Cytotoxicity and antiviral activity of electrochemical – synthesized silver nanoparticles against poliovirus
•Silver nanoparticles (AgNPs) have been eco-friendly synthesized by the electrochemical method.•Electrochemical – synthesized AgNPs are non-toxic to cell cultures at high concentrations (up to 100ppm).•Electrochemical – synthesized AgNPs could inhibit non-enveloped viruses at low concentrations (aro...
Uloženo v:
| Vydáno v: | Journal of virological methods Ročník 241; s. 52 - 57 |
|---|---|
| Hlavní autoři: | , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Netherlands
Elsevier B.V
01.03.2017
|
| Témata: | |
| ISSN: | 0166-0934, 1879-0984, 1879-0984 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | •Silver nanoparticles (AgNPs) have been eco-friendly synthesized by the electrochemical method.•Electrochemical – synthesized AgNPs are non-toxic to cell cultures at high concentrations (up to 100ppm).•Electrochemical – synthesized AgNPs could inhibit non-enveloped viruses at low concentrations (around 3.13ppm).
Silver nanoparticles (AgNPs) have been proven to have noticeable cytotoxicity in vitro and antiviral activity against some types of enveloped viruses. This paper presents the cytotoxicity and antiviral activity of pure AgNPs synthesized by the electrochemical method, towards cell culture and poliovirus (a non-enveloped virus). Prepared AgNPs were characterized by ultraviolet–visible spectroscopy, energy-dispersive X-ray spectroscopy and transmission electron microscopy. Before incubation with poliovirus, different concentrations of AgNPs were added to human rhabdomyosarcoma (RD) cell monolayers seeded in 96 well plates for testing their cytotoxicity. The in vitro cytotoxicity and anti-poliovirus activity of AgNPs were daily assessed for cytopathic effect (CPE) through inverted light microscopy. CPE in the tested wells was determined in comparison with those in wells of negative and positive control. Structure analysis showed that AgNPs were formed with a quasi-spherical shape with mean size about 7.1nm and high purity. No CPE of RD cells was seen in wells at the time point of 48h post-incubation with AgNPs at concentration up to 100ppm. The anti-poliovirus activity of AgNPs was determined at 3.13ppm corresponding to the viral concentration of 1TCID50 (Tissue Culture Infective Dose) after 30min, and 10TCID50 after 60min, the cell viability was found up to 98% at 48h post-infection, with no CPE found. Whereas, a strong CPE of RD cells was found at 48h post-infection with the mixture of AgNPs and poliovirus at concentration of 100TCID50, and in wells of positive controls. With mentioned advantages, electrochemical-synthesized AgNPs are promising candidate for advanced biomedical and disinfection applications. |
|---|---|
| AbstractList | Silver nanoparticles (AgNPs) have been proven to have noticeable cytotoxicity in vitro and antiviral activity against some types of enveloped viruses. This paper presents the cytotoxicity and antiviral activity of pure AgNPs synthesized by the electrochemical method, towards cell culture and poliovirus (a non-enveloped virus). Prepared AgNPs were characterized by ultraviolet-visible spectroscopy, energy-dispersive X-ray spectroscopy and transmission electron microscopy. Before incubation with poliovirus, different concentrations of AgNPs were added to human rhabdomyosarcoma (RD) cell monolayers seeded in 96 well plates for testing their cytotoxicity. The in vitro cytotoxicity and anti-poliovirus activity of AgNPs were daily assessed for cytopathic effect (CPE) through inverted light microscopy. CPE in the tested wells was determined in comparison with those in wells of negative and positive control. Structure analysis showed that AgNPs were formed with a quasi-spherical shape with mean size about 7.1nm and high purity. No CPE of RD cells was seen in wells at the time point of 48h post-incubation with AgNPs at concentration up to 100ppm. The anti-poliovirus activity of AgNPs was determined at 3.13ppm corresponding to the viral concentration of 1TCID
(Tissue Culture Infective Dose) after 30min, and 10TCID
after 60min, the cell viability was found up to 98% at 48h post-infection, with no CPE found. Whereas, a strong CPE of RD cells was found at 48h post-infection with the mixture of AgNPs and poliovirus at concentration of 100TCID
, and in wells of positive controls. With mentioned advantages, electrochemical-synthesized AgNPs are promising candidate for advanced biomedical and disinfection applications. Silver nanoparticles (AgNPs) have been proven to have noticeable cytotoxicity in vitro and antiviral activity against some types of enveloped viruses. This paper presents the cytotoxicity and antiviral activity of pure AgNPs synthesized by the electrochemical method, towards cell culture and poliovirus (a non-enveloped virus). Prepared AgNPs were characterized by ultraviolet-visible spectroscopy, energy-dispersive X-ray spectroscopy and transmission electron microscopy. Before incubation with poliovirus, different concentrations of AgNPs were added to human rhabdomyosarcoma (RD) cell monolayers seeded in 96 well plates for testing their cytotoxicity. The in vitro cytotoxicity and anti-poliovirus activity of AgNPs were daily assessed for cytopathic effect (CPE) through inverted light microscopy. CPE in the tested wells was determined in comparison with those in wells of negative and positive control. Structure analysis showed that AgNPs were formed with a quasi-spherical shape with mean size about 7.1nm and high purity. No CPE of RD cells was seen in wells at the time point of 48h post-incubation with AgNPs at concentration up to 100ppm. The anti-poliovirus activity of AgNPs was determined at 3.13ppm corresponding to the viral concentration of 1TCID50 (Tissue Culture Infective Dose) after 30min, and 10TCID50 after 60min, the cell viability was found up to 98% at 48h post-infection, with no CPE found. Whereas, a strong CPE of RD cells was found at 48h post-infection with the mixture of AgNPs and poliovirus at concentration of 100TCID50, and in wells of positive controls. With mentioned advantages, electrochemical-synthesized AgNPs are promising candidate for advanced biomedical and disinfection applications.Silver nanoparticles (AgNPs) have been proven to have noticeable cytotoxicity in vitro and antiviral activity against some types of enveloped viruses. This paper presents the cytotoxicity and antiviral activity of pure AgNPs synthesized by the electrochemical method, towards cell culture and poliovirus (a non-enveloped virus). Prepared AgNPs were characterized by ultraviolet-visible spectroscopy, energy-dispersive X-ray spectroscopy and transmission electron microscopy. Before incubation with poliovirus, different concentrations of AgNPs were added to human rhabdomyosarcoma (RD) cell monolayers seeded in 96 well plates for testing their cytotoxicity. The in vitro cytotoxicity and anti-poliovirus activity of AgNPs were daily assessed for cytopathic effect (CPE) through inverted light microscopy. CPE in the tested wells was determined in comparison with those in wells of negative and positive control. Structure analysis showed that AgNPs were formed with a quasi-spherical shape with mean size about 7.1nm and high purity. No CPE of RD cells was seen in wells at the time point of 48h post-incubation with AgNPs at concentration up to 100ppm. The anti-poliovirus activity of AgNPs was determined at 3.13ppm corresponding to the viral concentration of 1TCID50 (Tissue Culture Infective Dose) after 30min, and 10TCID50 after 60min, the cell viability was found up to 98% at 48h post-infection, with no CPE found. Whereas, a strong CPE of RD cells was found at 48h post-infection with the mixture of AgNPs and poliovirus at concentration of 100TCID50, and in wells of positive controls. With mentioned advantages, electrochemical-synthesized AgNPs are promising candidate for advanced biomedical and disinfection applications. Silver nanoparticles (AgNPs) have been proven to have noticeable cytotoxicity in vitro and antiviral activity against some types of enveloped viruses. This paper presents the cytotoxicity and antiviral activity of pure AgNPs synthesized by the electrochemical method, towards cell culture and poliovirus (a non-enveloped virus). Prepared AgNPs were characterized by ultraviolet–visible spectroscopy, energy-dispersive X-ray spectroscopy and transmission electron microscopy. Before incubation with poliovirus, different concentrations of AgNPs were added to human rhabdomyosarcoma (RD) cell monolayers seeded in 96 well plates for testing their cytotoxicity. The in vitro cytotoxicity and anti-poliovirus activity of AgNPs were daily assessed for cytopathic effect (CPE) through inverted light microscopy. CPE in the tested wells was determined in comparison with those in wells of negative and positive control. Structure analysis showed that AgNPs were formed with a quasi-spherical shape with mean size about 7.1nm and high purity. No CPE of RD cells was seen in wells at the time point of 48h post-incubation with AgNPs at concentration up to 100ppm. The anti-poliovirus activity of AgNPs was determined at 3.13ppm corresponding to the viral concentration of 1TCID50 (Tissue Culture Infective Dose) after 30min, and 10TCID50 after 60min, the cell viability was found up to 98% at 48h post-infection, with no CPE found. Whereas, a strong CPE of RD cells was found at 48h post-infection with the mixture of AgNPs and poliovirus at concentration of 100TCID50, and in wells of positive controls. With mentioned advantages, electrochemical-synthesized AgNPs are promising candidate for advanced biomedical and disinfection applications. •Silver nanoparticles (AgNPs) have been eco-friendly synthesized by the electrochemical method.•Electrochemical – synthesized AgNPs are non-toxic to cell cultures at high concentrations (up to 100ppm).•Electrochemical – synthesized AgNPs could inhibit non-enveloped viruses at low concentrations (around 3.13ppm). Silver nanoparticles (AgNPs) have been proven to have noticeable cytotoxicity in vitro and antiviral activity against some types of enveloped viruses. This paper presents the cytotoxicity and antiviral activity of pure AgNPs synthesized by the electrochemical method, towards cell culture and poliovirus (a non-enveloped virus). Prepared AgNPs were characterized by ultraviolet–visible spectroscopy, energy-dispersive X-ray spectroscopy and transmission electron microscopy. Before incubation with poliovirus, different concentrations of AgNPs were added to human rhabdomyosarcoma (RD) cell monolayers seeded in 96 well plates for testing their cytotoxicity. The in vitro cytotoxicity and anti-poliovirus activity of AgNPs were daily assessed for cytopathic effect (CPE) through inverted light microscopy. CPE in the tested wells was determined in comparison with those in wells of negative and positive control. Structure analysis showed that AgNPs were formed with a quasi-spherical shape with mean size about 7.1nm and high purity. No CPE of RD cells was seen in wells at the time point of 48h post-incubation with AgNPs at concentration up to 100ppm. The anti-poliovirus activity of AgNPs was determined at 3.13ppm corresponding to the viral concentration of 1TCID50 (Tissue Culture Infective Dose) after 30min, and 10TCID50 after 60min, the cell viability was found up to 98% at 48h post-infection, with no CPE found. Whereas, a strong CPE of RD cells was found at 48h post-infection with the mixture of AgNPs and poliovirus at concentration of 100TCID50, and in wells of positive controls. With mentioned advantages, electrochemical-synthesized AgNPs are promising candidate for advanced biomedical and disinfection applications. |
| Author | Hong Hanh, Nguyen Thi Thuy, Nguyen Thanh Le, Anh-Tuan Huy, Tran Quang Hung, Pham Ngoc Hien Thanh, Nguyen Thi Chung, Pham Van |
| Author_xml | – sequence: 1 givenname: Tran Quang surname: Huy fullname: Huy, Tran Quang email: tqh@nihe.org.vn organization: National Institute of Hygiene and Epidemiology, 1 – Yersin street, Hanoi, Vietnam – sequence: 2 givenname: Nguyen Thi surname: Hien Thanh fullname: Hien Thanh, Nguyen Thi organization: National Institute of Hygiene and Epidemiology, 1 – Yersin street, Hanoi, Vietnam – sequence: 3 givenname: Nguyen Thanh surname: Thuy fullname: Thuy, Nguyen Thanh organization: National Institute of Hygiene and Epidemiology, 1 – Yersin street, Hanoi, Vietnam – sequence: 4 givenname: Pham Van surname: Chung fullname: Chung, Pham Van organization: National Institute of Hygiene and Epidemiology, 1 – Yersin street, Hanoi, Vietnam – sequence: 5 givenname: Pham Ngoc surname: Hung fullname: Hung, Pham Ngoc organization: Vietnam Military Medical University, 160 - Phung Hung Road, Ha Dong, Hanoi, Vietnam – sequence: 6 givenname: Anh-Tuan surname: Le fullname: Le, Anh-Tuan email: tuan.leanh1@hust.edu.vn organization: Advanced Institute for Science and Technology, Hanoi University of Science and Technology, 1-Dai Co Viet Road, Hanoi, Vietnam – sequence: 7 givenname: Nguyen Thi surname: Hong Hanh fullname: Hong Hanh, Nguyen Thi organization: National Institute of Hygiene and Epidemiology, 1 – Yersin street, Hanoi, Vietnam |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28040515$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFUcuOEzEQtNAiNrvwC6s5csngx9jjkTiAIl7SSlzgbHU8Pawjjx1sJyKc-Af-kC_BIZsLlxxa3e2uKktVN-QqxICE3DHaMsrUq0272bsUZywtr3vLeEuZfEIWTPfDkg66uyKLelB1Ft01ucl5QymVvRDPyDXXtKOSyQUJq0OJJf5w1pVDA2GsVVyVBt-APU71OU4NerQlRfuAs7P19ufX7yYfQnnA7H7i2GTn95iaACFuIRVnPeYGvoELuTTb6F2smrv8nDydwGd88dhvydf3776sPi7vP3_4tHp7v7Sd6sty5CC5npQEjR2CHjgCE31vJeuQUQW9npjWfJKTomvJlRAoNKwn0bF-VFbckpcn3W2K33eYi5ldtug9BIy7bHj1QvCqOFyEMi07TTkbZIXePUJ36xlHs01uhnQwZzsr4PUJYFPMOeFkqq1QXAwlgfOGUXNMz2zMOT1zTM8wbug_uvqPfv7hIvHNiYjV073DZLJ1GCyOLtXczBjdJYm_TZ27yA |
| CitedBy_id | crossref_primary_10_1016_j_sab_2022_106505 crossref_primary_10_1246_cl_230205 crossref_primary_10_1088_1748_605X_ac3208 crossref_primary_10_1007_s40097_021_00465_y crossref_primary_10_1080_07388551_2021_1939260 crossref_primary_10_1002_gch2_202000049 crossref_primary_10_1007_s42247_023_00622_9 crossref_primary_10_3389_fmicb_2020_01635 crossref_primary_10_1016_j_bioactmat_2021_06_001 crossref_primary_10_1016_j_ijbiomac_2021_04_071 crossref_primary_10_1039_D1EN00025J crossref_primary_10_3390_molecules28135190 crossref_primary_10_1016_j_heliyon_2021_e06841 crossref_primary_10_1007_s42247_021_00306_2 crossref_primary_10_1016_j_nano_2019_03_004 crossref_primary_10_1016_j_microc_2024_110301 crossref_primary_10_1016_j_micpath_2021_104908 crossref_primary_10_3390_ijms231810541 crossref_primary_10_1002_EXP_20210038 crossref_primary_10_1002_vjch_202300086 crossref_primary_10_1016_j_nantod_2021_101267 crossref_primary_10_3390_microorganisms11030629 crossref_primary_10_1016_j_lfs_2020_118336 crossref_primary_10_1002_slct_202001709 crossref_primary_10_1016_j_matpr_2022_06_355 crossref_primary_10_1007_s11003_020_00363_8 crossref_primary_10_1007_s11468_023_01817_w crossref_primary_10_1007_s10924_021_02272_6 crossref_primary_10_1186_s12645_023_00243_1 crossref_primary_10_1007_s40495_021_00250_z crossref_primary_10_1007_s00203_023_03818_z crossref_primary_10_1155_2018_1860280 crossref_primary_10_1007_s10570_022_04792_3 crossref_primary_10_1007_s42765_023_00275_7 crossref_primary_10_3390_nano14171425 crossref_primary_10_3390_ma13030768 crossref_primary_10_1002_wnan_1707 crossref_primary_10_3390_coatings12040480 crossref_primary_10_1007_s11664_017_5315_1 crossref_primary_10_1515_ntrev_2024_0102 crossref_primary_10_3390_nano10091645 crossref_primary_10_1016_j_mseb_2023_116636 crossref_primary_10_2147_IJN_S298606 crossref_primary_10_1016_j_nantod_2020_101051 crossref_primary_10_1186_s40486_021_00131_6 crossref_primary_10_2147_IJN_S280976 crossref_primary_10_3389_fnano_2022_1064615 crossref_primary_10_3390_nano10112318 crossref_primary_10_1039_D2RA06410C crossref_primary_10_1111_ced_13758 crossref_primary_10_1016_j_xphs_2021_01_034 crossref_primary_10_1002_advs_202102189 crossref_primary_10_1080_15226514_2019_1634000 crossref_primary_10_3389_fbioe_2021_633468 crossref_primary_10_1186_s42269_021_00487_0 crossref_primary_10_3390_nano10081566 crossref_primary_10_3390_polym13234234 crossref_primary_10_1016_j_lfs_2020_118761 crossref_primary_10_1007_s42247_021_00182_w crossref_primary_10_3390_microorganisms11040886 crossref_primary_10_61186_jcc_6_3_2 crossref_primary_10_1007_s00396_019_04488_4 crossref_primary_10_1002_smll_201902641 crossref_primary_10_1021_acsmaterialslett_4c02113 crossref_primary_10_1007_s12011_020_02414_2 crossref_primary_10_1016_j_jscs_2021_101304 crossref_primary_10_1016_j_cis_2022_102726 crossref_primary_10_1016_j_scitotenv_2018_11_257 crossref_primary_10_1007_s42765_020_00047_7 crossref_primary_10_1007_s10924_025_03527_2 crossref_primary_10_3390_nano12020238 crossref_primary_10_1177_25165984241228087 crossref_primary_10_1038_s41545_018_0011_0 crossref_primary_10_1016_j_foodcont_2019_02_019 crossref_primary_10_1088_2053_1591_ab6ad8 crossref_primary_10_3390_molecules28031375 crossref_primary_10_1002_ardp_202400943 crossref_primary_10_1007_s13762_023_04803_1 crossref_primary_10_3390_microorganisms12040820 crossref_primary_10_1002_slct_202304941 crossref_primary_10_1016_j_molstruc_2020_129750 crossref_primary_10_3390_gels9110878 crossref_primary_10_1089_mdr_2021_0281 crossref_primary_10_1002_ppsc_202100159 crossref_primary_10_1002_cplu_202000460 crossref_primary_10_3892_br_2024_1912 crossref_primary_10_1155_2022_1519104 crossref_primary_10_1016_j_mtcomm_2019_100884 crossref_primary_10_3390_pharmaceutics13122034 crossref_primary_10_1088_1361_6528_ac03d6 crossref_primary_10_1002_masy_202000336 crossref_primary_10_1002_sstr_202200021 crossref_primary_10_1038_s41598_023_45038_x crossref_primary_10_3390_molecules28227674 crossref_primary_10_3390_vaccines13020126 crossref_primary_10_1016_j_actbio_2019_09_025 |
| Cites_doi | 10.1177/135965350801300210 10.1016/j.arabjc.2010.04.008 10.1093/infdis/jiu069 10.1021/bc900215b 10.1016/j.matlet.2016.06.008 10.1128/IAI.13.6.1642-1646.1976 10.1016/j.virol.2004.10.038 10.1166/jbn.2008.012 10.1186/1556-276X-8-93 10.1016/j.jviromet.2011.09.003 10.1186/1477-3155-3-6 10.3390/molecules16108894 10.1016/j.virol.2013.06.030 10.1086/506359 10.1007/s11671-008-9128-2 10.1007/s00436-015-4556-2 10.1146/annurev.micro.56.012302.160757 10.1371/journal.pone.0034589 10.1351/pac200072010053 10.1007/s11051-010-0192-z 10.1016/j.jviromet.2013.07.020 10.1186/1477-3155-9-30 10.1073/pnas.97.1.73 10.1007/s11051-010-9900-y 10.1016/j.biomaterials.2005.05.040 10.1063/1.1404425 10.1073/pnas.68.1.229 10.1073/pnas.93.21.11378 10.1186/1477-3155-8-15 10.1371/journal.pone.0104113 10.1155/2015/165257 10.1016/0022-1759(83)90303-4 10.1007/s11274-009-0211-3 |
| ContentType | Journal Article |
| Copyright | 2016 Elsevier B.V. Copyright © 2016 Elsevier B.V. All rights reserved. |
| Copyright_xml | – notice: 2016 Elsevier B.V. – notice: Copyright © 2016 Elsevier B.V. All rights reserved. |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
| DOI | 10.1016/j.jviromet.2016.12.015 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic AGRICOLA |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 1879-0984 |
| EndPage | 57 |
| ExternalDocumentID | 28040515 10_1016_j_jviromet_2016_12_015 S0166093416306176 |
| Genre | Research Support, Non-U.S. Gov't Journal Article |
| GroupedDBID | --- --K --M .GJ .~1 0R~ 1B1 1RT 1~. 1~5 29L 4.4 457 4G. 53G 5GY 5RE 5VS 7-5 71M 8P~ 9JM AAAJQ AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARKO AAXUO ABBQC ABFNM ABFRF ABJNI ABLVK ABMAC ABMZM ABXDB ABYKQ ACDAQ ACGFO ACGFS ACIUM ACRLP ADBBV ADEZE ADMUD AEBSH AEFWE AEKER AENEX AFFNX AFKWA AFTJW AFXIZ AGEKW AGHFR AGUBO AGYEJ AHHHB AI. AIEXJ AIKHN AITUG AJBFU AJOXV AJRQY ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ANZVX ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV CJTIS CNWQP CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HEJ HMG HMK HMO HVGLF HZ~ IH2 IHE J1W K-O KOM L7B LCYCR LUGTX M29 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAE SCC SDF SDG SDP SES SEW SIN SPCBC SSH SSI SSZ T5K VH1 WUQ XFK Y6R ZGI ~G- ~KM 9DU AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACIEU ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
| ID | FETCH-LOGICAL-c467t-d2a528f65a8e4ea892ea1377c514e106a78f1882f5f60b52633e38abf3417d6c3 |
| ISICitedReferencesCount | 110 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000393251700008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0166-0934 1879-0984 |
| IngestDate | Thu Oct 02 10:34:41 EDT 2025 Thu Oct 02 08:48:10 EDT 2025 Thu Apr 03 07:07:18 EDT 2025 Tue Nov 18 22:25:12 EST 2025 Sat Nov 29 06:40:06 EST 2025 Fri Feb 23 02:34:16 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | RD cell Poliovirus Antiviral activity Silver nanoparticle |
| Language | English |
| License | Copyright © 2016 Elsevier B.V. All rights reserved. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c467t-d2a528f65a8e4ea892ea1377c514e106a78f1882f5f60b52633e38abf3417d6c3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PMID | 28040515 |
| PQID | 1854802195 |
| PQPubID | 23479 |
| PageCount | 6 |
| ParticipantIDs | proquest_miscellaneous_2000323779 proquest_miscellaneous_1854802195 pubmed_primary_28040515 crossref_citationtrail_10_1016_j_jviromet_2016_12_015 crossref_primary_10_1016_j_jviromet_2016_12_015 elsevier_sciencedirect_doi_10_1016_j_jviromet_2016_12_015 |
| PublicationCentury | 2000 |
| PublicationDate | March 2017 2017-03-00 20170301 |
| PublicationDateYYYYMMDD | 2017-03-01 |
| PublicationDate_xml | – month: 03 year: 2017 text: March 2017 |
| PublicationDecade | 2010 |
| PublicationPlace | Netherlands |
| PublicationPlace_xml | – name: Netherlands |
| PublicationTitle | Journal of virological methods |
| PublicationTitleAlternate | J Virol Methods |
| PublicationYear | 2017 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Ceccarini, Eagle (bib0020) 1971; 68 Romanova, Belov, Lidsky, Tolskaya, Kolesnikova, Evstafieva, Vartapetian, Egger, Bienz, Agol (bib0135) 2005; 331 Hogle (bib0055) 2002; 56 Thuy, Huy, Nga, Morita, Dunia, Benedetti (bib0170) 2013; 444 Hess, Bachmann (bib0050) 1976; 13 Orlowski, Tomaszewska, Gniadek, Baska, Nowakowska, Sokolowska, Nowak, Donten, Celichowski, Grobelny, Krzyzowska (bib0105) 2014; 9 Haider, Kang (bib0045) 2015; 2015 Mosmann (bib0100) 1983; 65 Xiang, Chen, Pang, Zheng (bib0185) 2011; 178 Chen, Zheng, Yin, Li, Zheng (bib0025) 2013; 193 Roco (bib0125) 2011; 13 Sun, Singh, Vig, Pillai, Singh (bib0150) 2008; 4 Baram-Pinto, Shukla, Perkas, Gedanken, Sarid (bib0010) 2009; 20 Lara, Garza-Treviño, Ixtepan-Turrent, Singh (bib0070) 2011; 9 Marambio-Jones, Hoek (bib0085) 2010; 12 Sujitha, Murugan, Paulpandi, Panneerselvam, Suresh, Roni, Nicoletti, Higuchi, Madhiyazhagan, Subramaniam, Dinesh, Vadivalagan, Chandramohan, Alarfaj, Munusamy, Barnard, Benelli (bib0145) 2015; 114 Thuc, Huy, Hoang, Tien, Van Chung, Thuy, Le (bib0165) 2016; 181 Liang, Zhang, Xu, Wen, Zuo, Lee, Yu, Jingjin (bib0075) 2006; 194 Abou El-Nour, Eftaiha, Al-Warthan, Ammar (bib0005) 2010; 3 Taylor, Ussher, Burrell (bib0160) 2005; 26 Racaniello (bib0120) 1996; 93 Galdiero, Falanga, Vitiello, Cantisani, Marra, Galdiero (bib0040) 2011; 16 Elechiguerra, Burt, Morones, Camacho-Bragado, Gao, Lara, Yacaman (bib0030) 2005; 3 Lu, Sun, Chen, Hui, Ho, Luk, Lau (bib0080) 2007; 13 Lara, Ixtepan-Turrent, Garza-Treviño, Rodriguez-Padilla (bib0065) 2010; 8 Belnap, McDermott, Filman, Cheng, Trus, Zuccola, Racaniello, Hogle, Steven a (bib0015) 2000; 97 Schider, Krenn, Gotschy, Lamprecht, Ditlbacher, Leitner, Aussenegg (bib0140) 2001; 90 Trefry (bib0180) 2011 Tan, Chan, Sim, Tan, Poh (bib0155) 2012; 7 Yusuf, De Wee, Foster, Watkins, Tiruneh, Chauvin, Bossarte, Mandlhate, Jack, Gumede, Mawela, Burns, Pallansch, Allies, Rainey, Mataruse, Nshimirimana (bib0190) 2014; 210 Tran, Nguyen, Le (bib0175) 2013; 4 Lara, Ayala-Núñez, Ixtepan Turrent, Rodríguez Padilla (bib0060) 2010; 26 Mehrbod, Motamed, Tabatabaian, Amini, Shahidi (bib0090) 2009; 17 Puchalski, Dabrowski, Olejniczak, Krukowski, Kowalczyk, Polański (bib0115) 2007; 25 Rogers, Parkinson, Choi, Speshock, Hussain (bib0130) 2008; 3 Pileni (bib0110) 2000; 72 Gaikwad, Ingle, Gade, Rai, Falanga, Incoronato, Russo, Galdiero, Galdiero (bib0035) 2013; 8 Mori, Ono, Miyahira, Nguyen, Matsui, Ishihara (bib0095) 2013; 8 Gaikwad (10.1016/j.jviromet.2016.12.015_bib0035) 2013; 8 Lu (10.1016/j.jviromet.2016.12.015_bib0080) 2007; 13 Thuy (10.1016/j.jviromet.2016.12.015_bib0170) 2013; 444 Sun (10.1016/j.jviromet.2016.12.015_bib0150) 2008; 4 Orlowski (10.1016/j.jviromet.2016.12.015_bib0105) 2014; 9 Lara (10.1016/j.jviromet.2016.12.015_bib0060) 2010; 26 Lara (10.1016/j.jviromet.2016.12.015_bib0065) 2010; 8 Tan (10.1016/j.jviromet.2016.12.015_bib0155) 2012; 7 Trefry (10.1016/j.jviromet.2016.12.015_bib0180) 2011 Baram-Pinto (10.1016/j.jviromet.2016.12.015_bib0010) 2009; 20 Thuc (10.1016/j.jviromet.2016.12.015_bib0165) 2016; 181 Mehrbod (10.1016/j.jviromet.2016.12.015_bib0090) 2009; 17 Taylor (10.1016/j.jviromet.2016.12.015_bib0160) 2005; 26 Lara (10.1016/j.jviromet.2016.12.015_bib0070) 2011; 9 Haider (10.1016/j.jviromet.2016.12.015_bib0045) 2015; 2015 Sujitha (10.1016/j.jviromet.2016.12.015_bib0145) 2015; 114 Rogers (10.1016/j.jviromet.2016.12.015_bib0130) 2008; 3 Racaniello (10.1016/j.jviromet.2016.12.015_bib0120) 1996; 93 Abou El-Nour (10.1016/j.jviromet.2016.12.015_bib0005) 2010; 3 Galdiero (10.1016/j.jviromet.2016.12.015_bib0040) 2011; 16 Puchalski (10.1016/j.jviromet.2016.12.015_bib0115) 2007; 25 Mosmann (10.1016/j.jviromet.2016.12.015_bib0100) 1983; 65 Romanova (10.1016/j.jviromet.2016.12.015_bib0135) 2005; 331 Chen (10.1016/j.jviromet.2016.12.015_bib0025) 2013; 193 Hess (10.1016/j.jviromet.2016.12.015_bib0050) 1976; 13 Ceccarini (10.1016/j.jviromet.2016.12.015_bib0020) 1971; 68 Liang (10.1016/j.jviromet.2016.12.015_bib0075) 2006; 194 Roco (10.1016/j.jviromet.2016.12.015_bib0125) 2011; 13 Marambio-Jones (10.1016/j.jviromet.2016.12.015_bib0085) 2010; 12 Pileni (10.1016/j.jviromet.2016.12.015_bib0110) 2000; 72 Xiang (10.1016/j.jviromet.2016.12.015_bib0185) 2011; 178 Elechiguerra (10.1016/j.jviromet.2016.12.015_bib0030) 2005; 3 Schider (10.1016/j.jviromet.2016.12.015_bib0140) 2001; 90 Tran (10.1016/j.jviromet.2016.12.015_bib0175) 2013; 4 Hogle (10.1016/j.jviromet.2016.12.015_bib0055) 2002; 56 Belnap (10.1016/j.jviromet.2016.12.015_bib0015) 2000; 97 Mori (10.1016/j.jviromet.2016.12.015_bib0095) 2013; 8 Yusuf (10.1016/j.jviromet.2016.12.015_bib0190) 2014; 210 |
| References_xml | – year: 2011 ident: bib0180 article-title: The development of silver nanoparticles as antiviral agents publication-title: J. Am. Chem. Soc. (Diss.) – volume: 178 start-page: 137 year: 2011 end-page: 142 ident: bib0185 article-title: Inhibitory effects of silver nanoparticles on H1N1 influenza A virus in vitro publication-title: J. Virol. Methods – volume: 16 start-page: 8894 year: 2011 end-page: 8918 ident: bib0040 article-title: Silver nanoparticles as potential antiviral agents publication-title: Molecules – volume: 26 start-page: 615 year: 2010 end-page: 621 ident: bib0060 article-title: Bactericidal effect of silver nanoparticles against multidrug-resistant bacteria publication-title: World J. Microbiol. Biotechnol. – volume: 210 start-page: S353 year: 2014 end-page: S360 ident: bib0190 article-title: Outbreak of type 1 wild poliovirus infection in adults, Namibia, 2006 publication-title: J. Infect. Dis. – volume: 13 start-page: 1642 year: 1976 end-page: 1646 ident: bib0050 article-title: In vitro differentiation and pH sensitivity of field and cell culture attenuated strains of transmissible gastroenteritis virus publication-title: Infect. Immun. – volume: 444 start-page: 337 year: 2013 end-page: 342 ident: bib0170 article-title: A new nidovirus (NamDinh virus NDiV): Its ultrastructural characterization in the C6/36 mosquito cell line publication-title: Virology – volume: 194 start-page: 545 year: 2006 end-page: 551 ident: bib0075 article-title: An outbreak of poliomyelitis caused by type 1 vaccine-derived poliovirus in China publication-title: J. Infect. Dis. – volume: 8 start-page: 4303 year: 2013 end-page: 4314 ident: bib0035 article-title: Antiviral activity of mycosynthesized silver nanoparticles against herpes simplex virus and human parainfluenza virus type 3 publication-title: Int. J. Nanomed. – volume: 65 start-page: 55 year: 1983 end-page: 63 ident: bib0100 article-title: Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays publication-title: J. Immunol. Methods – volume: 25 year: 2007 ident: bib0115 article-title: The study of silver nanoparticles by scanning electron microscopy, energy dispersive X-ray analysis and scanning tunnelling microscopy publication-title: Mater. Sci. Pol. – volume: 12 start-page: 1531 year: 2010 end-page: 1551 ident: bib0085 article-title: A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment publication-title: J. Nanopart. Res. – volume: 331 start-page: 292 year: 2005 end-page: 306 ident: bib0135 article-title: Variability in apoptotic response to poliovirus infection publication-title: Virology – volume: 97 start-page: 73 year: 2000 end-page: 78 ident: bib0015 article-title: Three-dimensional structure of poliovirus receptor bound to poliovirus publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 8 start-page: 15 year: 2010 ident: bib0065 article-title: PVP-coated silver nanoparticles block the transmission of cell-free and cell-associated HIV-1 in human cervical culture publication-title: J. Nanobiotechnol. – volume: 8 start-page: 93 year: 2013 ident: bib0095 article-title: Antiviral activity of silver nanoparticle/chitosan composites against H1N1 influenza A virus publication-title: Nanoscale Res. Lett. – volume: 3 start-page: 135 year: 2010 end-page: 140 ident: bib0005 article-title: Synthesis and applications of silver nanoparticles publication-title: Arab. J. Chem. – volume: 90 start-page: 3825 year: 2001 end-page: 3830 ident: bib0140 article-title: Optical properties of Ag and Au nanowire gratings publication-title: J. Appl. Phys. – volume: 4 start-page: 033001 year: 2013 ident: bib0175 article-title: Silver nanoparticles: synthesis, properties, toxicology, applications and perspectives publication-title: Adv. Nat. Sci.: Nanosci. Nanotechnol. – volume: 4 start-page: 149 year: 2008 end-page: 158 ident: bib0150 article-title: Silver nanoparticles inhibit replication of respiratory syncytial virus publication-title: J. Biomed. Nanotechnol. – volume: 13 start-page: 253 year: 2007 end-page: 262 ident: bib0080 article-title: Original article Silver nanoparticles inhibit hepatitis B virus publication-title: Antivir. Ther. – volume: 114 start-page: 3315 year: 2015 end-page: 3325 ident: bib0145 article-title: Green-synthesized silver nanoparticles as a novel control tool against dengue virus (DEN-2) and its primary vector Aedes aegypti publication-title: Parasitol. Res. – volume: 3 start-page: 129 year: 2008 end-page: 133 ident: bib0130 article-title: A preliminary assessment of silver nanoparticle inhibition of monkeypox virus plaque formation publication-title: Nanoscale Res. Lett. – volume: 3 start-page: 6 year: 2005 ident: bib0030 article-title: Interaction of silver nanoparticles with HIV-1 publication-title: J. Nanobiotechnol. – volume: 7 start-page: e34589 year: 2012 ident: bib0155 article-title: Inhibition of enterovirus 71 (EV-71) infections by a novel antiviral peptide derived from EV-71 capsid protein VP1 publication-title: PLoS One – volume: 56 start-page: 677 year: 2002 end-page: 702 ident: bib0055 article-title: Poliovirus cell entry: common structural themes in viral cell entry pathways publication-title: Annu. Rev. Microbiol. – volume: 9 start-page: 30 year: 2011 ident: bib0070 article-title: Silver nanoparticles are broad-spectrum bactericidal and virucidal compounds publication-title: J. Nanobiotechnol. – volume: 193 start-page: 470 year: 2013 end-page: 477 ident: bib0025 article-title: Inhibitory effects of silver nanoparticles against adenovirus type 3 in vitro publication-title: J. Virol. Methods – volume: 20 start-page: 1497 year: 2009 end-page: 1502 ident: bib0010 article-title: Inhibition of herpes simplex virus type 1 infection by silver nanoparticles capped with mercaptoethane sulfonate publication-title: Bioconjugate Chem. – volume: 17 start-page: 88 year: 2009 end-page: 93 ident: bib0090 article-title: In vitro antiviral effect of ‘nanosilver’ on influenza virus publication-title: Arch. SID – volume: 68 start-page: 229 year: 1971 end-page: 233 ident: bib0020 article-title: pH as a determinant of cellular growth and contact inhibition publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 9 start-page: 1 year: 2014 end-page: 15 ident: bib0105 article-title: Tannic acid modified silver nanoparticles show antiviral activity in herpes simplex virus type 2 infection publication-title: PLoS One – volume: 72 start-page: 53 year: 2000 end-page: 65 ident: bib0110 article-title: Fabrication and physical properties of self- organized silver nanocrystals publication-title: Pure Appl. Chem. – volume: 2015 start-page: 1 year: 2015 end-page: 16 ident: bib0045 article-title: Preparation of silver nanoparticles and their industrial and biomedical applications: a comprehensive review publication-title: Adv. Mater. Sci. Eng. – volume: 13 start-page: 427 year: 2011 end-page: 445 ident: bib0125 article-title: The long view of nanotechnology development: the National Nanotechnology Initiative at 10 years publication-title: J. Nanopart. Res. – volume: 26 start-page: 7221 year: 2005 end-page: 7229 ident: bib0160 article-title: Impact of heat on nanocrystalline silver dressings: part I: Chemical and biological properties publication-title: Biomaterials – volume: 93 start-page: 11378 year: 1996 end-page: 11381 ident: bib0120 article-title: Early events in poliovirus infection: virus-receptor interactions publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 181 start-page: 173 year: 2016 end-page: 177 ident: bib0165 article-title: Green synthesis of colloidal silver nanoparticles through electrochemical method and their antibacterial activity publication-title: Mater. Lett. – volume: 13 start-page: 253 year: 2007 ident: 10.1016/j.jviromet.2016.12.015_bib0080 article-title: Original article Silver nanoparticles inhibit hepatitis B virus publication-title: Antivir. Ther. doi: 10.1177/135965350801300210 – volume: 3 start-page: 135 year: 2010 ident: 10.1016/j.jviromet.2016.12.015_bib0005 article-title: Synthesis and applications of silver nanoparticles publication-title: Arab. J. Chem. doi: 10.1016/j.arabjc.2010.04.008 – volume: 210 start-page: S353 year: 2014 ident: 10.1016/j.jviromet.2016.12.015_bib0190 article-title: Outbreak of type 1 wild poliovirus infection in adults, Namibia, 2006 publication-title: J. Infect. Dis. doi: 10.1093/infdis/jiu069 – volume: 20 start-page: 1497 year: 2009 ident: 10.1016/j.jviromet.2016.12.015_bib0010 article-title: Inhibition of herpes simplex virus type 1 infection by silver nanoparticles capped with mercaptoethane sulfonate publication-title: Bioconjugate Chem. doi: 10.1021/bc900215b – volume: 181 start-page: 173 year: 2016 ident: 10.1016/j.jviromet.2016.12.015_bib0165 article-title: Green synthesis of colloidal silver nanoparticles through electrochemical method and their antibacterial activity publication-title: Mater. Lett. doi: 10.1016/j.matlet.2016.06.008 – volume: 13 start-page: 1642 year: 1976 ident: 10.1016/j.jviromet.2016.12.015_bib0050 article-title: In vitro differentiation and pH sensitivity of field and cell culture attenuated strains of transmissible gastroenteritis virus publication-title: Infect. Immun. doi: 10.1128/IAI.13.6.1642-1646.1976 – volume: 331 start-page: 292 year: 2005 ident: 10.1016/j.jviromet.2016.12.015_bib0135 article-title: Variability in apoptotic response to poliovirus infection publication-title: Virology doi: 10.1016/j.virol.2004.10.038 – volume: 4 start-page: 149 year: 2008 ident: 10.1016/j.jviromet.2016.12.015_bib0150 article-title: Silver nanoparticles inhibit replication of respiratory syncytial virus publication-title: J. Biomed. Nanotechnol. doi: 10.1166/jbn.2008.012 – volume: 8 start-page: 93 year: 2013 ident: 10.1016/j.jviromet.2016.12.015_bib0095 article-title: Antiviral activity of silver nanoparticle/chitosan composites against H1N1 influenza A virus publication-title: Nanoscale Res. Lett. doi: 10.1186/1556-276X-8-93 – volume: 178 start-page: 137 year: 2011 ident: 10.1016/j.jviromet.2016.12.015_bib0185 article-title: Inhibitory effects of silver nanoparticles on H1N1 influenza A virus in vitro publication-title: J. Virol. Methods doi: 10.1016/j.jviromet.2011.09.003 – volume: 8 start-page: 4303 year: 2013 ident: 10.1016/j.jviromet.2016.12.015_bib0035 article-title: Antiviral activity of mycosynthesized silver nanoparticles against herpes simplex virus and human parainfluenza virus type 3 publication-title: Int. J. Nanomed. – volume: 3 start-page: 6 year: 2005 ident: 10.1016/j.jviromet.2016.12.015_bib0030 article-title: Interaction of silver nanoparticles with HIV-1 publication-title: J. Nanobiotechnol. doi: 10.1186/1477-3155-3-6 – volume: 16 start-page: 8894 year: 2011 ident: 10.1016/j.jviromet.2016.12.015_bib0040 article-title: Silver nanoparticles as potential antiviral agents publication-title: Molecules doi: 10.3390/molecules16108894 – year: 2011 ident: 10.1016/j.jviromet.2016.12.015_bib0180 article-title: The development of silver nanoparticles as antiviral agents publication-title: J. Am. Chem. Soc. (Diss.) – volume: 444 start-page: 337 year: 2013 ident: 10.1016/j.jviromet.2016.12.015_bib0170 article-title: A new nidovirus (NamDinh virus NDiV): Its ultrastructural characterization in the C6/36 mosquito cell line publication-title: Virology doi: 10.1016/j.virol.2013.06.030 – volume: 194 start-page: 545 year: 2006 ident: 10.1016/j.jviromet.2016.12.015_bib0075 article-title: An outbreak of poliomyelitis caused by type 1 vaccine-derived poliovirus in China publication-title: J. Infect. Dis. doi: 10.1086/506359 – volume: 25 year: 2007 ident: 10.1016/j.jviromet.2016.12.015_bib0115 article-title: The study of silver nanoparticles by scanning electron microscopy, energy dispersive X-ray analysis and scanning tunnelling microscopy publication-title: Mater. Sci. Pol. – volume: 3 start-page: 129 year: 2008 ident: 10.1016/j.jviromet.2016.12.015_bib0130 article-title: A preliminary assessment of silver nanoparticle inhibition of monkeypox virus plaque formation publication-title: Nanoscale Res. Lett. doi: 10.1007/s11671-008-9128-2 – volume: 114 start-page: 3315 year: 2015 ident: 10.1016/j.jviromet.2016.12.015_bib0145 article-title: Green-synthesized silver nanoparticles as a novel control tool against dengue virus (DEN-2) and its primary vector Aedes aegypti publication-title: Parasitol. Res. doi: 10.1007/s00436-015-4556-2 – volume: 56 start-page: 677 year: 2002 ident: 10.1016/j.jviromet.2016.12.015_bib0055 article-title: Poliovirus cell entry: common structural themes in viral cell entry pathways publication-title: Annu. Rev. Microbiol. doi: 10.1146/annurev.micro.56.012302.160757 – volume: 7 start-page: e34589 year: 2012 ident: 10.1016/j.jviromet.2016.12.015_bib0155 article-title: Inhibition of enterovirus 71 (EV-71) infections by a novel antiviral peptide derived from EV-71 capsid protein VP1 publication-title: PLoS One doi: 10.1371/journal.pone.0034589 – volume: 72 start-page: 53 year: 2000 ident: 10.1016/j.jviromet.2016.12.015_bib0110 article-title: Fabrication and physical properties of self- organized silver nanocrystals publication-title: Pure Appl. Chem. doi: 10.1351/pac200072010053 – volume: 13 start-page: 427 year: 2011 ident: 10.1016/j.jviromet.2016.12.015_bib0125 article-title: The long view of nanotechnology development: the National Nanotechnology Initiative at 10 years publication-title: J. Nanopart. Res. doi: 10.1007/s11051-010-0192-z – volume: 193 start-page: 470 year: 2013 ident: 10.1016/j.jviromet.2016.12.015_bib0025 article-title: Inhibitory effects of silver nanoparticles against adenovirus type 3 in vitro publication-title: J. Virol. Methods doi: 10.1016/j.jviromet.2013.07.020 – volume: 9 start-page: 30 year: 2011 ident: 10.1016/j.jviromet.2016.12.015_bib0070 article-title: Silver nanoparticles are broad-spectrum bactericidal and virucidal compounds publication-title: J. Nanobiotechnol. doi: 10.1186/1477-3155-9-30 – volume: 97 start-page: 73 year: 2000 ident: 10.1016/j.jviromet.2016.12.015_bib0015 article-title: Three-dimensional structure of poliovirus receptor bound to poliovirus publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.97.1.73 – volume: 12 start-page: 1531 year: 2010 ident: 10.1016/j.jviromet.2016.12.015_bib0085 article-title: A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment publication-title: J. Nanopart. Res. doi: 10.1007/s11051-010-9900-y – volume: 26 start-page: 7221 year: 2005 ident: 10.1016/j.jviromet.2016.12.015_bib0160 article-title: Impact of heat on nanocrystalline silver dressings: part I: Chemical and biological properties publication-title: Biomaterials doi: 10.1016/j.biomaterials.2005.05.040 – volume: 90 start-page: 3825 year: 2001 ident: 10.1016/j.jviromet.2016.12.015_bib0140 article-title: Optical properties of Ag and Au nanowire gratings publication-title: J. Appl. Phys. doi: 10.1063/1.1404425 – volume: 68 start-page: 229 year: 1971 ident: 10.1016/j.jviromet.2016.12.015_bib0020 article-title: pH as a determinant of cellular growth and contact inhibition publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.68.1.229 – volume: 4 start-page: 033001 year: 2013 ident: 10.1016/j.jviromet.2016.12.015_bib0175 article-title: Silver nanoparticles: synthesis, properties, toxicology, applications and perspectives publication-title: Adv. Nat. Sci.: Nanosci. Nanotechnol. – volume: 93 start-page: 11378 year: 1996 ident: 10.1016/j.jviromet.2016.12.015_bib0120 article-title: Early events in poliovirus infection: virus-receptor interactions publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.93.21.11378 – volume: 8 start-page: 15 year: 2010 ident: 10.1016/j.jviromet.2016.12.015_bib0065 article-title: PVP-coated silver nanoparticles block the transmission of cell-free and cell-associated HIV-1 in human cervical culture publication-title: J. Nanobiotechnol. doi: 10.1186/1477-3155-8-15 – volume: 17 start-page: 88 year: 2009 ident: 10.1016/j.jviromet.2016.12.015_bib0090 article-title: In vitro antiviral effect of ‘nanosilver’ on influenza virus publication-title: Arch. SID – volume: 9 start-page: 1 year: 2014 ident: 10.1016/j.jviromet.2016.12.015_bib0105 article-title: Tannic acid modified silver nanoparticles show antiviral activity in herpes simplex virus type 2 infection publication-title: PLoS One doi: 10.1371/journal.pone.0104113 – volume: 2015 start-page: 1 year: 2015 ident: 10.1016/j.jviromet.2016.12.015_bib0045 article-title: Preparation of silver nanoparticles and their industrial and biomedical applications: a comprehensive review publication-title: Adv. Mater. Sci. Eng. doi: 10.1155/2015/165257 – volume: 65 start-page: 55 year: 1983 ident: 10.1016/j.jviromet.2016.12.015_bib0100 article-title: Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays publication-title: J. Immunol. Methods doi: 10.1016/0022-1759(83)90303-4 – volume: 26 start-page: 615 year: 2010 ident: 10.1016/j.jviromet.2016.12.015_bib0060 article-title: Bactericidal effect of silver nanoparticles against multidrug-resistant bacteria publication-title: World J. Microbiol. Biotechnol. doi: 10.1007/s11274-009-0211-3 |
| SSID | ssj0005733 |
| Score | 2.519089 |
| Snippet | •Silver nanoparticles (AgNPs) have been eco-friendly synthesized by the electrochemical method.•Electrochemical – synthesized AgNPs are non-toxic to cell... Silver nanoparticles (AgNPs) have been proven to have noticeable cytotoxicity in vitro and antiviral activity against some types of enveloped viruses. This... |
| SourceID | proquest pubmed crossref elsevier |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 52 |
| SubjectTerms | Antiviral activity antiviral properties cell culture Cell Line Cell Survival cell viability Cytopathogenic Effect, Viral cytopathogenicity cytotoxicity disinfection Electrochemical Techniques electrochemistry energy-dispersive X-ray analysis Enterovirus C Humans light microscopy Metal Nanoparticles Microbial Sensitivity Tests Microscopy, Electron, Transmission nanosilver Poliovirus Poliovirus - physiology RD cell Silver Silver nanoparticle tissue culture transmission electron microscopy ultraviolet-visible spectroscopy viruses |
| Title | Cytotoxicity and antiviral activity of electrochemical – synthesized silver nanoparticles against poliovirus |
| URI | https://dx.doi.org/10.1016/j.jviromet.2016.12.015 https://www.ncbi.nlm.nih.gov/pubmed/28040515 https://www.proquest.com/docview/1854802195 https://www.proquest.com/docview/2000323779 |
| Volume | 241 |
| WOSCitedRecordID | wos000393251700008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1879-0984 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0005733 issn: 0166-0934 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLa6DiReEHfKZTISb1WgcZrEfpymIUComkRBfYucxNlSDWdaL2p54j_wf_gx_BLOie2krIyBEC9Rmyap5e-rz-fTcyHkuRzmWO2Ue2E6HGBKjvRS3xewVRmoQgZ5IUzXknfxaMQnE3HU6XxzuTDL01hrvlqJs_8KNZwDsDF19i_gbh4KJ-A1gA5HgB2OfwT8wXpezatVmaG-NqVYsUMEJuJjEsPSxmDY_jeZKxjgoh4CLGIAqnBWfgYtOisxcrqvpYbNtY2h68tjWYKqrBs8VPBk6zvYlriYQ-fWVtOqetbSqEYXTSUGllr7WfvAle6PT6Su_T2j48W6fl-2ESzmzuYTuLKNUbBL19GJ_NT_aIlvfRpgJ5ugLuNo20q2Mb7PKPIGwvo-lVmveYwRX6bLnFvQmSmlZZdkUyDXGndTDHvLbBgPxvTFFOcF5gND_qLaTWxyTS-U5H6PQ8GRgJhFCRjtkF0Wh4J3ye7-m8PJ2zbIKA4CU13eDH0jR_3X33aZPLps-1PLoPEtctOCS_cNF26TjtJ3yHXT0XR9l-hN9lFgH23YRx37aFXQC-yj3798pRu8o4Z39CfeUcs72vLuHvnw6nB88NqzLT28DCzy3MuZDBkvolByNVSSC6Yk1rzMQLcrfxDJmBc-bPqKsIgGaciiIFABl2kBcx3nURbcJ11dafWQ0IwNZc6ZCNMCvRJBmvtpFMucpUxwlrEeCd1MJpmtd49tV04TF9g4TRwCCSKQ-CwBBHrkZXPfman4cuUdwgGVWN1q9GgC_Lry3mcO2QQWdvy3TmpVLWYJCOkhBwUufnMN5tkFDGuG9sgDQ4tmzIyDfYbdyqN_GN1jcqP9eT4h3fn5Qj0l17LlvJyd75GdeML3LOV_AO9L6FU |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cytotoxicity+and+antiviral+activity+of+electrochemical+%E2%80%93+synthesized+silver+nanoparticles+against+poliovirus&rft.jtitle=Journal+of+virological+methods&rft.au=Huy%2C+Tran+Quang&rft.au=Hien+Thanh%2C+Nguyen+Thi&rft.au=Thuy%2C+Nguyen+Thanh&rft.au=Chung%2C+Pham+Van&rft.date=2017-03-01&rft.pub=Elsevier+B.V&rft.issn=0166-0934&rft.eissn=1879-0984&rft.volume=241&rft.spage=52&rft.epage=57&rft_id=info:doi/10.1016%2Fj.jviromet.2016.12.015&rft.externalDocID=S0166093416306176 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0166-0934&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0166-0934&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0166-0934&client=summon |