Roadmap on emerging hardware and technology for machine learning

Recent progress in artificial intelligence is largely attributed to the rapid development of machine learning, especially in the algorithm and neural network models. However, it is the performance of the hardware, in particular the energy efficiency of a computing system that sets the fundamental li...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nanotechnology Jg. 32; H. 1; S. 012002 - 12046
Hauptverfasser: Berggren, Karl, Xia, Qiangfei, Likharev, Konstantin K, Strukov, Dmitri B, Jiang, Hao, Mikolajick, Thomas, Querlioz, Damien, Salinga, Martin, Erickson, John R, Pi, Shuang, Xiong, Feng, Lin, Peng, Li, Can, Chen, Yu, Xiong, Shisheng, Hoskins, Brian D, Daniels, Matthew W, Madhavan, Advait, Liddle, James A, McClelland, Jabez J, Yang, Yuchao, Rupp, Jennifer, Nonnenmann, Stephen S, Cheng, Kwang-Ting, Gong, Nanbo, Lastras-Montaño, Miguel Angel, Talin, A Alec, Salleo, Alberto, Shastri, Bhavin J, de Lima, Thomas Ferreira, Prucnal, Paul, Tait, Alexander N, Shen, Yichen, Meng, Huaiyu, Roques-Carmes, Charles, Cheng, Zengguang, Bhaskaran, Harish, Jariwala, Deep, Wang, Han, Shainline, Jeffrey M, Segall, Kenneth, Yang, J Joshua, Roy, Kaushik, Datta, Suman, Raychowdhury, Arijit
Format: Journal Article
Sprache:Englisch
Veröffentlicht: England IOP Publishing 01.01.2021
Schlagworte:
ISSN:0957-4484, 1361-6528, 1361-6528
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!