Evaluation of Diffusion Lesion Volume Measurements in Acute Ischemic Stroke Using Encoder-Decoder Convolutional Network

Background and Purpose- Automatic segmentation of cerebral infarction on diffusion-weighted imaging (DWI) is typically performed based on a fixed apparent diffusion coefficient (ADC) threshold. Fixed ADC threshold methods may not be accurate because ADC values vary over time after stroke onset. Deep...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Stroke (1970) Ročník 50; číslo 6; s. 1444
Hlavní autoři: Kim, Yoon-Chul, Lee, Ji-Eun, Yu, Inwu, Song, Ha-Na, Baek, In-Young, Seong, Joon-Kyung, Jeong, Han-Gil, Kim, Beom Joon, Nam, Hyo Suk, Chung, Jong-Won, Bang, Oh Young, Kim, Gyeong-Moon, Seo, Woo-Keun
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States 01.06.2019
Témata:
ISSN:1524-4628, 1524-4628
On-line přístup:Zjistit podrobnosti o přístupu
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Background and Purpose- Automatic segmentation of cerebral infarction on diffusion-weighted imaging (DWI) is typically performed based on a fixed apparent diffusion coefficient (ADC) threshold. Fixed ADC threshold methods may not be accurate because ADC values vary over time after stroke onset. Deep learning has the potential to improve the accuracy, provided that a large set of correctly annotated lesion data is used for training. The purpose of this study was to evaluate deep learning-based methods and compare them with commercial software in terms of lesion volume measurements. Methods- U-net, an encoder-decoder convolutional neural network, was adopted to train segmentation models. Two U-net models were developed: a U-net (DWI+ADC) model, trained on DWI and ADC data, and a U-net (DWI) model, trained on DWI data only. A total of 296 subjects were used for training and 134 for external validation. An expert neurologist manually delineated the stroke lesions on DWI images, which were used as the ground-truth reference. Lesion volume measurements from the U-net methods were compared against the expert's manual segmentation and Rapid Processing of Perfusion and Diffusion (RAPID; iSchemaView Inc) analysis. Results- In external validation, U-net (DWI+ADC) showed the highest intraclass correlation coefficient with manual segmentation (intraclass correlation coefficient, 1.0; 95% CI, 0.99-1.00) and sufficiently high correlation with the RAPID results (intraclass correlation coefficient, 0.99; 95% CI, 0.98-0.99). U-net (DWI+ADC) and manual segmentation resulted in the smallest 95% Bland-Altman limits of agreement (-5.31 to 4.93 mL) with a mean difference of -0.19 mL. Conclusions- The presented deep learning-based method is fully automatic and shows a high correlation of diffusion lesion volume measurements with manual segmentation and commercial software. The method has the potential to be used in patient selection for endovascular reperfusion therapy in the late time window of acute stroke.
AbstractList Background and Purpose- Automatic segmentation of cerebral infarction on diffusion-weighted imaging (DWI) is typically performed based on a fixed apparent diffusion coefficient (ADC) threshold. Fixed ADC threshold methods may not be accurate because ADC values vary over time after stroke onset. Deep learning has the potential to improve the accuracy, provided that a large set of correctly annotated lesion data is used for training. The purpose of this study was to evaluate deep learning-based methods and compare them with commercial software in terms of lesion volume measurements. Methods- U-net, an encoder-decoder convolutional neural network, was adopted to train segmentation models. Two U-net models were developed: a U-net (DWI+ADC) model, trained on DWI and ADC data, and a U-net (DWI) model, trained on DWI data only. A total of 296 subjects were used for training and 134 for external validation. An expert neurologist manually delineated the stroke lesions on DWI images, which were used as the ground-truth reference. Lesion volume measurements from the U-net methods were compared against the expert's manual segmentation and Rapid Processing of Perfusion and Diffusion (RAPID; iSchemaView Inc) analysis. Results- In external validation, U-net (DWI+ADC) showed the highest intraclass correlation coefficient with manual segmentation (intraclass correlation coefficient, 1.0; 95% CI, 0.99-1.00) and sufficiently high correlation with the RAPID results (intraclass correlation coefficient, 0.99; 95% CI, 0.98-0.99). U-net (DWI+ADC) and manual segmentation resulted in the smallest 95% Bland-Altman limits of agreement (-5.31 to 4.93 mL) with a mean difference of -0.19 mL. Conclusions- The presented deep learning-based method is fully automatic and shows a high correlation of diffusion lesion volume measurements with manual segmentation and commercial software. The method has the potential to be used in patient selection for endovascular reperfusion therapy in the late time window of acute stroke.
Background and Purpose- Automatic segmentation of cerebral infarction on diffusion-weighted imaging (DWI) is typically performed based on a fixed apparent diffusion coefficient (ADC) threshold. Fixed ADC threshold methods may not be accurate because ADC values vary over time after stroke onset. Deep learning has the potential to improve the accuracy, provided that a large set of correctly annotated lesion data is used for training. The purpose of this study was to evaluate deep learning-based methods and compare them with commercial software in terms of lesion volume measurements. Methods- U-net, an encoder-decoder convolutional neural network, was adopted to train segmentation models. Two U-net models were developed: a U-net (DWI+ADC) model, trained on DWI and ADC data, and a U-net (DWI) model, trained on DWI data only. A total of 296 subjects were used for training and 134 for external validation. An expert neurologist manually delineated the stroke lesions on DWI images, which were used as the ground-truth reference. Lesion volume measurements from the U-net methods were compared against the expert's manual segmentation and Rapid Processing of Perfusion and Diffusion (RAPID; iSchemaView Inc) analysis. Results- In external validation, U-net (DWI+ADC) showed the highest intraclass correlation coefficient with manual segmentation (intraclass correlation coefficient, 1.0; 95% CI, 0.99-1.00) and sufficiently high correlation with the RAPID results (intraclass correlation coefficient, 0.99; 95% CI, 0.98-0.99). U-net (DWI+ADC) and manual segmentation resulted in the smallest 95% Bland-Altman limits of agreement (-5.31 to 4.93 mL) with a mean difference of -0.19 mL. Conclusions- The presented deep learning-based method is fully automatic and shows a high correlation of diffusion lesion volume measurements with manual segmentation and commercial software. The method has the potential to be used in patient selection for endovascular reperfusion therapy in the late time window of acute stroke.Background and Purpose- Automatic segmentation of cerebral infarction on diffusion-weighted imaging (DWI) is typically performed based on a fixed apparent diffusion coefficient (ADC) threshold. Fixed ADC threshold methods may not be accurate because ADC values vary over time after stroke onset. Deep learning has the potential to improve the accuracy, provided that a large set of correctly annotated lesion data is used for training. The purpose of this study was to evaluate deep learning-based methods and compare them with commercial software in terms of lesion volume measurements. Methods- U-net, an encoder-decoder convolutional neural network, was adopted to train segmentation models. Two U-net models were developed: a U-net (DWI+ADC) model, trained on DWI and ADC data, and a U-net (DWI) model, trained on DWI data only. A total of 296 subjects were used for training and 134 for external validation. An expert neurologist manually delineated the stroke lesions on DWI images, which were used as the ground-truth reference. Lesion volume measurements from the U-net methods were compared against the expert's manual segmentation and Rapid Processing of Perfusion and Diffusion (RAPID; iSchemaView Inc) analysis. Results- In external validation, U-net (DWI+ADC) showed the highest intraclass correlation coefficient with manual segmentation (intraclass correlation coefficient, 1.0; 95% CI, 0.99-1.00) and sufficiently high correlation with the RAPID results (intraclass correlation coefficient, 0.99; 95% CI, 0.98-0.99). U-net (DWI+ADC) and manual segmentation resulted in the smallest 95% Bland-Altman limits of agreement (-5.31 to 4.93 mL) with a mean difference of -0.19 mL. Conclusions- The presented deep learning-based method is fully automatic and shows a high correlation of diffusion lesion volume measurements with manual segmentation and commercial software. The method has the potential to be used in patient selection for endovascular reperfusion therapy in the late time window of acute stroke.
Author Seong, Joon-Kyung
Nam, Hyo Suk
Jeong, Han-Gil
Bang, Oh Young
Chung, Jong-Won
Lee, Ji-Eun
Kim, Beom Joon
Kim, Gyeong-Moon
Yu, Inwu
Song, Ha-Na
Seo, Woo-Keun
Kim, Yoon-Chul
Baek, In-Young
Author_xml – sequence: 1
  givenname: Yoon-Chul
  surname: Kim
  fullname: Kim, Yoon-Chul
  organization: From the Clinical Research Institute (Y.-C.K.), Samsung Medical Center, Sungkyunkwan University School of Medicine, Republic of Korea
– sequence: 2
  givenname: Ji-Eun
  surname: Lee
  fullname: Lee, Ji-Eun
  organization: Department of Neurology (J.-E.L., I.Y., H.-N.S., I.-Y.B., J.-W.C., O.Y.B., G.-M.K., W.-K.S.), Samsung Medical Center, Sungkyunkwan University School of Medicine, Republic of Korea
– sequence: 3
  givenname: Inwu
  surname: Yu
  fullname: Yu, Inwu
  organization: Department of Neurology (J.-E.L., I.Y., H.-N.S., I.-Y.B., J.-W.C., O.Y.B., G.-M.K., W.-K.S.), Samsung Medical Center, Sungkyunkwan University School of Medicine, Republic of Korea
– sequence: 4
  givenname: Ha-Na
  surname: Song
  fullname: Song, Ha-Na
  organization: Department of Neurology (J.-E.L., I.Y., H.-N.S., I.-Y.B., J.-W.C., O.Y.B., G.-M.K., W.-K.S.), Samsung Medical Center, Sungkyunkwan University School of Medicine, Republic of Korea
– sequence: 5
  givenname: In-Young
  surname: Baek
  fullname: Baek, In-Young
  organization: Department of Neurology (J.-E.L., I.Y., H.-N.S., I.-Y.B., J.-W.C., O.Y.B., G.-M.K., W.-K.S.), Samsung Medical Center, Sungkyunkwan University School of Medicine, Republic of Korea
– sequence: 6
  givenname: Joon-Kyung
  surname: Seong
  fullname: Seong, Joon-Kyung
  organization: Department of Biomedical Engineering, Korea University, Seoul (J.-K.S.)
– sequence: 7
  givenname: Han-Gil
  surname: Jeong
  fullname: Jeong, Han-Gil
  organization: Department of Neurology and Cerebrovascular Center, Seoul National University Bundang Hospital, Seong Nam, Republic of Korea (H.-G.J., B.J.K.)
– sequence: 8
  givenname: Beom Joon
  surname: Kim
  fullname: Kim, Beom Joon
  organization: Department of Neurology and Cerebrovascular Center, Seoul National University Bundang Hospital, Seong Nam, Republic of Korea (H.-G.J., B.J.K.)
– sequence: 9
  givenname: Hyo Suk
  surname: Nam
  fullname: Nam, Hyo Suk
  organization: Department of Neurology, Yonsei University, Seoul, Republic of Korea (H.S.N.)
– sequence: 10
  givenname: Jong-Won
  surname: Chung
  fullname: Chung, Jong-Won
  organization: Department of Neurology (J.-E.L., I.Y., H.-N.S., I.-Y.B., J.-W.C., O.Y.B., G.-M.K., W.-K.S.), Samsung Medical Center, Sungkyunkwan University School of Medicine, Republic of Korea
– sequence: 11
  givenname: Oh Young
  surname: Bang
  fullname: Bang, Oh Young
  organization: Department of Neurology (J.-E.L., I.Y., H.-N.S., I.-Y.B., J.-W.C., O.Y.B., G.-M.K., W.-K.S.), Samsung Medical Center, Sungkyunkwan University School of Medicine, Republic of Korea
– sequence: 12
  givenname: Gyeong-Moon
  surname: Kim
  fullname: Kim, Gyeong-Moon
  organization: Department of Neurology (J.-E.L., I.Y., H.-N.S., I.-Y.B., J.-W.C., O.Y.B., G.-M.K., W.-K.S.), Samsung Medical Center, Sungkyunkwan University School of Medicine, Republic of Korea
– sequence: 13
  givenname: Woo-Keun
  surname: Seo
  fullname: Seo, Woo-Keun
  organization: Department of Digital Health, SAIHST, Sungkyunkwan University, Seoul, Republic of Korea (W.-K.S.)
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31092169$$D View this record in MEDLINE/PubMed
BookMark eNpNkF9PwjAUxRuDkT_6DYzpoy_DtutG97jAFCJKIuDrUrpbnWwtrhvEb-9ATXz63ZOcnJNz-6hjrAGErikZUhrSu-XqZfGYxNO4lWJIGGchPUM9GjDu8ZCJzr-7i_rOfRBCmC-CC9T1KYkYDaMeOiR7WTSyzq3BVuNJrnXjjmIOJ7zaoikBP4F0TQUlmNrh3OBYNTXgmVPvUOYKL-vKbgGvXW7ecGKUzaDyJnAiHluzb1OOFbLAz1AfbLW9ROdaFg6ufjlA6_tkNZ5688XDbBzPPcVDQT3GFMlEQHUkMq21IioCHraz9CYcyU0kI86FZBoIzxgPgCk_45n2_ZGKeBYwNkC3P7m7yn424Oq0zJ2CopAGbONSxnwqeBgJ0lpvfq3NpoQs3VV5Kauv9O9Z7BvJmHCt
CitedBy_id crossref_primary_10_51537_chaos_1605529
crossref_primary_10_3390_jcm12113755
crossref_primary_10_1007_s42058_023_00129_6
crossref_primary_10_1007_s00330_023_09622_z
crossref_primary_10_3390_brainsci13111512
crossref_primary_10_1002_ird3_105
crossref_primary_10_3390_jcm11144008
crossref_primary_10_1007_s13369_022_07536_4
crossref_primary_10_1016_j_clinimag_2021_09_015
crossref_primary_10_1002_prca_201900040
crossref_primary_10_1053_j_sult_2022_02_004
crossref_primary_10_1111_1754_9485_13193
crossref_primary_10_3389_fneur_2025_1518477
crossref_primary_10_1016_j_jneumeth_2021_109260
crossref_primary_10_3389_fneur_2022_907151
crossref_primary_10_1007_s12204_021_2273_9
crossref_primary_10_1016_j_neucom_2022_07_005
crossref_primary_10_3389_fneur_2023_1203241
crossref_primary_10_1016_j_jstrokecerebrovasdis_2024_107857
crossref_primary_10_3389_fmedt_2025_1491197
crossref_primary_10_1002_ana_26435
crossref_primary_10_1038_s41598_021_91467_x
crossref_primary_10_3390_jcm9061977
crossref_primary_10_3389_fneur_2022_843871
crossref_primary_10_1161_STROKEAHA_119_028101
crossref_primary_10_1016_j_jns_2023_122799
crossref_primary_10_3389_fnins_2023_1263693
crossref_primary_10_1016_j_nic_2020_07_001
crossref_primary_10_3390_diagnostics11091621
crossref_primary_10_1007_s40747_025_01861_5
crossref_primary_10_1038_s41598_025_91032_w
crossref_primary_10_3389_fneur_2021_652757
crossref_primary_10_1007_s13311_023_01358_4
crossref_primary_10_1007_s00234_024_03294_2
crossref_primary_10_1007_s00330_022_08633_6
crossref_primary_10_3390_diagnostics10100803
crossref_primary_10_1016_j_compbiomed_2023_107471
crossref_primary_10_4103_jmss_jmss_37_24
crossref_primary_10_1038_s41598_022_06021_0
crossref_primary_10_3389_fneur_2021_692490
crossref_primary_10_1007_s10278_024_01099_6
crossref_primary_10_1109_ACCESS_2022_3204048
ContentType Journal Article
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1161/STROKEAHA.118.024261
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Medicine
EISSN 1524-4628
ExternalDocumentID 31092169
Genre Clinical Trial
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
.3C
.55
.GJ
.XZ
.Z2
01R
0R~
123
1J1
2WC
3O-
40H
4Q1
4Q2
4Q3
53G
5RE
5VS
6PF
71W
77Y
7O~
A9M
AAAAV
AAAXR
AAGIX
AAHPQ
AAIQE
AAJCS
AAMOA
AAMTA
AAQKA
AAQQT
AARTV
AASCR
AASOK
AAUEB
AAXQO
AAYEP
AAYJJ
ABASU
ABBUW
ABDIG
ABJNI
ABQRW
ABVCZ
ABXVJ
ABZAD
ACCJW
ACDDN
ACEWG
ACGFS
ACGOD
ACIJW
ACILI
ACLDA
ACWDW
ACWRI
ACXJB
ACXNZ
ADBBV
ADFPA
ADGGA
ADHPY
ADNKB
AE3
AE6
AEBDS
AEETU
AENEX
AFDTB
AFEXH
AFFNX
AFSOK
AFUWQ
AGINI
AHMBA
AHOMT
AHQNM
AHRYX
AHVBC
AIJEX
AINUH
AJCLO
AJIOK
AJNWD
AJNYG
AJZMW
AKCTQ
AKULP
ALKUP
ALMA_UNASSIGNED_HOLDINGS
ALMTX
AMJPA
AMKUR
AMNEI
AOHHW
AWKKM
AYCSE
BAWUL
BCGUY
BOYCO
BQLVK
BS7
C45
CGR
CS3
CUY
CVF
DIK
DIWNM
DU5
DUNZO
E.X
E3Z
EBS
ECM
EEVPB
EIF
EJD
ERAAH
EX3
F2K
F2L
F2M
F2N
F5P
FCALG
FL-
FW0
GNXGY
GQDEL
GX1
H0~
H13
HLJTE
HZ~
IKREB
IKYAY
IN~
IPNFZ
J5H
JF9
JG8
JK3
JK8
K8S
KD2
KMI
KQ8
L-C
L7B
M18
N4W
N9A
NPM
N~7
N~B
N~M
O9-
OAG
OAH
OB3
OCUKA
ODA
ODMTH
OGROG
OHYEH
OJAPA
OK1
OL1
OLG
OLH
OLU
OLV
OLW
OLY
OLZ
OPUJH
ORVUJ
OUVQU
OVD
OVDNE
OVIDH
OVLEI
OVOZU
OWBYB
OWU
OWV
OWW
OWX
OWY
OWZ
OXXIT
P-K
P2P
PQQKQ
R58
RAH
RHF
RIG
RLZ
S4R
S4S
T8P
TEORI
TSPGW
V2I
VVN
W3M
W8F
WH7
WOQ
WOW
X3V
X3W
X7M
XXN
XYM
YCJ
YFH
YHZ
YQJ
YYP
ZB8
ZGI
ZZMQN
7X8
AAFWJ
ABPXF
ABXYN
ABZZY
ACDOF
ACZKN
ADGHP
ADKSD
ADSXY
AFBFQ
AFMBP
AFNMH
AHQVU
AOQMC
ID FETCH-LOGICAL-c4681-22c0d851f98dfffc0c9e46524fb67ab9a9448a2fe04d245e2c3d4df337c94d522
IEDL.DBID 7X8
ISICitedReferencesCount 45
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000470074200042&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1524-4628
IngestDate Sat Sep 27 18:37:37 EDT 2025
Wed Feb 19 02:31:07 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords deep learning
diffusion
cerebral infarction
neurologist
ischemia
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4681-22c0d851f98dfffc0c9e46524fb67ab9a9448a2fe04d245e2c3d4df337c94d522
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
OpenAccessLink https://www.ahajournals.org/doi/pdf/10.1161/STROKEAHA.118.024261
PMID 31092169
PQID 2231846980
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2231846980
pubmed_primary_31092169
PublicationCentury 2000
PublicationDate 2019-June
PublicationDateYYYYMMDD 2019-06-01
PublicationDate_xml – month: 06
  year: 2019
  text: 2019-June
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Stroke (1970)
PublicationTitleAlternate Stroke
PublicationYear 2019
SSID ssj0002385
Score 2.5129955
Snippet Background and Purpose- Automatic segmentation of cerebral infarction on diffusion-weighted imaging (DWI) is typically performed based on a fixed apparent...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 1444
SubjectTerms Aged
Cerebral Infarction - diagnostic imaging
Diffusion Magnetic Resonance Imaging
Female
Humans
Male
Middle Aged
Neural Networks, Computer
Registries
Software
Stroke - diagnostic imaging
Title Evaluation of Diffusion Lesion Volume Measurements in Acute Ischemic Stroke Using Encoder-Decoder Convolutional Network
URI https://www.ncbi.nlm.nih.gov/pubmed/31092169
https://www.proquest.com/docview/2231846980
Volume 50
WOSCitedRecordID wos000470074200042&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JS8NAFB7UinhxX-rGCF6jWSbLnCS0KRXbWGyV3kIyCxQhqU1b_75vJqk9CYKXDIEJDG9e5n1vme8hdJdZTuBmzDdSloKDAl6QkaUubIgjOAOTDxhZs-v3_DgOxmM6qANuZV1WuToT9UHNC6Zi5A9gxsAZ8WhgPk4_DdU1SmVX6xYam6jhAJRRWu2P12zhYI5czZdqE0PdwayvzgHIeRiOXl-eo7Abwmtwrw2V9TvI1Mams__fZR6gvRpm4rDSi0O0IfIjtNOvE-nH6Cv6YfnGhcTtiZQLFTfDPaGHd31o4f46gljiSY5DtpgL_AQesaqpx8P5rPgQWJcd4ChX1-NnRlvoEbeKfFnrNawkrsrNT9BbJxq1ukbdg8FgxAssw7aZyQGVSRpwKSUzGRXEA4HKzPPTjKYU_LvUlsIk3CausJnDCZeO4zNKOIC7U7SVF7k4R5i6juJ-h3mmJD4nmcsD6govpQC7uGs10e1KpAnouEpcpLkoFmWyFmoTnVX7kkwrMo5EMZvalkcv_vD1JdoFvEOrSq8r1JDwh4trtM2W80k5u9HKA8940P8GiMLO6Q
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evaluation+of+Diffusion+Lesion+Volume+Measurements+in+Acute+Ischemic+Stroke+Using+Encoder-Decoder+Convolutional+Network&rft.jtitle=Stroke+%281970%29&rft.au=Kim%2C+Yoon-Chul&rft.au=Lee%2C+Ji-Eun&rft.au=Yu%2C+Inwu&rft.au=Song%2C+Ha-Na&rft.date=2019-06-01&rft.eissn=1524-4628&rft.volume=50&rft.issue=6&rft.spage=1444&rft_id=info:doi/10.1161%2FSTROKEAHA.118.024261&rft_id=info%3Apmid%2F31092169&rft_id=info%3Apmid%2F31092169&rft.externalDocID=31092169
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1524-4628&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1524-4628&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1524-4628&client=summon