Cytotoxicity and antiviral activity of electrochemical – synthesized silver nanoparticles against poliovirus

•Silver nanoparticles (AgNPs) have been eco-friendly synthesized by the electrochemical method.•Electrochemical – synthesized AgNPs are non-toxic to cell cultures at high concentrations (up to 100ppm).•Electrochemical – synthesized AgNPs could inhibit non-enveloped viruses at low concentrations (aro...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of virological methods Ročník 241; s. 52 - 57
Hlavní autoři: Huy, Tran Quang, Hien Thanh, Nguyen Thi, Thuy, Nguyen Thanh, Chung, Pham Van, Hung, Pham Ngoc, Le, Anh-Tuan, Hong Hanh, Nguyen Thi
Médium: Journal Article
Jazyk:angličtina
Vydáno: Netherlands Elsevier B.V 01.03.2017
Témata:
ISSN:0166-0934, 1879-0984, 1879-0984
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract •Silver nanoparticles (AgNPs) have been eco-friendly synthesized by the electrochemical method.•Electrochemical – synthesized AgNPs are non-toxic to cell cultures at high concentrations (up to 100ppm).•Electrochemical – synthesized AgNPs could inhibit non-enveloped viruses at low concentrations (around 3.13ppm). Silver nanoparticles (AgNPs) have been proven to have noticeable cytotoxicity in vitro and antiviral activity against some types of enveloped viruses. This paper presents the cytotoxicity and antiviral activity of pure AgNPs synthesized by the electrochemical method, towards cell culture and poliovirus (a non-enveloped virus). Prepared AgNPs were characterized by ultraviolet–visible spectroscopy, energy-dispersive X-ray spectroscopy and transmission electron microscopy. Before incubation with poliovirus, different concentrations of AgNPs were added to human rhabdomyosarcoma (RD) cell monolayers seeded in 96 well plates for testing their cytotoxicity. The in vitro cytotoxicity and anti-poliovirus activity of AgNPs were daily assessed for cytopathic effect (CPE) through inverted light microscopy. CPE in the tested wells was determined in comparison with those in wells of negative and positive control. Structure analysis showed that AgNPs were formed with a quasi-spherical shape with mean size about 7.1nm and high purity. No CPE of RD cells was seen in wells at the time point of 48h post-incubation with AgNPs at concentration up to 100ppm. The anti-poliovirus activity of AgNPs was determined at 3.13ppm corresponding to the viral concentration of 1TCID50 (Tissue Culture Infective Dose) after 30min, and 10TCID50 after 60min, the cell viability was found up to 98% at 48h post-infection, with no CPE found. Whereas, a strong CPE of RD cells was found at 48h post-infection with the mixture of AgNPs and poliovirus at concentration of 100TCID50, and in wells of positive controls. With mentioned advantages, electrochemical-synthesized AgNPs are promising candidate for advanced biomedical and disinfection applications.
AbstractList Silver nanoparticles (AgNPs) have been proven to have noticeable cytotoxicity in vitro and antiviral activity against some types of enveloped viruses. This paper presents the cytotoxicity and antiviral activity of pure AgNPs synthesized by the electrochemical method, towards cell culture and poliovirus (a non-enveloped virus). Prepared AgNPs were characterized by ultraviolet-visible spectroscopy, energy-dispersive X-ray spectroscopy and transmission electron microscopy. Before incubation with poliovirus, different concentrations of AgNPs were added to human rhabdomyosarcoma (RD) cell monolayers seeded in 96 well plates for testing their cytotoxicity. The in vitro cytotoxicity and anti-poliovirus activity of AgNPs were daily assessed for cytopathic effect (CPE) through inverted light microscopy. CPE in the tested wells was determined in comparison with those in wells of negative and positive control. Structure analysis showed that AgNPs were formed with a quasi-spherical shape with mean size about 7.1nm and high purity. No CPE of RD cells was seen in wells at the time point of 48h post-incubation with AgNPs at concentration up to 100ppm. The anti-poliovirus activity of AgNPs was determined at 3.13ppm corresponding to the viral concentration of 1TCID (Tissue Culture Infective Dose) after 30min, and 10TCID after 60min, the cell viability was found up to 98% at 48h post-infection, with no CPE found. Whereas, a strong CPE of RD cells was found at 48h post-infection with the mixture of AgNPs and poliovirus at concentration of 100TCID , and in wells of positive controls. With mentioned advantages, electrochemical-synthesized AgNPs are promising candidate for advanced biomedical and disinfection applications.
Silver nanoparticles (AgNPs) have been proven to have noticeable cytotoxicity in vitro and antiviral activity against some types of enveloped viruses. This paper presents the cytotoxicity and antiviral activity of pure AgNPs synthesized by the electrochemical method, towards cell culture and poliovirus (a non-enveloped virus). Prepared AgNPs were characterized by ultraviolet-visible spectroscopy, energy-dispersive X-ray spectroscopy and transmission electron microscopy. Before incubation with poliovirus, different concentrations of AgNPs were added to human rhabdomyosarcoma (RD) cell monolayers seeded in 96 well plates for testing their cytotoxicity. The in vitro cytotoxicity and anti-poliovirus activity of AgNPs were daily assessed for cytopathic effect (CPE) through inverted light microscopy. CPE in the tested wells was determined in comparison with those in wells of negative and positive control. Structure analysis showed that AgNPs were formed with a quasi-spherical shape with mean size about 7.1nm and high purity. No CPE of RD cells was seen in wells at the time point of 48h post-incubation with AgNPs at concentration up to 100ppm. The anti-poliovirus activity of AgNPs was determined at 3.13ppm corresponding to the viral concentration of 1TCID50 (Tissue Culture Infective Dose) after 30min, and 10TCID50 after 60min, the cell viability was found up to 98% at 48h post-infection, with no CPE found. Whereas, a strong CPE of RD cells was found at 48h post-infection with the mixture of AgNPs and poliovirus at concentration of 100TCID50, and in wells of positive controls. With mentioned advantages, electrochemical-synthesized AgNPs are promising candidate for advanced biomedical and disinfection applications.Silver nanoparticles (AgNPs) have been proven to have noticeable cytotoxicity in vitro and antiviral activity against some types of enveloped viruses. This paper presents the cytotoxicity and antiviral activity of pure AgNPs synthesized by the electrochemical method, towards cell culture and poliovirus (a non-enveloped virus). Prepared AgNPs were characterized by ultraviolet-visible spectroscopy, energy-dispersive X-ray spectroscopy and transmission electron microscopy. Before incubation with poliovirus, different concentrations of AgNPs were added to human rhabdomyosarcoma (RD) cell monolayers seeded in 96 well plates for testing their cytotoxicity. The in vitro cytotoxicity and anti-poliovirus activity of AgNPs were daily assessed for cytopathic effect (CPE) through inverted light microscopy. CPE in the tested wells was determined in comparison with those in wells of negative and positive control. Structure analysis showed that AgNPs were formed with a quasi-spherical shape with mean size about 7.1nm and high purity. No CPE of RD cells was seen in wells at the time point of 48h post-incubation with AgNPs at concentration up to 100ppm. The anti-poliovirus activity of AgNPs was determined at 3.13ppm corresponding to the viral concentration of 1TCID50 (Tissue Culture Infective Dose) after 30min, and 10TCID50 after 60min, the cell viability was found up to 98% at 48h post-infection, with no CPE found. Whereas, a strong CPE of RD cells was found at 48h post-infection with the mixture of AgNPs and poliovirus at concentration of 100TCID50, and in wells of positive controls. With mentioned advantages, electrochemical-synthesized AgNPs are promising candidate for advanced biomedical and disinfection applications.
Silver nanoparticles (AgNPs) have been proven to have noticeable cytotoxicity in vitro and antiviral activity against some types of enveloped viruses. This paper presents the cytotoxicity and antiviral activity of pure AgNPs synthesized by the electrochemical method, towards cell culture and poliovirus (a non-enveloped virus). Prepared AgNPs were characterized by ultraviolet–visible spectroscopy, energy-dispersive X-ray spectroscopy and transmission electron microscopy. Before incubation with poliovirus, different concentrations of AgNPs were added to human rhabdomyosarcoma (RD) cell monolayers seeded in 96 well plates for testing their cytotoxicity. The in vitro cytotoxicity and anti-poliovirus activity of AgNPs were daily assessed for cytopathic effect (CPE) through inverted light microscopy. CPE in the tested wells was determined in comparison with those in wells of negative and positive control. Structure analysis showed that AgNPs were formed with a quasi-spherical shape with mean size about 7.1nm and high purity. No CPE of RD cells was seen in wells at the time point of 48h post-incubation with AgNPs at concentration up to 100ppm. The anti-poliovirus activity of AgNPs was determined at 3.13ppm corresponding to the viral concentration of 1TCID50 (Tissue Culture Infective Dose) after 30min, and 10TCID50 after 60min, the cell viability was found up to 98% at 48h post-infection, with no CPE found. Whereas, a strong CPE of RD cells was found at 48h post-infection with the mixture of AgNPs and poliovirus at concentration of 100TCID50, and in wells of positive controls. With mentioned advantages, electrochemical-synthesized AgNPs are promising candidate for advanced biomedical and disinfection applications.
•Silver nanoparticles (AgNPs) have been eco-friendly synthesized by the electrochemical method.•Electrochemical – synthesized AgNPs are non-toxic to cell cultures at high concentrations (up to 100ppm).•Electrochemical – synthesized AgNPs could inhibit non-enveloped viruses at low concentrations (around 3.13ppm). Silver nanoparticles (AgNPs) have been proven to have noticeable cytotoxicity in vitro and antiviral activity against some types of enveloped viruses. This paper presents the cytotoxicity and antiviral activity of pure AgNPs synthesized by the electrochemical method, towards cell culture and poliovirus (a non-enveloped virus). Prepared AgNPs were characterized by ultraviolet–visible spectroscopy, energy-dispersive X-ray spectroscopy and transmission electron microscopy. Before incubation with poliovirus, different concentrations of AgNPs were added to human rhabdomyosarcoma (RD) cell monolayers seeded in 96 well plates for testing their cytotoxicity. The in vitro cytotoxicity and anti-poliovirus activity of AgNPs were daily assessed for cytopathic effect (CPE) through inverted light microscopy. CPE in the tested wells was determined in comparison with those in wells of negative and positive control. Structure analysis showed that AgNPs were formed with a quasi-spherical shape with mean size about 7.1nm and high purity. No CPE of RD cells was seen in wells at the time point of 48h post-incubation with AgNPs at concentration up to 100ppm. The anti-poliovirus activity of AgNPs was determined at 3.13ppm corresponding to the viral concentration of 1TCID50 (Tissue Culture Infective Dose) after 30min, and 10TCID50 after 60min, the cell viability was found up to 98% at 48h post-infection, with no CPE found. Whereas, a strong CPE of RD cells was found at 48h post-infection with the mixture of AgNPs and poliovirus at concentration of 100TCID50, and in wells of positive controls. With mentioned advantages, electrochemical-synthesized AgNPs are promising candidate for advanced biomedical and disinfection applications.
Author Hong Hanh, Nguyen Thi
Thuy, Nguyen Thanh
Le, Anh-Tuan
Huy, Tran Quang
Hung, Pham Ngoc
Hien Thanh, Nguyen Thi
Chung, Pham Van
Author_xml – sequence: 1
  givenname: Tran Quang
  surname: Huy
  fullname: Huy, Tran Quang
  email: tqh@nihe.org.vn
  organization: National Institute of Hygiene and Epidemiology, 1 – Yersin street, Hanoi, Vietnam
– sequence: 2
  givenname: Nguyen Thi
  surname: Hien Thanh
  fullname: Hien Thanh, Nguyen Thi
  organization: National Institute of Hygiene and Epidemiology, 1 – Yersin street, Hanoi, Vietnam
– sequence: 3
  givenname: Nguyen Thanh
  surname: Thuy
  fullname: Thuy, Nguyen Thanh
  organization: National Institute of Hygiene and Epidemiology, 1 – Yersin street, Hanoi, Vietnam
– sequence: 4
  givenname: Pham Van
  surname: Chung
  fullname: Chung, Pham Van
  organization: National Institute of Hygiene and Epidemiology, 1 – Yersin street, Hanoi, Vietnam
– sequence: 5
  givenname: Pham Ngoc
  surname: Hung
  fullname: Hung, Pham Ngoc
  organization: Vietnam Military Medical University, 160 - Phung Hung Road, Ha Dong, Hanoi, Vietnam
– sequence: 6
  givenname: Anh-Tuan
  surname: Le
  fullname: Le, Anh-Tuan
  email: tuan.leanh1@hust.edu.vn
  organization: Advanced Institute for Science and Technology, Hanoi University of Science and Technology, 1-Dai Co Viet Road, Hanoi, Vietnam
– sequence: 7
  givenname: Nguyen Thi
  surname: Hong Hanh
  fullname: Hong Hanh, Nguyen Thi
  organization: National Institute of Hygiene and Epidemiology, 1 – Yersin street, Hanoi, Vietnam
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28040515$$D View this record in MEDLINE/PubMed
BookMark eNqFUcuOEzEQtNAiNrvwC6s5csngx9jjkTiAIl7SSlzgbHU8Pawjjx1sJyKc-Af-kC_BIZsLlxxa3e2uKktVN-QqxICE3DHaMsrUq0272bsUZywtr3vLeEuZfEIWTPfDkg66uyKLelB1Ft01ucl5QymVvRDPyDXXtKOSyQUJq0OJJf5w1pVDA2GsVVyVBt-APU71OU4NerQlRfuAs7P19ufX7yYfQnnA7H7i2GTn95iaACFuIRVnPeYGvoELuTTb6F2smrv8nDydwGd88dhvydf3776sPi7vP3_4tHp7v7Sd6sty5CC5npQEjR2CHjgCE31vJeuQUQW9npjWfJKTomvJlRAoNKwn0bF-VFbckpcn3W2K33eYi5ldtug9BIy7bHj1QvCqOFyEMi07TTkbZIXePUJ36xlHs01uhnQwZzsr4PUJYFPMOeFkqq1QXAwlgfOGUXNMz2zMOT1zTM8wbug_uvqPfv7hIvHNiYjV073DZLJ1GCyOLtXczBjdJYm_TZ27yA
CitedBy_id crossref_primary_10_1016_j_sab_2022_106505
crossref_primary_10_1246_cl_230205
crossref_primary_10_1088_1748_605X_ac3208
crossref_primary_10_1007_s40097_021_00465_y
crossref_primary_10_1080_07388551_2021_1939260
crossref_primary_10_1002_gch2_202000049
crossref_primary_10_1007_s42247_023_00622_9
crossref_primary_10_3389_fmicb_2020_01635
crossref_primary_10_1016_j_bioactmat_2021_06_001
crossref_primary_10_1016_j_ijbiomac_2021_04_071
crossref_primary_10_1039_D1EN00025J
crossref_primary_10_3390_molecules28135190
crossref_primary_10_1016_j_heliyon_2021_e06841
crossref_primary_10_1007_s42247_021_00306_2
crossref_primary_10_1016_j_nano_2019_03_004
crossref_primary_10_1016_j_microc_2024_110301
crossref_primary_10_1016_j_micpath_2021_104908
crossref_primary_10_3390_ijms231810541
crossref_primary_10_1002_EXP_20210038
crossref_primary_10_1002_vjch_202300086
crossref_primary_10_1016_j_nantod_2021_101267
crossref_primary_10_3390_microorganisms11030629
crossref_primary_10_1016_j_lfs_2020_118336
crossref_primary_10_1002_slct_202001709
crossref_primary_10_1016_j_matpr_2022_06_355
crossref_primary_10_1007_s11003_020_00363_8
crossref_primary_10_1007_s11468_023_01817_w
crossref_primary_10_1007_s10924_021_02272_6
crossref_primary_10_1186_s12645_023_00243_1
crossref_primary_10_1007_s40495_021_00250_z
crossref_primary_10_1007_s00203_023_03818_z
crossref_primary_10_1155_2018_1860280
crossref_primary_10_1007_s10570_022_04792_3
crossref_primary_10_1007_s42765_023_00275_7
crossref_primary_10_3390_nano14171425
crossref_primary_10_3390_ma13030768
crossref_primary_10_1002_wnan_1707
crossref_primary_10_3390_coatings12040480
crossref_primary_10_1007_s11664_017_5315_1
crossref_primary_10_1515_ntrev_2024_0102
crossref_primary_10_3390_nano10091645
crossref_primary_10_1016_j_mseb_2023_116636
crossref_primary_10_2147_IJN_S298606
crossref_primary_10_1016_j_nantod_2020_101051
crossref_primary_10_1186_s40486_021_00131_6
crossref_primary_10_2147_IJN_S280976
crossref_primary_10_3389_fnano_2022_1064615
crossref_primary_10_3390_nano10112318
crossref_primary_10_1039_D2RA06410C
crossref_primary_10_1111_ced_13758
crossref_primary_10_1016_j_xphs_2021_01_034
crossref_primary_10_1002_advs_202102189
crossref_primary_10_1080_15226514_2019_1634000
crossref_primary_10_3389_fbioe_2021_633468
crossref_primary_10_1186_s42269_021_00487_0
crossref_primary_10_3390_nano10081566
crossref_primary_10_3390_polym13234234
crossref_primary_10_1016_j_lfs_2020_118761
crossref_primary_10_1007_s42247_021_00182_w
crossref_primary_10_3390_microorganisms11040886
crossref_primary_10_61186_jcc_6_3_2
crossref_primary_10_1007_s00396_019_04488_4
crossref_primary_10_1002_smll_201902641
crossref_primary_10_1021_acsmaterialslett_4c02113
crossref_primary_10_1007_s12011_020_02414_2
crossref_primary_10_1016_j_jscs_2021_101304
crossref_primary_10_1016_j_cis_2022_102726
crossref_primary_10_1016_j_scitotenv_2018_11_257
crossref_primary_10_1007_s42765_020_00047_7
crossref_primary_10_1007_s10924_025_03527_2
crossref_primary_10_3390_nano12020238
crossref_primary_10_1177_25165984241228087
crossref_primary_10_1038_s41545_018_0011_0
crossref_primary_10_1016_j_foodcont_2019_02_019
crossref_primary_10_1088_2053_1591_ab6ad8
crossref_primary_10_3390_molecules28031375
crossref_primary_10_1002_ardp_202400943
crossref_primary_10_1007_s13762_023_04803_1
crossref_primary_10_3390_microorganisms12040820
crossref_primary_10_1002_slct_202304941
crossref_primary_10_1016_j_molstruc_2020_129750
crossref_primary_10_3390_gels9110878
crossref_primary_10_1089_mdr_2021_0281
crossref_primary_10_1002_ppsc_202100159
crossref_primary_10_1002_cplu_202000460
crossref_primary_10_3892_br_2024_1912
crossref_primary_10_1155_2022_1519104
crossref_primary_10_1016_j_mtcomm_2019_100884
crossref_primary_10_3390_pharmaceutics13122034
crossref_primary_10_1088_1361_6528_ac03d6
crossref_primary_10_1002_masy_202000336
crossref_primary_10_1002_sstr_202200021
crossref_primary_10_1038_s41598_023_45038_x
crossref_primary_10_3390_molecules28227674
crossref_primary_10_3390_vaccines13020126
crossref_primary_10_1016_j_actbio_2019_09_025
Cites_doi 10.1177/135965350801300210
10.1016/j.arabjc.2010.04.008
10.1093/infdis/jiu069
10.1021/bc900215b
10.1016/j.matlet.2016.06.008
10.1128/IAI.13.6.1642-1646.1976
10.1016/j.virol.2004.10.038
10.1166/jbn.2008.012
10.1186/1556-276X-8-93
10.1016/j.jviromet.2011.09.003
10.1186/1477-3155-3-6
10.3390/molecules16108894
10.1016/j.virol.2013.06.030
10.1086/506359
10.1007/s11671-008-9128-2
10.1007/s00436-015-4556-2
10.1146/annurev.micro.56.012302.160757
10.1371/journal.pone.0034589
10.1351/pac200072010053
10.1007/s11051-010-0192-z
10.1016/j.jviromet.2013.07.020
10.1186/1477-3155-9-30
10.1073/pnas.97.1.73
10.1007/s11051-010-9900-y
10.1016/j.biomaterials.2005.05.040
10.1063/1.1404425
10.1073/pnas.68.1.229
10.1073/pnas.93.21.11378
10.1186/1477-3155-8-15
10.1371/journal.pone.0104113
10.1155/2015/165257
10.1016/0022-1759(83)90303-4
10.1007/s11274-009-0211-3
ContentType Journal Article
Copyright 2016 Elsevier B.V.
Copyright © 2016 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2016 Elsevier B.V.
– notice: Copyright © 2016 Elsevier B.V. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
DOI 10.1016/j.jviromet.2016.12.015
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
AGRICOLA

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1879-0984
EndPage 57
ExternalDocumentID 28040515
10_1016_j_jviromet_2016_12_015
S0166093416306176
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
.GJ
.~1
0R~
1B1
1RT
1~.
1~5
29L
4.4
457
4G.
53G
5GY
5RE
5VS
7-5
71M
8P~
9JM
AAAJQ
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARKO
AAXUO
ABBQC
ABFNM
ABFRF
ABJNI
ABLVK
ABMAC
ABMZM
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACIUM
ACRLP
ADBBV
ADEZE
ADMUD
AEBSH
AEFWE
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AFXIZ
AGEKW
AGHFR
AGUBO
AGYEJ
AHHHB
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AJRQY
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ANZVX
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CJTIS
CNWQP
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HEJ
HMG
HMK
HMO
HVGLF
HZ~
IH2
IHE
J1W
K-O
KOM
L7B
LCYCR
LUGTX
M29
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SES
SEW
SIN
SPCBC
SSH
SSI
SSZ
T5K
VH1
WUQ
XFK
Y6R
ZGI
~G-
~KM
9DU
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACIEU
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
ID FETCH-LOGICAL-c467t-d2a528f65a8e4ea892ea1377c514e106a78f1882f5f60b52633e38abf3417d6c3
ISICitedReferencesCount 110
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000393251700008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0166-0934
1879-0984
IngestDate Thu Oct 02 10:34:41 EDT 2025
Thu Oct 02 08:48:10 EDT 2025
Thu Apr 03 07:07:18 EDT 2025
Tue Nov 18 22:25:12 EST 2025
Sat Nov 29 06:40:06 EST 2025
Fri Feb 23 02:34:16 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords RD cell
Poliovirus
Antiviral activity
Silver nanoparticle
Language English
License Copyright © 2016 Elsevier B.V. All rights reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c467t-d2a528f65a8e4ea892ea1377c514e106a78f1882f5f60b52633e38abf3417d6c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 28040515
PQID 1854802195
PQPubID 23479
PageCount 6
ParticipantIDs proquest_miscellaneous_2000323779
proquest_miscellaneous_1854802195
pubmed_primary_28040515
crossref_citationtrail_10_1016_j_jviromet_2016_12_015
crossref_primary_10_1016_j_jviromet_2016_12_015
elsevier_sciencedirect_doi_10_1016_j_jviromet_2016_12_015
PublicationCentury 2000
PublicationDate March 2017
2017-03-00
20170301
PublicationDateYYYYMMDD 2017-03-01
PublicationDate_xml – month: 03
  year: 2017
  text: March 2017
PublicationDecade 2010
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Journal of virological methods
PublicationTitleAlternate J Virol Methods
PublicationYear 2017
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Ceccarini, Eagle (bib0020) 1971; 68
Romanova, Belov, Lidsky, Tolskaya, Kolesnikova, Evstafieva, Vartapetian, Egger, Bienz, Agol (bib0135) 2005; 331
Hogle (bib0055) 2002; 56
Thuy, Huy, Nga, Morita, Dunia, Benedetti (bib0170) 2013; 444
Hess, Bachmann (bib0050) 1976; 13
Orlowski, Tomaszewska, Gniadek, Baska, Nowakowska, Sokolowska, Nowak, Donten, Celichowski, Grobelny, Krzyzowska (bib0105) 2014; 9
Haider, Kang (bib0045) 2015; 2015
Mosmann (bib0100) 1983; 65
Xiang, Chen, Pang, Zheng (bib0185) 2011; 178
Chen, Zheng, Yin, Li, Zheng (bib0025) 2013; 193
Roco (bib0125) 2011; 13
Sun, Singh, Vig, Pillai, Singh (bib0150) 2008; 4
Baram-Pinto, Shukla, Perkas, Gedanken, Sarid (bib0010) 2009; 20
Lara, Garza-Treviño, Ixtepan-Turrent, Singh (bib0070) 2011; 9
Marambio-Jones, Hoek (bib0085) 2010; 12
Sujitha, Murugan, Paulpandi, Panneerselvam, Suresh, Roni, Nicoletti, Higuchi, Madhiyazhagan, Subramaniam, Dinesh, Vadivalagan, Chandramohan, Alarfaj, Munusamy, Barnard, Benelli (bib0145) 2015; 114
Thuc, Huy, Hoang, Tien, Van Chung, Thuy, Le (bib0165) 2016; 181
Liang, Zhang, Xu, Wen, Zuo, Lee, Yu, Jingjin (bib0075) 2006; 194
Abou El-Nour, Eftaiha, Al-Warthan, Ammar (bib0005) 2010; 3
Taylor, Ussher, Burrell (bib0160) 2005; 26
Racaniello (bib0120) 1996; 93
Galdiero, Falanga, Vitiello, Cantisani, Marra, Galdiero (bib0040) 2011; 16
Elechiguerra, Burt, Morones, Camacho-Bragado, Gao, Lara, Yacaman (bib0030) 2005; 3
Lu, Sun, Chen, Hui, Ho, Luk, Lau (bib0080) 2007; 13
Lara, Ixtepan-Turrent, Garza-Treviño, Rodriguez-Padilla (bib0065) 2010; 8
Belnap, McDermott, Filman, Cheng, Trus, Zuccola, Racaniello, Hogle, Steven a (bib0015) 2000; 97
Schider, Krenn, Gotschy, Lamprecht, Ditlbacher, Leitner, Aussenegg (bib0140) 2001; 90
Trefry (bib0180) 2011
Tan, Chan, Sim, Tan, Poh (bib0155) 2012; 7
Yusuf, De Wee, Foster, Watkins, Tiruneh, Chauvin, Bossarte, Mandlhate, Jack, Gumede, Mawela, Burns, Pallansch, Allies, Rainey, Mataruse, Nshimirimana (bib0190) 2014; 210
Tran, Nguyen, Le (bib0175) 2013; 4
Lara, Ayala-Núñez, Ixtepan Turrent, Rodríguez Padilla (bib0060) 2010; 26
Mehrbod, Motamed, Tabatabaian, Amini, Shahidi (bib0090) 2009; 17
Puchalski, Dabrowski, Olejniczak, Krukowski, Kowalczyk, Polański (bib0115) 2007; 25
Rogers, Parkinson, Choi, Speshock, Hussain (bib0130) 2008; 3
Pileni (bib0110) 2000; 72
Gaikwad, Ingle, Gade, Rai, Falanga, Incoronato, Russo, Galdiero, Galdiero (bib0035) 2013; 8
Mori, Ono, Miyahira, Nguyen, Matsui, Ishihara (bib0095) 2013; 8
Gaikwad (10.1016/j.jviromet.2016.12.015_bib0035) 2013; 8
Lu (10.1016/j.jviromet.2016.12.015_bib0080) 2007; 13
Thuy (10.1016/j.jviromet.2016.12.015_bib0170) 2013; 444
Sun (10.1016/j.jviromet.2016.12.015_bib0150) 2008; 4
Orlowski (10.1016/j.jviromet.2016.12.015_bib0105) 2014; 9
Lara (10.1016/j.jviromet.2016.12.015_bib0060) 2010; 26
Lara (10.1016/j.jviromet.2016.12.015_bib0065) 2010; 8
Tan (10.1016/j.jviromet.2016.12.015_bib0155) 2012; 7
Trefry (10.1016/j.jviromet.2016.12.015_bib0180) 2011
Baram-Pinto (10.1016/j.jviromet.2016.12.015_bib0010) 2009; 20
Thuc (10.1016/j.jviromet.2016.12.015_bib0165) 2016; 181
Mehrbod (10.1016/j.jviromet.2016.12.015_bib0090) 2009; 17
Taylor (10.1016/j.jviromet.2016.12.015_bib0160) 2005; 26
Lara (10.1016/j.jviromet.2016.12.015_bib0070) 2011; 9
Haider (10.1016/j.jviromet.2016.12.015_bib0045) 2015; 2015
Sujitha (10.1016/j.jviromet.2016.12.015_bib0145) 2015; 114
Rogers (10.1016/j.jviromet.2016.12.015_bib0130) 2008; 3
Racaniello (10.1016/j.jviromet.2016.12.015_bib0120) 1996; 93
Abou El-Nour (10.1016/j.jviromet.2016.12.015_bib0005) 2010; 3
Galdiero (10.1016/j.jviromet.2016.12.015_bib0040) 2011; 16
Puchalski (10.1016/j.jviromet.2016.12.015_bib0115) 2007; 25
Mosmann (10.1016/j.jviromet.2016.12.015_bib0100) 1983; 65
Romanova (10.1016/j.jviromet.2016.12.015_bib0135) 2005; 331
Chen (10.1016/j.jviromet.2016.12.015_bib0025) 2013; 193
Hess (10.1016/j.jviromet.2016.12.015_bib0050) 1976; 13
Ceccarini (10.1016/j.jviromet.2016.12.015_bib0020) 1971; 68
Liang (10.1016/j.jviromet.2016.12.015_bib0075) 2006; 194
Roco (10.1016/j.jviromet.2016.12.015_bib0125) 2011; 13
Marambio-Jones (10.1016/j.jviromet.2016.12.015_bib0085) 2010; 12
Pileni (10.1016/j.jviromet.2016.12.015_bib0110) 2000; 72
Xiang (10.1016/j.jviromet.2016.12.015_bib0185) 2011; 178
Elechiguerra (10.1016/j.jviromet.2016.12.015_bib0030) 2005; 3
Schider (10.1016/j.jviromet.2016.12.015_bib0140) 2001; 90
Tran (10.1016/j.jviromet.2016.12.015_bib0175) 2013; 4
Hogle (10.1016/j.jviromet.2016.12.015_bib0055) 2002; 56
Belnap (10.1016/j.jviromet.2016.12.015_bib0015) 2000; 97
Mori (10.1016/j.jviromet.2016.12.015_bib0095) 2013; 8
Yusuf (10.1016/j.jviromet.2016.12.015_bib0190) 2014; 210
References_xml – year: 2011
  ident: bib0180
  article-title: The development of silver nanoparticles as antiviral agents
  publication-title: J. Am. Chem. Soc. (Diss.)
– volume: 178
  start-page: 137
  year: 2011
  end-page: 142
  ident: bib0185
  article-title: Inhibitory effects of silver nanoparticles on H1N1 influenza A virus in vitro
  publication-title: J. Virol. Methods
– volume: 16
  start-page: 8894
  year: 2011
  end-page: 8918
  ident: bib0040
  article-title: Silver nanoparticles as potential antiviral agents
  publication-title: Molecules
– volume: 26
  start-page: 615
  year: 2010
  end-page: 621
  ident: bib0060
  article-title: Bactericidal effect of silver nanoparticles against multidrug-resistant bacteria
  publication-title: World J. Microbiol. Biotechnol.
– volume: 210
  start-page: S353
  year: 2014
  end-page: S360
  ident: bib0190
  article-title: Outbreak of type 1 wild poliovirus infection in adults, Namibia, 2006
  publication-title: J. Infect. Dis.
– volume: 13
  start-page: 1642
  year: 1976
  end-page: 1646
  ident: bib0050
  article-title: In vitro differentiation and pH sensitivity of field and cell culture attenuated strains of transmissible gastroenteritis virus
  publication-title: Infect. Immun.
– volume: 444
  start-page: 337
  year: 2013
  end-page: 342
  ident: bib0170
  article-title: A new nidovirus (NamDinh virus NDiV): Its ultrastructural characterization in the C6/36 mosquito cell line
  publication-title: Virology
– volume: 194
  start-page: 545
  year: 2006
  end-page: 551
  ident: bib0075
  article-title: An outbreak of poliomyelitis caused by type 1 vaccine-derived poliovirus in China
  publication-title: J. Infect. Dis.
– volume: 8
  start-page: 4303
  year: 2013
  end-page: 4314
  ident: bib0035
  article-title: Antiviral activity of mycosynthesized silver nanoparticles against herpes simplex virus and human parainfluenza virus type 3
  publication-title: Int. J. Nanomed.
– volume: 65
  start-page: 55
  year: 1983
  end-page: 63
  ident: bib0100
  article-title: Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays
  publication-title: J. Immunol. Methods
– volume: 25
  year: 2007
  ident: bib0115
  article-title: The study of silver nanoparticles by scanning electron microscopy, energy dispersive X-ray analysis and scanning tunnelling microscopy
  publication-title: Mater. Sci. Pol.
– volume: 12
  start-page: 1531
  year: 2010
  end-page: 1551
  ident: bib0085
  article-title: A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment
  publication-title: J. Nanopart. Res.
– volume: 331
  start-page: 292
  year: 2005
  end-page: 306
  ident: bib0135
  article-title: Variability in apoptotic response to poliovirus infection
  publication-title: Virology
– volume: 97
  start-page: 73
  year: 2000
  end-page: 78
  ident: bib0015
  article-title: Three-dimensional structure of poliovirus receptor bound to poliovirus
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 8
  start-page: 15
  year: 2010
  ident: bib0065
  article-title: PVP-coated silver nanoparticles block the transmission of cell-free and cell-associated HIV-1 in human cervical culture
  publication-title: J. Nanobiotechnol.
– volume: 8
  start-page: 93
  year: 2013
  ident: bib0095
  article-title: Antiviral activity of silver nanoparticle/chitosan composites against H1N1 influenza A virus
  publication-title: Nanoscale Res. Lett.
– volume: 3
  start-page: 135
  year: 2010
  end-page: 140
  ident: bib0005
  article-title: Synthesis and applications of silver nanoparticles
  publication-title: Arab. J. Chem.
– volume: 90
  start-page: 3825
  year: 2001
  end-page: 3830
  ident: bib0140
  article-title: Optical properties of Ag and Au nanowire gratings
  publication-title: J. Appl. Phys.
– volume: 4
  start-page: 033001
  year: 2013
  ident: bib0175
  article-title: Silver nanoparticles: synthesis, properties, toxicology, applications and perspectives
  publication-title: Adv. Nat. Sci.: Nanosci. Nanotechnol.
– volume: 4
  start-page: 149
  year: 2008
  end-page: 158
  ident: bib0150
  article-title: Silver nanoparticles inhibit replication of respiratory syncytial virus
  publication-title: J. Biomed. Nanotechnol.
– volume: 13
  start-page: 253
  year: 2007
  end-page: 262
  ident: bib0080
  article-title: Original article Silver nanoparticles inhibit hepatitis B virus
  publication-title: Antivir. Ther.
– volume: 114
  start-page: 3315
  year: 2015
  end-page: 3325
  ident: bib0145
  article-title: Green-synthesized silver nanoparticles as a novel control tool against dengue virus (DEN-2) and its primary vector Aedes aegypti
  publication-title: Parasitol. Res.
– volume: 3
  start-page: 129
  year: 2008
  end-page: 133
  ident: bib0130
  article-title: A preliminary assessment of silver nanoparticle inhibition of monkeypox virus plaque formation
  publication-title: Nanoscale Res. Lett.
– volume: 3
  start-page: 6
  year: 2005
  ident: bib0030
  article-title: Interaction of silver nanoparticles with HIV-1
  publication-title: J. Nanobiotechnol.
– volume: 7
  start-page: e34589
  year: 2012
  ident: bib0155
  article-title: Inhibition of enterovirus 71 (EV-71) infections by a novel antiviral peptide derived from EV-71 capsid protein VP1
  publication-title: PLoS One
– volume: 56
  start-page: 677
  year: 2002
  end-page: 702
  ident: bib0055
  article-title: Poliovirus cell entry: common structural themes in viral cell entry pathways
  publication-title: Annu. Rev. Microbiol.
– volume: 9
  start-page: 30
  year: 2011
  ident: bib0070
  article-title: Silver nanoparticles are broad-spectrum bactericidal and virucidal compounds
  publication-title: J. Nanobiotechnol.
– volume: 193
  start-page: 470
  year: 2013
  end-page: 477
  ident: bib0025
  article-title: Inhibitory effects of silver nanoparticles against adenovirus type 3 in vitro
  publication-title: J. Virol. Methods
– volume: 20
  start-page: 1497
  year: 2009
  end-page: 1502
  ident: bib0010
  article-title: Inhibition of herpes simplex virus type 1 infection by silver nanoparticles capped with mercaptoethane sulfonate
  publication-title: Bioconjugate Chem.
– volume: 17
  start-page: 88
  year: 2009
  end-page: 93
  ident: bib0090
  article-title: In vitro antiviral effect of ‘nanosilver’ on influenza virus
  publication-title: Arch. SID
– volume: 68
  start-page: 229
  year: 1971
  end-page: 233
  ident: bib0020
  article-title: pH as a determinant of cellular growth and contact inhibition
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 9
  start-page: 1
  year: 2014
  end-page: 15
  ident: bib0105
  article-title: Tannic acid modified silver nanoparticles show antiviral activity in herpes simplex virus type 2 infection
  publication-title: PLoS One
– volume: 72
  start-page: 53
  year: 2000
  end-page: 65
  ident: bib0110
  article-title: Fabrication and physical properties of self- organized silver nanocrystals
  publication-title: Pure Appl. Chem.
– volume: 2015
  start-page: 1
  year: 2015
  end-page: 16
  ident: bib0045
  article-title: Preparation of silver nanoparticles and their industrial and biomedical applications: a comprehensive review
  publication-title: Adv. Mater. Sci. Eng.
– volume: 13
  start-page: 427
  year: 2011
  end-page: 445
  ident: bib0125
  article-title: The long view of nanotechnology development: the National Nanotechnology Initiative at 10 years
  publication-title: J. Nanopart. Res.
– volume: 26
  start-page: 7221
  year: 2005
  end-page: 7229
  ident: bib0160
  article-title: Impact of heat on nanocrystalline silver dressings: part I: Chemical and biological properties
  publication-title: Biomaterials
– volume: 93
  start-page: 11378
  year: 1996
  end-page: 11381
  ident: bib0120
  article-title: Early events in poliovirus infection: virus-receptor interactions
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 181
  start-page: 173
  year: 2016
  end-page: 177
  ident: bib0165
  article-title: Green synthesis of colloidal silver nanoparticles through electrochemical method and their antibacterial activity
  publication-title: Mater. Lett.
– volume: 13
  start-page: 253
  year: 2007
  ident: 10.1016/j.jviromet.2016.12.015_bib0080
  article-title: Original article Silver nanoparticles inhibit hepatitis B virus
  publication-title: Antivir. Ther.
  doi: 10.1177/135965350801300210
– volume: 3
  start-page: 135
  year: 2010
  ident: 10.1016/j.jviromet.2016.12.015_bib0005
  article-title: Synthesis and applications of silver nanoparticles
  publication-title: Arab. J. Chem.
  doi: 10.1016/j.arabjc.2010.04.008
– volume: 210
  start-page: S353
  year: 2014
  ident: 10.1016/j.jviromet.2016.12.015_bib0190
  article-title: Outbreak of type 1 wild poliovirus infection in adults, Namibia, 2006
  publication-title: J. Infect. Dis.
  doi: 10.1093/infdis/jiu069
– volume: 20
  start-page: 1497
  year: 2009
  ident: 10.1016/j.jviromet.2016.12.015_bib0010
  article-title: Inhibition of herpes simplex virus type 1 infection by silver nanoparticles capped with mercaptoethane sulfonate
  publication-title: Bioconjugate Chem.
  doi: 10.1021/bc900215b
– volume: 181
  start-page: 173
  year: 2016
  ident: 10.1016/j.jviromet.2016.12.015_bib0165
  article-title: Green synthesis of colloidal silver nanoparticles through electrochemical method and their antibacterial activity
  publication-title: Mater. Lett.
  doi: 10.1016/j.matlet.2016.06.008
– volume: 13
  start-page: 1642
  year: 1976
  ident: 10.1016/j.jviromet.2016.12.015_bib0050
  article-title: In vitro differentiation and pH sensitivity of field and cell culture attenuated strains of transmissible gastroenteritis virus
  publication-title: Infect. Immun.
  doi: 10.1128/IAI.13.6.1642-1646.1976
– volume: 331
  start-page: 292
  year: 2005
  ident: 10.1016/j.jviromet.2016.12.015_bib0135
  article-title: Variability in apoptotic response to poliovirus infection
  publication-title: Virology
  doi: 10.1016/j.virol.2004.10.038
– volume: 4
  start-page: 149
  year: 2008
  ident: 10.1016/j.jviromet.2016.12.015_bib0150
  article-title: Silver nanoparticles inhibit replication of respiratory syncytial virus
  publication-title: J. Biomed. Nanotechnol.
  doi: 10.1166/jbn.2008.012
– volume: 8
  start-page: 93
  year: 2013
  ident: 10.1016/j.jviromet.2016.12.015_bib0095
  article-title: Antiviral activity of silver nanoparticle/chitosan composites against H1N1 influenza A virus
  publication-title: Nanoscale Res. Lett.
  doi: 10.1186/1556-276X-8-93
– volume: 178
  start-page: 137
  year: 2011
  ident: 10.1016/j.jviromet.2016.12.015_bib0185
  article-title: Inhibitory effects of silver nanoparticles on H1N1 influenza A virus in vitro
  publication-title: J. Virol. Methods
  doi: 10.1016/j.jviromet.2011.09.003
– volume: 8
  start-page: 4303
  year: 2013
  ident: 10.1016/j.jviromet.2016.12.015_bib0035
  article-title: Antiviral activity of mycosynthesized silver nanoparticles against herpes simplex virus and human parainfluenza virus type 3
  publication-title: Int. J. Nanomed.
– volume: 3
  start-page: 6
  year: 2005
  ident: 10.1016/j.jviromet.2016.12.015_bib0030
  article-title: Interaction of silver nanoparticles with HIV-1
  publication-title: J. Nanobiotechnol.
  doi: 10.1186/1477-3155-3-6
– volume: 16
  start-page: 8894
  year: 2011
  ident: 10.1016/j.jviromet.2016.12.015_bib0040
  article-title: Silver nanoparticles as potential antiviral agents
  publication-title: Molecules
  doi: 10.3390/molecules16108894
– year: 2011
  ident: 10.1016/j.jviromet.2016.12.015_bib0180
  article-title: The development of silver nanoparticles as antiviral agents
  publication-title: J. Am. Chem. Soc. (Diss.)
– volume: 444
  start-page: 337
  year: 2013
  ident: 10.1016/j.jviromet.2016.12.015_bib0170
  article-title: A new nidovirus (NamDinh virus NDiV): Its ultrastructural characterization in the C6/36 mosquito cell line
  publication-title: Virology
  doi: 10.1016/j.virol.2013.06.030
– volume: 194
  start-page: 545
  year: 2006
  ident: 10.1016/j.jviromet.2016.12.015_bib0075
  article-title: An outbreak of poliomyelitis caused by type 1 vaccine-derived poliovirus in China
  publication-title: J. Infect. Dis.
  doi: 10.1086/506359
– volume: 25
  year: 2007
  ident: 10.1016/j.jviromet.2016.12.015_bib0115
  article-title: The study of silver nanoparticles by scanning electron microscopy, energy dispersive X-ray analysis and scanning tunnelling microscopy
  publication-title: Mater. Sci. Pol.
– volume: 3
  start-page: 129
  year: 2008
  ident: 10.1016/j.jviromet.2016.12.015_bib0130
  article-title: A preliminary assessment of silver nanoparticle inhibition of monkeypox virus plaque formation
  publication-title: Nanoscale Res. Lett.
  doi: 10.1007/s11671-008-9128-2
– volume: 114
  start-page: 3315
  year: 2015
  ident: 10.1016/j.jviromet.2016.12.015_bib0145
  article-title: Green-synthesized silver nanoparticles as a novel control tool against dengue virus (DEN-2) and its primary vector Aedes aegypti
  publication-title: Parasitol. Res.
  doi: 10.1007/s00436-015-4556-2
– volume: 56
  start-page: 677
  year: 2002
  ident: 10.1016/j.jviromet.2016.12.015_bib0055
  article-title: Poliovirus cell entry: common structural themes in viral cell entry pathways
  publication-title: Annu. Rev. Microbiol.
  doi: 10.1146/annurev.micro.56.012302.160757
– volume: 7
  start-page: e34589
  year: 2012
  ident: 10.1016/j.jviromet.2016.12.015_bib0155
  article-title: Inhibition of enterovirus 71 (EV-71) infections by a novel antiviral peptide derived from EV-71 capsid protein VP1
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0034589
– volume: 72
  start-page: 53
  year: 2000
  ident: 10.1016/j.jviromet.2016.12.015_bib0110
  article-title: Fabrication and physical properties of self- organized silver nanocrystals
  publication-title: Pure Appl. Chem.
  doi: 10.1351/pac200072010053
– volume: 13
  start-page: 427
  year: 2011
  ident: 10.1016/j.jviromet.2016.12.015_bib0125
  article-title: The long view of nanotechnology development: the National Nanotechnology Initiative at 10 years
  publication-title: J. Nanopart. Res.
  doi: 10.1007/s11051-010-0192-z
– volume: 193
  start-page: 470
  year: 2013
  ident: 10.1016/j.jviromet.2016.12.015_bib0025
  article-title: Inhibitory effects of silver nanoparticles against adenovirus type 3 in vitro
  publication-title: J. Virol. Methods
  doi: 10.1016/j.jviromet.2013.07.020
– volume: 9
  start-page: 30
  year: 2011
  ident: 10.1016/j.jviromet.2016.12.015_bib0070
  article-title: Silver nanoparticles are broad-spectrum bactericidal and virucidal compounds
  publication-title: J. Nanobiotechnol.
  doi: 10.1186/1477-3155-9-30
– volume: 97
  start-page: 73
  year: 2000
  ident: 10.1016/j.jviromet.2016.12.015_bib0015
  article-title: Three-dimensional structure of poliovirus receptor bound to poliovirus
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.97.1.73
– volume: 12
  start-page: 1531
  year: 2010
  ident: 10.1016/j.jviromet.2016.12.015_bib0085
  article-title: A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment
  publication-title: J. Nanopart. Res.
  doi: 10.1007/s11051-010-9900-y
– volume: 26
  start-page: 7221
  year: 2005
  ident: 10.1016/j.jviromet.2016.12.015_bib0160
  article-title: Impact of heat on nanocrystalline silver dressings: part I: Chemical and biological properties
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2005.05.040
– volume: 90
  start-page: 3825
  year: 2001
  ident: 10.1016/j.jviromet.2016.12.015_bib0140
  article-title: Optical properties of Ag and Au nanowire gratings
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1404425
– volume: 68
  start-page: 229
  year: 1971
  ident: 10.1016/j.jviromet.2016.12.015_bib0020
  article-title: pH as a determinant of cellular growth and contact inhibition
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.68.1.229
– volume: 4
  start-page: 033001
  year: 2013
  ident: 10.1016/j.jviromet.2016.12.015_bib0175
  article-title: Silver nanoparticles: synthesis, properties, toxicology, applications and perspectives
  publication-title: Adv. Nat. Sci.: Nanosci. Nanotechnol.
– volume: 93
  start-page: 11378
  year: 1996
  ident: 10.1016/j.jviromet.2016.12.015_bib0120
  article-title: Early events in poliovirus infection: virus-receptor interactions
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.93.21.11378
– volume: 8
  start-page: 15
  year: 2010
  ident: 10.1016/j.jviromet.2016.12.015_bib0065
  article-title: PVP-coated silver nanoparticles block the transmission of cell-free and cell-associated HIV-1 in human cervical culture
  publication-title: J. Nanobiotechnol.
  doi: 10.1186/1477-3155-8-15
– volume: 17
  start-page: 88
  year: 2009
  ident: 10.1016/j.jviromet.2016.12.015_bib0090
  article-title: In vitro antiviral effect of ‘nanosilver’ on influenza virus
  publication-title: Arch. SID
– volume: 9
  start-page: 1
  year: 2014
  ident: 10.1016/j.jviromet.2016.12.015_bib0105
  article-title: Tannic acid modified silver nanoparticles show antiviral activity in herpes simplex virus type 2 infection
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0104113
– volume: 2015
  start-page: 1
  year: 2015
  ident: 10.1016/j.jviromet.2016.12.015_bib0045
  article-title: Preparation of silver nanoparticles and their industrial and biomedical applications: a comprehensive review
  publication-title: Adv. Mater. Sci. Eng.
  doi: 10.1155/2015/165257
– volume: 65
  start-page: 55
  year: 1983
  ident: 10.1016/j.jviromet.2016.12.015_bib0100
  article-title: Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays
  publication-title: J. Immunol. Methods
  doi: 10.1016/0022-1759(83)90303-4
– volume: 26
  start-page: 615
  year: 2010
  ident: 10.1016/j.jviromet.2016.12.015_bib0060
  article-title: Bactericidal effect of silver nanoparticles against multidrug-resistant bacteria
  publication-title: World J. Microbiol. Biotechnol.
  doi: 10.1007/s11274-009-0211-3
SSID ssj0005733
Score 2.519089
Snippet •Silver nanoparticles (AgNPs) have been eco-friendly synthesized by the electrochemical method.•Electrochemical – synthesized AgNPs are non-toxic to cell...
Silver nanoparticles (AgNPs) have been proven to have noticeable cytotoxicity in vitro and antiviral activity against some types of enveloped viruses. This...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 52
SubjectTerms Antiviral activity
antiviral properties
cell culture
Cell Line
Cell Survival
cell viability
Cytopathogenic Effect, Viral
cytopathogenicity
cytotoxicity
disinfection
Electrochemical Techniques
electrochemistry
energy-dispersive X-ray analysis
Enterovirus C
Humans
light microscopy
Metal Nanoparticles
Microbial Sensitivity Tests
Microscopy, Electron, Transmission
nanosilver
Poliovirus
Poliovirus - physiology
RD cell
Silver
Silver nanoparticle
tissue culture
transmission electron microscopy
ultraviolet-visible spectroscopy
viruses
Title Cytotoxicity and antiviral activity of electrochemical – synthesized silver nanoparticles against poliovirus
URI https://dx.doi.org/10.1016/j.jviromet.2016.12.015
https://www.ncbi.nlm.nih.gov/pubmed/28040515
https://www.proquest.com/docview/1854802195
https://www.proquest.com/docview/2000323779
Volume 241
WOSCitedRecordID wos000393251700008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-0984
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005733
  issn: 0166-0934
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLa6DiReEHfKZTISb1WgcZrEfpymIUComkRBfYucxNlSDWdaL2p54j_wf_gx_BLOie2krIyBEC9Rmyap5e-rz-fTcyHkuRzmWO2Ue2E6HGBKjvRS3xewVRmoQgZ5IUzXknfxaMQnE3HU6XxzuTDL01hrvlqJs_8KNZwDsDF19i_gbh4KJ-A1gA5HgB2OfwT8wXpezatVmaG-NqVYsUMEJuJjEsPSxmDY_jeZKxjgoh4CLGIAqnBWfgYtOisxcrqvpYbNtY2h68tjWYKqrBs8VPBk6zvYlriYQ-fWVtOqetbSqEYXTSUGllr7WfvAle6PT6Su_T2j48W6fl-2ESzmzuYTuLKNUbBL19GJ_NT_aIlvfRpgJ5ugLuNo20q2Mb7PKPIGwvo-lVmveYwRX6bLnFvQmSmlZZdkUyDXGndTDHvLbBgPxvTFFOcF5gND_qLaTWxyTS-U5H6PQ8GRgJhFCRjtkF0Wh4J3ye7-m8PJ2zbIKA4CU13eDH0jR_3X33aZPLps-1PLoPEtctOCS_cNF26TjtJ3yHXT0XR9l-hN9lFgH23YRx37aFXQC-yj3798pRu8o4Z39CfeUcs72vLuHvnw6nB88NqzLT28DCzy3MuZDBkvolByNVSSC6Yk1rzMQLcrfxDJmBc-bPqKsIgGaciiIFABl2kBcx3nURbcJ11dafWQ0IwNZc6ZCNMCvRJBmvtpFMucpUxwlrEeCd1MJpmtd49tV04TF9g4TRwCCSKQ-CwBBHrkZXPfman4cuUdwgGVWN1q9GgC_Lry3mcO2QQWdvy3TmpVLWYJCOkhBwUufnMN5tkFDGuG9sgDQ4tmzIyDfYbdyqN_GN1jcqP9eT4h3fn5Qj0l17LlvJyd75GdeML3LOV_AO9L6FU
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cytotoxicity+and+antiviral+activity+of+electrochemical+%E2%80%93+synthesized+silver+nanoparticles+against+poliovirus&rft.jtitle=Journal+of+virological+methods&rft.au=Huy%2C+Tran+Quang&rft.au=Hien+Thanh%2C+Nguyen+Thi&rft.au=Thuy%2C+Nguyen+Thanh&rft.au=Chung%2C+Pham+Van&rft.date=2017-03-01&rft.pub=Elsevier+B.V&rft.issn=0166-0934&rft.eissn=1879-0984&rft.volume=241&rft.spage=52&rft.epage=57&rft_id=info:doi/10.1016%2Fj.jviromet.2016.12.015&rft.externalDocID=S0166093416306176
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0166-0934&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0166-0934&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0166-0934&client=summon