Principles of Water Electrolysis and Recent Progress in Cobalt‐, Nickel‐, and Iron‐Based Oxides for the Oxygen Evolution Reaction
Water electrolysis that results in green hydrogen is the key process towards a circular economy. The supply of sustainable electricity and availability of oxygen evolution reaction (OER) electrocatalysts are the main bottlenecks of the process for large‐scale production of green hydrogen. A broad ra...
Gespeichert in:
| Veröffentlicht in: | Angewandte Chemie International Edition Jg. 61; H. 1; S. e202103824 - n/a |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Germany
Wiley Subscription Services, Inc
03.01.2022
John Wiley and Sons Inc |
| Ausgabe: | International ed. in English |
| Schlagworte: | |
| ISSN: | 1433-7851, 1521-3773, 1521-3773 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Water electrolysis that results in green hydrogen is the key process towards a circular economy. The supply of sustainable electricity and availability of oxygen evolution reaction (OER) electrocatalysts are the main bottlenecks of the process for large‐scale production of green hydrogen. A broad range of OER electrocatalysts have been explored to decrease the overpotential and boost the kinetics of this sluggish half‐reaction. Co‐, Ni‐, and Fe‐based catalysts have been considered to be potential candidates to replace noble metals due to their tunable 3d electron configuration and spin state, versatility in terms of crystal and electronic structures, as well as abundance in nature. This Review provides some basic principles of water electrolysis, key aspects of OER, and significant criteria for the development of the catalysts. It provides also some insights on recent advances of Co‐, Ni‐, and Fe‐based oxides and a brief perspective on green hydrogen production and the challenges of water electrolysis.
This Review describes the basic principles of water electrolysis, key aspects of the oxygen evolution reaction (OER), and significant criteria for the development of new catalysts. Recent advances in catalysts based on Co, Ni, and Fe oxides are described, and a brief perspective is given on green hydrogen production and the challenges of water electrolysis. |
|---|---|
| AbstractList | Water electrolysis that results in green hydrogen is the key process towards a circular economy. The supply of sustainable electricity and availability of oxygen evolution reaction (OER) electrocatalysts are the main bottlenecks of the process for large‐scale production of green hydrogen. A broad range of OER electrocatalysts have been explored to decrease the overpotential and boost the kinetics of this sluggish half‐reaction. Co‐, Ni‐, and Fe‐based catalysts have been considered to be potential candidates to replace noble metals due to their tunable 3d electron configuration and spin state, versatility in terms of crystal and electronic structures, as well as abundance in nature. This Review provides some basic principles of water electrolysis, key aspects of OER, and significant criteria for the development of the catalysts. It provides also some insights on recent advances of Co‐, Ni‐, and Fe‐based oxides and a brief perspective on green hydrogen production and the challenges of water electrolysis. This Review describes the basic principles of water electrolysis, key aspects of the oxygen evolution reaction (OER), and significant criteria for the development of new catalysts. Recent advances in catalysts based on Co, Ni, and Fe oxides are described, and a brief perspective is given on green hydrogen production and the challenges of water electrolysis. Water electrolysis that results in green hydrogen is the key process towards a circular economy. The supply of sustainable electricity and availability of oxygen evolution reaction (OER) electrocatalysts are the main bottlenecks of the process for large‐scale production of green hydrogen. A broad range of OER electrocatalysts have been explored to decrease the overpotential and boost the kinetics of this sluggish half‐reaction. Co‐, Ni‐, and Fe‐based catalysts have been considered to be potential candidates to replace noble metals due to their tunable 3d electron configuration and spin state, versatility in terms of crystal and electronic structures, as well as abundance in nature. This Review provides some basic principles of water electrolysis, key aspects of OER, and significant criteria for the development of the catalysts. It provides also some insights on recent advances of Co‐, Ni‐, and Fe‐based oxides and a brief perspective on green hydrogen production and the challenges of water electrolysis. Water electrolysis that results in green hydrogen is the key process towards a circular economy. The supply of sustainable electricity and availability of oxygen evolution reaction (OER) electrocatalysts are the main bottlenecks of the process for large-scale production of green hydrogen. A broad range of OER electrocatalysts have been explored to decrease the overpotential and boost the kinetics of this sluggish half-reaction. Co-, Ni-, and Fe-based catalysts have been considered to be potential candidates to replace noble metals due to their tunable 3d electron configuration and spin state, versatility in terms of crystal and electronic structures, as well as abundance in nature. This Review provides some basic principles of water electrolysis, key aspects of OER, and significant criteria for the development of the catalysts. It provides also some insights on recent advances of Co-, Ni-, and Fe-based oxides and a brief perspective on green hydrogen production and the challenges of water electrolysis.Water electrolysis that results in green hydrogen is the key process towards a circular economy. The supply of sustainable electricity and availability of oxygen evolution reaction (OER) electrocatalysts are the main bottlenecks of the process for large-scale production of green hydrogen. A broad range of OER electrocatalysts have been explored to decrease the overpotential and boost the kinetics of this sluggish half-reaction. Co-, Ni-, and Fe-based catalysts have been considered to be potential candidates to replace noble metals due to their tunable 3d electron configuration and spin state, versatility in terms of crystal and electronic structures, as well as abundance in nature. This Review provides some basic principles of water electrolysis, key aspects of OER, and significant criteria for the development of the catalysts. It provides also some insights on recent advances of Co-, Ni-, and Fe-based oxides and a brief perspective on green hydrogen production and the challenges of water electrolysis. Water electrolysis that results in green hydrogen is the key process towards a circular economy. The supply of sustainable electricity and availability of oxygen evolution reaction (OER) electrocatalysts are the main bottlenecks of the process for large‐scale production of green hydrogen. A broad range of OER electrocatalysts have been explored to decrease the overpotential and boost the kinetics of this sluggish half‐reaction. Co‐, Ni‐, and Fe‐based catalysts have been considered to be potential candidates to replace noble metals due to their tunable 3d electron configuration and spin state, versatility in terms of crystal and electronic structures, as well as abundance in nature. This Review provides some basic principles of water electrolysis, key aspects of OER, and significant criteria for the development of the catalysts. It provides also some insights on recent advances of Co‐, Ni‐, and Fe‐based oxides and a brief perspective on green hydrogen production and the challenges of water electrolysis. This Review describes the basic principles of water electrolysis, key aspects of the oxygen evolution reaction (OER), and significant criteria for the development of new catalysts. Recent advances in catalysts based on Co, Ni, and Fe oxides are described, and a brief perspective is given on green hydrogen production and the challenges of water electrolysis. |
| Author | Budiyanto, Eko Yu, Mingquan Tüysüz, Harun |
| AuthorAffiliation | 1 Department of Heterogeneous Catalysis Max-Planck-Institute für Kohlenforschung Kaiser-Wilhelm-Platz 1 45470 Mülheim an der Ruhr Germany |
| AuthorAffiliation_xml | – name: 1 Department of Heterogeneous Catalysis Max-Planck-Institute für Kohlenforschung Kaiser-Wilhelm-Platz 1 45470 Mülheim an der Ruhr Germany |
| Author_xml | – sequence: 1 givenname: Mingquan surname: Yu fullname: Yu, Mingquan organization: Max-Planck-Institute für Kohlenforschung – sequence: 2 givenname: Eko orcidid: 0000-0001-6184-8863 surname: Budiyanto fullname: Budiyanto, Eko organization: Max-Planck-Institute für Kohlenforschung – sequence: 3 givenname: Harun orcidid: 0000-0001-8552-7028 surname: Tüysüz fullname: Tüysüz, Harun email: tueysuez@kofo.mpg.de organization: Max-Planck-Institute für Kohlenforschung |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34138511$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkj1vFDEQhi2UiHxAS4ks0VCwh7_2q0EKp0s4KUoiBKK0vN7Zi4PPvti7IdfR0eY38kvi5ZIAkRBuPGM_76vxePbQlvMOEHpByYQSwt4qZ2DCCKOEV0w8Qbs0ZzTjZcm3Uiw4z8oqpztoL8aLxFcVKZ6iHS4oT8d0F_04C8Zps7IQse_wF9VDwDMLug_erqOJWLkWfwQNrsdnwS8CxIiNw1PfKNv__H7zBp8Y_RXsr3CE58G7lLxXEVp8em3aZN35gPtzSOl6AQ7PrrwdeuNdclZ6DJ6h7U7ZCM_v9n30-XD2afohOz49mk8PjjMtikpkTUlEQ0tVaqJZV5O8oQXvdKFULqqa6byihRJQqoIRolUteM04bdq8FKlBwPk-erfxXQ3NEtrxWUFZuQpmqcJaemXk3zfOnMuFv5I1q2nqcDJ4fWcQ_OUAsZdLEzVYqxz4IUqWC8YLQus6oa8eoRd-CC49T7KCCpZWRRL18s-KHkq5_6MEiA2gg48xQCe16dXYtFSgsZISOY6CHEdBPoxCkk0eye6d_ymoN4JvxsL6P7Q8OJnPfmtvAaEKyXE |
| CitedBy_id | crossref_primary_10_1038_s41467_025_59771_6 crossref_primary_10_1016_j_jcis_2023_06_007 crossref_primary_10_1063_5_0253779 crossref_primary_10_1002_adma_202109321 crossref_primary_10_3389_fchem_2022_1047398 crossref_primary_10_1002_celc_202200958 crossref_primary_10_1039_D4SE00968A crossref_primary_10_1002_aesr_202400281 crossref_primary_10_1007_s11244_021_01530_0 crossref_primary_10_1016_j_seppur_2023_124184 crossref_primary_10_1039_D5SE00267B crossref_primary_10_1002_smll_202302925 crossref_primary_10_3390_catal13030586 crossref_primary_10_1002_aenm_202303360 crossref_primary_10_1002_cctc_202401749 crossref_primary_10_1051_e3sconf_202341401002 crossref_primary_10_1039_D4CC04775C crossref_primary_10_3390_nano12223972 crossref_primary_10_1039_D3SC05891C crossref_primary_10_1002_ange_202313886 crossref_primary_10_1002_smll_202306274 crossref_primary_10_3390_catal12060594 crossref_primary_10_1002_adfm_202315080 crossref_primary_10_1016_j_cej_2023_141457 crossref_primary_10_1021_jacs_4c14493 crossref_primary_10_70322_gct_2025_10012 crossref_primary_10_1007_s10800_024_02241_6 crossref_primary_10_1002_aoc_7240 crossref_primary_10_1002_cssc_202300468 crossref_primary_10_1002_anie_202209016 crossref_primary_10_1016_j_jechem_2023_08_005 crossref_primary_10_1039_D5NJ01208B crossref_primary_10_1038_s41467_023_42696_3 crossref_primary_10_1039_D5CC01468A crossref_primary_10_1021_acsami_5c05517 crossref_primary_10_1002_sstr_202200085 crossref_primary_10_1002_slct_202403890 crossref_primary_10_1007_s11581_024_05576_4 crossref_primary_10_1007_s10971_022_05882_1 crossref_primary_10_1016_j_apsusc_2023_156652 crossref_primary_10_1016_j_apsusc_2022_155283 crossref_primary_10_1039_D5DT00350D crossref_primary_10_1039_D3QI02055J crossref_primary_10_3390_coatings13040726 crossref_primary_10_1039_D4CY00066H crossref_primary_10_3390_nano12121975 crossref_primary_10_1002_adsu_202400840 crossref_primary_10_1002_fuce_202300239 crossref_primary_10_1002_anie_202424074 crossref_primary_10_1016_j_applthermaleng_2024_124532 crossref_primary_10_3390_gels9030190 crossref_primary_10_1016_j_apcatb_2024_124506 crossref_primary_10_1073_pnas_2405846121 crossref_primary_10_1088_2053_1583_acbfcb crossref_primary_10_1021_jacs_2c10823 crossref_primary_10_1039_D5TA02765A crossref_primary_10_1021_jacs_4c08847 crossref_primary_10_1002_advs_202204800 crossref_primary_10_1016_j_jcis_2022_12_128 crossref_primary_10_1016_j_jece_2024_114887 crossref_primary_10_1002_smll_202401343 crossref_primary_10_1039_D3SE00679D crossref_primary_10_1002_anie_202211543 crossref_primary_10_3390_catal11111394 crossref_primary_10_1002_cssc_202402270 crossref_primary_10_1002_anie_202203929 crossref_primary_10_1016_j_jcat_2024_115725 crossref_primary_10_3389_fchem_2022_1071274 crossref_primary_10_1039_D4NR05221H crossref_primary_10_1007_s40820_022_00889_3 crossref_primary_10_1016_j_envres_2023_115601 crossref_primary_10_1021_acsaem_5c00488 crossref_primary_10_1016_j_jcat_2023_115278 crossref_primary_10_1002_adfm_202303073 crossref_primary_10_70749_ijbr_v3i1_479 crossref_primary_10_1155_2023_9881469 crossref_primary_10_1016_j_ccr_2022_214925 crossref_primary_10_1016_j_cej_2022_134699 crossref_primary_10_1002_celc_202300483 crossref_primary_10_1039_D5TA04042F crossref_primary_10_1116_6_0002414 crossref_primary_10_1016_j_inoche_2022_109350 crossref_primary_10_3390_molecules28031475 crossref_primary_10_1016_j_jcis_2022_05_070 crossref_primary_10_1007_s12274_023_6303_9 crossref_primary_10_1021_acscatal_5c01947 crossref_primary_10_1016_j_cej_2023_142620 crossref_primary_10_1021_acsnano_5c12459 crossref_primary_10_1039_D2NR05783B crossref_primary_10_1039_D2QI01238C crossref_primary_10_3390_molecules30173529 crossref_primary_10_1007_s11664_024_11148_z crossref_primary_10_1038_s41598_025_08306_6 crossref_primary_10_1002_ange_202424074 crossref_primary_10_1021_acsami_5c03491 crossref_primary_10_1002_cssc_202300384 crossref_primary_10_1002_aesr_202400233 crossref_primary_10_1016_j_catcom_2023_106659 crossref_primary_10_1039_D3CY00616F crossref_primary_10_1002_cssc_202402178 crossref_primary_10_1002_adfm_202412979 crossref_primary_10_1002_smll_202203147 crossref_primary_10_1016_j_ijhydene_2023_11_089 crossref_primary_10_3390_molecules30092069 crossref_primary_10_1007_s40242_023_3108_z crossref_primary_10_1002_aenm_202203886 crossref_primary_10_1016_j_cej_2023_143705 crossref_primary_10_1002_aenm_202202317 crossref_primary_10_1002_smll_202403310 crossref_primary_10_1016_j_ijhydene_2024_04_207 crossref_primary_10_1039_D4QM00312H crossref_primary_10_1002_smll_202303912 crossref_primary_10_1002_ece2_91 crossref_primary_10_1002_celc_202300460 crossref_primary_10_1016_j_jclepro_2022_133960 crossref_primary_10_3390_coatings15070772 crossref_primary_10_1002_adfm_202503470 crossref_primary_10_1021_acsaem_5c00214 crossref_primary_10_1002_aenm_202200269 crossref_primary_10_1002_cctc_202400622 crossref_primary_10_1016_j_enconman_2025_119636 crossref_primary_10_1016_j_inoche_2023_110402 crossref_primary_10_1039_D2MH01143C crossref_primary_10_1002_adfm_202214075 crossref_primary_10_1016_j_jcis_2024_03_184 crossref_primary_10_1016_j_fuel_2024_132484 crossref_primary_10_1038_s41427_025_00598_4 crossref_primary_10_1002_cctc_202300648 crossref_primary_10_1016_j_jcis_2022_03_152 crossref_primary_10_3390_batteries9010046 crossref_primary_10_1002_adfm_202401134 crossref_primary_10_1016_j_cej_2022_139263 crossref_primary_10_1007_s40820_023_01080_y crossref_primary_10_1039_D5TA01363A crossref_primary_10_1002_cssc_202300633 crossref_primary_10_1002_smll_202401394 crossref_primary_10_1039_D4NR03397C crossref_primary_10_1155_er_4507049 crossref_primary_10_1016_j_apsusc_2023_158329 crossref_primary_10_1002_smll_202500121 crossref_primary_10_1016_j_jcis_2023_05_173 crossref_primary_10_1016_j_jcis_2024_11_023 crossref_primary_10_1016_j_jcis_2024_11_022 crossref_primary_10_1002_adsu_202500645 crossref_primary_10_1002_smll_202505810 crossref_primary_10_1002_adma_202418504 crossref_primary_10_1002_ange_202209016 crossref_primary_10_1021_acs_chemrev_4c00466 crossref_primary_10_1002_smll_202305905 crossref_primary_10_1016_j_ijhydene_2023_06_093 crossref_primary_10_1016_j_cej_2023_142253 crossref_primary_10_1039_D5QI00536A crossref_primary_10_1002_smll_202302866 crossref_primary_10_1111_ijac_14262 crossref_primary_10_1002_slct_202202700 crossref_primary_10_1002_eem2_70136 crossref_primary_10_1039_D4TA08701A crossref_primary_10_1038_s41467_023_37441_9 crossref_primary_10_1039_D5MH01137J crossref_primary_10_1016_j_cej_2025_161462 crossref_primary_10_1039_D5NJ02455B crossref_primary_10_1002_cctc_202501178 crossref_primary_10_1016_j_cej_2023_146710 crossref_primary_10_1002_anie_202117178 crossref_primary_10_1002_ange_202313571 crossref_primary_10_1016_j_elecom_2024_107836 crossref_primary_10_1002_ange_202314303 crossref_primary_10_1016_j_cej_2021_134330 crossref_primary_10_1002_ange_202203929 crossref_primary_10_1016_j_jcat_2024_115675 crossref_primary_10_1002_cssc_202300310 crossref_primary_10_1002_ange_202211543 crossref_primary_10_1002_smtd_202500103 crossref_primary_10_1007_s41918_024_00219_8 crossref_primary_10_1557_s43579_025_00744_7 crossref_primary_10_1016_j_mtsust_2023_100451 crossref_primary_10_1039_D2NR02203F crossref_primary_10_3390_nano14201661 crossref_primary_10_1016_j_nanoen_2024_110020 crossref_primary_10_1002_cctc_202400564 crossref_primary_10_1002_cctc_202401653 crossref_primary_10_1088_1361_6528_ad0985 crossref_primary_10_3390_en17235975 crossref_primary_10_1039_D5EE01802A crossref_primary_10_1016_j_progsolidstchem_2025_100532 crossref_primary_10_1002_ange_202416274 crossref_primary_10_1007_s11426_024_2453_2 crossref_primary_10_1002_anie_202214570 crossref_primary_10_1021_acsmaterialsau_5c00035 crossref_primary_10_1002_adfm_202308345 crossref_primary_10_1002_adfm_202308337 crossref_primary_10_1002_ente_202400941 crossref_primary_10_1016_j_est_2023_109127 crossref_primary_10_1016_j_ijhydene_2025_151097 crossref_primary_10_1007_s11581_022_04644_x crossref_primary_10_1021_acs_energyfuels_5c00903 crossref_primary_10_1039_D3QM01156A crossref_primary_10_1021_acs_langmuir_5c01501 crossref_primary_10_1039_D2NR03411E crossref_primary_10_3390_polym14081510 crossref_primary_10_1016_j_jcis_2023_04_070 crossref_primary_10_1002_cctc_202400343 crossref_primary_10_1021_jacs_4c18390 crossref_primary_10_1039_D2QI01902G crossref_primary_10_1039_D3QM01179H crossref_primary_10_1016_j_matchemphys_2023_128007 crossref_primary_10_3390_en17071591 crossref_primary_10_1002_adma_202412598 crossref_primary_10_1016_j_fuel_2023_128391 crossref_primary_10_1016_j_ijhydene_2025_02_346 crossref_primary_10_1039_D5NR01892G crossref_primary_10_1007_s11595_024_2886_6 crossref_primary_10_1021_jacs_4c06074 crossref_primary_10_1002_ange_202214570 crossref_primary_10_1016_j_jcis_2022_02_078 crossref_primary_10_1016_j_flatc_2024_100775 crossref_primary_10_1007_s11581_023_05190_w crossref_primary_10_1002_aenm_202402786 crossref_primary_10_1039_D5EY00127G crossref_primary_10_1002_cey2_485 crossref_primary_10_1002_smll_202408507 crossref_primary_10_1016_j_jelechem_2023_118012 crossref_primary_10_1016_j_jcis_2023_09_117 crossref_primary_10_1002_sstr_202300013 crossref_primary_10_1002_cctc_202301327 crossref_primary_10_3390_molecules27144598 crossref_primary_10_1007_s11814_025_00511_3 crossref_primary_10_1116_6_0002280 crossref_primary_10_1039_D3QI00112A crossref_primary_10_3390_ijms23116036 crossref_primary_10_1021_acsanm_4c06793 crossref_primary_10_1016_j_ccr_2024_215840 crossref_primary_10_1002_smll_202407564 crossref_primary_10_1007_s11696_023_02837_w crossref_primary_10_1002_smll_202407328 crossref_primary_10_1002_anie_202424743 crossref_primary_10_1007_s12274_022_4293_7 crossref_primary_10_1039_D4RA05547K crossref_primary_10_1073_pnas_2317247121 crossref_primary_10_1002_elsa_202100213 crossref_primary_10_1016_j_flatc_2024_100750 crossref_primary_10_1016_j_ccr_2023_215639 crossref_primary_10_1002_smll_202301255 crossref_primary_10_1002_ange_202306333 crossref_primary_10_1016_j_watres_2024_122359 crossref_primary_10_1002_smll_202501715 crossref_primary_10_1016_j_apsusc_2023_158165 crossref_primary_10_1016_j_jpcs_2023_111836 crossref_primary_10_1007_s10562_022_04209_7 crossref_primary_10_1039_D3EE01981K crossref_primary_10_1039_D4TA06599A crossref_primary_10_1016_j_apsusc_2022_153522 crossref_primary_10_1016_j_jallcom_2025_179973 crossref_primary_10_1002_anie_202306333 crossref_primary_10_1039_D3CY01556D crossref_primary_10_1021_acsaem_4c03268 crossref_primary_10_1002_adfm_202213304 crossref_primary_10_1039_D4NR00170B crossref_primary_10_1016_j_jece_2024_114152 crossref_primary_10_1002_adma_202400572 crossref_primary_10_1002_anie_202408005 crossref_primary_10_1016_j_renene_2024_120159 crossref_primary_10_1002_cctc_202300562 crossref_primary_10_1016_j_cjche_2025_07_006 crossref_primary_10_1002_aic_17785 crossref_primary_10_1002_inf2_12494 crossref_primary_10_1002_cey2_679 crossref_primary_10_31613_ceramist_2025_00213 crossref_primary_10_1002_adsu_202300275 crossref_primary_10_1002_celc_202400656 crossref_primary_10_1002_smll_202302272 crossref_primary_10_1002_ange_202424743 crossref_primary_10_1039_D4SC04088K crossref_primary_10_1073_pnas_2318652121 crossref_primary_10_1002_adfm_202312206 crossref_primary_10_1016_j_preme_2025_100019 crossref_primary_10_1002_ange_202302166 crossref_primary_10_1002_cssc_202401881 crossref_primary_10_1016_j_cej_2023_144241 crossref_primary_10_1039_D4SC02318H crossref_primary_10_1021_jacs_3c10868 crossref_primary_10_1002_aenm_202400356 crossref_primary_10_1016_j_fuel_2023_129227 crossref_primary_10_1002_adma_202401648 crossref_primary_10_1002_ange_202408005 crossref_primary_10_26599_NR_2025_94907361 crossref_primary_10_3390_nano13131941 crossref_primary_10_1016_j_matlet_2023_134423 crossref_primary_10_1002_smll_202504175 crossref_primary_10_1039_D4EE00042K crossref_primary_10_3390_molecules28114464 crossref_primary_10_1039_D4SC02840F crossref_primary_10_1007_s00604_025_07235_5 crossref_primary_10_1007_s40242_025_5001_4 crossref_primary_10_1039_D4SE01204F crossref_primary_10_1007_s10008_024_06029_8 crossref_primary_10_3390_nano15171356 crossref_primary_10_1016_j_jcis_2023_12_060 crossref_primary_10_1007_s40820_023_01024_6 crossref_primary_10_1002_cssc_202401425 crossref_primary_10_1002_anie_202216477 crossref_primary_10_1038_s41467_023_37775_4 crossref_primary_10_1039_D5TA03380B crossref_primary_10_1038_s41467_024_54318_7 crossref_primary_10_1016_j_mtadv_2025_100560 crossref_primary_10_1002_celc_202300722 crossref_primary_10_1021_jacs_5c04262 crossref_primary_10_1002_ange_202216477 crossref_primary_10_1002_cctc_202500535 crossref_primary_10_1021_jacs_2c12295 crossref_primary_10_1016_j_surfin_2025_107169 crossref_primary_10_1002_anie_202302166 crossref_primary_10_1002_ange_202117178 crossref_primary_10_1016_j_cej_2023_148126 crossref_primary_10_1002_advs_202204742 crossref_primary_10_1002_advs_202405188 crossref_primary_10_1016_j_electacta_2024_145539 crossref_primary_10_1016_j_ccr_2023_215274 crossref_primary_10_1016_j_cej_2023_142705 crossref_primary_10_1016_j_colsurfa_2025_138144 crossref_primary_10_1002_adfm_202301075 crossref_primary_10_1016_j_jallcom_2022_166074 crossref_primary_10_1021_acs_energyfuels_4c04664 crossref_primary_10_3389_fenrg_2021_762346 crossref_primary_10_1002_smll_202303169 crossref_primary_10_3390_ijms232315405 crossref_primary_10_1002_adfm_202503842 crossref_primary_10_1007_s12274_022_4679_6 crossref_primary_10_1016_j_cej_2024_150953 crossref_primary_10_1002_anie_202313886 crossref_primary_10_1021_acs_energyfuels_5c02583 crossref_primary_10_1039_D2SC02019J crossref_primary_10_1016_j_colsurfa_2022_129181 crossref_primary_10_1002_nano_70032 crossref_primary_10_1007_s43207_023_00328_y crossref_primary_10_1002_smll_202206723 crossref_primary_10_1021_acs_inorgchem_5c01959 crossref_primary_10_3390_nano14171445 crossref_primary_10_2478_pjct_2024_0028 crossref_primary_10_1039_D3RA05158G crossref_primary_10_1002_adma_202208337 crossref_primary_10_1016_j_cej_2024_156256 crossref_primary_10_1002_cey2_303 crossref_primary_10_1002_sstr_202200263 crossref_primary_10_1016_j_jcis_2023_09_172 crossref_primary_10_1002_ente_202401049 crossref_primary_10_1016_j_apsusc_2023_156934 crossref_primary_10_1016_j_cej_2023_145076 crossref_primary_10_1016_j_cej_2024_149706 crossref_primary_10_3390_polym17091281 crossref_primary_10_1016_j_fuel_2024_133028 crossref_primary_10_1002_cssc_202500281 crossref_primary_10_1002_idm2_12172 crossref_primary_10_1021_acs_jpcc_5c00493 crossref_primary_10_1039_D3EE02809G crossref_primary_10_1002_adfm_202302014 crossref_primary_10_1002_cctc_202300040 crossref_primary_10_1039_D3EE03379A crossref_primary_10_1016_j_ijhydene_2025_04_155 crossref_primary_10_1002_anie_202416274 crossref_primary_10_1002_aenm_202203150 crossref_primary_10_1021_acssuschemeng_5c03273 crossref_primary_10_1039_D5DT01397F crossref_primary_10_1016_j_erss_2024_103685 crossref_primary_10_1021_acsanm_5c01785 crossref_primary_10_1016_j_jelechem_2022_116805 crossref_primary_10_1002_ejic_202400225 crossref_primary_10_1016_j_jallcom_2023_168792 crossref_primary_10_1016_j_jcis_2023_07_006 crossref_primary_10_1111_jace_20648 crossref_primary_10_1039_D3SE01632C crossref_primary_10_1002_smll_202404927 crossref_primary_10_1016_j_matchemphys_2024_129553 crossref_primary_10_1007_s12678_025_00956_4 crossref_primary_10_1039_D2QM01349E crossref_primary_10_1007_s10008_023_05718_0 crossref_primary_10_1007_s10800_022_01817_4 crossref_primary_10_1002_anie_202313571 crossref_primary_10_1002_celc_202200092 crossref_primary_10_1016_j_ijhydene_2025_04_373 crossref_primary_10_1039_D2NJ03200G crossref_primary_10_1016_j_cej_2023_146490 crossref_primary_10_3390_nano15181434 crossref_primary_10_1002_cta_4277 crossref_primary_10_3390_coatings13061102 crossref_primary_10_1002_adfm_202410618 crossref_primary_10_1002_anie_202314303 crossref_primary_10_1021_acs_energyfuels_5c01435 crossref_primary_10_1021_acsami_5c05059 crossref_primary_10_1016_j_fuel_2023_129857 crossref_primary_10_1021_jacs_3c03481 crossref_primary_10_1002_smll_202411211 crossref_primary_10_1039_D2SE01200F |
| Cites_doi | 10.1016/j.ijhydene.2019.09.205 10.1016/S1388-2481(03)00169-3 10.1002/anie.201915803 10.1021/acsaem.0c01201 10.1038/nenergy.2016.53 10.1002/ange.201813052 10.1002/ange.201903200 10.1016/j.ijhydene.2018.04.219 10.1021/cm403153u 10.1021/jacs.8b13701 10.1002/aenm.201700381 10.1016/j.pnsc.2018.07.005 10.1021/acscatal.8b04001 10.1016/S0013-4686(98)80013-3 10.3389/fchem.2014.00079 10.1038/s41598-017-13333-z 10.1021/acsnano.0c06066 10.1016/j.elecom.2018.11.022 10.1002/ange.202102452 10.1002/ange.202011388 10.1016/j.jcat.2017.10.027 10.1002/ange.202003801 10.1039/C5TA07586F 10.1038/ncomms9106 10.1149/1.2100463 10.1016/j.ijhydene.2020.01.241 10.3390/ma12081336 10.1038/s41929-018-0141-2 10.1002/ange.201804417 10.1007/s12274-012-0280-8 10.1351/pac199163050711 10.1021/acscatal.8b01046 10.1149/2.049306jes 10.1002/9780470381588 10.1038/s41467-020-16237-1 10.1002/cssc.201800932 10.1002/ange.201905501 10.1002/anie.201701280 10.1021/acs.jpclett.5b01928 10.1021/ja400555q 10.1002/anie.201914245 10.1038/srep13801 10.1126/science.aaf1525 10.1021/jacs.8b04546 10.1038/s41467-018-08144-3 10.1002/ange.201909475 10.1039/a902808k 10.1002/ange.201907595 10.1021/acscatal.9b01985 10.1021/jp3007415 10.1002/cssc.201701877 10.1016/0013-4686(66)80045-2 10.1002/cphc.201900511 10.1002/adfm.201303600 10.1002/anie.202013610 10.1038/s41467-017-01949-8 10.1021/acsaem.9b01183 10.1002/celc.201402262 10.1039/C8EE00927A 10.1002/anie.202101906 10.1002/anie.202102452 10.1002/cssc.201500872 10.1002/anie.201907595 10.1002/ange.201608601 10.1002/ange.201915803 10.1039/C9TA00023B 10.1002/smll.201700806 10.1126/science.1212858 10.1002/anie.201810104 10.1021/acscentsci.9b00053 10.1021/acs.chemmater.6b02645 10.1002/ange.201914245 10.1021/jacs.0c04867 10.1088/2515-7655/abee33 10.1002/ange.201701280 10.1038/s41467-018-05019-5 10.1126/science.1162018 10.1021/acscatal.7b01070 10.1007/s10008-016-3280-x 10.1002/adma.201804341 10.1002/anie.201900428 10.1149/2.0271611jes 10.1007/978-3-662-09291-0_4 10.1021/cs500713d 10.1002/anie.201909475 10.1002/adma.201901139 10.1126/science.aad4998 10.1002/smll.201904903 10.1038/s41558-020-0891-0 10.1021/acsaem.9b01952 10.3390/catal9110926 10.1002/ejic.201801162 10.1039/C9CY02345C 10.1021/acsenergylett.8b00908 10.1002/ange.202013610 10.1002/ange.202101906 10.1002/anie.201813052 10.1038/s41467-019-13415-8 10.1002/anie.201608601 10.1021/acscatal.6b02479 10.1038/s41586-020-2908-2 10.1002/cctc.201000397 10.1002/anie.201804417 10.1002/adma.201700404 10.1002/ange.201810104 10.1002/adfm.201904020 10.1021/acsenergylett.9b00686 10.1038/nmat3313 10.3390/molecules23040903 10.1038/s41467-020-18891-x 10.1016/j.resconrec.2020.104743 10.1021/jacs.5b00281 10.1002/adfm.201901217 10.1002/aenm.201600621 10.1038/nchem.1069 10.1126/science.aav3506 10.1002/cssc.201903186 10.1021/cs500606g 10.1016/0022-0728(82)85022-5 10.1016/j.apcatb.2018.11.046 10.1002/cctc.201901151 10.1016/j.jpowsour.2007.08.053 10.1021/ja502379c 10.1039/C7TA10728E 10.1002/aenm.201900796 10.1126/science.1258307 10.1021/acs.jpcc.5b00105 10.1038/ncomms5477 10.1039/C7EE03457A 10.1002/anie.202011388 10.1039/C5RA01739D 10.1039/C9TA07835E 10.1021/ja405351s 10.1126/science.1233638 10.1038/s41467-019-13052-1 10.1016/j.jelechem.2016.04.033 10.1021/ja510442p 10.1021/jacs.0c00257 10.1021/cr050182l 10.1021/acs.chemrev.6b00398 10.1021/acscatal.7b03509 10.1002/ange.202101698 10.1021/ja405997s 10.1016/j.ijhydene.2013.04.100 10.1021/ja200559j 10.1021/acsaem.9b01965 10.1002/ange.201900428 10.1021/acsaem.8b01769 10.1007/s10008-013-2313-y 10.1002/anie.201905281 10.1021/cm5023163 10.1038/ncomms9625 10.1016/j.elecom.2008.02.003 10.1002/smtd.201800001 10.1021/ja4027715 10.1021/jacs.7b07117 10.1021/acs.inorgchem.7b03168 10.1021/ja5096733 10.1016/j.joule.2018.05.003 10.1021/jacs.5b10699 10.1021/acs.chemmater.5b03148 10.1021/acsami.6b12005 10.1002/anie.201903200 10.1007/s10008-007-0484-0 10.1007/s12274-019-2389-5 10.1039/C6CS00328A 10.1021/jacs.6b00332 10.1515/zpch-2019-1466 10.1016/j.jelechem.2005.11.013 10.1016/j.ijhydene.2013.05.099 10.1002/anie.202101698 10.1021/acsami.7b02571 10.1021/ja01953a010 10.1002/anie.202003801 10.1016/j.ijhydene.2013.06.034 10.1021/cm5005888 10.1002/aenm.201502313 10.1016/j.ijhydene.2015.06.105 10.1021/ja511559d 10.1039/C8NR09740B 10.1021/jp904022e 10.1016/j.elecom.2009.03.034 10.1002/ange.201905281 10.1038/s41467-019-12994-w 10.1016/j.jelechem.2017.10.058 10.1038/s41598-018-37307-x 10.1038/s41467-020-16558-1 10.1021/acscatal.9b01940 10.1021/ja407115p 10.1007/s40820-020-00469-3 10.1002/celc.201900722 10.1002/anie.201905501 10.1016/j.est.2019.03.001 10.1021/acsnano.7b05481 10.1021/acscatal.7b00632 10.1038/s41560-020-0576-y 10.1039/C5TA02988K 10.1038/s41467-019-09845-z |
| ContentType | Journal Article |
| Copyright | 2021 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH 2021 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH. 2021. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2021 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH – notice: 2021 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH. – notice: 2021. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | 24P AAYXX CITATION NPM 7TM K9. 7X8 5PM |
| DOI | 10.1002/anie.202103824 |
| DatabaseName | Wiley Online Library Open Access CrossRef PubMed Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef PubMed ProQuest Health & Medical Complete (Alumni) Nucleic Acids Abstracts MEDLINE - Academic |
| DatabaseTitleList | ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic CrossRef PubMed |
| Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Chemistry |
| EISSN | 1521-3773 |
| Edition | International ed. in English |
| EndPage | n/a |
| ExternalDocumentID | PMC9291824 34138511 10_1002_anie_202103824 ANIE202103824 |
| Genre | reviewArticle Journal Article Review |
| GrantInformation_xml | – fundername: Max-Planck-Gesellschaft – fundername: Deutsche Forschungsgemeinschaft funderid: Projektnummer 388390466-TRR 247 within the Collaborative Research Centre/Transregio 247 "Heterogeneous Oxidation Catalysis in the Liquid Phase – fundername: Deutsche Forschungsgemeinschaft grantid: Projektnummer 388390466-TRR 247 within the Collaborative Research Centre/Transregio 247 "Heterogeneous Oxidation Catalysis in the Liquid Phase – fundername: ; – fundername: ; grantid: Projektnummer 388390466-TRR 247 within the Collaborative Research Centre/Transregio 247 "Heterogeneous Oxidation Catalysis in the Liquid Phase |
| GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 24P 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABLJU ABPPZ ABPVW ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BTSUX BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES M53 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ TN5 UB1 UPT UQL V2E VQA W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT AAYXX ABDBF ABJNI ABUFD AEYWJ AGHNM AGYGG CITATION O8X NPM 7TM K9. 7X8 5PM |
| ID | FETCH-LOGICAL-c4684-b704b17a7c0c2f905b163fc6aa54892c5816a4e7a6200ca9439231bd574038e33 |
| IEDL.DBID | 24P |
| ISICitedReferencesCount | 701 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000675252200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1433-7851 1521-3773 |
| IngestDate | Tue Nov 04 01:56:57 EST 2025 Thu Oct 02 06:19:04 EDT 2025 Tue Oct 07 07:24:14 EDT 2025 Mon Jul 21 06:00:33 EDT 2025 Sat Nov 29 02:36:22 EST 2025 Tue Nov 18 21:18:32 EST 2025 Wed Jan 22 16:28:11 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | nickel oxygen evolution reaction iron cobalt water splitting |
| Language | English |
| License | Attribution-NonCommercial 2021 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH. This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4684-b704b17a7c0c2f905b163fc6aa54892c5816a4e7a6200ca9439231bd574038e33 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
| ORCID | 0000-0001-8552-7028 0000-0001-6184-8863 |
| OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202103824 |
| PMID | 34138511 |
| PQID | 2614222280 |
| PQPubID | 946352 |
| PageCount | 24 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_9291824 proquest_miscellaneous_2542360199 proquest_journals_2614222280 pubmed_primary_34138511 crossref_citationtrail_10_1002_anie_202103824 crossref_primary_10_1002_anie_202103824 wiley_primary_10_1002_anie_202103824_ANIE202103824 |
| PublicationCentury | 2000 |
| PublicationDate | January 3, 2022 |
| PublicationDateYYYYMMDD | 2022-01-03 |
| PublicationDate_xml | – month: 01 year: 2022 text: January 3, 2022 day: 03 |
| PublicationDecade | 2020 |
| PublicationPlace | Germany |
| PublicationPlace_xml | – name: Germany – name: Weinheim – name: Hoboken |
| PublicationTitle | Angewandte Chemie International Edition |
| PublicationTitleAlternate | Angew Chem Int Ed Engl |
| PublicationYear | 2022 |
| Publisher | Wiley Subscription Services, Inc John Wiley and Sons Inc |
| Publisher_xml | – name: Wiley Subscription Services, Inc – name: John Wiley and Sons Inc |
| References | 2007; 107 2019; 11 2019; 98 2019; 10 2019; 12 2019; 15 2014; 26 2020; 14 2014; 24 2009; 113 2020; 13 2020; 12 2020; 11 2020; 10 2018; 43 2013; 6 2012; 11 2014; 136 2018; 6 2009; 11 2018; 9 2018; 8 2018; 3 2018; 2 2015; 137 2019; 20 2018; 1 2019; 23 2019; 29 1982; 132 2018; 30 2014; 18 2021; 46 2019; 7 2019; 9 2018; 28 2019; 4 2021 2021 2019; 6 2019; 5 2019; 31 2020; 142 2019; 2 2017 2017; 56 129 2013; 340 2018; 23 2011; 3 2016; 163 2011; 133 2017; 139 2016; 4 2016; 6 2016; 1 2018; 358 1991; 63 2016; 20 2021 2021; 60 133 2015; 119 2020; 156 2018; 11 2012; 116 2016; 8 2016; 9 2006; 587 2017; 7 2017; 8 2013; 25 2017; 46 2020 2020; 59 132 1988; 33 2017; 355 2013; 160 1966; 11 2019; 364 2017; 9 2019; 244 2014; 1 2020; 5 2014; 5 2020; 3 2014; 4 2014; 2 2015; 40 2018 2018; 57 130 2003; 5 2018; 819 2016; 352 2016; 116 2020; 45 2011; 334 2015; 6 2015; 5 2018; 140 2021; 3 2015; 3 2008 2008; 12 2008; 10 2004 2017; 29 2020; 587 2008; 321 2019; 141 2019 2019; 58 131 1999; 9 1987; 134 2015; 27 2013; 38 1908; 30 2017; 11 2017; 13 2016; 773 2019 2018 2013; 135 2016; 138 2020; 234 2008; 176 2014; 345 2018; 57 e_1_2_8_49_2 e_1_2_8_26_2 e_1_2_8_203_1 e_1_2_8_132_2 e_1_2_8_178_2 e_1_2_8_178_3 e_1_2_8_9_1 e_1_2_8_41_3 e_1_2_8_170_1 e_1_2_8_193_1 e_1_2_8_41_2 e_1_2_8_87_1 e_1_2_8_64_2 e_1_2_8_117_2 e_1_2_8_1_1 e_1_2_8_155_2 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_143_1 e_1_2_8_166_1 e_1_2_8_189_1 e_1_2_8_91_1 e_1_2_8_143_2 e_1_2_8_120_2 e_1_2_8_99_2 e_1_2_8_105_1 e_1_2_8_128_1 e_1_2_8_181_1 e_1_2_8_30_2 e_1_2_8_76_1 e_1_2_8_53_2 e_1_2_8_25_2 e_1_2_8_48_2 Kim J.-H. (e_1_2_8_17_1) 2018; 1 e_1_2_8_204_1 e_1_2_8_2_1 e_1_2_8_133_1 e_1_2_8_179_2 e_1_2_8_110_1 e_1_2_8_171_1 e_1_2_8_86_1 e_1_2_8_118_1 e_1_2_8_194_1 e_1_2_8_63_1 e_1_2_8_40_2 e_1_2_8_156_2 e_1_2_8_14_1 e_1_2_8_37_1 e_1_2_8_144_1 e_1_2_8_90_1 e_1_2_8_121_2 e_1_2_8_98_1 e_1_2_8_106_1 e_1_2_8_182_1 e_1_2_8_52_2 e_1_2_8_129_2 e_1_2_8_182_2 e_1_2_8_75_1 e_1_2_8_167_1 e_1_2_8_28_1 e_1_2_8_89_2 e_1_2_8_205_1 e_1_2_8_81_1 e_1_2_8_111_1 e_1_2_8_7_1 e_1_2_8_20_1 e_1_2_8_66_1 e_1_2_8_89_1 e_1_2_8_20_2 e_1_2_8_119_1 e_1_2_8_172_1 e_1_2_8_195_1 e_1_2_8_43_2 e_1_2_8_172_2 e_1_2_8_134_1 e_1_2_8_157_1 e_1_2_8_81_2 e_1_2_8_70_1 e_1_2_8_160_2 e_1_2_8_78_1 e_1_2_8_55_2 e_1_2_8_107_1 e_1_2_8_183_1 e_1_2_8_32_2 e_1_2_8_183_2 e_1_2_8_145_3 e_1_2_8_122_2 e_1_2_8_168_1 e_1_2_8_93_1 e_1_2_8_145_2 Geres R. (e_1_2_8_192_1) 2019 e_1_2_8_27_1 e_1_2_8_206_1 e_1_2_8_80_1 e_1_2_8_150_1 e_1_2_8_8_1 e_1_2_8_42_2 e_1_2_8_65_2 e_1_2_8_88_1 e_1_2_8_173_1 e_1_2_8_112_2 e_1_2_8_158_2 e_1_2_8_173_2 e_1_2_8_196_1 e_1_2_8_135_1 e_1_2_8_39_2 e_1_2_8_16_1 e_1_2_8_92_1 e_1_2_8_161_1 e_1_2_8_31_2 e_1_2_8_54_2 e_1_2_8_77_1 e_1_2_8_108_1 e_1_2_8_184_1 e_1_2_8_100_2 e_1_2_8_123_2 e_1_2_8_146_2 e_1_2_8_184_2 e_1_2_8_146_3 e_1_2_8_169_1 e_1_2_8_68_1 e_1_2_8_207_1 e_1_2_8_5_1 e_1_2_8_151_1 e_1_2_8_5_2 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_159_2 e_1_2_8_136_1 e_1_2_8_174_1 e_1_2_8_197_1 e_1_2_8_83_2 e_1_2_8_60_1 e_1_2_8_113_2 e_1_2_8_19_1 e_1_2_8_109_1 e_1_2_8_57_1 e_1_2_8_95_2 e_1_2_8_162_1 e_1_2_8_34_1 e_1_2_8_11_2 e_1_2_8_101_1 e_1_2_8_124_1 e_1_2_8_147_1 e_1_2_8_185_1 e_1_2_8_72_1 e_1_2_8_29_1 e_1_2_8_200_1 e_1_2_8_152_1 e_1_2_8_208_1 e_1_2_8_6_1 e_1_2_8_21_1 e_1_2_8_67_1 e_1_2_8_44_1 e_1_2_8_137_1 e_1_2_8_175_1 e_1_2_8_82_1 e_1_2_8_114_1 e_1_2_8_198_1 e_1_2_8_18_1 e_1_2_8_56_2 e_1_2_8_56_3 e_1_2_8_79_1 e_1_2_8_94_2 e_1_2_8_140_2 e_1_2_8_140_3 e_1_2_8_163_1 e_1_2_8_10_2 e_1_2_8_33_2 e_1_2_8_102_1 e_1_2_8_148_1 e_1_2_8_186_1 e_1_2_8_71_1 e_1_2_8_125_1 e_1_2_8_47_1 e_1_2_8_24_2 e_1_2_8_201_1 e_1_2_8_3_1 e_1_2_8_153_1 e_1_2_8_130_2 e_1_2_8_85_2 e_1_2_8_138_2 e_1_2_8_62_1 e_1_2_8_115_1 e_1_2_8_176_1 e_1_2_8_199_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_59_1 e_1_2_8_190_1 e_1_2_8_164_3 e_1_2_8_164_2 e_1_2_8_141_1 e_1_2_8_141_2 e_1_2_8_97_1 e_1_2_8_149_1 e_1_2_8_51_1 e_1_2_8_74_1 e_1_2_8_126_1 e_1_2_8_103_2 e_1_2_8_187_2 e_1_2_8_46_1 e_1_2_8_69_1 e_1_2_8_180_1 e_1_2_8_202_1 e_1_2_8_131_2 e_1_2_8_154_1 e_1_2_8_4_1 e_1_2_8_116_2 e_1_2_8_139_2 e_1_2_8_23_1 e_1_2_8_84_2 e_1_2_8_61_1 e_1_2_8_177_1 e_1_2_8_35_1 e_1_2_8_58_1 e_1_2_8_191_1 e_1_2_8_165_2 e_1_2_8_188_2 e_1_2_8_96_1 e_1_2_8_142_1 (e_1_2_8_150_2) 2020; 132 e_1_2_8_104_2 e_1_2_8_127_1 e_1_2_8_12_1 e_1_2_8_73_1 e_1_2_8_50_1 |
| References_xml | – volume: 334 start-page: 1383 year: 2011 end-page: 1385 publication-title: Science – volume: 38 start-page: 9601 year: 2013 end-page: 9608 publication-title: Int. J. Hydrogen Energy – volume: 116 start-page: 8394 year: 2012 end-page: 8400 publication-title: J. Phys. Chem. C – volume: 12 start-page: 1469 year: 2008 end-page: 1479 publication-title: J. Solid State Electrochem. – volume: 244 start-page: 56 year: 2019 end-page: 62 publication-title: Appl. Catal. B – volume: 56 129 start-page: 4858 4936 year: 2017 2017 end-page: 4861 4939 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 58 131 start-page: 4484 4532 year: 2019 2019 end-page: 4502 4551 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 163 start-page: F3197 year: 2016 end-page: F3208 publication-title: J. Electrochem. Soc. – volume: 11 start-page: 2367 year: 2018 end-page: 2374 publication-title: ChemSusChem – volume: 60 133 start-page: 14981 15108 year: 2021 2021 end-page: 14988 15115 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 10 start-page: 607 year: 2008 end-page: 610 publication-title: Electrochem. Commun. – volume: 3 start-page: 14101 year: 2015 end-page: 14104 publication-title: J. Mater. Chem. A – volume: 364 year: 2019 publication-title: Science – volume: 6 start-page: 8069 year: 2016 end-page: 8097 publication-title: ACS Catal. – volume: 3 start-page: 8583 year: 2020 end-page: 8594 publication-title: ACS Appl. Energy Mater. – volume: 26 start-page: 6127 year: 2014 end-page: 6134 publication-title: Chem. Mater. – volume: 1 start-page: 16053 year: 2016 publication-title: Nat. Energy – volume: 119 start-page: 7243 year: 2015 end-page: 7254 publication-title: J. Phys. Chem. C – volume: 20 start-page: 3359 year: 2016 end-page: 3365 publication-title: J. Solid State Electrochem. – volume: 59 132 start-page: 1585 1601 year: 2020 2020 end-page: 1589 1605 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 141 start-page: 8136 year: 2019 end-page: 8145 publication-title: J. Am. Chem. Soc. – volume: 10 start-page: 1708 year: 2020 end-page: 1713 publication-title: Catal. Sci. Technol. – volume: 10 start-page: 5074 year: 2019 publication-title: Nat. Commun. – volume: 135 start-page: 16977 year: 2013 end-page: 16987 publication-title: J. Am. Chem. Soc. – volume: 142 start-page: 11901 year: 2020 end-page: 11914 publication-title: J. Am. Chem. Soc. – volume: 58 131 start-page: 3491 3529 year: 2019 2019 end-page: 3495 3533 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 29 year: 2019 publication-title: Adv. Funct. Mater. – volume: 30 start-page: 1718 year: 1908 end-page: 1742 publication-title: J. Am. Chem. Soc. – volume: 10 start-page: 162 year: 2019 publication-title: Nat. Commun. – volume: 3 start-page: 66 year: 2020 end-page: 98 publication-title: ACS Appl. Energy Mater. – volume: 5 start-page: 4477 year: 2014 publication-title: Nat. Commun. – year: 2008 – volume: 11 start-page: 5842 year: 2019 end-page: 5854 publication-title: ChemCatChem – volume: 58 131 start-page: 12999 13133 year: 2019 2019 end-page: 13003 13137 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 20 start-page: 3089 year: 2019 end-page: 3095 publication-title: ChemPhysChem – volume: 355 year: 2017 publication-title: Science – volume: 5 start-page: 222 year: 2020 end-page: 230 publication-title: Nat. Energy – volume: 7 start-page: 3768 year: 2017 end-page: 3778 publication-title: ACS Catal. – volume: 58 131 start-page: 13291 13425 year: 2019 2019 end-page: 13296 13430 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 3 year: 2021 publication-title: J. Phys. Energy – volume: 2 start-page: 1024 year: 2018 end-page: 1027 publication-title: Joule – volume: 11 start-page: 3378 year: 2019 end-page: 3385 publication-title: Nanoscale – volume: 29 start-page: 40 year: 2017 end-page: 52 publication-title: Chem. Mater. – volume: 59 132 start-page: 8072 8149 year: 2020 2020 end-page: 8077 8154 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – year: 2019 – volume: 9 start-page: 8165 year: 2019 end-page: 8170 publication-title: ACS Catal. – volume: 11 start-page: 1150 year: 2009 end-page: 1153 publication-title: Electrochem. Commun. – volume: 60 133 start-page: 5800 5864 year: 2021 2021 end-page: 5805 5869 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 5 start-page: 695 year: 2003 end-page: 700 publication-title: Electrochem. Commun. – volume: 58 131 start-page: 4644 4692 year: 2019 2019 end-page: 4648 4696 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 24 start-page: 3123 year: 2014 end-page: 3129 publication-title: Adv. Funct. Mater. – volume: 176 start-page: 444 year: 2008 end-page: 451 publication-title: J. Power Sources – volume: 38 start-page: 10063 year: 2013 end-page: 10067 publication-title: Int. J. Hydrogen Energy – volume: 358 start-page: 1 year: 2018 end-page: 7 publication-title: J. Catal. – volume: 156 year: 2020 publication-title: Resour. Conserv. Recycl. – volume: 139 start-page: 11361 year: 2017 end-page: 11364 publication-title: J. Am. Chem. Soc. – volume: 7 start-page: 5399 year: 2017 end-page: 5409 publication-title: ACS Catal. – volume: 8 start-page: 2022 year: 2017 publication-title: Nat. Commun. – volume: 11 start-page: 9550 year: 2017 end-page: 9557 publication-title: ACS Nano – volume: 142 start-page: 12087 year: 2020 end-page: 12095 publication-title: J. Am. Chem. Soc. – volume: 9 start-page: 21225 year: 2017 end-page: 21233 publication-title: ACS Appl. Mater. Interfaces – volume: 819 start-page: 260 year: 2018 end-page: 268 publication-title: J. Electroanal. Chem. – volume: 9 start-page: 7 year: 2019 end-page: 15 publication-title: ACS Catal. – volume: 12 start-page: 2281 year: 2019 end-page: 2287 publication-title: Nano Res. – volume: 135 start-page: 8452 year: 2013 end-page: 8455 publication-title: J. Am. Chem. Soc. – volume: 1 start-page: 711 year: 2018 end-page: 719 publication-title: Nat. Catal. – volume: 4 start-page: 3068 year: 2016 end-page: 3076 publication-title: J. Mater. Chem. A – volume: 59 132 start-page: 16544 16687 year: 2020 2020 end-page: 16552 16695 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 321 start-page: 1072 year: 2008 end-page: 1075 publication-title: Science – volume: 31 year: 2019 publication-title: Adv. Mater. – volume: 136 start-page: 16481 year: 2014 end-page: 16484 publication-title: J. Am. Chem. Soc. – volume: 6 start-page: 3684 year: 2018 end-page: 3691 publication-title: J. Mater. Chem. A – volume: 23 start-page: 392 year: 2019 end-page: 403 publication-title: J. Energy Storage – volume: 8 start-page: 32488 year: 2016 end-page: 32495 publication-title: ACS Appl. Mater. Interfaces – volume: 23 start-page: 903 year: 2018 publication-title: Molecules – volume: 6 start-page: 3460 year: 2019 end-page: 3467 publication-title: ChemElectroChem – volume: 6 start-page: 8106 year: 2015 publication-title: Nat. Commun. – volume: 7 year: 2017 publication-title: Adv. Energy Mater. – volume: 137 start-page: 4347 year: 2015 end-page: 4357 publication-title: J. Am. Chem. Soc. – volume: 5 start-page: 558 year: 2019 end-page: 568 publication-title: ACS Cent. Sci. – volume: 11 start-page: 2701 year: 2020 publication-title: Nat. Commun. – volume: 12 start-page: 131 year: 2020 publication-title: Nano-Micro Lett. – start-page: 63 year: 2004 end-page: 106 – volume: 98 start-page: 87 year: 2019 end-page: 91 publication-title: Electrochem. Commun. – volume: 10 start-page: 5599 year: 2019 publication-title: Nat. Commun. – volume: 4 start-page: 2917 year: 2014 end-page: 2940 publication-title: ACS Catal. – volume: 160 start-page: F522 year: 2013 end-page: F534 publication-title: J. Electrochem. Soc. – volume: 136 start-page: 6744 year: 2014 end-page: 6453 publication-title: J. Am. Chem. Soc. – volume: 7 start-page: 23130 year: 2019 end-page: 23139 publication-title: J. Mater. Chem. A – volume: 8 start-page: 807 year: 2018 end-page: 814 publication-title: ACS Catal. – volume: 137 start-page: 1305 year: 2015 end-page: 1313 publication-title: J. Am. Chem. Soc. – volume: 11 start-page: 550 year: 2012 end-page: 557 publication-title: Nat. Mater. – volume: 7 start-page: 4729 year: 2019 end-page: 4733 publication-title: J. Mater. Chem. A – volume: 13 year: 2017 publication-title: Small – volume: 6 start-page: 47 year: 2013 end-page: 54 publication-title: Nano Res. – volume: 10 start-page: 2149 year: 2019 publication-title: Nat. Commun. – volume: 587 start-page: 172 year: 2006 end-page: 181 publication-title: J. Electroanal. Chem. – volume: 3 start-page: 1744 year: 2018 end-page: 1752 publication-title: ACS Energy Lett. – volume: 56 129 start-page: 5994 6088 year: 2017 2017 end-page: 6021 6117 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 137 start-page: 3638 year: 2015 end-page: 3648 publication-title: J. Am. Chem. Soc. – volume: 9 start-page: 409 year: 2016 end-page: 415 publication-title: ChemSusChem – volume: 43 start-page: 11932 year: 2018 end-page: 11938 publication-title: Int. J. Hydrogen Energy – volume: 8 start-page: 3803 year: 2018 end-page: 3811 publication-title: ACS Catal. – start-page: 5238 year: 2018 end-page: 5245 publication-title: Eur. J. Inorg. Chem. – volume: 58 131 start-page: 10295 10401 year: 2019 2019 end-page: 10299 10405 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 135 start-page: 13521 year: 2013 end-page: 13530 publication-title: J. Am. Chem. Soc. – volume: 28 start-page: 430 year: 2018 end-page: 436 publication-title: Prog. Nat. Sci. – volume: 27 start-page: 7549 year: 2015 end-page: 7558 publication-title: Chem. Mater. – volume: 10 start-page: 799 year: 2020 end-page: 801 publication-title: Nat. Clim. Change – volume: 3 start-page: 546 year: 2011 end-page: 550 publication-title: Nat. Chem. – volume: 13 start-page: 520 year: 2020 end-page: 528 publication-title: ChemSusChem – volume: 2 year: 2018 publication-title: Small Methods – volume: 60 133 start-page: 14536 14657 year: 2021 2021 end-page: 14544 14665 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 10 start-page: 4993 year: 2019 publication-title: Nat. Commun. – volume: 25 start-page: 4926 year: 2013 end-page: 4935 publication-title: Chem. Mater. – volume: 113 start-page: 15068 year: 2009 end-page: 15072 publication-title: J. Phys. Chem. C – volume: 133 start-page: 5587 year: 2011 end-page: 5593 publication-title: J. Am. Chem. Soc. – volume: 26 start-page: 3162 year: 2014 end-page: 3168 publication-title: Chem. Mater. – volume: 352 start-page: 333 year: 2016 end-page: 337 publication-title: Science – volume: 135 start-page: 4516 year: 2013 end-page: 4521 publication-title: J. Am. Chem. Soc. – volume: 138 start-page: 5603 year: 2016 end-page: 5614 publication-title: J. Am. Chem. Soc. – volume: 345 start-page: 1593 year: 2014 publication-title: Science – volume: 6 year: 2016 publication-title: Adv. Energy Mater. – volume: 18 start-page: 747 year: 2014 end-page: 753 publication-title: J. Solid State Electrochem. – volume: 63 start-page: 711 year: 1991 end-page: 734 publication-title: Pure Appl. Chem. – volume: 134 start-page: 377 year: 1987 end-page: 384 publication-title: J. Electrochem. Soc. – volume: 2 start-page: 79 year: 2014 publication-title: Front. Chem. – volume: 45 start-page: 9368 year: 2020 end-page: 9379 publication-title: Int. J. Hydrogen Energy – volume: 11 start-page: 2522 year: 2020 publication-title: Nat. Commun. – volume: 340 start-page: 60 year: 2013 publication-title: Science – volume: 116 start-page: 14120 year: 2016 end-page: 14136 publication-title: Chem. Rev. – volume: 132 start-page: 247 year: 1982 end-page: 261 publication-title: J. Electroanal. Chem. – volume: 59 132 start-page: 4736 4766 year: 2020 2020 end-page: 4742 4772 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 3 start-page: 822 year: 2020 end-page: 830 publication-title: ACS Appl. Energy Mater. – volume: 9 start-page: 2609 year: 2018 publication-title: Nat. Commun. – volume: 6 start-page: 8625 year: 2015 publication-title: Nat. Commun. – volume: 57 start-page: 2766 year: 2018 end-page: 2772 publication-title: Inorg. Chem. – volume: 2 start-page: 1199 year: 2019 end-page: 1209 publication-title: ACS Appl. Energy Mater. – volume: 46 start-page: 7667 year: 2021 end-page: 7675 publication-title: Int. J. Hydrogen Energy – volume: 58 131 start-page: 11903 12029 year: 2019 2019 end-page: 11909 12035 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 29 year: 2017 publication-title: Adv. Mater. – volume: 46 start-page: 337 year: 2017 end-page: 365 publication-title: Chem. Soc. Rev. – volume: 135 start-page: 12329 year: 2013 end-page: 12337 publication-title: J. Am. Chem. Soc. – volume: 40 start-page: 9866 year: 2015 end-page: 9871 publication-title: Int. J. Hydrogen Energy – volume: 38 start-page: 8605 year: 2013 end-page: 8616 publication-title: Int. J. Hydrogen Energy – year: 2021 2021 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 9 start-page: 8383 year: 2019 end-page: 8387 publication-title: ACS Catal. – volume: 1 start-page: 5145 year: 2018 end-page: 5150 publication-title: ACS Appl. Energy Mater. – volume: 60 133 start-page: 3095 3132 year: 2021 2021 end-page: 3103 3140 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 2 start-page: 6672 year: 2019 end-page: 6680 publication-title: ACS Appl. Energy Mater. – volume: 9 start-page: 2505 year: 1999 end-page: 2510 publication-title: J. Mater. Chem. – volume: 234 start-page: 995 year: 2020 end-page: 1019 publication-title: Z. Phys. Chem. – volume: 7 start-page: 13161 year: 2017 publication-title: Sci. Rep. – volume: 5 start-page: 13801 year: 2015 publication-title: Sci. Rep. – volume: 15 year: 2019 publication-title: Small – volume: 11 start-page: 2858 year: 2018 end-page: 2864 publication-title: Energy Environ. Sci. – volume: 9 start-page: 926 year: 2019 publication-title: Catalysts – volume: 14 start-page: 15450 year: 2020 end-page: 15457 publication-title: ACS Nano – volume: 4 start-page: 3701 year: 2014 end-page: 3714 publication-title: ACS Catal. – volume: 9 year: 2019 publication-title: Adv. Energy Mater. – volume: 107 start-page: 3904 year: 2007 end-page: 3951 publication-title: Chem. Rev. – volume: 137 start-page: 15090 year: 2015 end-page: 15093 publication-title: J. Am. Chem. Soc. – volume: 11 start-page: 5075 year: 2020 publication-title: Nat. Commun. – volume: 1 start-page: 2075 year: 2014 end-page: 2081 publication-title: ChemElectroChem – volume: 6 start-page: 4178 year: 2015 end-page: 4183 publication-title: J. Phys. Chem. Lett. – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 12 start-page: 1336 year: 2019 publication-title: Materials – volume: 140 start-page: 7748 year: 2018 end-page: 7759 publication-title: J. Am. Chem. Soc. – volume: 33 start-page: 825 year: 1988 end-page: 830 publication-title: Electrochim. Acta – volume: 11 start-page: 744 year: 2018 end-page: 771 publication-title: Energy Environ. Sci. – volume: 5 start-page: 33269 year: 2015 end-page: 33274 publication-title: RSC Adv. – volume: 57 130 start-page: 11893 12069 year: 2018 2018 end-page: 11897 12073 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 11 start-page: 1079 year: 1966 end-page: 1087 publication-title: Electrochim. Acta – volume: 3 start-page: 1159 year: 2011 end-page: 1165 publication-title: ChemCatChem – volume: 773 start-page: 69 year: 2016 end-page: 78 publication-title: J. Electroanal. Chem. – volume: 9 start-page: 1532 year: 2019 publication-title: Sci. Rep. – volume: 11 start-page: 605 year: 2018 end-page: 611 publication-title: ChemSusChem – volume: 4 start-page: 1260 year: 2019 end-page: 1264 publication-title: ACS Energy Lett. – volume: 587 start-page: 408 year: 2020 end-page: 413 publication-title: Nature – ident: e_1_2_8_58_1 doi: 10.1016/j.ijhydene.2019.09.205 – ident: e_1_2_8_69_1 doi: 10.1016/S1388-2481(03)00169-3 – ident: e_1_2_8_183_1 doi: 10.1002/anie.201915803 – ident: e_1_2_8_120_2 doi: 10.1021/acsaem.0c01201 – ident: e_1_2_8_155_2 doi: 10.1038/nenergy.2016.53 – ident: e_1_2_8_41_3 doi: 10.1002/ange.201813052 – ident: e_1_2_8_184_2 doi: 10.1002/ange.201903200 – ident: e_1_2_8_48_2 doi: 10.1016/j.ijhydene.2018.04.219 – ident: e_1_2_8_111_1 – ident: e_1_2_8_4_1 doi: 10.1021/cm403153u – ident: e_1_2_8_126_1 doi: 10.1021/jacs.8b13701 – ident: e_1_2_8_16_1 doi: 10.1002/aenm.201700381 – ident: e_1_2_8_201_1 doi: 10.1016/j.pnsc.2018.07.005 – ident: e_1_2_8_105_1 doi: 10.1021/acscatal.8b04001 – ident: e_1_2_8_156_2 doi: 10.1016/S0013-4686(98)80013-3 – ident: e_1_2_8_7_1 doi: 10.3389/fchem.2014.00079 – ident: e_1_2_8_194_1 doi: 10.1038/s41598-017-13333-z – ident: e_1_2_8_30_2 doi: 10.1021/acsnano.0c06066 – ident: e_1_2_8_18_1 doi: 10.1016/j.elecom.2018.11.022 – ident: e_1_2_8_146_3 doi: 10.1002/ange.202102452 – ident: e_1_2_8_182_2 doi: 10.1002/ange.202011388 – ident: e_1_2_8_96_1 doi: 10.1016/j.jcat.2017.10.027 – volume: 132 start-page: 16687 year: 2020 ident: e_1_2_8_150_2 publication-title: Angew. Chem. doi: 10.1002/ange.202003801 – ident: e_1_2_8_193_1 doi: 10.1039/C5TA07586F – ident: e_1_2_8_196_1 doi: 10.1038/ncomms9106 – ident: e_1_2_8_27_1 doi: 10.1149/1.2100463 – ident: e_1_2_8_208_1 doi: 10.1016/j.ijhydene.2020.01.241 – ident: e_1_2_8_57_1 doi: 10.3390/ma12081336 – ident: e_1_2_8_26_2 doi: 10.1038/s41929-018-0141-2 – ident: e_1_2_8_56_3 doi: 10.1002/ange.201804417 – ident: e_1_2_8_44_1 doi: 10.1007/s12274-012-0280-8 – ident: e_1_2_8_51_1 – ident: e_1_2_8_74_1 doi: 10.1351/pac199163050711 – ident: e_1_2_8_91_1 doi: 10.1021/acscatal.8b01046 – ident: e_1_2_8_11_2 doi: 10.1149/2.049306jes – ident: e_1_2_8_72_1 doi: 10.1002/9780470381588 – ident: e_1_2_8_82_1 – ident: e_1_2_8_25_2 doi: 10.1038/s41467-020-16237-1 – ident: e_1_2_8_55_2 doi: 10.1002/cssc.201800932 – ident: e_1_2_8_164_3 doi: 10.1002/ange.201905501 – ident: e_1_2_8_20_1 doi: 10.1002/anie.201701280 – ident: e_1_2_8_54_2 doi: 10.1021/acs.jpclett.5b01928 – ident: e_1_2_8_139_2 doi: 10.1021/ja400555q – ident: e_1_2_8_143_1 doi: 10.1002/anie.201914245 – volume-title: Auf dem Weg zu Einer Treibhausgasneutralen Chemischen Industrie in Deutschland : Eine Studie von DECHEMA und FutureCamp für den VCI year: 2019 ident: e_1_2_8_192_1 – ident: e_1_2_8_67_1 doi: 10.1038/srep13801 – ident: e_1_2_8_107_1 doi: 10.1126/science.aaf1525 – ident: e_1_2_8_34_1 doi: 10.1021/jacs.8b04546 – ident: e_1_2_8_73_1 doi: 10.1038/s41467-018-08144-3 – ident: e_1_2_8_5_2 doi: 10.1002/ange.201909475 – ident: e_1_2_8_177_1 – ident: e_1_2_8_118_1 doi: 10.1039/a902808k – ident: e_1_2_8_38_1 – ident: e_1_2_8_141_2 doi: 10.1002/ange.201907595 – ident: e_1_2_8_187_2 doi: 10.1021/acscatal.9b01985 – ident: e_1_2_8_162_1 doi: 10.1021/jp3007415 – ident: e_1_2_8_190_1 – ident: e_1_2_8_13_1 doi: 10.1002/cssc.201701877 – ident: e_1_2_8_98_1 – ident: e_1_2_8_166_1 doi: 10.1016/0013-4686(66)80045-2 – ident: e_1_2_8_52_2 doi: 10.1002/cphc.201900511 – ident: e_1_2_8_152_1 doi: 10.1002/adfm.201303600 – ident: e_1_2_8_145_2 doi: 10.1002/anie.202013610 – ident: e_1_2_8_33_2 doi: 10.1038/s41467-017-01949-8 – ident: e_1_2_8_148_1 doi: 10.1021/acsaem.9b01183 – ident: e_1_2_8_59_1 doi: 10.1002/celc.201402262 – ident: e_1_2_8_80_1 doi: 10.1039/C8EE00927A – ident: e_1_2_8_172_1 doi: 10.1002/anie.202101906 – ident: e_1_2_8_146_2 doi: 10.1002/anie.202102452 – ident: e_1_2_8_131_2 doi: 10.1002/cssc.201500872 – ident: e_1_2_8_141_1 doi: 10.1002/anie.201907595 – ident: e_1_2_8_81_2 doi: 10.1002/ange.201608601 – ident: e_1_2_8_93_1 – ident: e_1_2_8_183_2 doi: 10.1002/ange.201915803 – ident: e_1_2_8_200_1 doi: 10.1039/C9TA00023B – ident: e_1_2_8_100_2 doi: 10.1002/smll.201700806 – ident: e_1_2_8_90_1 doi: 10.1126/science.1212858 – ident: e_1_2_8_89_1 doi: 10.1002/anie.201810104 – ident: e_1_2_8_176_1 doi: 10.1021/acscentsci.9b00053 – ident: e_1_2_8_127_1 doi: 10.1021/acs.chemmater.6b02645 – ident: e_1_2_8_143_2 doi: 10.1002/ange.201914245 – ident: e_1_2_8_31_2 doi: 10.1021/jacs.0c04867 – ident: e_1_2_8_70_1 doi: 10.1088/2515-7655/abee33 – ident: e_1_2_8_20_2 doi: 10.1002/ange.201701280 – ident: e_1_2_8_64_2 doi: 10.1038/s41467-018-05019-5 – ident: e_1_2_8_15_1 doi: 10.1126/science.1162018 – ident: e_1_2_8_53_2 doi: 10.1021/acscatal.7b01070 – ident: e_1_2_8_60_1 doi: 10.1007/s10008-016-3280-x – ident: e_1_2_8_174_1 doi: 10.1002/adma.201804341 – ident: e_1_2_8_140_2 doi: 10.1002/anie.201900428 – ident: e_1_2_8_49_2 doi: 10.1149/2.0271611jes – ident: e_1_2_8_92_1 doi: 10.1007/978-3-662-09291-0_4 – ident: e_1_2_8_138_2 doi: 10.1021/cs500713d – ident: e_1_2_8_5_1 doi: 10.1002/anie.201909475 – ident: e_1_2_8_65_2 doi: 10.1002/adma.201901139 – ident: e_1_2_8_37_1 doi: 10.1126/science.aad4998 – ident: e_1_2_8_151_1 doi: 10.1002/smll.201904903 – ident: e_1_2_8_3_1 doi: 10.1038/s41558-020-0891-0 – ident: e_1_2_8_50_1 doi: 10.1021/acsaem.9b01952 – ident: e_1_2_8_136_1 doi: 10.3390/catal9110926 – ident: e_1_2_8_154_1 – ident: e_1_2_8_117_2 doi: 10.1002/ejic.201801162 – ident: e_1_2_8_202_1 doi: 10.1039/C9CY02345C – ident: e_1_2_8_103_2 doi: 10.1021/acsenergylett.8b00908 – ident: e_1_2_8_115_1 – ident: e_1_2_8_145_3 doi: 10.1002/ange.202013610 – ident: e_1_2_8_172_2 doi: 10.1002/ange.202101906 – ident: e_1_2_8_41_2 doi: 10.1002/anie.201813052 – ident: e_1_2_8_175_1 doi: 10.1038/s41467-019-13415-8 – ident: e_1_2_8_81_1 doi: 10.1002/anie.201608601 – ident: e_1_2_8_66_1 doi: 10.1021/acscatal.6b02479 – ident: e_1_2_8_86_1 doi: 10.1038/s41586-020-2908-2 – ident: e_1_2_8_36_1 doi: 10.1002/cctc.201000397 – ident: e_1_2_8_56_2 doi: 10.1002/anie.201804417 – ident: e_1_2_8_144_1 – ident: e_1_2_8_109_1 doi: 10.1002/adma.201700404 – ident: e_1_2_8_163_1 – ident: e_1_2_8_89_2 doi: 10.1002/ange.201810104 – ident: e_1_2_8_171_1 doi: 10.1002/adfm.201904020 – ident: e_1_2_8_62_1 doi: 10.1021/acsenergylett.9b00686 – ident: e_1_2_8_133_1 doi: 10.1038/nmat3313 – ident: e_1_2_8_180_1 doi: 10.3390/molecules23040903 – ident: e_1_2_8_203_1 doi: 10.1038/s41467-020-18891-x – ident: e_1_2_8_189_1 doi: 10.1016/j.resconrec.2020.104743 – ident: e_1_2_8_157_1 – ident: e_1_2_8_14_1 doi: 10.1021/jacs.5b00281 – ident: e_1_2_8_114_1 doi: 10.1002/adfm.201901217 – ident: e_1_2_8_99_2 doi: 10.1002/aenm.201600621 – ident: e_1_2_8_87_1 doi: 10.1038/nchem.1069 – ident: e_1_2_8_1_1 doi: 10.1126/science.aav3506 – ident: e_1_2_8_110_1 – ident: e_1_2_8_94_2 doi: 10.1002/cssc.201903186 – ident: e_1_2_8_191_1 – ident: e_1_2_8_116_2 doi: 10.1021/cs500606g – ident: e_1_2_8_125_1 doi: 10.1016/0022-0728(82)85022-5 – ident: e_1_2_8_169_1 doi: 10.1016/j.apcatb.2018.11.046 – ident: e_1_2_8_101_1 doi: 10.1002/cctc.201901151 – ident: e_1_2_8_186_1 – ident: e_1_2_8_76_1 doi: 10.1016/j.jpowsour.2007.08.053 – ident: e_1_2_8_165_2 doi: 10.1021/ja502379c – ident: e_1_2_8_22_1 doi: 10.1039/C7TA10728E – ident: e_1_2_8_19_1 doi: 10.1002/aenm.201900796 – ident: e_1_2_8_9_1 – ident: e_1_2_8_23_1 – ident: e_1_2_8_97_1 doi: 10.1126/science.1258307 – ident: e_1_2_8_153_1 doi: 10.1021/acs.jpcc.5b00105 – ident: e_1_2_8_206_1 doi: 10.1038/ncomms5477 – ident: e_1_2_8_61_1 doi: 10.1039/C7EE03457A – ident: e_1_2_8_182_1 doi: 10.1002/anie.202011388 – ident: e_1_2_8_198_1 doi: 10.1039/C5RA01739D – ident: e_1_2_8_79_1 doi: 10.1039/C9TA07835E – ident: e_1_2_8_158_2 doi: 10.1021/ja405351s – ident: e_1_2_8_108_1 doi: 10.1126/science.1233638 – ident: e_1_2_8_207_1 doi: 10.1038/s41467-019-13052-1 – ident: e_1_2_8_12_1 doi: 10.1016/j.jelechem.2016.04.033 – ident: e_1_2_8_8_1 doi: 10.1021/ja510442p – ident: e_1_2_8_95_2 doi: 10.1021/jacs.0c00257 – ident: e_1_2_8_135_1 doi: 10.1021/cr050182l – ident: e_1_2_8_6_1 doi: 10.1021/acs.chemrev.6b00398 – ident: e_1_2_8_47_1 – ident: e_1_2_8_147_1 doi: 10.1021/acscatal.7b03509 – ident: e_1_2_8_173_2 doi: 10.1002/ange.202101698 – ident: e_1_2_8_88_1 doi: 10.1021/ja405997s – ident: e_1_2_8_83_2 doi: 10.1016/j.ijhydene.2013.04.100 – ident: e_1_2_8_149_1 doi: 10.1021/ja200559j – ident: e_1_2_8_71_1 doi: 10.1021/acsaem.9b01965 – ident: e_1_2_8_140_3 doi: 10.1002/ange.201900428 – ident: e_1_2_8_40_2 doi: 10.1021/acsaem.8b01769 – ident: e_1_2_8_197_1 doi: 10.1007/s10008-013-2313-y – ident: e_1_2_8_178_2 doi: 10.1002/anie.201905281 – ident: e_1_2_8_129_2 doi: 10.1021/cm5023163 – ident: e_1_2_8_134_1 doi: 10.1038/ncomms9625 – ident: e_1_2_8_68_1 doi: 10.1016/j.elecom.2008.02.003 – ident: e_1_2_8_142_1 doi: 10.1002/smtd.201800001 – ident: e_1_2_8_106_1 doi: 10.1021/ja4027715 – ident: e_1_2_8_159_2 doi: 10.1021/jacs.7b07117 – ident: e_1_2_8_46_1 doi: 10.1021/acs.inorgchem.7b03168 – ident: e_1_2_8_63_1 – ident: e_1_2_8_122_2 doi: 10.1021/ja5096733 – ident: e_1_2_8_75_1 doi: 10.1016/j.joule.2018.05.003 – ident: e_1_2_8_181_1 doi: 10.1021/jacs.5b10699 – ident: e_1_2_8_112_2 doi: 10.1021/acs.chemmater.5b03148 – ident: e_1_2_8_121_2 doi: 10.1021/acsami.6b12005 – ident: e_1_2_8_184_1 doi: 10.1002/anie.201903200 – ident: e_1_2_8_167_1 doi: 10.1007/s10008-007-0484-0 – ident: e_1_2_8_205_1 doi: 10.1007/s12274-019-2389-5 – ident: e_1_2_8_113_2 doi: 10.1039/C6CS00328A – ident: e_1_2_8_78_1 doi: 10.1021/jacs.6b00332 – ident: e_1_2_8_168_1 doi: 10.1515/zpch-2019-1466 – ident: e_1_2_8_119_1 – ident: e_1_2_8_161_1 doi: 10.1016/j.jelechem.2005.11.013 – ident: e_1_2_8_84_2 doi: 10.1016/j.ijhydene.2013.05.099 – ident: e_1_2_8_173_1 doi: 10.1002/anie.202101698 – ident: e_1_2_8_29_1 – ident: e_1_2_8_39_2 doi: 10.1021/acsami.7b02571 – ident: e_1_2_8_124_1 doi: 10.1021/ja01953a010 – ident: e_1_2_8_102_1 – ident: e_1_2_8_150_1 doi: 10.1002/anie.202003801 – ident: e_1_2_8_85_2 doi: 10.1016/j.ijhydene.2013.06.034 – ident: e_1_2_8_130_2 doi: 10.1021/cm5005888 – ident: e_1_2_8_104_2 doi: 10.1002/aenm.201502313 – ident: e_1_2_8_199_1 doi: 10.1016/j.ijhydene.2015.06.105 – ident: e_1_2_8_179_2 doi: 10.1021/ja511559d – ident: e_1_2_8_137_1 – ident: e_1_2_8_204_1 doi: 10.1039/C8NR09740B – ident: e_1_2_8_195_1 doi: 10.1021/jp904022e – ident: e_1_2_8_160_2 doi: 10.1016/j.elecom.2009.03.034 – ident: e_1_2_8_178_3 doi: 10.1002/ange.201905281 – ident: e_1_2_8_188_2 doi: 10.1038/s41467-019-12994-w – ident: e_1_2_8_77_1 doi: 10.1016/j.jelechem.2017.10.058 – ident: e_1_2_8_32_2 doi: 10.1038/s41598-018-37307-x – ident: e_1_2_8_35_1 doi: 10.1038/s41467-020-16558-1 – ident: e_1_2_8_43_2 doi: 10.1021/acscatal.9b01940 – ident: e_1_2_8_2_1 – ident: e_1_2_8_28_1 doi: 10.1021/ja407115p – volume: 1 start-page: 5145 year: 2018 ident: e_1_2_8_17_1 publication-title: ACS Appl. Energy Mater. – ident: e_1_2_8_10_2 doi: 10.1007/s40820-020-00469-3 – ident: e_1_2_8_132_2 doi: 10.1002/celc.201900722 – ident: e_1_2_8_164_2 doi: 10.1002/anie.201905501 – ident: e_1_2_8_45_1 doi: 10.1016/j.est.2019.03.001 – ident: e_1_2_8_21_1 doi: 10.1021/acsnano.7b05481 – ident: e_1_2_8_42_2 doi: 10.1021/acscatal.7b00632 – ident: e_1_2_8_24_2 doi: 10.1038/s41560-020-0576-y – ident: e_1_2_8_123_2 doi: 10.1039/C5TA02988K – ident: e_1_2_8_128_1 – ident: e_1_2_8_170_1 doi: 10.1038/s41467-019-09845-z – ident: e_1_2_8_185_1 |
| SSID | ssj0028806 |
| Score | 2.744884 |
| SecondaryResourceType | review_article |
| Snippet | Water electrolysis that results in green hydrogen is the key process towards a circular economy. The supply of sustainable electricity and availability of... |
| SourceID | pubmedcentral proquest pubmed crossref wiley |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | e202103824 |
| SubjectTerms | Catalysts Circular economy Cobalt Crystal structure Electrocatalysts Electrolysis Electron spin Green hydrogen Heavy metals Hydrogen Hydrogen production Iron Nickel Noble metals Oxygen oxygen evolution reaction Oxygen evolution reactions Principles Review Reviews water splitting |
| Title | Principles of Water Electrolysis and Recent Progress in Cobalt‐, Nickel‐, and Iron‐Based Oxides for the Oxygen Evolution Reaction |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202103824 https://www.ncbi.nlm.nih.gov/pubmed/34138511 https://www.proquest.com/docview/2614222280 https://www.proquest.com/docview/2542360199 https://pubmed.ncbi.nlm.nih.gov/PMC9291824 |
| Volume | 61 |
| WOSCitedRecordID | wos000675252200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1521-3773 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0028806 issn: 1433-7851 databaseCode: DRFUL dateStart: 19980101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BiwQXyrtpS2UkJC5EdRwnto9l2RWVqmWFKOwtsh1HXVFlq91tBTduXPmN_SWMnQddVQgJLlGsjBPHnom_cTzfALxUtJImz1Wcaa5iLvFMlzmNbUVtXiFmFoHt89OxGI_ldKom16L4G36IfsHNW0b4XnsD12Z58Js01Edgo3_HPMM347dhM0lS6ZM3MD7pXS7Uzia-KE1jn4a-o22k7GC9_vq0dANr3twyeR3KhrlotPX_b_EA7rc4lBw2ivMQbrn6EdwddOnfHsOPSbcMvyTzinxGTLogwyZpTqAxIbouCaJObCqZ-F1e-M0ks5oMPMPI6ur7z9cE1eyLOwunXvhoMa-x8AYnzpK8_zor8daImQliUCx-Q1Umw8vWFPDOTcjFEzgZDT8O3sVt1obY8lzy2AjKTSK0sNSyStHMIOSrbK41OkeK2UwmueZO6BwN1GqFiAgxpikzwbEPXJo-hY16XrttIE6kRjqrXOosL5lRVBtNnVFSlNwYFkHcDVphW0pzn1njrGjImFnhu7fouzeCV738eUPm8UfJvU4HitaolwU6m37BjEkawYv-Mg6L_8eiaze_QJkM8Sk6uUpF8KxRmf5RHjB4gBuBWFOmXsBTfa9fqWengfIbQWwSmsWCMv2l9cXh-GjYl3b-pdIu3GM-0CNsuNuDjdXiwj2HO_ZyNVsu9oOR4VFM5T5svv0wOjn-BYZ5LOc |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwEB1BQSqX8lkIFDASEheieh0njo9ltVVXLMseCvQW2Y4jVlRZtLutyo0bV34jv4QZ5wNWFUJC3GJlkvU6b-I3jucNwHPNq9xmmY5TI3UsczwyZcZjV3GXVciZVVD7fD9R02l-cqJn7W5CyoVp9CH6BTfyjPC-JgenBen9X6qhlIKNAZ4giW8hr8I1iVMNQV3IWR9zITybBKMkiakOfafbyMX-5vWb89Ilsnl5z-TvXDZMRoc3_8PfuAU7LRNlBw10bsMVX9-B7WFXAO4ufJt1C_ErtqjYB2SlSzZqyuYEIRNm6pIh78S-shnt88K3JpvXbEgaI-sfX7-_ZAi0T_40HJLxeLmosfEKp86Svb2Yl3hrZM0MWSg2vyCY2ei8dQa8c5N0cQ_eHY6Oh0dxW7chdjLLZWwVl3agjHLciUrz1CLpq1xmDIZHWrg0H2RGemUydFFnNHIiZJm2TJXEMfBJsgtb9aL2D4B5ldjcO-0T72QprObGGu6tzlUprRURxN1TK1wrak61NU6LRo5ZFDS8RT-8Ebzo7T83ch5_tNzrQFC0br0qMNykJTOR8wie9afxsdBXFlP7xRnapMhQMczVOoL7DWb6nyLKQBQ3ArWBpt6AxL43z9Tzj0H0G2nsIHRLBDT9pffFwXQ86lsP_-Wip7B9dPxmUkzG09eP4IagtI-w_W4PttbLM_8Yrrvz9Xy1fBI87ifjZC5K |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB7BFgEX3o9AASMhcSGq13Hi-Nhud8WK1bJCFHqLbMcRK6pstbut4MaNa39jf0ln8oJVhZAQN1ueOI4zE3_jeL4BeKV5kdok0WFspA5liiWTJzx0BXdJgZhZVWyfnyZqOk0PD_WsOU1IsTA1P0S34UaWUX2vycD9cV7s_GINpRBsdPAEUXwLeRW2JGWS6cHW_ofRwaTzulBB6xCjKAopE33L3MjFzmYPmyvTJbh5-dTk72i2Wo5Gt__Dg9yBWw0WZbu18tyFK768BzcGbQq4-_Bz1m7Fr9iiYJ8Rly7ZsE6cU1GZMFPmDJEnjpXN6KQXfjfZvGQDYhlZn_84e8NQ1b76o6pIwuPlosTKHi6eOXv_bZ5j14ibGeJQrH5HdWbD08YcsOc67OIBHIyGHwdvwyZzQ-hkksrQKi5tXxnluBOF5rFF2Fe4xBh0kLRwcdpPjPTKJGikzmhERYgzbR4riXPgo-gh9MpF6R8D8yqyqXfaR97JXFjNjTXcW52qXForAgjbt5a5htacsmscZTUhs8hoerNuegN43ckf14Qef5TcbpUgawx7laHDSZtmIuUBvOya8bXQfxZT-sUJysSIUdHR1TqAR7XOdLci0EAgNwC1oU2dANF9b7aU8y8V7TcC2X41LFFp019Gn-1Ox8Ou9uRfLnoB12f7o2wynr57CjcFxX1U5--2obdenvhncM2druer5fPG5C4ApbEvYA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Principles+of+Water+Electrolysis+and+Recent+Progress+in+Cobalt-%2C+Nickel-%2C+and+Iron-Based+Oxides+for+the+Oxygen+Evolution+Reaction&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Yu%2C+Mingquan&rft.au=Budiyanto%2C+Eko&rft.au=T%C3%BCys%C3%BCz%2C+Harun&rft.date=2022-01-03&rft.eissn=1521-3773&rft.volume=61&rft.issue=1&rft.spage=e202103824&rft_id=info:doi/10.1002%2Fanie.202103824&rft_id=info%3Apmid%2F34138511&rft.externalDocID=34138511 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |