.03.001
10.1021/acsnano.7b05481
10.1021/acscatal.7b00632
10.1038/s41560-020-0576-y
10.1039/C5TA02988K
10.1038/s41467-019-09845-z
ContentType Journal Article
Copyright 2021 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH
2021 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH.
2021. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2021 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH
– notice: 2021 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH.
– notice: 2021. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
NPM
7TM
K9.
7X8
5PM
DOI 10.1002/anie.202103824
DatabaseName Wiley Online Library Open Access
CrossRef
PubMed
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
ProQuest Health & Medical Complete (Alumni)
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic

CrossRef
PubMed
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
Edition International ed. in English
EndPage n/a
ExternalDocumentID PMC9291824
34138511
10_1002_anie_202103824
ANIE202103824
Genre reviewArticle
Journal Article
Review
GrantInformation_xml – fundername: Max-Planck-Gesellschaft
– fundername: Deutsche Forschungsgemeinschaft
  funderid: Projektnummer 388390466-TRR 247 within the Collaborative Research Centre/Transregio 247 "Heterogeneous Oxidation Catalysis in the Liquid Phase
– fundername: Deutsche Forschungsgemeinschaft
  grantid: Projektnummer 388390466-TRR 247 within the Collaborative Research Centre/Transregio 247 "Heterogeneous Oxidation Catalysis in the Liquid Phase
– fundername: ;
– fundername: ;
  grantid: Projektnummer 388390466-TRR 247 within the Collaborative Research Centre/Transregio 247 "Heterogeneous Oxidation Catalysis in the Liquid Phase
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
24P
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ABPPZ
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BTSUX
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
M53
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
UB1
UPT
UQL
V2E
VQA
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZZTAW
~IA
~KM
~WT
AAYXX
ABDBF
ABJNI
ABUFD
AEYWJ
AGHNM
AGYGG
CITATION
O8X
NPM
7TM
K9.
7X8
5PM
ID FETCH-LOGICAL-c4684-b704b17a7c0c2f905b163fc6aa54892c5816a4e7a6200ca9439231bd574038e33
IEDL.DBID 24P
ISICitedReferencesCount 701
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000675252200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1433-7851
1521-3773
IngestDate Tue Nov 04 01:56:57 EST 2025
Thu Oct 02 06:19:04 EDT 2025
Tue Oct 07 07:24:14 EDT 2025
Mon Jul 21 06:00:33 EDT 2025
Sat Nov 29 02:36:22 EST 2025
Tue Nov 18 21:18:32 EST 2025
Wed Jan 22 16:28:11 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords nickel
oxygen evolution reaction
iron
cobalt
water splitting
Language English
License Attribution-NonCommercial
2021 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH.
This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4684-b704b17a7c0c2f905b163fc6aa54892c5816a4e7a6200ca9439231bd574038e33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0001-8552-7028
0000-0001-6184-8863
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202103824
PMID 34138511
PQID 2614222280
PQPubID 946352
PageCount 24
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_9291824
proquest_miscellaneous_2542360199
proquest_journals_2614222280
pubmed_primary_34138511
crossref_citationtrail_10_1002_anie_202103824
crossref_primary_10_1002_anie_202103824
wiley_primary_10_1002_anie_202103824_ANIE202103824
PublicationCentury 2000
PublicationDate January 3, 2022
PublicationDateYYYYMMDD 2022-01-03
PublicationDate_xml – month: 01
  year: 2022
  text: January 3, 2022
  day: 03
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
– name: Hoboken
PublicationTitle Angewandte Chemie International Edition
PublicationTitleAlternate Angew Chem Int Ed Engl
PublicationYear 2022
Publisher Wiley Subscription Services, Inc
John Wiley and Sons Inc
Publisher_xml – name: Wiley Subscription Services, Inc
– name: John Wiley and Sons Inc
References 2007; 107
2019; 11
2019; 98
2019; 10
2019; 12
2019; 15
2014; 26
2020; 14
2014; 24
2009; 113
2020; 13
2020; 12
2020; 11
2020; 10
2018; 43
2013; 6
2012; 11
2014; 136
2018; 6
2009; 11
2018; 9
2018; 8
2018; 3
2018; 2
2015; 137
2019; 20
2018; 1
2019; 23
2019; 29
1982; 132
2018; 30
2014; 18
2021; 46
2019; 7
2019; 9
2018; 28
2019; 4
2021 2021
2019; 6
2019; 5
2019; 31
2020; 142
2019; 2
2017 2017; 56 129
2013; 340
2018; 23
2011; 3
2016; 163
2011; 133
2017; 139
2016; 4
2016; 6
2016; 1
2018; 358
1991; 63
2016; 20
2021 2021; 60 133
2015; 119
2020; 156
2018; 11
2012; 116
2016; 8
2016; 9
2006; 587
2017; 7
2017; 8
2013; 25
2017; 46
2020 2020; 59 132
1988; 33
2017; 355
2013; 160
1966; 11
2019; 364
2017; 9
2019; 244
2014; 1
2020; 5
2014; 5
2020; 3
2014; 4
2014; 2
2015; 40
2018 2018; 57 130
2003; 5
2018; 819
2016; 352
2016; 116
2020; 45
2011; 334
2015; 6
2015; 5
2018; 140
2021; 3
2015; 3
2008
2008; 12
2008; 10
2004
2017; 29
2020; 587
2008; 321
2019; 141
2019 2019; 58 131
1999; 9
1987; 134
2015; 27
2013; 38
1908; 30
2017; 11
2017; 13
2016; 773
2019
2018
2013; 135
2016; 138
2020; 234
2008; 176
2014; 345
2018; 57
e_1_2_8_49_2
e_1_2_8_26_2
e_1_2_8_203_1
e_1_2_8_132_2
e_1_2_8_178_2
e_1_2_8_178_3
e_1_2_8_9_1
e_1_2_8_41_3
e_1_2_8_170_1
e_1_2_8_193_1
e_1_2_8_41_2
e_1_2_8_87_1
e_1_2_8_64_2
e_1_2_8_117_2
e_1_2_8_1_1
e_1_2_8_155_2
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_143_1
e_1_2_8_166_1
e_1_2_8_189_1
e_1_2_8_91_1
e_1_2_8_143_2
e_1_2_8_120_2
e_1_2_8_99_2
e_1_2_8_105_1
e_1_2_8_128_1
e_1_2_8_181_1
e_1_2_8_30_2
e_1_2_8_76_1
e_1_2_8_53_2
e_1_2_8_25_2
e_1_2_8_48_2
Kim J.-H. (e_1_2_8_17_1) 2018; 1
e_1_2_8_204_1
e_1_2_8_2_1
e_1_2_8_133_1
e_1_2_8_179_2
e_1_2_8_110_1
e_1_2_8_171_1
e_1_2_8_86_1
e_1_2_8_118_1
e_1_2_8_194_1
e_1_2_8_63_1
e_1_2_8_40_2
e_1_2_8_156_2
e_1_2_8_14_1
e_1_2_8_37_1
e_1_2_8_144_1
e_1_2_8_90_1
e_1_2_8_121_2
e_1_2_8_98_1
e_1_2_8_106_1
e_1_2_8_182_1
e_1_2_8_52_2
e_1_2_8_129_2
e_1_2_8_182_2
e_1_2_8_75_1
e_1_2_8_167_1
e_1_2_8_28_1
e_1_2_8_89_2
e_1_2_8_205_1
e_1_2_8_81_1
e_1_2_8_111_1
e_1_2_8_7_1
e_1_2_8_20_1
e_1_2_8_66_1
e_1_2_8_89_1
e_1_2_8_20_2
e_1_2_8_119_1
e_1_2_8_172_1
e_1_2_8_195_1
e_1_2_8_43_2
e_1_2_8_172_2
e_1_2_8_134_1
e_1_2_8_157_1
e_1_2_8_81_2
e_1_2_8_70_1
e_1_2_8_160_2
e_1_2_8_78_1
e_1_2_8_55_2
e_1_2_8_107_1
e_1_2_8_183_1
e_1_2_8_32_2
e_1_2_8_183_2
e_1_2_8_145_3
e_1_2_8_122_2
e_1_2_8_168_1
e_1_2_8_93_1
e_1_2_8_145_2
Geres R. (e_1_2_8_192_1) 2019
e_1_2_8_27_1
e_1_2_8_206_1
e_1_2_8_80_1
e_1_2_8_150_1
e_1_2_8_8_1
e_1_2_8_42_2
e_1_2_8_65_2
e_1_2_8_88_1
e_1_2_8_173_1
e_1_2_8_112_2
e_1_2_8_158_2
e_1_2_8_173_2
e_1_2_8_196_1
e_1_2_8_135_1
e_1_2_8_39_2
e_1_2_8_16_1
e_1_2_8_92_1
e_1_2_8_161_1
e_1_2_8_31_2
e_1_2_8_54_2
e_1_2_8_77_1
e_1_2_8_108_1
e_1_2_8_184_1
e_1_2_8_100_2
e_1_2_8_123_2
e_1_2_8_146_2
e_1_2_8_184_2
e_1_2_8_146_3
e_1_2_8_169_1
e_1_2_8_68_1
e_1_2_8_207_1
e_1_2_8_5_1
e_1_2_8_151_1
e_1_2_8_5_2
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_159_2
e_1_2_8_136_1
e_1_2_8_174_1
e_1_2_8_197_1
e_1_2_8_83_2
e_1_2_8_60_1
e_1_2_8_113_2
e_1_2_8_19_1
e_1_2_8_109_1
e_1_2_8_57_1
e_1_2_8_95_2
e_1_2_8_162_1
e_1_2_8_34_1
e_1_2_8_11_2
e_1_2_8_101_1
e_1_2_8_124_1
e_1_2_8_147_1
e_1_2_8_185_1
e_1_2_8_72_1
e_1_2_8_29_1
e_1_2_8_200_1
e_1_2_8_152_1
e_1_2_8_208_1
e_1_2_8_6_1
e_1_2_8_21_1
e_1_2_8_67_1
e_1_2_8_44_1
e_1_2_8_137_1
e_1_2_8_175_1
e_1_2_8_82_1
e_1_2_8_114_1
e_1_2_8_198_1
e_1_2_8_18_1
e_1_2_8_56_2
e_1_2_8_56_3
e_1_2_8_79_1
e_1_2_8_94_2
e_1_2_8_140_2
e_1_2_8_140_3
e_1_2_8_163_1
e_1_2_8_10_2
e_1_2_8_33_2
e_1_2_8_102_1
e_1_2_8_148_1
e_1_2_8_186_1
e_1_2_8_71_1
e_1_2_8_125_1
e_1_2_8_47_1
e_1_2_8_24_2
e_1_2_8_201_1
e_1_2_8_3_1
e_1_2_8_153_1
e_1_2_8_130_2
e_1_2_8_85_2
e_1_2_8_138_2
e_1_2_8_62_1
e_1_2_8_115_1
e_1_2_8_176_1
e_1_2_8_199_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_59_1
e_1_2_8_190_1
e_1_2_8_164_3
e_1_2_8_164_2
e_1_2_8_141_1
e_1_2_8_141_2
e_1_2_8_97_1
e_1_2_8_149_1
e_1_2_8_51_1
e_1_2_8_74_1
e_1_2_8_126_1
e_1_2_8_103_2
e_1_2_8_187_2
e_1_2_8_46_1
e_1_2_8_69_1
e_1_2_8_180_1
e_1_2_8_202_1
e_1_2_8_131_2
e_1_2_8_154_1
e_1_2_8_4_1
e_1_2_8_116_2
e_1_2_8_139_2
e_1_2_8_23_1
e_1_2_8_84_2
e_1_2_8_61_1
e_1_2_8_177_1
e_1_2_8_35_1
e_1_2_8_58_1
e_1_2_8_191_1
e_1_2_8_165_2
e_1_2_8_188_2
e_1_2_8_96_1
e_1_2_8_142_1
(e_1_2_8_150_2) 2020; 132
e_1_2_8_104_2
e_1_2_8_127_1
e_1_2_8_12_1
e_1_2_8_73_1
e_1_2_8_50_1
References_xml – volume: 334
  start-page: 1383
  year: 2011
  end-page: 1385
  publication-title: Science
– volume: 38
  start-page: 9601
  year: 2013
  end-page: 9608
  publication-title: Int. J. Hydrogen Energy
– volume: 116
  start-page: 8394
  year: 2012
  end-page: 8400
  publication-title: J. Phys. Chem. C
– volume: 12
  start-page: 1469
  year: 2008
  end-page: 1479
  publication-title: J. Solid State Electrochem.
– volume: 244
  start-page: 56
  year: 2019
  end-page: 62
  publication-title: Appl. Catal. B
– volume: 56 129
  start-page: 4858 4936
  year: 2017 2017
  end-page: 4861 4939
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 58 131
  start-page: 4484 4532
  year: 2019 2019
  end-page: 4502 4551
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 163
  start-page: F3197
  year: 2016
  end-page: F3208
  publication-title: J. Electrochem. Soc.
– volume: 11
  start-page: 2367
  year: 2018
  end-page: 2374
  publication-title: ChemSusChem
– volume: 60 133
  start-page: 14981 15108
  year: 2021 2021
  end-page: 14988 15115
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 10
  start-page: 607
  year: 2008
  end-page: 610
  publication-title: Electrochem. Commun.
– volume: 3
  start-page: 14101
  year: 2015
  end-page: 14104
  publication-title: J. Mater. Chem. A
– volume: 364
  year: 2019
  publication-title: Science
– volume: 6
  start-page: 8069
  year: 2016
  end-page: 8097
  publication-title: ACS Catal.
– volume: 3
  start-page: 8583
  year: 2020
  end-page: 8594
  publication-title: ACS Appl. Energy Mater.
– volume: 26
  start-page: 6127
  year: 2014
  end-page: 6134
  publication-title: Chem. Mater.
– volume: 1
  start-page: 16053
  year: 2016
  publication-title: Nat. Energy
– volume: 119
  start-page: 7243
  year: 2015
  end-page: 7254
  publication-title: J. Phys. Chem. C
– volume: 20
  start-page: 3359
  year: 2016
  end-page: 3365
  publication-title: J. Solid State Electrochem.
– volume: 59 132
  start-page: 1585 1601
  year: 2020 2020
  end-page: 1589 1605
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 141
  start-page: 8136
  year: 2019
  end-page: 8145
  publication-title: J. Am. Chem. Soc.
– volume: 10
  start-page: 1708
  year: 2020
  end-page: 1713
  publication-title: Catal. Sci. Technol.
– volume: 10
  start-page: 5074
  year: 2019
  publication-title: Nat. Commun.
– volume: 135
  start-page: 16977
  year: 2013
  end-page: 16987
  publication-title: J. Am. Chem. Soc.
– volume: 142
  start-page: 11901
  year: 2020
  end-page: 11914
  publication-title: J. Am. Chem. Soc.
– volume: 58 131
  start-page: 3491 3529
  year: 2019 2019
  end-page: 3495 3533
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 29
  year: 2019
  publication-title: Adv. Funct. Mater.
– volume: 30
  start-page: 1718
  year: 1908
  end-page: 1742
  publication-title: J. Am. Chem. Soc.
– volume: 10
  start-page: 162
  year: 2019
  publication-title: Nat. Commun.
– volume: 3
  start-page: 66
  year: 2020
  end-page: 98
  publication-title: ACS Appl. Energy Mater.
– volume: 5
  start-page: 4477
  year: 2014
  publication-title: Nat. Commun.
– year: 2008
– volume: 11
  start-page: 5842
  year: 2019
  end-page: 5854
  publication-title: ChemCatChem
– volume: 58 131
  start-page: 12999 13133
  year: 2019 2019
  end-page: 13003 13137
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 20
  start-page: 3089
  year: 2019
  end-page: 3095
  publication-title: ChemPhysChem
– volume: 355
  year: 2017
  publication-title: Science
– volume: 5
  start-page: 222
  year: 2020
  end-page: 230
  publication-title: Nat. Energy
– volume: 7
  start-page: 3768
  year: 2017
  end-page: 3778
  publication-title: ACS Catal.
– volume: 58 131
  start-page: 13291 13425
  year: 2019 2019
  end-page: 13296 13430
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 3
  year: 2021
  publication-title: J. Phys. Energy
– volume: 2
  start-page: 1024
  year: 2018
  end-page: 1027
  publication-title: Joule
– volume: 11
  start-page: 3378
  year: 2019
  end-page: 3385
  publication-title: Nanoscale
– volume: 29
  start-page: 40
  year: 2017
  end-page: 52
  publication-title: Chem. Mater.
– volume: 59 132
  start-page: 8072 8149
  year: 2020 2020
  end-page: 8077 8154
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– year: 2019
– volume: 9
  start-page: 8165
  year: 2019
  end-page: 8170
  publication-title: ACS Catal.
– volume: 11
  start-page: 1150
  year: 2009
  end-page: 1153
  publication-title: Electrochem. Commun.
– volume: 60 133
  start-page: 5800 5864
  year: 2021 2021
  end-page: 5805 5869
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 5
  start-page: 695
  year: 2003
  end-page: 700
  publication-title: Electrochem. Commun.
– volume: 58 131
  start-page: 4644 4692
  year: 2019 2019
  end-page: 4648 4696
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 24
  start-page: 3123
  year: 2014
  end-page: 3129
  publication-title: Adv. Funct. Mater.
– volume: 176
  start-page: 444
  year: 2008
  end-page: 451
  publication-title: J. Power Sources
– volume: 38
  start-page: 10063
  year: 2013
  end-page: 10067
  publication-title: Int. J. Hydrogen Energy
– volume: 358
  start-page: 1
  year: 2018
  end-page: 7
  publication-title: J. Catal.
– volume: 156
  year: 2020
  publication-title: Resour. Conserv. Recycl.
– volume: 139
  start-page: 11361
  year: 2017
  end-page: 11364
  publication-title: J. Am. Chem. Soc.
– volume: 7
  start-page: 5399
  year: 2017
  end-page: 5409
  publication-title: ACS Catal.
– volume: 8
  start-page: 2022
  year: 2017
  publication-title: Nat. Commun.
– volume: 11
  start-page: 9550
  year: 2017
  end-page: 9557
  publication-title: ACS Nano
– volume: 142
  start-page: 12087
  year: 2020
  end-page: 12095
  publication-title: J. Am. Chem. Soc.
– volume: 9
  start-page: 21225
  year: 2017
  end-page: 21233
  publication-title: ACS Appl. Mater. Interfaces
– volume: 819
  start-page: 260
  year: 2018
  end-page: 268
  publication-title: J. Electroanal. Chem.
– volume: 9
  start-page: 7
  year: 2019
  end-page: 15
  publication-title: ACS Catal.
– volume: 12
  start-page: 2281
  year: 2019
  end-page: 2287
  publication-title: Nano Res.
– volume: 135
  start-page: 8452
  year: 2013
  end-page: 8455
  publication-title: J. Am. Chem. Soc.
– volume: 1
  start-page: 711
  year: 2018
  end-page: 719
  publication-title: Nat. Catal.
– volume: 4
  start-page: 3068
  year: 2016
  end-page: 3076
  publication-title: J. Mater. Chem. A
– volume: 59 132
  start-page: 16544 16687
  year: 2020 2020
  end-page: 16552 16695
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 321
  start-page: 1072
  year: 2008
  end-page: 1075
  publication-title: Science
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– volume: 136
  start-page: 16481
  year: 2014
  end-page: 16484
  publication-title: J. Am. Chem. Soc.
– volume: 6
  start-page: 3684
  year: 2018
  end-page: 3691
  publication-title: J. Mater. Chem. A
– volume: 23
  start-page: 392
  year: 2019
  end-page: 403
  publication-title: J. Energy Storage
– volume: 8
  start-page: 32488
  year: 2016
  end-page: 32495
  publication-title: ACS Appl. Mater. Interfaces
– volume: 23
  start-page: 903
  year: 2018
  publication-title: Molecules
– volume: 6
  start-page: 3460
  year: 2019
  end-page: 3467
  publication-title: ChemElectroChem
– volume: 6
  start-page: 8106
  year: 2015
  publication-title: Nat. Commun.
– volume: 7
  year: 2017
  publication-title: Adv. Energy Mater.
– volume: 137
  start-page: 4347
  year: 2015
  end-page: 4357
  publication-title: J. Am. Chem. Soc.
– volume: 5
  start-page: 558
  year: 2019
  end-page: 568
  publication-title: ACS Cent. Sci.
– volume: 11
  start-page: 2701
  year: 2020
  publication-title: Nat. Commun.
– volume: 12
  start-page: 131
  year: 2020
  publication-title: Nano-Micro Lett.
– start-page: 63
  year: 2004
  end-page: 106
– volume: 98
  start-page: 87
  year: 2019
  end-page: 91
  publication-title: Electrochem. Commun.
– volume: 10
  start-page: 5599
  year: 2019
  publication-title: Nat. Commun.
– volume: 4
  start-page: 2917
  year: 2014
  end-page: 2940
  publication-title: ACS Catal.
– volume: 160
  start-page: F522
  year: 2013
  end-page: F534
  publication-title: J. Electrochem. Soc.
– volume: 136
  start-page: 6744
  year: 2014
  end-page: 6453
  publication-title: J. Am. Chem. Soc.
– volume: 7
  start-page: 23130
  year: 2019
  end-page: 23139
  publication-title: J. Mater. Chem. A
– volume: 8
  start-page: 807
  year: 2018
  end-page: 814
  publication-title: ACS Catal.
– volume: 137
  start-page: 1305
  year: 2015
  end-page: 1313
  publication-title: J. Am. Chem. Soc.
– volume: 11
  start-page: 550
  year: 2012
  end-page: 557
  publication-title: Nat. Mater.
– volume: 7
  start-page: 4729
  year: 2019
  end-page: 4733
  publication-title: J. Mater. Chem. A
– volume: 13
  year: 2017
  publication-title: Small
– volume: 6
  start-page: 47
  year: 2013
  end-page: 54
  publication-title: Nano Res.
– volume: 10
  start-page: 2149
  year: 2019
  publication-title: Nat. Commun.
– volume: 587
  start-page: 172
  year: 2006
  end-page: 181
  publication-title: J. Electroanal. Chem.
– volume: 3
  start-page: 1744
  year: 2018
  end-page: 1752
  publication-title: ACS Energy Lett.
– volume: 56 129
  start-page: 5994 6088
  year: 2017 2017
  end-page: 6021 6117
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 137
  start-page: 3638
  year: 2015
  end-page: 3648
  publication-title: J. Am. Chem. Soc.
– volume: 9
  start-page: 409
  year: 2016
  end-page: 415
  publication-title: ChemSusChem
– volume: 43
  start-page: 11932
  year: 2018
  end-page: 11938
  publication-title: Int. J. Hydrogen Energy
– volume: 8
  start-page: 3803
  year: 2018
  end-page: 3811
  publication-title: ACS Catal.
– start-page: 5238
  year: 2018
  end-page: 5245
  publication-title: Eur. J. Inorg. Chem.
– volume: 58 131
  start-page: 10295 10401
  year: 2019 2019
  end-page: 10299 10405
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 135
  start-page: 13521
  year: 2013
  end-page: 13530
  publication-title: J. Am. Chem. Soc.
– volume: 28
  start-page: 430
  year: 2018
  end-page: 436
  publication-title: Prog. Nat. Sci.
– volume: 27
  start-page: 7549
  year: 2015
  end-page: 7558
  publication-title: Chem. Mater.
– volume: 10
  start-page: 799
  year: 2020
  end-page: 801
  publication-title: Nat. Clim. Change
– volume: 3
  start-page: 546
  year: 2011
  end-page: 550
  publication-title: Nat. Chem.
– volume: 13
  start-page: 520
  year: 2020
  end-page: 528
  publication-title: ChemSusChem
– volume: 2
  year: 2018
  publication-title: Small Methods
– volume: 60 133
  start-page: 14536 14657
  year: 2021 2021
  end-page: 14544 14665
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 10
  start-page: 4993
  year: 2019
  publication-title: Nat. Commun.
– volume: 25
  start-page: 4926
  year: 2013
  end-page: 4935
  publication-title: Chem. Mater.
– volume: 113
  start-page: 15068
  year: 2009
  end-page: 15072
  publication-title: J. Phys. Chem. C
– volume: 133
  start-page: 5587
  year: 2011
  end-page: 5593
  publication-title: J. Am. Chem. Soc.
– volume: 26
  start-page: 3162
  year: 2014
  end-page: 3168
  publication-title: Chem. Mater.
– volume: 352
  start-page: 333
  year: 2016
  end-page: 337
  publication-title: Science
– volume: 135
  start-page: 4516
  year: 2013
  end-page: 4521
  publication-title: J. Am. Chem. Soc.
– volume: 138
  start-page: 5603
  year: 2016
  end-page: 5614
  publication-title: J. Am. Chem. Soc.
– volume: 345
  start-page: 1593
  year: 2014
  publication-title: Science
– volume: 6
  year: 2016
  publication-title: Adv. Energy Mater.
– volume: 18
  start-page: 747
  year: 2014
  end-page: 753
  publication-title: J. Solid State Electrochem.
– volume: 63
  start-page: 711
  year: 1991
  end-page: 734
  publication-title: Pure Appl. Chem.
– volume: 134
  start-page: 377
  year: 1987
  end-page: 384
  publication-title: J. Electrochem. Soc.
– volume: 2
  start-page: 79
  year: 2014
  publication-title: Front. Chem.
– volume: 45
  start-page: 9368
  year: 2020
  end-page: 9379
  publication-title: Int. J. Hydrogen Energy
– volume: 11
  start-page: 2522
  year: 2020
  publication-title: Nat. Commun.
– volume: 340
  start-page: 60
  year: 2013
  publication-title: Science
– volume: 116
  start-page: 14120
  year: 2016
  end-page: 14136
  publication-title: Chem. Rev.
– volume: 132
  start-page: 247
  year: 1982
  end-page: 261
  publication-title: J. Electroanal. Chem.
– volume: 59 132
  start-page: 4736 4766
  year: 2020 2020
  end-page: 4742 4772
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 3
  start-page: 822
  year: 2020
  end-page: 830
  publication-title: ACS Appl. Energy Mater.
– volume: 9
  start-page: 2609
  year: 2018
  publication-title: Nat. Commun.
– volume: 6
  start-page: 8625
  year: 2015
  publication-title: Nat. Commun.
– volume: 57
  start-page: 2766
  year: 2018
  end-page: 2772
  publication-title: Inorg. Chem.
– volume: 2
  start-page: 1199
  year: 2019
  end-page: 1209
  publication-title: ACS Appl. Energy Mater.
– volume: 46
  start-page: 7667
  year: 2021
  end-page: 7675
  publication-title: Int. J. Hydrogen Energy
– volume: 58 131
  start-page: 11903 12029
  year: 2019 2019
  end-page: 11909 12035
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 29
  year: 2017
  publication-title: Adv. Mater.
– volume: 46
  start-page: 337
  year: 2017
  end-page: 365
  publication-title: Chem. Soc. Rev.
– volume: 135
  start-page: 12329
  year: 2013
  end-page: 12337
  publication-title: J. Am. Chem. Soc.
– volume: 40
  start-page: 9866
  year: 2015
  end-page: 9871
  publication-title: Int. J. Hydrogen Energy
– volume: 38
  start-page: 8605
  year: 2013
  end-page: 8616
  publication-title: Int. J. Hydrogen Energy
– year: 2021 2021
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 9
  start-page: 8383
  year: 2019
  end-page: 8387
  publication-title: ACS Catal.
– volume: 1
  start-page: 5145
  year: 2018
  end-page: 5150
  publication-title: ACS Appl. Energy Mater.
– volume: 60 133
  start-page: 3095 3132
  year: 2021 2021
  end-page: 3103 3140
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 2
  start-page: 6672
  year: 2019
  end-page: 6680
  publication-title: ACS Appl. Energy Mater.
– volume: 9
  start-page: 2505
  year: 1999
  end-page: 2510
  publication-title: J. Mater. Chem.
– volume: 234
  start-page: 995
  year: 2020
  end-page: 1019
  publication-title: Z. Phys. Chem.
– volume: 7
  start-page: 13161
  year: 2017
  publication-title: Sci. Rep.
– volume: 5
  start-page: 13801
  year: 2015
  publication-title: Sci. Rep.
– volume: 15
  year: 2019
  publication-title: Small
– volume: 11
  start-page: 2858
  year: 2018
  end-page: 2864
  publication-title: Energy Environ. Sci.
– volume: 9
  start-page: 926
  year: 2019
  publication-title: Catalysts
– volume: 14
  start-page: 15450
  year: 2020
  end-page: 15457
  publication-title: ACS Nano
– volume: 4
  start-page: 3701
  year: 2014
  end-page: 3714
  publication-title: ACS Catal.
– volume: 9
  year: 2019
  publication-title: Adv. Energy Mater.
– volume: 107
  start-page: 3904
  year: 2007
  end-page: 3951
  publication-title: Chem. Rev.
– volume: 137
  start-page: 15090
  year: 2015
  end-page: 15093
  publication-title: J. Am. Chem. Soc.
– volume: 11
  start-page: 5075
  year: 2020
  publication-title: Nat. Commun.
– volume: 1
  start-page: 2075
  year: 2014
  end-page: 2081
  publication-title: ChemElectroChem
– volume: 6
  start-page: 4178
  year: 2015
  end-page: 4183
  publication-title: J. Phys. Chem. Lett.
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 12
  start-page: 1336
  year: 2019
  publication-title: Materials
– volume: 140
  start-page: 7748
  year: 2018
  end-page: 7759
  publication-title: J. Am. Chem. Soc.
– volume: 33
  start-page: 825
  year: 1988
  end-page: 830
  publication-title: Electrochim. Acta
– volume: 11
  start-page: 744
  year: 2018
  end-page: 771
  publication-title: Energy Environ. Sci.
– volume: 5
  start-page: 33269
  year: 2015
  end-page: 33274
  publication-title: RSC Adv.
– volume: 57 130
  start-page: 11893 12069
  year: 2018 2018
  end-page: 11897 12073
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 11
  start-page: 1079
  year: 1966
  end-page: 1087
  publication-title: Electrochim. Acta
– volume: 3
  start-page: 1159
  year: 2011
  end-page: 1165
  publication-title: ChemCatChem
– volume: 773
  start-page: 69
  year: 2016
  end-page: 78
  publication-title: J. Electroanal. Chem.
– volume: 9
  start-page: 1532
  year: 2019
  publication-title: Sci. Rep.
– volume: 11
  start-page: 605
  year: 2018
  end-page: 611
  publication-title: ChemSusChem
– volume: 4
  start-page: 1260
  year: 2019
  end-page: 1264
  publication-title: ACS Energy Lett.
– volume: 587
  start-page: 408
  year: 2020
  end-page: 413
  publication-title: Nature
– ident: e_1_2_8_58_1
  doi: 10.1016/j.ijhydene.2019.09.205
– ident: e_1_2_8_69_1
  doi: 10.1016/S1388-2481(03)00169-3
– ident: e_1_2_8_183_1
  doi: 10.1002/anie.201915803
– ident: e_1_2_8_120_2
  doi: 10.1021/acsaem.0c01201
– ident: e_1_2_8_155_2
  doi: 10.1038/nenergy.2016.53
– ident: e_1_2_8_41_3
  doi: 10.1002/ange.201813052
– ident: e_1_2_8_184_2
  doi: 10.1002/ange.201903200
– ident: e_1_2_8_48_2
  doi: 10.1016/j.ijhydene.2018.04.219
– ident: e_1_2_8_111_1
– ident: e_1_2_8_4_1
  doi: 10.1021/cm403153u
– ident: e_1_2_8_126_1
  doi: 10.1021/jacs.8b13701
– ident: e_1_2_8_16_1
  doi: 10.1002/aenm.201700381
– ident: e_1_2_8_201_1
  doi: 10.1016/j.pnsc.2018.07.005
– ident: e_1_2_8_105_1
  doi: 10.1021/acscatal.8b04001
– ident: e_1_2_8_156_2
  doi: 10.1016/S0013-4686(98)80013-3
– ident: e_1_2_8_7_1
  doi: 10.3389/fchem.2014.00079
– ident: e_1_2_8_194_1
  doi: 10.1038/s41598-017-13333-z
– ident: e_1_2_8_30_2
  doi: 10.1021/acsnano.0c06066
– ident: e_1_2_8_18_1
  doi: 10.1016/j.elecom.2018.11.022
– ident: e_1_2_8_146_3
  doi: 10.1002/ange.202102452
– ident: e_1_2_8_182_2
  doi: 10.1002/ange.202011388
– ident: e_1_2_8_96_1
  doi: 10.1016/j.jcat.2017.10.027
– volume: 132
  start-page: 16687
  year: 2020
  ident: e_1_2_8_150_2
  publication-title: Angew. Chem.
  doi: 10.1002/ange.202003801
– ident: e_1_2_8_193_1
  doi: 10.1039/C5TA07586F
– ident: e_1_2_8_196_1
  doi: 10.1038/ncomms9106
– ident: e_1_2_8_27_1
  doi: 10.1149/1.2100463
– ident: e_1_2_8_208_1
  doi: 10.1016/j.ijhydene.2020.01.241
– ident: e_1_2_8_57_1
  doi: 10.3390/ma12081336
– ident: e_1_2_8_26_2
  doi: 10.1038/s41929-018-0141-2
– ident: e_1_2_8_56_3
  doi: 10.1002/ange.201804417
– ident: e_1_2_8_44_1
  doi: 10.1007/s12274-012-0280-8
– ident: e_1_2_8_51_1
– ident: e_1_2_8_74_1
  doi: 10.1351/pac199163050711
– ident: e_1_2_8_91_1
  doi: 10.1021/acscatal.8b01046
– ident: e_1_2_8_11_2
  doi: 10.1149/2.049306jes
– ident: e_1_2_8_72_1
  doi: 10.1002/9780470381588
– ident: e_1_2_8_82_1
– ident: e_1_2_8_25_2
  doi: 10.1038/s41467-020-16237-1
– ident: e_1_2_8_55_2
  doi: 10.1002/cssc.201800932
– ident: e_1_2_8_164_3
  doi: 10.1002/ange.201905501
– ident: e_1_2_8_20_1
  doi: 10.1002/anie.201701280
– ident: e_1_2_8_54_2
  doi: 10.1021/acs.jpclett.5b01928
– ident: e_1_2_8_139_2
  doi: 10.1021/ja400555q
– ident: e_1_2_8_143_1
  doi: 10.1002/anie.201914245
– volume-title: Auf dem Weg zu Einer Treibhausgasneutralen Chemischen Industrie in Deutschland : Eine Studie von DECHEMA und FutureCamp für den VCI
  year: 2019
  ident: e_1_2_8_192_1
– ident: e_1_2_8_67_1
  doi: 10.1038/srep13801
– ident: e_1_2_8_107_1
  doi: 10.1126/science.aaf1525
– ident: e_1_2_8_34_1
  doi: 10.1021/jacs.8b04546
– ident: e_1_2_8_73_1
  doi: 10.1038/s41467-018-08144-3
– ident: e_1_2_8_5_2
  doi: 10.1002/ange.201909475
– ident: e_1_2_8_177_1
– ident: e_1_2_8_118_1
  doi: 10.1039/a902808k
– ident: e_1_2_8_38_1
– ident: e_1_2_8_141_2
  doi: 10.1002/ange.201907595
– ident: e_1_2_8_187_2
  doi: 10.1021/acscatal.9b01985
– ident: e_1_2_8_162_1
  doi: 10.1021/jp3007415
– ident: e_1_2_8_190_1
– ident: e_1_2_8_13_1
  doi: 10.1002/cssc.201701877
– ident: e_1_2_8_98_1
– ident: e_1_2_8_166_1
  doi: 10.1016/0013-4686(66)80045-2
– ident: e_1_2_8_52_2
  doi: 10.1002/cphc.201900511
– ident: e_1_2_8_152_1
  doi: 10.1002/adfm.201303600
– ident: e_1_2_8_145_2
  doi: 10.1002/anie.202013610
– ident: e_1_2_8_33_2
  doi: 10.1038/s41467-017-01949-8
– ident: e_1_2_8_148_1
  doi: 10.1021/acsaem.9b01183
– ident: e_1_2_8_59_1
  doi: 10.1002/celc.201402262
– ident: e_1_2_8_80_1
  doi: 10.1039/C8EE00927A
– ident: e_1_2_8_172_1
  doi: 10.1002/anie.202101906
– ident: e_1_2_8_146_2
  doi: 10.1002/anie.202102452
– ident: e_1_2_8_131_2
  doi: 10.1002/cssc.201500872
– ident: e_1_2_8_141_1
  doi: 10.1002/anie.201907595
– ident: e_1_2_8_81_2
  doi: 10.1002/ange.201608601
– ident: e_1_2_8_93_1
– ident: e_1_2_8_183_2
  doi: 10.1002/ange.201915803
– ident: e_1_2_8_200_1
  doi: 10.1039/C9TA00023B
– ident: e_1_2_8_100_2
  doi: 10.1002/smll.201700806
– ident: e_1_2_8_90_1
  doi: 10.1126/science.1212858
– ident: e_1_2_8_89_1
  doi: 10.1002/anie.201810104
– ident: e_1_2_8_176_1
  doi: 10.1021/acscentsci.9b00053
– ident: e_1_2_8_127_1
  doi: 10.1021/acs.chemmater.6b02645
– ident: e_1_2_8_143_2
  doi: 10.1002/ange.201914245
– ident: e_1_2_8_31_2
  doi: 10.1021/jacs.0c04867
– ident: e_1_2_8_70_1
  doi: 10.1088/2515-7655/abee33
– ident: e_1_2_8_20_2
  doi: 10.1002/ange.201701280
– ident: e_1_2_8_64_2
  doi: 10.1038/s41467-018-05019-5
– ident: e_1_2_8_15_1
  doi: 10.1126/science.1162018
– ident: e_1_2_8_53_2
  doi: 10.1021/acscatal.7b01070
– ident: e_1_2_8_60_1
  doi: 10.1007/s10008-016-3280-x
– ident: e_1_2_8_174_1
  doi: 10.1002/adma.201804341
– ident: e_1_2_8_140_2
  doi: 10.1002/anie.201900428
– ident: e_1_2_8_49_2
  doi: 10.1149/2.0271611jes
– ident: e_1_2_8_92_1
  doi: 10.1007/978-3-662-09291-0_4
– ident: e_1_2_8_138_2
  doi: 10.1021/cs500713d
– ident: e_1_2_8_5_1
  doi: 10.1002/anie.201909475
– ident: e_1_2_8_65_2
  doi: 10.1002/adma.201901139
– ident: e_1_2_8_37_1
  doi: 10.1126/science.aad4998
– ident: e_1_2_8_151_1
  doi: 10.1002/smll.201904903
– ident: e_1_2_8_3_1
  doi: 10.1038/s41558-020-0891-0
– ident: e_1_2_8_50_1
  doi: 10.1021/acsaem.9b01952
– ident: e_1_2_8_136_1
  doi: 10.3390/catal9110926
– ident: e_1_2_8_154_1
– ident: e_1_2_8_117_2
  doi: 10.1002/ejic.201801162
– ident: e_1_2_8_202_1
  doi: 10.1039/C9CY02345C
– ident: e_1_2_8_103_2
  doi: 10.1021/acsenergylett.8b00908
– ident: e_1_2_8_115_1
– ident: e_1_2_8_145_3
  doi: 10.1002/ange.202013610
– ident: e_1_2_8_172_2
  doi: 10.1002/ange.202101906
– ident: e_1_2_8_41_2
  doi: 10.1002/anie.201813052
– ident: e_1_2_8_175_1
  doi: 10.1038/s41467-019-13415-8
– ident: e_1_2_8_81_1
  doi: 10.1002/anie.201608601
– ident: e_1_2_8_66_1
  doi: 10.1021/acscatal.6b02479
– ident: e_1_2_8_86_1
  doi: 10.1038/s41586-020-2908-2
– ident: e_1_2_8_36_1
  doi: 10.1002/cctc.201000397
– ident: e_1_2_8_56_2
  doi: 10.1002/anie.201804417
– ident: e_1_2_8_144_1
– ident: e_1_2_8_109_1
  doi: 10.1002/adma.201700404
– ident: e_1_2_8_163_1
– ident: e_1_2_8_89_2
  doi: 10.1002/ange.201810104
– ident: e_1_2_8_171_1
  doi: 10.1002/adfm.201904020
– ident: e_1_2_8_62_1
  doi: 10.1021/acsenergylett.9b00686
– ident: e_1_2_8_133_1
  doi: 10.1038/nmat3313
– ident: e_1_2_8_180_1
  doi: 10.3390/molecules23040903
– ident: e_1_2_8_203_1
  doi: 10.1038/s41467-020-18891-x
– ident: e_1_2_8_189_1
  doi: 10.1016/j.resconrec.2020.104743
– ident: e_1_2_8_157_1
– ident: e_1_2_8_14_1
  doi: 10.1021/jacs.5b00281
– ident: e_1_2_8_114_1
  doi: 10.1002/adfm.201901217
– ident: e_1_2_8_99_2
  doi: 10.1002/aenm.201600621
– ident: e_1_2_8_87_1
  doi: 10.1038/nchem.1069
– ident: e_1_2_8_1_1
  doi: 10.1126/science.aav3506
– ident: e_1_2_8_110_1
– ident: e_1_2_8_94_2
  doi: 10.1002/cssc.201903186
– ident: e_1_2_8_191_1
– ident: e_1_2_8_116_2
  doi: 10.1021/cs500606g
– ident: e_1_2_8_125_1
  doi: 10.1016/0022-0728(82)85022-5
– ident: e_1_2_8_169_1
  doi: 10.1016/j.apcatb.2018.11.046
– ident: e_1_2_8_101_1
  doi: 10.1002/cctc.201901151
– ident: e_1_2_8_186_1
– ident: e_1_2_8_76_1
  doi: 10.1016/j.jpowsour.2007.08.053
– ident: e_1_2_8_165_2
  doi: 10.1021/ja502379c
– ident: e_1_2_8_22_1
  doi: 10.1039/C7TA10728E
– ident: e_1_2_8_19_1
  doi: 10.1002/aenm.201900796
– ident: e_1_2_8_9_1
– ident: e_1_2_8_23_1
– ident: e_1_2_8_97_1
  doi: 10.1126/science.1258307
– ident: e_1_2_8_153_1
  doi: 10.1021/acs.jpcc.5b00105
– ident: e_1_2_8_206_1
  doi: 10.1038/ncomms5477
– ident: e_1_2_8_61_1
  doi: 10.1039/C7EE03457A
– ident: e_1_2_8_182_1
  doi: 10.1002/anie.202011388
– ident: e_1_2_8_198_1
  doi: 10.1039/C5RA01739D
– ident: e_1_2_8_79_1
  doi: 10.1039/C9TA07835E
– ident: e_1_2_8_158_2
  doi: 10.1021/ja405351s
– ident: e_1_2_8_108_1
  doi: 10.1126/science.1233638
– ident: e_1_2_8_207_1
  doi: 10.1038/s41467-019-13052-1
– ident: e_1_2_8_12_1
  doi: 10.1016/j.jelechem.2016.04.033
– ident: e_1_2_8_8_1
  doi: 10.1021/ja510442p
– ident: e_1_2_8_95_2
  doi: 10.1021/jacs.0c00257
– ident: e_1_2_8_135_1
  doi: 10.1021/cr050182l
– ident: e_1_2_8_6_1
  doi: 10.1021/acs.chemrev.6b00398
– ident: e_1_2_8_47_1
– ident: e_1_2_8_147_1
  doi: 10.1021/acscatal.7b03509
– ident: e_1_2_8_173_2
  doi: 10.1002/ange.202101698
– ident: e_1_2_8_88_1
  doi: 10.1021/ja405997s
– ident: e_1_2_8_83_2
  doi: 10.1016/j.ijhydene.2013.04.100
– ident: e_1_2_8_149_1
  doi: 10.1021/ja200559j
– ident: e_1_2_8_71_1
  doi: 10.1021/acsaem.9b01965
– ident: e_1_2_8_140_3
  doi: 10.1002/ange.201900428
– ident: e_1_2_8_40_2
  doi: 10.1021/acsaem.8b01769
– ident: e_1_2_8_197_1
  doi: 10.1007/s10008-013-2313-y
– ident: e_1_2_8_178_2
  doi: 10.1002/anie.201905281
– ident: e_1_2_8_129_2
  doi: 10.1021/cm5023163
– ident: e_1_2_8_134_1
  doi: 10.1038/ncomms9625
– ident: e_1_2_8_68_1
  doi: 10.1016/j.elecom.2008.02.003
– ident: e_1_2_8_142_1
  doi: 10.1002/smtd.201800001
– ident: e_1_2_8_106_1
  doi: 10.1021/ja4027715
– ident: e_1_2_8_159_2
  doi: 10.1021/jacs.7b07117
– ident: e_1_2_8_46_1
  doi: 10.1021/acs.inorgchem.7b03168
– ident: e_1_2_8_63_1
– ident: e_1_2_8_122_2
  doi: 10.1021/ja5096733
– ident: e_1_2_8_75_1
  doi: 10.1016/j.joule.2018.05.003
– ident: e_1_2_8_181_1
  doi: 10.1021/jacs.5b10699
– ident: e_1_2_8_112_2
  doi: 10.1021/acs.chemmater.5b03148
– ident: e_1_2_8_121_2
  doi: 10.1021/acsami.6b12005
– ident: e_1_2_8_184_1
  doi: 10.1002/anie.201903200
– ident: e_1_2_8_167_1
  doi: 10.1007/s10008-007-0484-0
– ident: e_1_2_8_205_1
  doi: 10.1007/s12274-019-2389-5
– ident: e_1_2_8_113_2
  doi: 10.1039/C6CS00328A
– ident: e_1_2_8_78_1
  doi: 10.1021/jacs.6b00332
– ident: e_1_2_8_168_1
  doi: 10.1515/zpch-2019-1466
– ident: e_1_2_8_119_1
– ident: e_1_2_8_161_1
  doi: 10.1016/j.jelechem.2005.11.013
– ident: e_1_2_8_84_2
  doi: 10.1016/j.ijhydene.2013.05.099
– ident: e_1_2_8_173_1
  doi: 10.1002/anie.202101698
– ident: e_1_2_8_29_1
– ident: e_1_2_8_39_2
  doi: 10.1021/acsami.7b02571
– ident: e_1_2_8_124_1
  doi: 10.1021/ja01953a010
– ident: e_1_2_8_102_1
– ident: e_1_2_8_150_1
  doi: 10.1002/anie.202003801
– ident: e_1_2_8_85_2
  doi: 10.1016/j.ijhydene.2013.06.034
– ident: e_1_2_8_130_2
  doi: 10.1021/cm5005888
– ident: e_1_2_8_104_2
  doi: 10.1002/aenm.201502313
– ident: e_1_2_8_199_1
  doi: 10.1016/j.ijhydene.2015.06.105
– ident: e_1_2_8_179_2
  doi: 10.1021/ja511559d
– ident: e_1_2_8_137_1
– ident: e_1_2_8_204_1
  doi: 10.1039/C8NR09740B
– ident: e_1_2_8_195_1
  doi: 10.1021/jp904022e
– ident: e_1_2_8_160_2
  doi: 10.1016/j.elecom.2009.03.034
– ident: e_1_2_8_178_3
  doi: 10.1002/ange.201905281
– ident: e_1_2_8_188_2
  doi: 10.1038/s41467-019-12994-w
– ident: e_1_2_8_77_1
  doi: 10.1016/j.jelechem.2017.10.058
– ident: e_1_2_8_32_2
  doi: 10.1038/s41598-018-37307-x
– ident: e_1_2_8_35_1
  doi: 10.1038/s41467-020-16558-1
– ident: e_1_2_8_43_2
  doi: 10.1021/acscatal.9b01940
– ident: e_1_2_8_2_1
– ident: e_1_2_8_28_1
  doi: 10.1021/ja407115p
– volume: 1
  start-page: 5145
  year: 2018
  ident: e_1_2_8_17_1
  publication-title: ACS Appl. Energy Mater.
– ident: e_1_2_8_10_2
  doi: 10.1007/s40820-020-00469-3
– ident: e_1_2_8_132_2
  doi: 10.1002/celc.201900722
– ident: e_1_2_8_164_2
  doi: 10.1002/anie.201905501
– ident: e_1_2_8_45_1
  doi: 10.1016/j.est.2019.03.001
– ident: e_1_2_8_21_1
  doi: 10.1021/acsnano.7b05481
– ident: e_1_2_8_42_2
  doi: 10.1021/acscatal.7b00632
– ident: e_1_2_8_24_2
  doi: 10.1038/s41560-020-0576-y
– ident: e_1_2_8_123_2
  doi: 10.1039/C5TA02988K
– ident: e_1_2_8_128_1
– ident: e_1_2_8_170_1
  doi: 10.1038/s41467-019-09845-z
– ident: e_1_2_8_185_1
SSID ssj0028806
Score 2.744884
SecondaryResourceType review_article
Snippet Water electrolysis that results in green hydrogen is the key process towards a circular economy. The supply of sustainable electricity and availability of...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e202103824
SubjectTerms Catalysts
Circular economy
Cobalt
Crystal structure
Electrocatalysts
Electrolysis
Electron spin
Green hydrogen
Heavy metals
Hydrogen
Hydrogen production
Iron
Nickel
Noble metals
Oxygen
oxygen evolution reaction
Oxygen evolution reactions
Principles
Review
Reviews
water splitting
Title Principles of Water Electrolysis and Recent Progress in Cobalt‐, Nickel‐, and Iron‐Based Oxides for the Oxygen Evolution Reaction
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202103824
https://www.ncbi.nlm.nih.gov/pubmed/34138511
https://www.proquest.com/docview/2614222280
https://www.proquest.com/docview/2542360199
https://pubmed.ncbi.nlm.nih.gov/PMC9291824
Volume 61
WOSCitedRecordID wos000675252200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1521-3773
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0028806
  issn: 1433-7851
  databaseCode: DRFUL
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BiwQXyrtpS2UkJC5EdRwnto9l2RWVqmWFKOwtsh1HXVFlq91tBTduXPmN_SWMnQddVQgJLlGsjBPHnom_cTzfALxUtJImz1Wcaa5iLvFMlzmNbUVtXiFmFoHt89OxGI_ldKom16L4G36IfsHNW0b4XnsD12Z58Js01Edgo3_HPMM347dhM0lS6ZM3MD7pXS7Uzia-KE1jn4a-o22k7GC9_vq0dANr3twyeR3KhrlotPX_b_EA7rc4lBw2ivMQbrn6EdwddOnfHsOPSbcMvyTzinxGTLogwyZpTqAxIbouCaJObCqZ-F1e-M0ks5oMPMPI6ur7z9cE1eyLOwunXvhoMa-x8AYnzpK8_zor8daImQliUCx-Q1Umw8vWFPDOTcjFEzgZDT8O3sVt1obY8lzy2AjKTSK0sNSyStHMIOSrbK41OkeK2UwmueZO6BwN1GqFiAgxpikzwbEPXJo-hY16XrttIE6kRjqrXOosL5lRVBtNnVFSlNwYFkHcDVphW0pzn1njrGjImFnhu7fouzeCV738eUPm8UfJvU4HitaolwU6m37BjEkawYv-Mg6L_8eiaze_QJkM8Sk6uUpF8KxRmf5RHjB4gBuBWFOmXsBTfa9fqWengfIbQWwSmsWCMv2l9cXh-GjYl3b-pdIu3GM-0CNsuNuDjdXiwj2HO_ZyNVsu9oOR4VFM5T5svv0wOjn-BYZ5LOc
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwEB1BQSqX8lkIFDASEheieh0njo9ltVVXLMseCvQW2Y4jVlRZtLutyo0bV34jv4QZ5wNWFUJC3GJlkvU6b-I3jucNwHPNq9xmmY5TI3UsczwyZcZjV3GXVciZVVD7fD9R02l-cqJn7W5CyoVp9CH6BTfyjPC-JgenBen9X6qhlIKNAZ4giW8hr8I1iVMNQV3IWR9zITybBKMkiakOfafbyMX-5vWb89Ilsnl5z-TvXDZMRoc3_8PfuAU7LRNlBw10bsMVX9-B7WFXAO4ufJt1C_ErtqjYB2SlSzZqyuYEIRNm6pIh78S-shnt88K3JpvXbEgaI-sfX7-_ZAi0T_40HJLxeLmosfEKp86Svb2Yl3hrZM0MWSg2vyCY2ei8dQa8c5N0cQ_eHY6Oh0dxW7chdjLLZWwVl3agjHLciUrz1CLpq1xmDIZHWrg0H2RGemUydFFnNHIiZJm2TJXEMfBJsgtb9aL2D4B5ldjcO-0T72QprObGGu6tzlUprRURxN1TK1wrak61NU6LRo5ZFDS8RT-8Ebzo7T83ch5_tNzrQFC0br0qMNykJTOR8wie9afxsdBXFlP7xRnapMhQMczVOoL7DWb6nyLKQBQ3ArWBpt6AxL43z9Tzj0H0G2nsIHRLBDT9pffFwXQ86lsP_-Wip7B9dPxmUkzG09eP4IagtI-w_W4PttbLM_8Yrrvz9Xy1fBI87ifjZC5K
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB7BFgEX3o9AASMhcSGq13Hi-Nhud8WK1bJCFHqLbMcRK6pstbut4MaNa39jf0ln8oJVhZAQN1ueOI4zE3_jeL4BeKV5kdok0WFspA5liiWTJzx0BXdJgZhZVWyfnyZqOk0PD_WsOU1IsTA1P0S34UaWUX2vycD9cV7s_GINpRBsdPAEUXwLeRW2JGWS6cHW_ofRwaTzulBB6xCjKAopE33L3MjFzmYPmyvTJbh5-dTk72i2Wo5Gt__Dg9yBWw0WZbu18tyFK768BzcGbQq4-_Bz1m7Fr9iiYJ8Rly7ZsE6cU1GZMFPmDJEnjpXN6KQXfjfZvGQDYhlZn_84e8NQ1b76o6pIwuPlosTKHi6eOXv_bZ5j14ibGeJQrH5HdWbD08YcsOc67OIBHIyGHwdvwyZzQ-hkksrQKi5tXxnluBOF5rFF2Fe4xBh0kLRwcdpPjPTKJGikzmhERYgzbR4riXPgo-gh9MpF6R8D8yqyqXfaR97JXFjNjTXcW52qXForAgjbt5a5htacsmscZTUhs8hoerNuegN43ckf14Qef5TcbpUgawx7laHDSZtmIuUBvOya8bXQfxZT-sUJysSIUdHR1TqAR7XOdLci0EAgNwC1oU2dANF9b7aU8y8V7TcC2X41LFFp019Gn-1Ox8Ou9uRfLnoB12f7o2wynr57CjcFxX1U5--2obdenvhncM2druer5fPG5C4ApbEvYA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Principles+of+Water+Electrolysis+and+Recent+Progress+in+Cobalt-%2C+Nickel-%2C+and+Iron-Based+Oxides+for+the+Oxygen+Evolution+Reaction&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Yu%2C+Mingquan&rft.au=Budiyanto%2C+Eko&rft.au=T%C3%BCys%C3%BCz%2C+Harun&rft.date=2022-01-03&rft.eissn=1521-3773&rft.volume=61&rft.issue=1&rft.spage=e202103824&rft_id=info:doi/10.1002%2Fanie.202103824&rft_id=info%3Apmid%2F34138511&rft.externalDocID=34138511
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon