Detection of camellia oil adulteration using chemometrics based on fatty acids GC fingerprints and phytosterols GC–MS fingerprints

•Fatty acids and sterols with chemometrics were used to authenticate camellia oil.•PCA can differentiate camellia oil using triterpene alcohols.•PLS-DA can help discriminate the specific adulterated oil types.•PLS can be successfully applied for the adulterated level prediction.•Less than 22 key mar...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Food chemistry Ročník 352; s. 129422
Hlavní autoři: Shi, Ting, Wu, Gangcheng, Jin, Qingzhe, Wang, Xingguo
Médium: Journal Article
Jazyk:angličtina
Vydáno: England Elsevier Ltd 01.08.2021
Témata:
ISSN:0308-8146, 1873-7072, 1873-7072
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract •Fatty acids and sterols with chemometrics were used to authenticate camellia oil.•PCA can differentiate camellia oil using triterpene alcohols.•PLS-DA can help discriminate the specific adulterated oil types.•PLS can be successfully applied for the adulterated level prediction.•Less than 22 key markers with VIP scores were useful for PLS optimization. The fatty acid, squalene, and phytosterols, coupled to chemometrics were utilized to detect the adulteration of camellia oil (CAO) with palm superolein (PAO), refined olive oil (ROO), high oleic- sunflower oil (HO-SUO), sunflower oil (SUO), corn oil (COO), rice bran oil (RBO), rice oil (RIO), peanut oil (PEO), sesame oil (SEO), soybean oil (SOO), and rapeseed oil (RAO). CAO was characterized with higher triterpene alcohols, thus differentiated from other vegetable oils in principle component analysis (PCA). Using partial least squares-discriminant analysis (PLS-DA), CAO adulterated with PAO, ROO, HO-SUO, SUO, COO, RBO, RIO, PEO, SEO, SOO, RAO (5%–100%, w/w), could be classified, especially higher than 92.31% of the total discrimination accuracy, at an adulterated ratio above 30%. With less than 22 potential key markers selected by the variable importance in projection (VIP), the optimized PLS models were confirmed to be accurate for the adulterated level prediction in CAO.
AbstractList The fatty acid, squalene, and phytosterols, coupled to chemometrics were utilized to detect the adulteration of camellia oil (CAO) with palm superolein (PAO), refined olive oil (ROO), high oleic- sunflower oil (HO-SUO), sunflower oil (SUO), corn oil (COO), rice bran oil (RBO), rice oil (RIO), peanut oil (PEO), sesame oil (SEO), soybean oil (SOO), and rapeseed oil (RAO). CAO was characterized with higher triterpene alcohols, thus differentiated from other vegetable oils in principle component analysis (PCA). Using partial least squares-discriminant analysis (PLS-DA), CAO adulterated with PAO, ROO, HO-SUO, SUO, COO, RBO, RIO, PEO, SEO, SOO, RAO (5%-100%, w/w), could be classified, especially higher than 92.31% of the total discrimination accuracy, at an adulterated ratio above 30%. With less than 22 potential key markers selected by the variable importance in projection (VIP), the optimized PLS models were confirmed to be accurate for the adulterated level prediction in CAO.
•Fatty acids and sterols with chemometrics were used to authenticate camellia oil.•PCA can differentiate camellia oil using triterpene alcohols.•PLS-DA can help discriminate the specific adulterated oil types.•PLS can be successfully applied for the adulterated level prediction.•Less than 22 key markers with VIP scores were useful for PLS optimization. The fatty acid, squalene, and phytosterols, coupled to chemometrics were utilized to detect the adulteration of camellia oil (CAO) with palm superolein (PAO), refined olive oil (ROO), high oleic- sunflower oil (HO-SUO), sunflower oil (SUO), corn oil (COO), rice bran oil (RBO), rice oil (RIO), peanut oil (PEO), sesame oil (SEO), soybean oil (SOO), and rapeseed oil (RAO). CAO was characterized with higher triterpene alcohols, thus differentiated from other vegetable oils in principle component analysis (PCA). Using partial least squares-discriminant analysis (PLS-DA), CAO adulterated with PAO, ROO, HO-SUO, SUO, COO, RBO, RIO, PEO, SEO, SOO, RAO (5%–100%, w/w), could be classified, especially higher than 92.31% of the total discrimination accuracy, at an adulterated ratio above 30%. With less than 22 potential key markers selected by the variable importance in projection (VIP), the optimized PLS models were confirmed to be accurate for the adulterated level prediction in CAO.
The fatty acid, squalene, and phytosterols, coupled to chemometrics were utilized to detect the adulteration of camellia oil (CAO) with palm superolein (PAO), refined olive oil (ROO), high oleic- sunflower oil (HO-SUO), sunflower oil (SUO), corn oil (COO), rice bran oil (RBO), rice oil (RIO), peanut oil (PEO), sesame oil (SEO), soybean oil (SOO), and rapeseed oil (RAO). CAO was characterized with higher triterpene alcohols, thus differentiated from other vegetable oils in principle component analysis (PCA). Using partial least squares-discriminant analysis (PLS-DA), CAO adulterated with PAO, ROO, HO-SUO, SUO, COO, RBO, RIO, PEO, SEO, SOO, RAO (5%-100%, w/w), could be classified, especially higher than 92.31% of the total discrimination accuracy, at an adulterated ratio above 30%. With less than 22 potential key markers selected by the variable importance in projection (VIP), the optimized PLS models were confirmed to be accurate for the adulterated level prediction in CAO.The fatty acid, squalene, and phytosterols, coupled to chemometrics were utilized to detect the adulteration of camellia oil (CAO) with palm superolein (PAO), refined olive oil (ROO), high oleic- sunflower oil (HO-SUO), sunflower oil (SUO), corn oil (COO), rice bran oil (RBO), rice oil (RIO), peanut oil (PEO), sesame oil (SEO), soybean oil (SOO), and rapeseed oil (RAO). CAO was characterized with higher triterpene alcohols, thus differentiated from other vegetable oils in principle component analysis (PCA). Using partial least squares-discriminant analysis (PLS-DA), CAO adulterated with PAO, ROO, HO-SUO, SUO, COO, RBO, RIO, PEO, SEO, SOO, RAO (5%-100%, w/w), could be classified, especially higher than 92.31% of the total discrimination accuracy, at an adulterated ratio above 30%. With less than 22 potential key markers selected by the variable importance in projection (VIP), the optimized PLS models were confirmed to be accurate for the adulterated level prediction in CAO.
ArticleNumber 129422
Author Wang, Xingguo
Wu, Gangcheng
Jin, Qingzhe
Shi, Ting
Author_xml – sequence: 1
  givenname: Ting
  surname: Shi
  fullname: Shi, Ting
– sequence: 2
  givenname: Gangcheng
  surname: Wu
  fullname: Wu, Gangcheng
– sequence: 3
  givenname: Qingzhe
  surname: Jin
  fullname: Jin, Qingzhe
– sequence: 4
  givenname: Xingguo
  surname: Wang
  fullname: Wang, Xingguo
  email: wangxg1002@gmail.com
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33714164$$D View this record in MEDLINE/PubMed
BookMark eNqNkbFuFDEQhi0URC6BV4hc0tzhsXe9XokCdJCAFEQB1JbXHhOfdteH7Y10HQVvkDfkSdjL5QpoQjXFfP8_mv8_IydjHJGQC2ArYCBfbVY-RmdvcFhxxmEFvK04f0IWoBqxbFjDT8iCCaaWCip5Ss5y3jDGOAP1jJwK0UAFslqQX--woC0hjjR6as2AfR8MjaGnxk19wWTul1MO43e6vxcHLCnYTDuT0dF5500pO2pscJleramfSUzbFMaSqRkd3d7sSsyzVez3wO-fd5--_EU9J0-96TO-eJjn5Nvl-6_rD8vrz1cf12-vl7aSTVk6kCCRKWG5b5WAprFWVr4TXtYNx9YrbqCtnXJQ1RYrwK5Vygvbtb4R1opz8vLgu03xx4S56CFkO39sRoxT1rzmFa9baOE_UAa8VkrJGb14QKduQKfnnwaTdvoY8gy8PgA2xZwTem1DuY-1JBN6DUzvO9UbfexU7zvVh05nufxHfrzwqPDNQYhzprcBk8424GjRhTR3rl0Mj1n8AQ4sweM
CitedBy_id crossref_primary_10_1016_j_jfca_2025_107949
crossref_primary_10_1016_j_foodchem_2023_135837
crossref_primary_10_1016_j_foodchem_2025_143181
crossref_primary_10_1016_j_foodcont_2023_109744
crossref_primary_10_1007_s00217_023_04373_z
crossref_primary_10_1016_j_infrared_2025_106089
crossref_primary_10_1016_j_cjac_2025_100552
crossref_primary_10_3390_foods11213489
crossref_primary_10_1016_j_foodcont_2021_108565
crossref_primary_10_1016_j_lwt_2024_117069
crossref_primary_10_3390_foods12020374
crossref_primary_10_3390_separations11030068
crossref_primary_10_1016_j_jfca_2024_106690
crossref_primary_10_3390_foods14071235
crossref_primary_10_3390_plants10101984
crossref_primary_10_1093_fqsafe_fyad034
crossref_primary_10_1016_j_lwt_2024_116822
crossref_primary_10_1016_j_jfca_2024_106447
crossref_primary_10_3390_foods11081134
crossref_primary_10_3390_foods11223644
crossref_primary_10_1039_D4FO01409J
crossref_primary_10_3390_pr10030503
crossref_primary_10_1016_j_saa_2022_122120
crossref_primary_10_1016_j_jfca_2024_106926
crossref_primary_10_1016_j_tifs_2025_104889
crossref_primary_10_1016_j_foodchem_2025_142930
crossref_primary_10_3390_molecules26164738
crossref_primary_10_1016_j_lwt_2024_115970
crossref_primary_10_1007_s00217_024_04486_z
crossref_primary_10_1016_j_aca_2022_339891
crossref_primary_10_1016_j_talanta_2022_123733
crossref_primary_10_1016_j_saa_2024_125524
crossref_primary_10_1016_j_idairyj_2022_105536
crossref_primary_10_3390_foods11050680
crossref_primary_10_1016_j_foodcont_2022_109326
crossref_primary_10_1007_s11694_025_03491_4
crossref_primary_10_1080_00387010_2021_1986543
crossref_primary_10_1016_j_foodchem_2021_131534
crossref_primary_10_1016_j_lwt_2023_114935
crossref_primary_10_1080_10408347_2024_2407615
crossref_primary_10_1002_aocs_12796
crossref_primary_10_1016_j_heliyon_2024_e27167
crossref_primary_10_1016_j_jfp_2024_100221
crossref_primary_10_1002_fft2_395
crossref_primary_10_1016_j_jfca_2024_106432
crossref_primary_10_1016_j_lwt_2022_114293
crossref_primary_10_3390_foods14030466
crossref_primary_10_3390_foods14091624
crossref_primary_10_1007_s00217_025_04832_9
crossref_primary_10_1016_j_foodchem_2024_142501
crossref_primary_10_1007_s11694_021_01216_x
crossref_primary_10_3390_metabo13121170
crossref_primary_10_3390_foods12112273
crossref_primary_10_1016_j_foodcont_2024_111033
crossref_primary_10_1016_j_talanta_2023_125443
crossref_primary_10_1134_S1061934825700364
crossref_primary_10_1016_j_infrared_2025_106034
crossref_primary_10_3390_chemosensors11010045
crossref_primary_10_3390_molecules29040915
crossref_primary_10_1111_ijfs_15561
crossref_primary_10_1016_j_foodres_2023_112544
crossref_primary_10_1016_j_foodchem_2024_142370
crossref_primary_10_1016_j_jaap_2024_106605
crossref_primary_10_3389_fphar_2024_1325283
crossref_primary_10_1016_j_jfca_2022_105094
Cites_doi 10.1002/ejlt.200501224
10.1002/jsfa.9424
10.1002/ejlt.201500463
10.1039/C4MB00414K
10.1016/j.forc.2019.100188
10.1016/j.foodchem.2017.09.061
10.1007/s11306-008-0115-5
10.1186/1471-2164-7-142
10.1016/j.foodchem.2013.08.013
10.1016/j.jfca.2007.07.012
10.1016/j.aca.2008.06.018
10.1016/j.lwt.2019.108725
10.1142/S1793545818500062
10.1080/10942912.2015.1021929
10.1002/mnfr.201800136
10.1016/j.foodchem.2014.02.016
10.1016/j.foodchem.2018.12.016
10.1016/j.foodchem.2009.01.094
10.1002/jccs.200600078
10.3390/molecules23020241
10.1016/j.talanta.2018.07.078
10.1038/s41598-018-32223-6
10.1016/j.foodchem.2012.09.136
10.1016/j.chemolab.2016.03.028
10.1016/j.foodchem.2017.02.009
10.1021/acs.jafc.9b03001
10.1016/j.chemolab.2016.11.005
10.1016/j.foodchem.2019.04.109
10.5650/jos.ess18234
10.1016/j.lwt.2019.03.085
10.1039/c2ay25373a
10.1016/j.foodchem.2018.08.128
10.1016/j.foodchem.2017.04.110
10.1016/S0021-9673(00)00355-1
10.1007/s11746-010-1564-3
10.1016/j.aca.2016.01.025
10.1016/j.foodchem.2019.02.072
10.1007/s10973-016-5606-4
10.1016/j.foodchem.2005.04.015
ContentType Journal Article
Copyright 2021 Elsevier Ltd
Copyright © 2021 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2021 Elsevier Ltd
– notice: Copyright © 2021 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
DOI 10.1016/j.foodchem.2021.129422
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE

MEDLINE - Academic
AGRICOLA
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Economics
Chemistry
Diet & Clinical Nutrition
EISSN 1873-7072
ExternalDocumentID 33714164
10_1016_j_foodchem_2021_129422
S0308814621004283
Genre Journal Article
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AARLI
AATLK
AAXUO
ABFNM
ABFRF
ABGRD
ABGSF
ABJNI
ABMAC
ABUDA
ABYKQ
ACDAQ
ACGFO
ACGFS
ACIUM
ACRLP
ADBBV
ADECG
ADEZE
ADQTV
ADUVX
AEBSH
AEFWE
AEHWI
AEKER
AENEX
AEQOU
AFKWA
AFTJW
AFXIZ
AFZHZ
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
AJSZI
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CBWCG
CS3
DOVZS
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
K-O
KOM
KZ1
LW9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SAB
SCC
SDF
SDG
SDP
SES
SPC
SPCBC
SSA
SSK
SSU
SSZ
T5K
WH7
~G-
~KM
29H
53G
9DU
AAHBH
AALCJ
AAQXK
AATTM
AAXKI
AAYJJ
AAYWO
AAYXX
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGHFR
AGQPQ
AGRDE
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HLV
HVGLF
HZ~
R2-
SCB
SEW
VH1
WUQ
Y6R
~HD
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
ID FETCH-LOGICAL-c467t-d1616e083c2f983177cc64fb3f6572e9f82a195d8d145ce41eb988f3cb9f73cc3
ISICitedReferencesCount 76
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000636068300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0308-8146
1873-7072
IngestDate Sat Sep 27 19:21:01 EDT 2025
Mon Sep 29 02:05:35 EDT 2025
Wed Feb 19 02:27:48 EST 2025
Sat Nov 29 07:25:04 EST 2025
Tue Nov 18 19:37:09 EST 2025
Fri Feb 23 02:40:01 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Adulteration
Fatty acid
Camellia oil
Chemometrics
Phytosterols
Language English
License Copyright © 2021 Elsevier Ltd. All rights reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c467t-d1616e083c2f983177cc64fb3f6572e9f82a195d8d145ce41eb988f3cb9f73cc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 33714164
PQID 2501258886
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2524259191
proquest_miscellaneous_2501258886
pubmed_primary_33714164
crossref_citationtrail_10_1016_j_foodchem_2021_129422
crossref_primary_10_1016_j_foodchem_2021_129422
elsevier_sciencedirect_doi_10_1016_j_foodchem_2021_129422
PublicationCentury 2000
PublicationDate 2021-08-01
2021-08-00
2021-Aug-01
20210801
PublicationDateYYYYMMDD 2021-08-01
PublicationDate_xml – month: 08
  year: 2021
  text: 2021-08-01
  day: 01
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Food chemistry
PublicationTitleAlternate Food Chem
PublicationYear 2021
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Aparicio, Aparicio-Ruı́z (b0015) 2000; 881
van den Berg, Hoefsloot, Westerhuis, Smilde, van der Werf (b0150) 2006; 7
Triba, Le Moyec, Amathieu, Goossens, Bouchemal, Nahon (b0145) 2015; 11
Dou, Mao, Zhang, Xie, Chen, Yu (b0040) 2018; 23
Shi, Zhu, Chen, Yan, Chen, Wu (b0135) 2018; 242
Miaw, Sena, Souza, Ruisanchez, Callao (b0100) 2018; 190
Wang, Zeng, Verardo, Contreras (b0165) 2017; 233
Ai, Bin, Zhang, Huang, Wang, Liang (b0005) 2014; 143
Galindo-Prieto, Trygg, Geladi (b0050) 2017; 160
Zeng, Endo (b0190) 2019; 68
Allen, Williams, Sigman (b0010) 2019; 16
Fang, Goh, Tay, Lau, Li (b0045) 2013; 138
Gómez-Caravaca, Maggio, Cerretani (b0060) 2016; 913
Li, Kong, Shi, Shen (b0085) 2016; 155
Su, Shih, Lin (b0140) 2014; 156
Chen, Zhu, Xie, Nie, Liu, Li (b0030) 2008; 623
Sakouhi, Absalon, Sebei, Fouquet, Boukhchina, Kallel (b0120) 2009; 116
Wang, Lee, Wang, He (b0155) 2006; 95
Zhang, Wang, Liu, Chang, Jin, Wang (b0195) 2020; 118
Gao, Liu, Jin, Wang (b0055) 2019; 279
Schwartz, Ollilainen, Piironen, Lampi (b0125) 2008; 21
Guo, Xu, Yuan, Wu, Wang (b0065) 2010; 87
Hu, Chen, Gao, Li, Du, Fu (b0075) 2019; 99
Ruiz-Aracama, Goicoechea, Guillén (b0115) 2017; 228
Shi, Zhu, Zhou, Huo, Long, Zeng (b0130) 2019; 287
Yuan, Wang, Chen, Ye, Zhou (b0185) 2015; 19
Chu, Wang, Li, Zhao, Jiang (b0035) 2018; 11
Chen, Chen, Lu (b0025) 2018; 8
Xing, Yuan, Wu, Shao, Yuan, Yan (b0180) 2019; 108
Liu, Hu, Liu, Zhang, Chen, He (b0090) 2017; 119
Xie, Ni, Su, Zhang, Zhao, Gao (b0175) 2008; 4
Hai, Wang (b0070) 2006; 108
Çelik, Asfoor, Şenol, Apak (b0020) 2019; 67
Weng, Weng, Chen (b0170) 2006; 53
Wang, Wu, Long, Hu, Cheng, Chen (b0160) 2019; 293
Ogegbo, Eyob, Parmar, Wang, Annie Bligh (b0105) 2012; 4
Pérez-Castaño, Medina-Rodríguez, Bagur-González (b0110) 2019; 274
Li, Huang, Huang, Teng, Xia, Wei (b0080) 2016; 126
Lou-Bonafonte, Martínez-Beamonte, Sanclemente, Surra, Herrera-Marcos, Sanchez-Marco (b0095) 2018; 62
Hai (10.1016/j.foodchem.2021.129422_b0070) 2006; 108
Dou (10.1016/j.foodchem.2021.129422_b0040) 2018; 23
Ogegbo (10.1016/j.foodchem.2021.129422_b0105) 2012; 4
Çelik (10.1016/j.foodchem.2021.129422_b0020) 2019; 67
van den Berg (10.1016/j.foodchem.2021.129422_b0150) 2006; 7
Wang (10.1016/j.foodchem.2021.129422_b0160) 2019; 293
Hu (10.1016/j.foodchem.2021.129422_b0075) 2019; 99
Zhang (10.1016/j.foodchem.2021.129422_b0195) 2020; 118
Aparicio (10.1016/j.foodchem.2021.129422_b0015) 2000; 881
Sakouhi (10.1016/j.foodchem.2021.129422_b0120) 2009; 116
Schwartz (10.1016/j.foodchem.2021.129422_b0125) 2008; 21
Fang (10.1016/j.foodchem.2021.129422_b0045) 2013; 138
Lou-Bonafonte (10.1016/j.foodchem.2021.129422_b0095) 2018; 62
Yuan (10.1016/j.foodchem.2021.129422_b0185) 2015; 19
Zeng (10.1016/j.foodchem.2021.129422_b0190) 2019; 68
Ruiz-Aracama (10.1016/j.foodchem.2021.129422_b0115) 2017; 228
Su (10.1016/j.foodchem.2021.129422_b0140) 2014; 156
Galindo-Prieto (10.1016/j.foodchem.2021.129422_b0050) 2017; 160
Allen (10.1016/j.foodchem.2021.129422_b0010) 2019; 16
Wang (10.1016/j.foodchem.2021.129422_b0155) 2006; 95
Li (10.1016/j.foodchem.2021.129422_b0080) 2016; 126
Li (10.1016/j.foodchem.2021.129422_b0085) 2016; 155
Shi (10.1016/j.foodchem.2021.129422_b0130) 2019; 287
Wang (10.1016/j.foodchem.2021.129422_b0165) 2017; 233
Guo (10.1016/j.foodchem.2021.129422_b0065) 2010; 87
Xie (10.1016/j.foodchem.2021.129422_b0175) 2008; 4
Xing (10.1016/j.foodchem.2021.129422_b0180) 2019; 108
Chen (10.1016/j.foodchem.2021.129422_b0030) 2008; 623
Miaw (10.1016/j.foodchem.2021.129422_b0100) 2018; 190
Shi (10.1016/j.foodchem.2021.129422_b0135) 2018; 242
Weng (10.1016/j.foodchem.2021.129422_b0170) 2006; 53
Ai (10.1016/j.foodchem.2021.129422_b0005) 2014; 143
Gao (10.1016/j.foodchem.2021.129422_b0055) 2019; 279
Triba (10.1016/j.foodchem.2021.129422_b0145) 2015; 11
Pérez-Castaño (10.1016/j.foodchem.2021.129422_b0110) 2019; 274
Chu (10.1016/j.foodchem.2021.129422_b0035) 2018; 11
Chen (10.1016/j.foodchem.2021.129422_b0025) 2018; 8
Gómez-Caravaca (10.1016/j.foodchem.2021.129422_b0060) 2016; 913
Liu (10.1016/j.foodchem.2021.129422_b0090) 2017; 119
References_xml – volume: 8
  start-page: 13784
  year: 2018
  ident: b0025
  article-title: A novel method for detection of camellia oil adulteration based on time-resolved emission fluorescence
  publication-title: Scientific Reports
– volume: 118
  start-page: 108725
  year: 2020
  ident: b0195
  article-title: Chemical characterization of fourteen kinds of novel edible oils: A comparative study using chemometrics
  publication-title: LWT - Food Science and Technology
– volume: 21
  start-page: 152
  year: 2008
  end-page: 161
  ident: b0125
  article-title: Tocopherol, tocotrienol and plant sterol contents of vegetable oils and industrial fats
  publication-title: Journal of Food Composition and Analysis
– volume: 108
  start-page: 437
  year: 2019
  end-page: 445
  ident: b0180
  article-title: Chemometric classification and quantification of sesame oil adulterated with other vegetable oils based on fatty acids composition by gas chromatography
  publication-title: LWT - Food Science and Technology
– volume: 7
  start-page: 142
  year: 2006
  ident: b0150
  article-title: Centering, scaling, and transformations: Improving the biological information content of metabolomics data
  publication-title: BMC Genomics
– volume: 623
  start-page: 146
  year: 2008
  end-page: 156
  ident: b0030
  article-title: Quality control and original discrimination of Ganoderma lucidum based on high-performance liquid chromatographic fingerprints and combined chemometrics methods
  publication-title: Analytica Chimica Acta
– volume: 913
  start-page: 1
  year: 2016
  end-page: 21
  ident: b0060
  article-title: Chemometric applications to assess quality and critical parameters of virgin and extra-virgin olive oil
  publication-title: A review.
– volume: 293
  start-page: 348
  year: 2019
  end-page: 357
  ident: b0160
  article-title: Rapid identification and quantification of cheaper vegetable oil adulteration in camellia oil by using excitation-emission matrix fluorescence spectroscopy combined with chemometrics
  publication-title: Food Chemistry
– volume: 881
  start-page: 93
  year: 2000
  end-page: 104
  ident: b0015
  article-title: Authentication of vegetable oils by chromatographic techniques
  publication-title: Journal of Chromatography A
– volume: 19
  start-page: 300
  year: 2015
  end-page: 313
  ident: b0185
  article-title: Identification and Detection of AdulteratedCamellia OleiferaAbel. Oils by Near Infrared Transmittance Spectroscopy
  publication-title: International Journal of Food Properties
– volume: 53
  start-page: 597
  year: 2006
  end-page: 603
  ident: b0170
  article-title: Authentication of Camellia oleifera Abel Oil by Near Infrared Fourier Transform Raman Spectroscopy
  publication-title: Journal of the Chinese Chemical Society
– volume: 279
  start-page: 279
  year: 2019
  end-page: 287
  ident: b0055
  article-title: Comparative study of chemical compositions and antioxidant capacities of oils obtained from two species of walnut: Juglans regia and Juglans sigillata
  publication-title: Food Chemistry
– volume: 23
  start-page: 241
  year: 2018
  ident: b0040
  article-title: Multispecies Adulteration Detection of Camellia Oil by Chemical Markers
  publication-title: Molecules
– volume: 62
  start-page: 1800136
  year: 2018
  ident: b0095
  article-title: Current Insights Into the Biological Action of Squalene
  publication-title: Molecular Nutrition & Food Research
– volume: 4
  start-page: 2522
  year: 2012
  ident: b0105
  article-title: Metabolomics of four TCM herbal products: Application of HPTLC analysis
  publication-title: Analytical Methods
– volume: 242
  start-page: 308
  year: 2018
  end-page: 315
  ident: b0135
  article-title: H NMR combined with chemometrics for the rapid detection of adulteration in camellia oils
  publication-title: Food Chemistry
– volume: 87
  start-page: 839
  year: 2010
  end-page: 848
  ident: b0065
  article-title: Characterization and Authentication of Significant Chinese Edible Oilseed Oils by Stable Carbon Isotope Analysis
  publication-title: Journal of the American Oil Chemists' Society
– volume: 126
  start-page: 1735
  year: 2016
  end-page: 1746
  ident: b0080
  article-title: Comparison of GC and DSC monitoring the adulteration of camellia oil with selected vegetable oils
  publication-title: Journal of Thermal Analysis and Calorimetry
– volume: 287
  start-page: 46
  year: 2019
  end-page: 54
  ident: b0130
  article-title: H NMR combined with PLS for the rapid determination of squalene and sterols in vegetable oils
  publication-title: Food Chemistry
– volume: 119
  start-page: 1500463
  year: 2017
  ident: b0090
  article-title: Rapid detection and separation of olive oil and Camellia oil based on ion mobility spectrometry fingerprints and chemometric models
  publication-title: European Journal of Lipid Science and Technology
– volume: 95
  start-page: 529
  year: 2006
  end-page: 536
  ident: b0155
  article-title: Feasibility study of quantifying and discriminating soybean oil adulteration in camellia oils by attenuated total reflectance MIR and fiber optic diffuse reflectance NIR
  publication-title: Food Chemistry
– volume: 233
  start-page: 302
  year: 2017
  end-page: 310
  ident: b0165
  article-title: Fatty acid and sterol composition of tea seed oils: Their comparison by the “FancyTiles” approach
  publication-title: Food Chemistry
– volume: 16
  start-page: 100188
  year: 2019
  ident: b0010
  article-title: Application of Likelihood Ratios and Optimal Decision Thresholds in Fire Debris Analysis Based on a Partial Least Squares Discriminant Analysis (PLS-DA) Model
  publication-title: Forensic Chemistry
– volume: 11
  start-page: 1850006
  year: 2018
  ident: b0035
  article-title: Identifying camellia oil adulteration with selected vegetable oils by characteristic near-infrared spectral regions
  publication-title: Journal of Innovative Optical Health Sciences
– volume: 274
  start-page: 518
  year: 2019
  end-page: 525
  ident: b0110
  article-title: Discrimination and classification of extra virgin olive oil using a chemometric approach based on TMS-4,4'-desmetylsterols GC(FID) fingerprints of edible vegetable oils
  publication-title: Food Chemistry
– volume: 228
  start-page: 301
  year: 2017
  end-page: 314
  ident: b0115
  article-title: Direct study of minor extra-virgin olive oil components without any sample modification.
  publication-title: Food Chemistry
– volume: 116
  start-page: 345
  year: 2009
  end-page: 350
  ident: b0120
  article-title: Gas chromatographic–mass spectrometric characterisation of triterpene alcohols and monomethylsterols in developing Olea europaea L. fruits
  publication-title: Food Chemistry
– volume: 68
  start-page: 649
  year: 2019
  end-page: 658
  ident: b0190
  article-title: Lipid Characteristics of Camellia Seed Oil
  publication-title: Journal of Oleo Science
– volume: 4
  start-page: 248
  year: 2008
  end-page: 260
  ident: b0175
  article-title: Application of ultra-performance LC-TOF MS metabolite profiling techniques to the analysis of medicinal Panax herbs
  publication-title: Metabolomics
– volume: 11
  start-page: 13
  year: 2015
  end-page: 19
  ident: b0145
  article-title: PLS/OPLS models in metabolomics: The impact of permutation of dataset rows on the K-fold cross-validation quality parameters
  publication-title: Molecular Biosystems
– volume: 138
  start-page: 1461
  year: 2013
  end-page: 1469
  ident: b0045
  article-title: Characterization of oils and fats by
  publication-title: Food Chemistry
– volume: 156
  start-page: 369
  year: 2014
  end-page: 373
  ident: b0140
  article-title: Chemical composition of seed oils in native Taiwanese Camellia species
  publication-title: Food Chemistry
– volume: 67
  start-page: 8279
  year: 2019
  end-page: 8289
  ident: b0020
  article-title: Screening Method for Argan Oil Adulteration with Vegetable Oils: An Online HPLC Assay with Postcolumn Detection Utilizing Chemometric Multidata Analysis
  publication-title: Journal of Agricultural and Food Chemistry
– volume: 155
  start-page: 145
  year: 2016
  end-page: 150
  ident: b0085
  article-title: A combination of chemometrics methods and GC–MS for the classification of edible vegetable oils
  publication-title: Chemometrics and Intelligent Laboratory Systems
– volume: 143
  start-page: 472
  year: 2014
  end-page: 478
  ident: b0005
  article-title: Application of random forests to select premium quality vegetable oils by their fatty acid composition
  publication-title: Food Chemistry
– volume: 108
  start-page: 116
  year: 2006
  end-page: 124
  ident: b0070
  article-title: Detection of adulteration in camellia seed oil and sesame oil using an electronic nose
  publication-title: European Journal of Lipid Science and Technology
– volume: 99
  start-page: 2285
  year: 2019
  end-page: 2291
  ident: b0075
  article-title: Fusion of near-infrared and fluorescence spectroscopy for untargeted fraud detection ofChinese tea seed oil using chemometric methods
  publication-title: Journal of the Science of Food and Agriculture
– volume: 190
  start-page: 55
  year: 2018
  end-page: 61
  ident: b0100
  article-title: Variable selection for multivariate classification aiming to detect individual adulterants and their blends in grape nectars
  publication-title: Talanta
– volume: 160
  start-page: 110
  year: 2017
  end-page: 124
  ident: b0050
  article-title: A new approach for variable influence on projection (VIP) in O2PLS models
  publication-title: Chemometrics & Intelligent Laboratory Systems
– volume: 108
  start-page: 116
  issue: 2
  year: 2006
  ident: 10.1016/j.foodchem.2021.129422_b0070
  article-title: Detection of adulteration in camellia seed oil and sesame oil using an electronic nose
  publication-title: European Journal of Lipid Science and Technology
  doi: 10.1002/ejlt.200501224
– volume: 99
  start-page: 2285
  issue: 5
  year: 2019
  ident: 10.1016/j.foodchem.2021.129422_b0075
  article-title: Fusion of near-infrared and fluorescence spectroscopy for untargeted fraud detection ofChinese tea seed oil using chemometric methods
  publication-title: Journal of the Science of Food and Agriculture
  doi: 10.1002/jsfa.9424
– volume: 119
  start-page: 1500463
  issue: 3
  year: 2017
  ident: 10.1016/j.foodchem.2021.129422_b0090
  article-title: Rapid detection and separation of olive oil and Camellia oil based on ion mobility spectrometry fingerprints and chemometric models
  publication-title: European Journal of Lipid Science and Technology
  doi: 10.1002/ejlt.201500463
– volume: 11
  start-page: 13
  issue: 1
  year: 2015
  ident: 10.1016/j.foodchem.2021.129422_b0145
  article-title: PLS/OPLS models in metabolomics: The impact of permutation of dataset rows on the K-fold cross-validation quality parameters
  publication-title: Molecular Biosystems
  doi: 10.1039/C4MB00414K
– volume: 16
  start-page: 100188
  year: 2019
  ident: 10.1016/j.foodchem.2021.129422_b0010
  article-title: Application of Likelihood Ratios and Optimal Decision Thresholds in Fire Debris Analysis Based on a Partial Least Squares Discriminant Analysis (PLS-DA) Model
  publication-title: Forensic Chemistry
  doi: 10.1016/j.forc.2019.100188
– volume: 242
  start-page: 308
  year: 2018
  ident: 10.1016/j.foodchem.2021.129422_b0135
  article-title: 1H NMR combined with chemometrics for the rapid detection of adulteration in camellia oils
  publication-title: Food Chemistry
  doi: 10.1016/j.foodchem.2017.09.061
– volume: 4
  start-page: 248
  issue: 3
  year: 2008
  ident: 10.1016/j.foodchem.2021.129422_b0175
  article-title: Application of ultra-performance LC-TOF MS metabolite profiling techniques to the analysis of medicinal Panax herbs
  publication-title: Metabolomics
  doi: 10.1007/s11306-008-0115-5
– volume: 7
  start-page: 142
  issue: 1
  year: 2006
  ident: 10.1016/j.foodchem.2021.129422_b0150
  article-title: Centering, scaling, and transformations: Improving the biological information content of metabolomics data
  publication-title: BMC Genomics
  doi: 10.1186/1471-2164-7-142
– volume: 143
  start-page: 472
  year: 2014
  ident: 10.1016/j.foodchem.2021.129422_b0005
  article-title: Application of random forests to select premium quality vegetable oils by their fatty acid composition
  publication-title: Food Chemistry
  doi: 10.1016/j.foodchem.2013.08.013
– volume: 21
  start-page: 152
  issue: 2
  year: 2008
  ident: 10.1016/j.foodchem.2021.129422_b0125
  article-title: Tocopherol, tocotrienol and plant sterol contents of vegetable oils and industrial fats
  publication-title: Journal of Food Composition and Analysis
  doi: 10.1016/j.jfca.2007.07.012
– volume: 623
  start-page: 146
  issue: 2
  year: 2008
  ident: 10.1016/j.foodchem.2021.129422_b0030
  article-title: Quality control and original discrimination of Ganoderma lucidum based on high-performance liquid chromatographic fingerprints and combined chemometrics methods
  publication-title: Analytica Chimica Acta
  doi: 10.1016/j.aca.2008.06.018
– volume: 118
  start-page: 108725
  year: 2020
  ident: 10.1016/j.foodchem.2021.129422_b0195
  article-title: Chemical characterization of fourteen kinds of novel edible oils: A comparative study using chemometrics
  publication-title: LWT - Food Science and Technology
  doi: 10.1016/j.lwt.2019.108725
– volume: 11
  start-page: 1850006
  issue: 02
  year: 2018
  ident: 10.1016/j.foodchem.2021.129422_b0035
  article-title: Identifying camellia oil adulteration with selected vegetable oils by characteristic near-infrared spectral regions
  publication-title: Journal of Innovative Optical Health Sciences
  doi: 10.1142/S1793545818500062
– volume: 19
  start-page: 300
  issue: 2
  year: 2015
  ident: 10.1016/j.foodchem.2021.129422_b0185
  article-title: Identification and Detection of AdulteratedCamellia OleiferaAbel. Oils by Near Infrared Transmittance Spectroscopy
  publication-title: International Journal of Food Properties
  doi: 10.1080/10942912.2015.1021929
– volume: 62
  start-page: 1800136
  issue: 15
  year: 2018
  ident: 10.1016/j.foodchem.2021.129422_b0095
  article-title: Current Insights Into the Biological Action of Squalene
  publication-title: Molecular Nutrition & Food Research
  doi: 10.1002/mnfr.201800136
– volume: 156
  start-page: 369
  issue: 3
  year: 2014
  ident: 10.1016/j.foodchem.2021.129422_b0140
  article-title: Chemical composition of seed oils in native Taiwanese Camellia species
  publication-title: Food Chemistry
  doi: 10.1016/j.foodchem.2014.02.016
– volume: 279
  start-page: 279
  year: 2019
  ident: 10.1016/j.foodchem.2021.129422_b0055
  article-title: Comparative study of chemical compositions and antioxidant capacities of oils obtained from two species of walnut: Juglans regia and Juglans sigillata
  publication-title: Food Chemistry
  doi: 10.1016/j.foodchem.2018.12.016
– volume: 116
  start-page: 345
  issue: 1
  year: 2009
  ident: 10.1016/j.foodchem.2021.129422_b0120
  article-title: Gas chromatographic–mass spectrometric characterisation of triterpene alcohols and monomethylsterols in developing Olea europaea L. fruits
  publication-title: Food Chemistry
  doi: 10.1016/j.foodchem.2009.01.094
– volume: 53
  start-page: 597
  issue: 3
  year: 2006
  ident: 10.1016/j.foodchem.2021.129422_b0170
  article-title: Authentication of Camellia oleifera Abel Oil by Near Infrared Fourier Transform Raman Spectroscopy
  publication-title: Journal of the Chinese Chemical Society
  doi: 10.1002/jccs.200600078
– volume: 23
  start-page: 241
  issue: 2
  year: 2018
  ident: 10.1016/j.foodchem.2021.129422_b0040
  article-title: Multispecies Adulteration Detection of Camellia Oil by Chemical Markers
  publication-title: Molecules
  doi: 10.3390/molecules23020241
– volume: 190
  start-page: 55
  year: 2018
  ident: 10.1016/j.foodchem.2021.129422_b0100
  article-title: Variable selection for multivariate classification aiming to detect individual adulterants and their blends in grape nectars
  publication-title: Talanta
  doi: 10.1016/j.talanta.2018.07.078
– volume: 8
  start-page: 13784
  issue: 1
  year: 2018
  ident: 10.1016/j.foodchem.2021.129422_b0025
  article-title: A novel method for detection of camellia oil adulteration based on time-resolved emission fluorescence
  publication-title: Scientific Reports
  doi: 10.1038/s41598-018-32223-6
– volume: 138
  start-page: 1461
  issue: 2-3
  year: 2013
  ident: 10.1016/j.foodchem.2021.129422_b0045
  article-title: Characterization of oils and fats by 1H NMR and GC/MS fingerprinting: Classification, prediction and detection of adulteration
  publication-title: Food Chemistry
  doi: 10.1016/j.foodchem.2012.09.136
– volume: 155
  start-page: 145
  year: 2016
  ident: 10.1016/j.foodchem.2021.129422_b0085
  article-title: A combination of chemometrics methods and GC–MS for the classification of edible vegetable oils
  publication-title: Chemometrics and Intelligent Laboratory Systems
  doi: 10.1016/j.chemolab.2016.03.028
– volume: 228
  start-page: 301
  year: 2017
  ident: 10.1016/j.foodchem.2021.129422_b0115
  article-title: Direct study of minor extra-virgin olive oil components without any sample modification. 1H NMR multisupression experiment: A powerful tool
  publication-title: Food Chemistry
  doi: 10.1016/j.foodchem.2017.02.009
– volume: 67
  start-page: 8279
  issue: 29
  year: 2019
  ident: 10.1016/j.foodchem.2021.129422_b0020
  article-title: Screening Method for Argan Oil Adulteration with Vegetable Oils: An Online HPLC Assay with Postcolumn Detection Utilizing Chemometric Multidata Analysis
  publication-title: Journal of Agricultural and Food Chemistry
  doi: 10.1021/acs.jafc.9b03001
– volume: 160
  start-page: 110
  year: 2017
  ident: 10.1016/j.foodchem.2021.129422_b0050
  article-title: A new approach for variable influence on projection (VIP) in O2PLS models
  publication-title: Chemometrics & Intelligent Laboratory Systems
  doi: 10.1016/j.chemolab.2016.11.005
– volume: 293
  start-page: 348
  year: 2019
  ident: 10.1016/j.foodchem.2021.129422_b0160
  article-title: Rapid identification and quantification of cheaper vegetable oil adulteration in camellia oil by using excitation-emission matrix fluorescence spectroscopy combined with chemometrics
  publication-title: Food Chemistry
  doi: 10.1016/j.foodchem.2019.04.109
– volume: 68
  start-page: 649
  issue: 7
  year: 2019
  ident: 10.1016/j.foodchem.2021.129422_b0190
  article-title: Lipid Characteristics of Camellia Seed Oil
  publication-title: Journal of Oleo Science
  doi: 10.5650/jos.ess18234
– volume: 108
  start-page: 437
  year: 2019
  ident: 10.1016/j.foodchem.2021.129422_b0180
  article-title: Chemometric classification and quantification of sesame oil adulterated with other vegetable oils based on fatty acids composition by gas chromatography
  publication-title: LWT - Food Science and Technology
  doi: 10.1016/j.lwt.2019.03.085
– volume: 4
  start-page: 2522
  issue: 8
  year: 2012
  ident: 10.1016/j.foodchem.2021.129422_b0105
  article-title: Metabolomics of four TCM herbal products: Application of HPTLC analysis
  publication-title: Analytical Methods
  doi: 10.1039/c2ay25373a
– volume: 274
  start-page: 518
  year: 2019
  ident: 10.1016/j.foodchem.2021.129422_b0110
  article-title: Discrimination and classification of extra virgin olive oil using a chemometric approach based on TMS-4,4'-desmetylsterols GC(FID) fingerprints of edible vegetable oils
  publication-title: Food Chemistry
  doi: 10.1016/j.foodchem.2018.08.128
– volume: 233
  start-page: 302
  year: 2017
  ident: 10.1016/j.foodchem.2021.129422_b0165
  article-title: Fatty acid and sterol composition of tea seed oils: Their comparison by the “FancyTiles” approach
  publication-title: Food Chemistry
  doi: 10.1016/j.foodchem.2017.04.110
– volume: 881
  start-page: 93
  issue: 1-2
  year: 2000
  ident: 10.1016/j.foodchem.2021.129422_b0015
  article-title: Authentication of vegetable oils by chromatographic techniques
  publication-title: Journal of Chromatography A
  doi: 10.1016/S0021-9673(00)00355-1
– volume: 87
  start-page: 839
  issue: 8
  year: 2010
  ident: 10.1016/j.foodchem.2021.129422_b0065
  article-title: Characterization and Authentication of Significant Chinese Edible Oilseed Oils by Stable Carbon Isotope Analysis
  publication-title: Journal of the American Oil Chemists' Society
  doi: 10.1007/s11746-010-1564-3
– volume: 913
  start-page: 1
  year: 2016
  ident: 10.1016/j.foodchem.2021.129422_b0060
  article-title: Chemometric applications to assess quality and critical parameters of virgin and extra-virgin olive oil
  publication-title: A review. Analytica Chimica Acta
  doi: 10.1016/j.aca.2016.01.025
– volume: 287
  start-page: 46
  year: 2019
  ident: 10.1016/j.foodchem.2021.129422_b0130
  article-title: 1H NMR combined with PLS for the rapid determination of squalene and sterols in vegetable oils
  publication-title: Food Chemistry
  doi: 10.1016/j.foodchem.2019.02.072
– volume: 126
  start-page: 1735
  issue: 3
  year: 2016
  ident: 10.1016/j.foodchem.2021.129422_b0080
  article-title: Comparison of GC and DSC monitoring the adulteration of camellia oil with selected vegetable oils
  publication-title: Journal of Thermal Analysis and Calorimetry
  doi: 10.1007/s10973-016-5606-4
– volume: 95
  start-page: 529
  issue: 3
  year: 2006
  ident: 10.1016/j.foodchem.2021.129422_b0155
  article-title: Feasibility study of quantifying and discriminating soybean oil adulteration in camellia oils by attenuated total reflectance MIR and fiber optic diffuse reflectance NIR
  publication-title: Food Chemistry
  doi: 10.1016/j.foodchem.2005.04.015
SSID ssj0002018
Score 2.6194863
Snippet •Fatty acids and sterols with chemometrics were used to authenticate camellia oil.•PCA can differentiate camellia oil using triterpene alcohols.•PLS-DA can...
The fatty acid, squalene, and phytosterols, coupled to chemometrics were utilized to detect the adulteration of camellia oil (CAO) with palm superolein (PAO),...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 129422
SubjectTerms accuracy
adulterated products
Adulteration
calcium oxide
Camellia
Camellia - chemistry
Camellia oil
Chemometrics
corn oil
detection
Discriminant Analysis
Fatty acid
fatty acids
Fatty Acids - analysis
food chemistry
Food Contamination - analysis
Fraud - prevention & control
Gas Chromatography-Mass Spectrometry
Informatics
Least-Squares Analysis
olive oil
peanut oil
Phytosterols
Phytosterols - analysis
Plant Oils - chemistry
prediction
Principal Component Analysis
rapeseed oil
rice bran oil
rice oil
sesame oil
soybean oil
squalene
sunflower oil
triterpenoids
vegetables
Title Detection of camellia oil adulteration using chemometrics based on fatty acids GC fingerprints and phytosterols GC–MS fingerprints
URI https://dx.doi.org/10.1016/j.foodchem.2021.129422
https://www.ncbi.nlm.nih.gov/pubmed/33714164
https://www.proquest.com/docview/2501258886
https://www.proquest.com/docview/2524259191
Volume 352
WOSCitedRecordID wos000636068300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection - Elsevier
  customDbUrl:
  eissn: 1873-7072
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002018
  issn: 0308-8146
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLa6DQleEAwY5TIZCfFSpTTOxfbj1F1g0ipQh9S3KHHsrVObTG06TXvaA_9g_5BfwnEcpykwBkK8RJVzXDv6vsTnHPucg9BbUBEIZ6F0CFOh49M4cHiY-E6YhAmJEz_wiSk2QQcDNhrxT63WjY2FuZjQLGOXl_z8v0INbQC2Dp39C7jrP4UG-A2gwxVgh-sfAb8rCymsHijiqc64GXfy8cTk2pAV5AsTbnsqp_lUV9US845e0VK9e6DiAnTzWIzTeeeg31Gl6097AAuT0RmgKXRwyCyfaAF7YMI7Gq7INhXffZ09WdjqcrVfpywpDISp1k-9OixKV32cnYD0svnQ5Dr4DJJXp8v9pMrbPYLmk0XedGEQtz5AV_nVbGzN8iBTGc8FUrWDUprPM6OeQ3t05fvtmRS4P60Fxi1x1lXwgPr5unroLug3vomE_iHP9lAPqMcjbmlIemtog9CAw6dyY-fj3uiwXuBBZ2Jmc8pMsBF4_uvRbtN5brNpSt3m-BF6WBkleMeQ6TFqyWwT3e9btDZRe3csC_wOV1lkJ3hgiziAnI1tnz9BX2vy4VxhSz4M5MNN8uGSfLhJPlySD8O9kny4JB8-6OMmoTCQDzfJBwLfrm-OhitST9GX_b3j_genqvPhCFimCycFqyOUYAsIojgDhZYKEfoq8VQYUCK5YiR2eZCy1PUDIX1XJpwx5YmEK-oJ4T1D61meyecIg7WfJkyb6QmoppzHvMfTNCAg6qW9hLRRYJGIRJUEX9dimUT2tONZZBGMNIKRQbCN3tf9zk0amDt7cAt0VCmzRkmNgJ939n1jmREB0HoLL85kvphHYLCARcIYC38no90I3OVuG20ZWtVz9nSCTjf0X_zD7F6iB8uX-BVaL2YL-RrdExfFeD7bRmt0xLarV-Y7cDvrYg
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Detection+of+camellia+oil+adulteration+using+chemometrics+based+on+fatty+acids+GC+fingerprints+and+phytosterols+GC%E2%80%93MS+fingerprints&rft.jtitle=Food+chemistry&rft.au=Shi%2C+Ting&rft.au=Wu%2C+Gangcheng&rft.au=Jin%2C+Qingzhe&rft.au=Wang%2C+Xingguo&rft.date=2021-08-01&rft.pub=Elsevier+Ltd&rft.issn=0308-8146&rft.eissn=1873-7072&rft.volume=352&rft_id=info:doi/10.1016%2Fj.foodchem.2021.129422&rft.externalDocID=S0308814621004283
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0308-8146&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0308-8146&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0308-8146&client=summon