Deep learning based digital cell profiles for risk stratification of urine cytology images

Urine cytology is a test for the detection of high‐grade bladder cancer. In clinical practice, the pathologist would manually scan the sample under the microscope to locate atypical and malignant cells. They would assess the morphology of these cells to make a diagnosis. Accurate identification of a...

Full description

Saved in:
Bibliographic Details
Published in:Cytometry. Part A Vol. 99; no. 7; pp. 732 - 742
Main Authors: Awan, Ruqayya, Benes, Ksenija, Azam, Ayesha, Song, Tzu‐Hsi, Shaban, Muhammad, Verrill, Clare, Tsang, Yee Wah, Snead, David, Minhas, Fayyaz, Rajpoot, Nasir
Format: Journal Article
Language:English
Published: Hoboken, USA John Wiley & Sons, Inc 01.07.2021
Wiley Subscription Services, Inc
Subjects:
ISSN:1552-4922, 1552-4930, 1552-4930
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Urine cytology is a test for the detection of high‐grade bladder cancer. In clinical practice, the pathologist would manually scan the sample under the microscope to locate atypical and malignant cells. They would assess the morphology of these cells to make a diagnosis. Accurate identification of atypical and malignant cells in urine cytology is a challenging task and is an essential part of identifying different diagnosis with low‐risk and high‐risk malignancy. Computer‐assisted identification of malignancy in urine cytology can be complementary to the clinicians for treatment management and in providing advice for carrying out further tests. In this study, we presented a method for identifying atypical and malignant cells followed by their profiling to predict the risk of diagnosis automatically. For cell detection and classification, we employed two different deep learning‐based approaches. Based on the best performing network predictions at the cell level, we identified low‐risk and high‐risk cases using the count of atypical cells and the total count of atypical and malignant cells. The area under the receiver operating characteristic (ROC) curve shows that a total count of atypical and malignant cells is comparably better at diagnosis as compared to the count of malignant cells only. We obtained area under the ROC curve with the count of malignant cells and the total count of atypical and malignant cells as 0.81 and 0.83, respectively. Our experiments also demonstrate that the digital risk could be a better predictor of the final histopathology‐based diagnosis. We also analyzed the variability in annotations at both cell and whole slide image level and also explored the possible inherent rationales behind this variability.
AbstractList Urine cytology is a test for the detection of high-grade bladder cancer. In clinical practice, the pathologist would manually scan the sample under the microscope to locate atypical and malignant cells. They would assess the morphology of these cells to make a diagnosis. Accurate identification of atypical and malignant cells in urine cytology is a challenging task and is an essential part of identifying different diagnosis with low-risk and high-risk malignancy. Computer-assisted identification of malignancy in urine cytology can be complementary to the clinicians for treatment management and in providing advice for carrying out further tests. In this study, we presented a method for identifying atypical and malignant cells followed by their profiling to predict the risk of diagnosis automatically. For cell detection and classification, we employed two different deep learning-based approaches. Based on the best performing network predictions at the cell level, we identified low-risk and high-risk cases using the count of atypical cells and the total count of atypical and malignant cells. The area under the receiver operating characteristic (ROC) curve shows that a total count of atypical and malignant cells is comparably better at diagnosis as compared to the count of malignant cells only. We obtained area under the ROC curve with the count of malignant cells and the total count of atypical and malignant cells as 0.81 and 0.83, respectively. Our experiments also demonstrate that the digital risk could be a better predictor of the final histopathology-based diagnosis. We also analyzed the variability in annotations at both cell and whole slide image level and also explored the possible inherent rationales behind this variability.
Urine cytology is a test for the detection of high-grade bladder cancer. In clinical practice, the pathologist would manually scan the sample under the microscope to locate atypical and malignant cells. They would assess the morphology of these cells to make a diagnosis. Accurate identification of atypical and malignant cells in urine cytology is a challenging task and is an essential part of identifying different diagnosis with low-risk and high-risk malignancy. Computer-assisted identification of malignancy in urine cytology can be complementary to the clinicians for treatment management and in providing advice for carrying out further tests. In this study, we presented a method for identifying atypical and malignant cells followed by their profiling to predict the risk of diagnosis automatically. For cell detection and classification, we employed two different deep learning-based approaches. Based on the best performing network predictions at the cell level, we identified low-risk and high-risk cases using the count of atypical cells and the total count of atypical and malignant cells. The area under the receiver operating characteristic (ROC) curve shows that a total count of atypical and malignant cells is comparably better at diagnosis as compared to the count of malignant cells only. We obtained area under the ROC curve with the count of malignant cells and the total count of atypical and malignant cells as 0.81 and 0.83, respectively. Our experiments also demonstrate that the digital risk could be a better predictor of the final histopathology-based diagnosis. We also analyzed the variability in annotations at both cell and whole slide image level and also explored the possible inherent rationales behind this variability.Urine cytology is a test for the detection of high-grade bladder cancer. In clinical practice, the pathologist would manually scan the sample under the microscope to locate atypical and malignant cells. They would assess the morphology of these cells to make a diagnosis. Accurate identification of atypical and malignant cells in urine cytology is a challenging task and is an essential part of identifying different diagnosis with low-risk and high-risk malignancy. Computer-assisted identification of malignancy in urine cytology can be complementary to the clinicians for treatment management and in providing advice for carrying out further tests. In this study, we presented a method for identifying atypical and malignant cells followed by their profiling to predict the risk of diagnosis automatically. For cell detection and classification, we employed two different deep learning-based approaches. Based on the best performing network predictions at the cell level, we identified low-risk and high-risk cases using the count of atypical cells and the total count of atypical and malignant cells. The area under the receiver operating characteristic (ROC) curve shows that a total count of atypical and malignant cells is comparably better at diagnosis as compared to the count of malignant cells only. We obtained area under the ROC curve with the count of malignant cells and the total count of atypical and malignant cells as 0.81 and 0.83, respectively. Our experiments also demonstrate that the digital risk could be a better predictor of the final histopathology-based diagnosis. We also analyzed the variability in annotations at both cell and whole slide image level and also explored the possible inherent rationales behind this variability.
Author Minhas, Fayyaz
Awan, Ruqayya
Azam, Ayesha
Tsang, Yee Wah
Snead, David
Rajpoot, Nasir
Benes, Ksenija
Shaban, Muhammad
Verrill, Clare
Song, Tzu‐Hsi
Author_xml – sequence: 1
  givenname: Ruqayya
  orcidid: 0000-0002-2223-329X
  surname: Awan
  fullname: Awan, Ruqayya
  email: awanruqayya2@gmail.com
  organization: University of Warwick
– sequence: 2
  givenname: Ksenija
  surname: Benes
  fullname: Benes, Ksenija
  organization: The Royal Wolverhampton NHS Trust
– sequence: 3
  givenname: Ayesha
  surname: Azam
  fullname: Azam, Ayesha
  organization: University Hospitals Coventry and Warwickshire
– sequence: 4
  givenname: Tzu‐Hsi
  surname: Song
  fullname: Song, Tzu‐Hsi
  organization: Laboratory of Quantitative Cellular Imaging, Worcester Polytechnic Institute
– sequence: 5
  givenname: Muhammad
  surname: Shaban
  fullname: Shaban, Muhammad
  organization: University of Warwick
– sequence: 6
  givenname: Clare
  surname: Verrill
  fullname: Verrill, Clare
  organization: University of Oxford
– sequence: 7
  givenname: Yee Wah
  surname: Tsang
  fullname: Tsang, Yee Wah
  organization: University Hospitals Coventry and Warwickshire
– sequence: 8
  givenname: David
  surname: Snead
  fullname: Snead, David
  organization: University Hospitals Coventry and Warwickshire
– sequence: 9
  givenname: Fayyaz
  surname: Minhas
  fullname: Minhas, Fayyaz
  organization: University of Warwick
– sequence: 10
  givenname: Nasir
  surname: Rajpoot
  fullname: Rajpoot, Nasir
  organization: The Alan Turing Institute
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33486882$$D View this record in MEDLINE/PubMed
BookMark eNp9kTtPwzAURi0EAgpszMgSCwMtfuU1ovKUKnXpAovlONeVSxoXOxHqv8ehpUMlWGwP57M_nztAh41rAKFLSkaUEHan160bqRETnPIDdEqThA1Fwcnh7szYCRqEsCCEJ4SzY3TCucjTPGen6P0BYIVrUL6xzRyXKkCFKzu3raqxhrrGK--MrSFg4zz2Nnzg0HrVWmN1XF2DncGdtw3gvknt5mtsl2oO4RwdGVUHuNjuZ2j29Dgbvwwn0-fX8f1kqEWa8yFNM1XykhktDKQmKYsKMkp0JgqVKAJEaYBSaU7zKk1FomlJjCZ5lXNV8YqfoZvNtbHoZwehlUsb-uaqAdcFyUROMl7QjET0eg9duM43sZxkiUgLmhCaRepqS3XlEiq58vE_fi1_pUXgdgNo70LwYHYIJbKfiexNSCV_ZhJxtofraLdXFz3a-q-Q2IS-ovv1vw_I8dtser-JfQOfZ6Hl
CitedBy_id crossref_primary_10_1111_bju_15518
crossref_primary_10_1016_j_critrevonc_2022_103601
crossref_primary_10_1016_j_media_2024_103109
crossref_primary_10_1111_cyt_13412
crossref_primary_10_1016_j_jasc_2023_11_005
crossref_primary_10_1002_cncy_22725
crossref_primary_10_1016_j_jasc_2025_07_004
crossref_primary_10_1016_j_compbiomed_2024_108942
crossref_primary_10_3390_app13031763
crossref_primary_10_1007_s00345_025_05583_8
crossref_primary_10_1016_j_jpi_2023_100346
crossref_primary_10_1002_cyto_a_24832
crossref_primary_10_1002_cncy_22633
crossref_primary_10_3390_diagnostics13132308
crossref_primary_10_1016_j_compbiolchem_2025_108616
crossref_primary_10_1016_j_media_2022_102691
crossref_primary_10_3390_jcm13237110
crossref_primary_10_1007_s00761_024_01482_6
crossref_primary_10_3390_s24247873
crossref_primary_10_1002_INMD_20230013
crossref_primary_10_3390_cancers16051064
crossref_primary_10_1002_cncy_22615
crossref_primary_10_2196_56946
crossref_primary_10_1016_j_euf_2025_07_011
crossref_primary_10_1007_s11654_024_00572_6
crossref_primary_10_1109_ACCESS_2024_3385864
crossref_primary_10_1016_j_jasc_2024_09_001
crossref_primary_10_3390_cancers14143529
crossref_primary_10_1016_j_euo_2023_11_009
Cites_doi 10.1002/dc.24476
10.1109/JBHI.2016.2519686
10.1109/CVPR.2017.195
10.1016/j.eururo.2016.06.010
10.1016/j.jasc.2018.02.005
10.1613/jair.953
10.3390/app8091608
10.1002/cncy.22176
10.4103/cytojournal.cytojournal_12_17
10.4103/cytojournal.cytojournal_30_19
10.1042/BSR20180289
10.1109/CVPRW.2016.172
10.1159/000446270
10.4103/2153-3539.124015
10.1109/CVPR.2016.91
10.1007/978-3-319-22864-8
10.1002/cncy.22099
10.1109/CVPR.2014.81
10.1109/JBHI.2017.2705583
10.1109/ICCV.2017.324
10.1016/j.neucom.2019.06.086
10.1109/TSMC.1979.4310076
10.1007/978-3-319-46448-0_2
10.1109/ISBI.2016.7493244
10.1109/ICCV.2015.169
10.1016/j.ijmedinf.2018.11.010
ContentType Journal Article
Copyright 2021 The Authors. published by Wiley Periodicals LLC. on behalf of International Society for Advancement of Cytometry.
2021 The Authors. Cytometry Part A published by Wiley Periodicals LLC. on behalf of International Society for Advancement of Cytometry.
2021. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2021 The Authors. published by Wiley Periodicals LLC. on behalf of International Society for Advancement of Cytometry.
– notice: 2021 The Authors. Cytometry Part A published by Wiley Periodicals LLC. on behalf of International Society for Advancement of Cytometry.
– notice: 2021. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7TK
8FD
FR3
P64
7X8
DOI 10.1002/cyto.a.24313
DatabaseName Wiley-Blackwell Open Access Titles
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Neurosciences Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE
CrossRef

Engineering Research Database
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1552-4930
EndPage 742
ExternalDocumentID 33486882
10_1002_cyto_a_24313
CYTOA24313
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Warwick Impact Fund
– fundername: UK Research and Innovation
– fundername: Engineering and Physical Sciences Research Council
  funderid: EP/N510129/1
– fundername: Engineering and Physical Sciences Research Council
  grantid: EP/N510129/1
– fundername: Medical Research Council
  grantid: MR/P015476/1
GroupedDBID ---
-~X
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OC
24P
2WC
31~
33P
3SF
4.4
4ZD
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BAWUL
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CO8
CS3
D-E
D-F
DCZOG
DIK
DPXWK
DR2
DRFUL
DRSTM
DU5
E3Z
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OK1
P2P
P2W
P2X
P4D
Q.N
QB0
QRW
R.K
RNS
ROL
RWI
SUPJJ
SV3
UB1
V2E
W8V
W99
WBKPD
WIH
WIK
WIN
WJL
WNSPC
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XV2
ZZTAW
~IA
~KM
~WT
AAMMB
AAYXX
AEFGJ
AEYWJ
AGHNM
AGXDD
AGYGG
AIDQK
AIDYY
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7TK
8FD
FR3
P64
7X8
ID FETCH-LOGICAL-c4683-167ab3b2fc4fe6f5b9de710c749a5a0e0aceebac318d6645c1b0fc08d83ad3d3
IEDL.DBID 24P
ISICitedReferencesCount 23
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000619856200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1552-4922
1552-4930
IngestDate Thu Oct 02 07:09:21 EDT 2025
Fri Jul 25 21:17:18 EDT 2025
Mon Jul 21 05:35:28 EDT 2025
Sat Nov 29 01:52:12 EST 2025
Tue Nov 18 22:29:04 EST 2025
Wed Jan 22 16:28:57 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords The Paris System
deep learning
urine cytology
cell classification
cell segmentation
cell detection
digital risk
oversampling
Language English
License Attribution
2021 The Authors. Cytometry Part A published by Wiley Periodicals LLC. on behalf of International Society for Advancement of Cytometry.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4683-167ab3b2fc4fe6f5b9de710c749a5a0e0aceebac318d6645c1b0fc08d83ad3d3
Notes Funding information
Warwick Impact Fund; Engineering and Physical Sciences Research Council, Grant/Award Number: EP/N510129/1; UK Research and Innovation
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-2223-329X
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcyto.a.24313
PMID 33486882
PQID 2546915017
PQPubID 2045167
PageCount 11
ParticipantIDs proquest_miscellaneous_2480739170
proquest_journals_2546915017
pubmed_primary_33486882
crossref_primary_10_1002_cyto_a_24313
crossref_citationtrail_10_1002_cyto_a_24313
wiley_primary_10_1002_cyto_a_24313_CYTOA24313
PublicationCentury 2000
PublicationDate July 2021
PublicationDateYYYYMMDD 2021-07-01
PublicationDate_xml – month: 07
  year: 2021
  text: July 2021
PublicationDecade 2020
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: United States
– name: Hoboken
PublicationTitle Cytometry. Part A
PublicationTitleAlternate Cytometry A
PublicationYear 2021
Publisher John Wiley & Sons, Inc
Wiley Subscription Services, Inc
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley Subscription Services, Inc
References 2002; 16
2013; 4
2017; 21
2019; 16
2019; 127
2019; 122
2019; 365
2018; 7
2018; 8
2017; 71
2017; 14
2020
2016; 21
2020; 48
2009; 344
2017
2016
2016; 60
2015
2014
2013
2017; 783
2012; 5
2018; 38
1979; 9
e_1_2_9_30_1
e_1_2_9_31_1
e_1_2_9_10_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_12_1
e_1_2_9_33_1
Reid MD (e_1_2_9_34_1) 2012; 5
e_1_2_9_15_1
e_1_2_9_14_1
e_1_2_9_17_1
e_1_2_9_16_1
e_1_2_9_19_1
e_1_2_9_18_1
e_1_2_9_20_1
e_1_2_9_22_1
e_1_2_9_21_1
e_1_2_9_23_1
e_1_2_9_8_1
e_1_2_9_7_1
e_1_2_9_6_1
e_1_2_9_5_1
e_1_2_9_4_1
e_1_2_9_3_1
e_1_2_9_2_1
e_1_2_9_9_1
e_1_2_9_26_1
Żejmo M (e_1_2_9_11_1) 2017
e_1_2_9_25_1
Kaufman L (e_1_2_9_24_1) 2009
e_1_2_9_28_1
e_1_2_9_27_1
e_1_2_9_29_1
References_xml – volume: 7
  start-page: 174
  issue: 4
  year: 2018
  end-page: 84
  article-title: Paris interobserver reproducibility study (PIRST)
  publication-title: J Am Soc Cytopathol
– volume: 127
  start-page: 658
  issue: 10
  year: 2019
  end-page: 66
  article-title: Performance of an artificial intelligence algorithm for reporting urine cytopathology
  publication-title: Cancer Cytopathol
– start-page: 779
  year: 2016
  end-page: 788
– start-page: 21
  year: 2016
  end-page: 37
– volume: 365
  start-page: 157
  year: 2019
  end-page: 70
  article-title: Accurate segmentation of overlapping cells in cervical cytology with deep convolutional neural networks
  publication-title: Neurocomputing
– volume: 14
  start-page: 17
  year: 2017
  article-title: Interobserver reproducibility of the Paris system for reporting urinary cytology
  publication-title: Cytojournal
– start-page: 63
  year: 2016
  end-page: 69
– start-page: 1251
  year: 2017
  end-page: 1258
– volume: 60
  start-page: 185
  issue: 3
  year: 2016
  end-page: 97
  article-title: The Paris system for reporting urinary cytology: the quest to develop a standardized terminology
  publication-title: Acta Cytol
– year: 2016
– volume: 5
  start-page: 882
  issue: 9
  year: 2012
  end-page: 91
  article-title: Accuracy of grading of urothelial carcinoma on urine cytology: an analysis of interobserver and intraobserver agreement
  publication-title: Int J Clin Exp Pathol
– volume: 9
  start-page: 62
  issue: 1
  year: 1979
  end-page: 6
  article-title: A threshold selection method from gray‐level histograms
  publication-title: IEEE Trans Syst Man Cybern
– volume: 122
  start-page: 13
  year: 2019
  end-page: 9
  article-title: Nasal cytology with deep learning techniques
  publication-title: Int J Med Inform
– volume: 783
  start-page: 12060
  year: 2017
– volume: 21
  start-page: 1633
  issue: 6
  year: 2017
  end-page: 43
  article-title: DeepPap: deep convolutional networks for cervical cell classification
  publication-title: IEEE J Biomed Health Inform
– start-page: 2980
  year: 2017
  end-page: 2988
– volume: 16
  start-page: 21
  year: 2019
  article-title: Impact of the Paris system for reporting urine cytopathology on predictive values of the equivocal diagnostic categories and interobserver agreement
  publication-title: CytoJournal
– volume: 344
  year: 2009
– start-page: 1440
  year: 2015
  end-page: 1448
– volume: 48
  start-page: 979
  issue: 11
  year: 2020
  end-page: 85
  article-title: Interobserver reproducibility of the Paris system of reporting urine cytology on cytocentrifuged samples
  publication-title: Diagn Cytopathol
– volume: 16
  start-page: 321
  year: 2002
  end-page: 57
  article-title: SMOTE: synthetic minority over‐sampling technique
  publication-title: J Artif Intell Res
– start-page: 91
  year: 2015
  end-page: 99
– year: 2020
– volume: 38
  issue: 3
  year: 2018
  article-title: Automatic classification of ovarian cancer types from cytological images using deep convolutional neural networks
  publication-title: Biosci Rep
– start-page: 379
  year: 2016
  end-page: 387
– volume: 71
  start-page: 96
  issue: 1
  year: 2017
  end-page: 108
  article-title: Bladder cancer incidence and mortality: a global overview and recent trends
  publication-title: Eur Urol
– volume: 4
  start-page: 38
  year: 2013
  article-title: Optimal z‐axis scanning parameters for gynecologic cytology specimens
  publication-title: J Pathol Inform
– start-page: 201
  year: 2016
  end-page: 204
– volume: 21
  start-page: 441
  issue: 2
  year: 2016
  end-page: 50
  article-title: Evaluation of three algorithms for the segmentation of overlapping cervical cells
  publication-title: IEEE J Biomed Health Inform
– volume: 127
  start-page: 98
  issue: 2
  year: 2019
  end-page: 115
  article-title: Automating the Paris system for urine cytopathology—a hybrid deep‐learning and morphometric approach
  publication-title: Cancer Cytopathol
– start-page: 580
  year: 2014
  end-page: 587
– volume: 8
  start-page: 1608
  issue: 9
  year: 2018
  article-title: Detection and classification of overlapping cell nuclei in cytology effusion images using a double‐strategy random forest
  publication-title: App Sci
– year: 2013
– ident: e_1_2_9_10_1
  doi: 10.1002/dc.24476
– volume-title: Finding groups in data: an introduction to cluster analysis
  year: 2009
  ident: e_1_2_9_24_1
– ident: e_1_2_9_20_1
  doi: 10.1109/JBHI.2016.2519686
– ident: e_1_2_9_25_1
  doi: 10.1109/CVPR.2017.195
– ident: e_1_2_9_2_1
  doi: 10.1016/j.eururo.2016.06.010
– ident: e_1_2_9_8_1
  doi: 10.1016/j.jasc.2018.02.005
– volume: 5
  start-page: 882
  issue: 9
  year: 2012
  ident: e_1_2_9_34_1
  article-title: Accuracy of grading of urothelial carcinoma on urine cytology: an analysis of interobserver and intraobserver agreement
  publication-title: Int J Clin Exp Pathol
– ident: e_1_2_9_22_1
  doi: 10.1613/jair.953
– ident: e_1_2_9_18_1
  doi: 10.3390/app8091608
– ident: e_1_2_9_16_1
  doi: 10.1002/cncy.22176
– ident: e_1_2_9_7_1
  doi: 10.4103/cytojournal.cytojournal_12_17
– ident: e_1_2_9_4_1
– ident: e_1_2_9_32_1
– ident: e_1_2_9_9_1
  doi: 10.4103/cytojournal.cytojournal_30_19
– ident: e_1_2_9_14_1
  doi: 10.1042/BSR20180289
– ident: e_1_2_9_21_1
  doi: 10.1109/CVPRW.2016.172
– ident: e_1_2_9_5_1
  doi: 10.1159/000446270
– ident: e_1_2_9_3_1
  doi: 10.4103/2153-3539.124015
– ident: e_1_2_9_31_1
  doi: 10.1109/CVPR.2016.91
– start-page: 12060
  volume-title: Journal of physics: conference series
  year: 2017
  ident: e_1_2_9_11_1
– ident: e_1_2_9_6_1
  doi: 10.1007/978-3-319-22864-8
– ident: e_1_2_9_15_1
  doi: 10.1002/cncy.22099
– ident: e_1_2_9_27_1
  doi: 10.1109/CVPR.2014.81
– ident: e_1_2_9_12_1
  doi: 10.1109/JBHI.2017.2705583
– ident: e_1_2_9_30_1
– ident: e_1_2_9_33_1
  doi: 10.1109/ICCV.2017.324
– ident: e_1_2_9_19_1
  doi: 10.1016/j.neucom.2019.06.086
– ident: e_1_2_9_26_1
– ident: e_1_2_9_23_1
  doi: 10.1109/TSMC.1979.4310076
– ident: e_1_2_9_29_1
  doi: 10.1007/978-3-319-46448-0_2
– ident: e_1_2_9_17_1
  doi: 10.1109/ISBI.2016.7493244
– ident: e_1_2_9_28_1
  doi: 10.1109/ICCV.2015.169
– ident: e_1_2_9_13_1
  doi: 10.1016/j.ijmedinf.2018.11.010
SSID ssj0035032
Score 2.4450836
Snippet Urine cytology is a test for the detection of high‐grade bladder cancer. In clinical practice, the pathologist would manually scan the sample under the...
Urine cytology is a test for the detection of high-grade bladder cancer. In clinical practice, the pathologist would manually scan the sample under the...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 732
SubjectTerms Annotations
Bladder
cell classification
cell detection
cell segmentation
Cellular biology
Cytodiagnosis
Cytology
Deep Learning
Depth profiling
Diagnosis
Digital imaging
digital risk
Histopathology
Machine learning
Malignancy
Medical imaging
Morphology
oversampling
Risk
Risk Assessment
ROC Curve
The Paris System
Urine
urine cytology
Title Deep learning based digital cell profiles for risk stratification of urine cytology images
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcyto.a.24313
https://www.ncbi.nlm.nih.gov/pubmed/33486882
https://www.proquest.com/docview/2546915017
https://www.proquest.com/docview/2480739170
Volume 99
WOSCitedRecordID wos000619856200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Free Content
  customDbUrl:
  eissn: 1552-4930
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0035032
  issn: 1552-4922
  databaseCode: WIN
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1552-4930
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0035032
  issn: 1552-4922
  databaseCode: DRFUL
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9RAEB-0VeiL9as1WssK-iRpN7t7yeaxtD0U5Cxy4ulL2K-Ug_auNFeh_70zm71riyiILyEhk-yys_Oxw8z8AN4KizbOlnjIkdznyimd67IKuefe8yAoBdBEsIlqNNKTSX2SAm5UC9P3h1gF3Egyor4mATe2279pGuquF_M9syfQAsr7sF4UUhN0g1AnS00sBzwClFGXsVzVQqTEd_x-__bXd03Sb37mXbc12p3h5v_O-DE8Sh4nO-i3yBO4F2ZP4WGPQXn9DH4chXDBEnjEKSOr5pmfnhKYCKOwPkuw3h1D_5ZRKjrre-22KdzH5i2jmH1gNDT9lU3PUU11z2E8PB4ffsgT4ELuVKllXpSVsdKK1qk2lO3A1j6gB-IqVZuB4YEbNKnWONQDvizVwBWWt45rr6Xx0sstWJvNZ-EFsMIExb1F_ycYFapK-8KqUCP_qfReigzeL5e8cakZOWFinDV9G2XR0Iwb08TFyuDdivqib8LxB7qdJfeaJIpdQw3_a3R7iyqDN6vXKES0hGYW5ldIQ4X1Ek-uPIPtnuurgahUucRzSAZ5ZO5fZ9Acfh9_Poi3L_-R_hVsCMqXianAO7C2uLwKr-GB-7mYdpe7cWPjtZroXVg_-jL8-gmfvn0c_QLhXQBK
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dSxwxEB-sWtoXW-3XWrUp2Keymk1y-_EoVlFqTx8OavsS8rVy0N6Jdxb87zuTzV2VYqH4trCT3ZBkPjLM_H4A28Kij7MlXnIk97lyqs7rsgq5597zIKgE0ESyiarfr8_Pm7PEc0q9MB0-xDzhRpoR7TUpOCWkd_-ghrqb6XjH7Ah0gfIRLCmMNYi74etxf2aKZY9HhjKCGctVI0SqfMfxu7dH3_VJfwWad-PW6HgOnz14ys9hJcWcbK87JKuwEEZr8Lhjobx5Ad8_hXDJEn3EBSO_5pkfXhCdCKPEPkvE3hOGES6jYnTWoe22KeHHxi2jrH1g9Gv6Khv-REM1eQmDw4PB_lGeKBdyp8pa5kVZGSutaJ1qQ9n2bOMDxiCuUo3pGR64QadqjUNL4MtS9Vxheet47WtpvPTyFSyOxqPwBlhhguLeYgQUjApVVfvCqtDgCaDmeyky-Dhbc-0SHDmxYvzQHZCy0DRjbXRcrAw-zKUvOxiOe-Q2ZtunkzJONEH-Nxj4FlUG7-evUY1oCc0ojK9RhlrrJd5deQavu22f_4ialUu8iWSQx9395wz0_rfB6V58XP9P-Xfw5Gjw5USfHPc_v4WngqpnYmHwBixOr67DJiy7X9Ph5GornvLfq_ABCw
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dSxwxEB_s2RZfaj-srto2hfaprGaT3H48iufRUrlKuYLtS8jHrBzo3eGdgv-9md3cVSktFN8WdjYbksxHhpnfD-CDsMHH2TxcciT3qXKqTMu8wNRz7zkKKgE0DdlEMRiUp6fVSeQ5pV6YFh9imXAjzWjsNSk4Tn29_xs11N3MJ3tmTwQXKB_BqiIemQ6s9r73fxwvjLHs8oajjIDGUlUJEWvfwwj7d7-_75X-CDXvR66N6-mvP3jSz-FZjDrZQXtMXsAKjl_Ck5aH8uYV_OohTlkkkDhj5Nk886MzIhRhlNpnkdp7xkKMy6gcnbV4u3VM-bFJzShvj4x-TaOy0UUwVbMNGPaPhoef00i6kDqVlzLN8sJYaUXtVI153bWVxxCFuEJVpms4chPcqjUu2AKf56rrMstrx0tfSuOll6-hM56McQtYZlBxb0MMhEZhUZQ-swqrcAao_V6KBD4t1ly7CEhOvBjnuoVSFppmrI1uFiuBj0vpaQvE8Re53cX26aiOM02g_1UIfbMigffL10GRaAnNGCdXQYaa62W4vfIENtttX_6I2pXzcBdJIG12958z0Ic_h98Omsft_5R_B09Pen19_GXwdQfWBJXPNJXBu9CZX17hG3jsruej2eXbeMxvAUgKAbQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+learning+based+digital+cell+profiles+for+risk+stratification+of+urine+cytology+images&rft.jtitle=Cytometry.+Part+A&rft.au=Awan%2C+Ruqayya&rft.au=Benes%2C+Ksenija&rft.au=Azam%2C+Ayesha&rft.au=Song%2C+Tzu-Hsi&rft.date=2021-07-01&rft.eissn=1552-4930&rft.volume=99&rft.issue=7&rft.spage=732&rft_id=info:doi/10.1002%2Fcyto.a.24313&rft_id=info%3Apmid%2F33486882&rft.externalDocID=33486882
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1552-4922&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1552-4922&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1552-4922&client=summon