Roadmap on emerging hardware and technology for machine learning

Recent progress in artificial intelligence is largely attributed to the rapid development of machine learning, especially in the algorithm and neural network models. However, it is the performance of the hardware, in particular the energy efficiency of a computing system that sets the fundamental li...

Full description

Saved in:
Bibliographic Details
Published in:Nanotechnology Vol. 32; no. 1; pp. 012002 - 12046
Main Authors: Berggren, Karl, Xia, Qiangfei, Likharev, Konstantin K, Strukov, Dmitri B, Jiang, Hao, Mikolajick, Thomas, Querlioz, Damien, Salinga, Martin, Erickson, John R, Pi, Shuang, Xiong, Feng, Lin, Peng, Li, Can, Chen, Yu, Xiong, Shisheng, Hoskins, Brian D, Daniels, Matthew W, Madhavan, Advait, Liddle, James A, McClelland, Jabez J, Yang, Yuchao, Rupp, Jennifer, Nonnenmann, Stephen S, Cheng, Kwang-Ting, Gong, Nanbo, Lastras-Montaño, Miguel Angel, Talin, A Alec, Salleo, Alberto, Shastri, Bhavin J, de Lima, Thomas Ferreira, Prucnal, Paul, Tait, Alexander N, Shen, Yichen, Meng, Huaiyu, Roques-Carmes, Charles, Cheng, Zengguang, Bhaskaran, Harish, Jariwala, Deep, Wang, Han, Shainline, Jeffrey M, Segall, Kenneth, Yang, J Joshua, Roy, Kaushik, Datta, Suman, Raychowdhury, Arijit
Format: Journal Article
Language:English
Published: England IOP Publishing 01.01.2021
Subjects:
ISSN:0957-4484, 1361-6528, 1361-6528
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Recent progress in artificial intelligence is largely attributed to the rapid development of machine learning, especially in the algorithm and neural network models. However, it is the performance of the hardware, in particular the energy efficiency of a computing system that sets the fundamental limit of the capability of machine learning. Data-centric computing requires a revolution in hardware systems, since traditional digital computers based on transistors and the von Neumann architecture were not purposely designed for neuromorphic computing. A hardware platform based on emerging devices and new architecture is the hope for future computing with dramatically improved throughput and energy efficiency. Building such a system, nevertheless, faces a number of challenges, ranging from materials selection, device optimization, circuit fabrication and system integration, to name a few. The aim of this Roadmap is to present a snapshot of emerging hardware technologies that are potentially beneficial for machine learning, providing the Nanotechnology readers with a perspective of challenges and opportunities in this burgeoning field.
AbstractList Recent progress in artificial intelligence is largely attributed to the rapid development of machine learning, especially in the algorithm and neural network models. However, it is the performance of the hardware, in particular the energy efficiency of a computing system that sets the fundamental limit of the capability of machine learning. Data-centric computing requires a revolution in hardware systems, since traditional digital computers based on transistors and the von Neumann architecture were not purposely designed for neuromorphic computing. A hardware platform based on emerging devices and new architecture is the hope for future computing with dramatically improved throughput and energy efficiency. Building such a system, nevertheless, faces a number of challenges, ranging from materials selection, device optimization, circuit fabrication and system integration, to name a few. The aim of this Roadmap is to present a snapshot of emerging hardware technologies that are potentially beneficial for machine learning, providing the Nanotechnology readers with a perspective of challenges and opportunities in this burgeoning field.
Recent progress in artificial intelligence is largely attributed to the rapid development of machine learning, especially in the algorithm and neural network models. However, it is the performance of the hardware, in particular the energy efficiency of a computing system that sets the fundamental limit of the capability of machine learning. Data-centric computing requires a revolution in hardware systems, since traditional digital computers based on transistors and the von Neumann architecture were not purposely designed for neuromorphic computing. A hardware platform based on emerging devices and new architecture is the hope for future computing with dramatically improved throughput and energy efficiency. Building such a system, nevertheless, faces a number of challenges, ranging from materials selection, device optimization, circuit fabrication and system integration, to name a few. The aim of this Roadmap is to present a snapshot of emerging hardware technologies that are potentially beneficial for machine learning, providing the Nanotechnology readers with a perspective of challenges and opportunities in this burgeoning field.Recent progress in artificial intelligence is largely attributed to the rapid development of machine learning, especially in the algorithm and neural network models. However, it is the performance of the hardware, in particular the energy efficiency of a computing system that sets the fundamental limit of the capability of machine learning. Data-centric computing requires a revolution in hardware systems, since traditional digital computers based on transistors and the von Neumann architecture were not purposely designed for neuromorphic computing. A hardware platform based on emerging devices and new architecture is the hope for future computing with dramatically improved throughput and energy efficiency. Building such a system, nevertheless, faces a number of challenges, ranging from materials selection, device optimization, circuit fabrication and system integration, to name a few. The aim of this Roadmap is to present a snapshot of emerging hardware technologies that are potentially beneficial for machine learning, providing the Nanotechnology readers with a perspective of challenges and opportunities in this burgeoning field.
Author Raychowdhury, Arijit
Nonnenmann, Stephen S
McClelland, Jabez J
Xiong, Feng
Segall, Kenneth
Shainline, Jeffrey M
Roy, Kaushik
Erickson, John R
Yang, J Joshua
Jiang, Hao
Strukov, Dmitri B
Madhavan, Advait
Berggren, Karl
Pi, Shuang
Hoskins, Brian D
Prucnal, Paul
Cheng, Zengguang
Bhaskaran, Harish
Talin, A Alec
Shastri, Bhavin J
Roques-Carmes, Charles
de Lima, Thomas Ferreira
Yang, Yuchao
Gong, Nanbo
Meng, Huaiyu
Xia, Qiangfei
Shen, Yichen
Lin, Peng
Querlioz, Damien
Daniels, Matthew W
Salleo, Alberto
Datta, Suman
Likharev, Konstantin K
Chen, Yu
Mikolajick, Thomas
Salinga, Martin
Lastras-Montaño, Miguel Angel
Liddle, James A
Xiong, Shisheng
Cheng, Kwang-Ting
Li, Can
Rupp, Jennifer
Tait, Alexander N
Jariwala, Deep
Wang, Han
Author_xml – sequence: 1
  givenname: Karl
  orcidid: 0000-0001-7453-9031
  surname: Berggren
  fullname: Berggren, Karl
  email: berggren@mit.edu
  organization: Research Laboratory of Electronics, Massachusetts Institute of Technology , Cambridge, MA 02139, United States of America
– sequence: 2
  givenname: Qiangfei
  orcidid: 0000-0003-1436-8423
  surname: Xia
  fullname: Xia, Qiangfei
  email: qxia@umass.edu
  organization: University of Massachusetts Department of Electrical and Computer Engineering, Amherst, MA, United States of America
– sequence: 3
  givenname: Konstantin K
  surname: Likharev
  fullname: Likharev, Konstantin K
  organization: Stony Brook University , Stony Brook, NY 11794, Unites States
– sequence: 4
  givenname: Dmitri B
  surname: Strukov
  fullname: Strukov, Dmitri B
  organization: University of California at Santa Barbara Department of Electrical and Computer Engineering, Santa Barbara, CA 93106, United States of America
– sequence: 5
  givenname: Hao
  surname: Jiang
  fullname: Jiang, Hao
  organization: School of Engineering & Applied Science Yale University , CT, United States of America
– sequence: 6
  givenname: Thomas
  orcidid: 0000-0003-3814-0378
  surname: Mikolajick
  fullname: Mikolajick, Thomas
  organization: NaMLab gGmbH and TU Dresden , Germany
– sequence: 7
  givenname: Damien
  surname: Querlioz
  fullname: Querlioz, Damien
  organization: Université Paris-Saclay , CNRS, France
– sequence: 8
  givenname: Martin
  orcidid: 0000-0002-2228-6244
  surname: Salinga
  fullname: Salinga, Martin
  organization: Institut für Materialphysik , Westfälische Wilhelms-Universität Münster, Germany
– sequence: 9
  givenname: John R
  surname: Erickson
  fullname: Erickson, John R
  organization: University of Pittsburgh Department of Electrical and Computer Engineering, Pittsburgh, PA 15261, United States of America
– sequence: 10
  givenname: Shuang
  surname: Pi
  fullname: Pi, Shuang
  organization: Lam Research , Fremont, CA, United States of America
– sequence: 11
  givenname: Feng
  surname: Xiong
  fullname: Xiong, Feng
  organization: University of Pittsburgh Department of Electrical and Computer Engineering, Pittsburgh, PA 15261, United States of America
– sequence: 12
  givenname: Peng
  surname: Lin
  fullname: Lin, Peng
  organization: Research Laboratory of Electronics, Massachusetts Institute of Technology , Cambridge, MA 02139, United States of America
– sequence: 13
  givenname: Can
  orcidid: 0000-0003-3795-2008
  surname: Li
  fullname: Li, Can
  organization: The University of Hong Kong Department of Electrical and Electronic Engineering, , China Hong Kong SAR
– sequence: 14
  givenname: Yu
  surname: Chen
  fullname: Chen, Yu
  organization: School of information science and technology, Fudan University , Shanghai, People's Republic of China
– sequence: 15
  givenname: Shisheng
  surname: Xiong
  fullname: Xiong, Shisheng
  organization: School of information science and technology, Fudan University , Shanghai, People's Republic of China
– sequence: 16
  givenname: Brian D
  surname: Hoskins
  fullname: Hoskins, Brian D
  organization: Physical Measurements Laboratory, National Institute of Standards and Technology , Gaithersburg, MD 20899, United States of America
– sequence: 17
  givenname: Matthew W
  orcidid: 0000-0002-3390-4714
  surname: Daniels
  fullname: Daniels, Matthew W
  organization: Physical Measurements Laboratory, National Institute of Standards and Technology , Gaithersburg, MD 20899, United States of America
– sequence: 18
  givenname: Advait
  surname: Madhavan
  fullname: Madhavan, Advait
  organization: Institute for Research in Electronics and Applied Physics, University of Maryland, College Park , MD, United States of America
– sequence: 19
  givenname: James A
  surname: Liddle
  fullname: Liddle, James A
  organization: Physical Measurements Laboratory, National Institute of Standards and Technology , Gaithersburg, MD 20899, United States of America
– sequence: 20
  givenname: Jabez J
  surname: McClelland
  fullname: McClelland, Jabez J
  organization: Physical Measurements Laboratory, National Institute of Standards and Technology , Gaithersburg, MD 20899, United States of America
– sequence: 21
  givenname: Yuchao
  orcidid: 0000-0003-4674-4059
  surname: Yang
  fullname: Yang, Yuchao
  organization: School of Electronics Engineering and Computer Science, Peking University , Beijing, People's Republic of China
– sequence: 22
  givenname: Jennifer
  surname: Rupp
  fullname: Rupp, Jennifer
  organization: ETHZ Department of Materials Electrochemical Materials, Hönggerbergring 64, Zürich 8093, Switzerland
– sequence: 23
  givenname: Stephen S
  surname: Nonnenmann
  fullname: Nonnenmann, Stephen S
  organization: University of Massachusetts-Amherst Department of Mechanical & Industrial Engineering, MA, United States of America
– sequence: 24
  givenname: Kwang-Ting
  orcidid: 0000-0002-3885-4912
  surname: Cheng
  fullname: Cheng, Kwang-Ting
  organization: School of Engineering, Hong Kong University of Science and Technology , Clear Water Bay, Kowloon, Hong Kong, People's Republic of China
– sequence: 25
  givenname: Nanbo
  orcidid: 0000-0002-9797-5124
  surname: Gong
  fullname: Gong, Nanbo
  organization: IBM T J Watson Research Center , Yorktown Heights, NY 10598, United States of America
– sequence: 26
  givenname: Miguel Angel
  surname: Lastras-Montaño
  fullname: Lastras-Montaño, Miguel Angel
  organization: Universidad Autónoma de San Luis Potosí Instituto de Investigación en Comunicación Óptica, Facultad de Ciencias, México
– sequence: 27
  givenname: A Alec
  surname: Talin
  fullname: Talin, A Alec
  organization: Sandia National Laboratories , Livermore, CA 94551, United States of America
– sequence: 28
  givenname: Alberto
  surname: Salleo
  fullname: Salleo, Alberto
  organization: Stanford University Department of Materials Science and Engineering, Stanford, California, United States of America
– sequence: 29
  givenname: Bhavin J
  orcidid: 0000-0001-5040-8248
  surname: Shastri
  fullname: Shastri, Bhavin J
  organization: Engineering Physics & Astronomy, Queen's University Department of Physics, Kingston ON KL7 3N6, Canada
– sequence: 30
  givenname: Thomas Ferreira
  surname: de Lima
  fullname: de Lima, Thomas Ferreira
  organization: Princeton University Department of Electrical Engineering, Princeton, NJ 08544, United States of America
– sequence: 31
  givenname: Paul
  surname: Prucnal
  fullname: Prucnal, Paul
  organization: Princeton University Department of Electrical Engineering, Princeton, NJ 08544, United States of America
– sequence: 32
  givenname: Alexander N
  surname: Tait
  fullname: Tait, Alexander N
  organization: Physical Measurement Laboratory, National Institute of Standards and Technology (NIST) , Boulder, CO 80305, United States of America
– sequence: 33
  givenname: Yichen
  surname: Shen
  fullname: Shen, Yichen
  organization: Lightelligence , 268 Summer Street, Boston, MA 02210, United States of America
– sequence: 34
  givenname: Huaiyu
  surname: Meng
  fullname: Meng, Huaiyu
  organization: Lightelligence , 268 Summer Street, Boston, MA 02210, United States of America
– sequence: 35
  givenname: Charles
  surname: Roques-Carmes
  fullname: Roques-Carmes, Charles
  organization: Research Laboratory of Electronics, Massachusetts Institute of Technology , Cambridge, MA 02139, United States of America
– sequence: 36
  givenname: Zengguang
  orcidid: 0000-0002-2204-3429
  surname: Cheng
  fullname: Cheng, Zengguang
  organization: State Key Laboratory of ASIC and System, School of Microelectronics, Fudan University , Shanghai 200433, People's Republic of China
– sequence: 37
  givenname: Harish
  surname: Bhaskaran
  fullname: Bhaskaran, Harish
  organization: University of Oxford Department of Materials, Oxford OX1 3PH, United Kingdom
– sequence: 38
  givenname: Deep
  orcidid: 0000-0002-3570-8768
  surname: Jariwala
  fullname: Jariwala, Deep
  organization: University of Pennsylvania Department of Electrical and Systems Engineering, Philadelphia PA 19104, United States of America
– sequence: 39
  givenname: Han
  surname: Wang
  fullname: Wang, Han
  organization: University of Southern California , Los Angeles, CA 90089, United States of America
– sequence: 40
  givenname: Jeffrey M
  orcidid: 0000-0002-6102-5880
  surname: Shainline
  fullname: Shainline, Jeffrey M
  organization: Physical Measurement Laboratory, National Institute of Standards and Technology (NIST) , Boulder, CO 80305, United States of America
– sequence: 41
  givenname: Kenneth
  surname: Segall
  fullname: Segall, Kenneth
  organization: Colgate University Department of Physics and Astronomy, NY 13346, United States of America
– sequence: 42
  givenname: J Joshua
  orcidid: 0000-0001-8242-7531
  surname: Yang
  fullname: Yang, J Joshua
  organization: University of Massachusetts Department of Electrical and Computer Engineering, Amherst, MA, United States of America
– sequence: 43
  givenname: Kaushik
  surname: Roy
  fullname: Roy, Kaushik
  organization: School of Electrical and Computer Engineering, Purdue University , West Lafayette, IN 47907, United States of America
– sequence: 44
  givenname: Suman
  surname: Datta
  fullname: Datta, Suman
  organization: University of Notre Dame , Notre Dame, IN 46556, United States of America
– sequence: 45
  givenname: Arijit
  surname: Raychowdhury
  fullname: Raychowdhury, Arijit
  organization: Georgia Institute of Technology , Atlanta, GA 30332, United States of America
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32679577$$D View this record in MEDLINE/PubMed
BookMark eNptkEtLxDAURoOMOA_du5IsXVjn5tGm2SmDLxgQRNchTZOZDm1S0yky_94OM-rG1YXvHj7uPVM08sFbhC4J3BLI8zlhGUmylOZzXWgB7gRNfqMRmoBMRcJ5zsdo2nUbAEJySs7QmNFMDDsxQXdvQZeNbnHw2DY2riq_wmsdyy8dLda-xFtr1j7UYbXDLkTcaLOuvMW11dEP8Dk6dbru7MVxztDH48P74jlZvj69LO6XieGZ2CZGFsxmAMxJwzgwCxnJtBAFEOZMXkhHZGoZzx13MjVpaQh1VHIAzriAks3Q9aG3jeGzt91WNVVnbF1rb0PfKcoplzITIh_QqyPaF40tVRurRsed-vn6r6sKrdqEPvrhcuW1DwOjiAJCAahqSzegN_-gBNTev9rLVnvZ6uCffQOycnXL
CODEN NNOTER
CitedBy_id crossref_primary_10_3390_nano13142101
crossref_primary_10_4018_IJDWM_333518
crossref_primary_10_3788_AOS250986
crossref_primary_10_1038_s41467_024_55220_y
crossref_primary_10_1063_5_0040567
crossref_primary_10_1063_5_0042355
crossref_primary_10_1038_s41467_025_62635_8
crossref_primary_10_1002_adma_202104676
crossref_primary_10_1039_D4MH01348D
crossref_primary_10_1134_S1063739725600475
crossref_primary_10_1002_pssa_202300177
crossref_primary_10_1134_S1063784224070430
crossref_primary_10_3390_systems10050160
crossref_primary_10_1134_S1063785021070075
crossref_primary_10_3103_S0027134924702400
crossref_primary_10_3390_ijms252212368
crossref_primary_10_1364_AO_553741
crossref_primary_10_1515_nanoph_2022_0485
crossref_primary_10_1088_2634_4386_ac7db7
crossref_primary_10_1134_S2635167623601067
crossref_primary_10_1002_pssr_202100471
crossref_primary_10_1039_D4NR03368J
crossref_primary_10_3390_jlpea11030029
crossref_primary_10_1109_TASC_2021_3138369
crossref_primary_10_3389_fbuil_2022_811460
crossref_primary_10_1016_j_sse_2021_108062
crossref_primary_10_1038_s41467_022_30432_2
crossref_primary_10_3390_s23063062
crossref_primary_10_1002_adma_202105022
crossref_primary_10_3390_educsci14010010
crossref_primary_10_1109_JQE_2022_3169565
crossref_primary_10_1038_s41377_023_01079_5
crossref_primary_10_1109_TED_2024_3418289
crossref_primary_10_1038_s41699_025_00530_y
crossref_primary_10_1016_j_jss_2025_112389
crossref_primary_10_1134_S2635167621060161
crossref_primary_10_3390_nano14100854
crossref_primary_10_1016_j_neunet_2023_07_001
crossref_primary_10_1002_admt_202201911
crossref_primary_10_1088_1361_6528_ac5cfe
crossref_primary_10_3389_fdata_2022_787421
crossref_primary_10_1155_2022_1370919
crossref_primary_10_1557_s43577_021_00210_4
crossref_primary_10_1080_23746149_2021_1981155
crossref_primary_10_1007_s11831_024_10117_3
crossref_primary_10_1038_s42254_025_00825_5
crossref_primary_10_1088_2634_4386_ade1f4
crossref_primary_10_1109_JIOT_2025_3553153
crossref_primary_10_1016_j_mee_2024_112230
crossref_primary_10_1155_2022_3955974
crossref_primary_10_1038_s41566_020_00754_y
crossref_primary_10_1038_s41467_024_45982_w
crossref_primary_10_3390_jlpea13040055
crossref_primary_10_1039_D5TC02043C
crossref_primary_10_3390_chips4030034
crossref_primary_10_1002_aelm_202100330
crossref_primary_10_1063_5_0069116
crossref_primary_10_1002_aisy_202100054
crossref_primary_10_1016_j_inffus_2024_102427
crossref_primary_10_1103_PhysRevApplied_21_034013
crossref_primary_10_1002_smm2_1156
crossref_primary_10_1038_s41699_022_00328_2
crossref_primary_10_1063_5_0051394
crossref_primary_10_3390_s23125424
crossref_primary_10_1002_aelm_202200975
crossref_primary_10_3389_fnins_2021_611300
crossref_primary_10_3390_electronics13010102
crossref_primary_10_1134_S1990793123040140
crossref_primary_10_3389_fnins_2022_1113983
crossref_primary_10_1515_nanoph_2025_0125
crossref_primary_10_1016_j_chaos_2024_115784
crossref_primary_10_1109_TASC_2025_3538699
crossref_primary_10_1016_j_phrs_2023_106984
crossref_primary_10_1109_JSTQE_2022_3203159
crossref_primary_10_1002_inf2_12380
crossref_primary_10_1016_j_orgel_2024_107002
crossref_primary_10_1021_acsnano_5c03718
crossref_primary_10_1063_5_0120826
crossref_primary_10_1088_2058_9565_adc3ba
crossref_primary_10_1039_D3NH00421J
crossref_primary_10_1109_TIE_2023_3319711
crossref_primary_10_3390_nano11040994
crossref_primary_10_1016_j_neunet_2022_11_023
crossref_primary_10_1515_nanoph_2022_0553
crossref_primary_10_1109_TASC_2021_3066194
crossref_primary_10_1002_advs_202504706
crossref_primary_10_1126_scirobotics_abl7344
crossref_primary_10_1002_adma_202209516
crossref_primary_10_1002_aisy_202200407
crossref_primary_10_1109_ACCESS_2022_3172488
crossref_primary_10_1038_s41467_022_29195_7
crossref_primary_10_1177_17475198231221453
crossref_primary_10_64214_jmsn_01_01005
crossref_primary_10_1038_s41578_020_00261_0
crossref_primary_10_1016_j_neunet_2023_07_031
crossref_primary_10_1016_j_engappai_2023_106838
crossref_primary_10_1039_D3RA06853F
crossref_primary_10_1142_S1793984425300067
crossref_primary_10_1088_2634_4386_ac86ef
crossref_primary_10_1007_s10825_025_02285_7
crossref_primary_10_1002_adpr_202000212
ContentType Journal Article
Copyright 2020 IOP Publishing Ltd
Copyright_xml – notice: 2020 IOP Publishing Ltd
DBID O3W
TSCCA
NPM
7X8
DOI 10.1088/1361-6528/aba70f
DatabaseName IOP Publishing Free Content
IOPscience (Open Access)
PubMed
MEDLINE - Academic
DatabaseTitle PubMed
MEDLINE - Academic
DatabaseTitleList
PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: O3W
  name: Institute of Physics Open Access Journal Titles
  url: http://iopscience.iop.org/
  sourceTypes:
    Enrichment Source
    Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
DocumentTitleAlternate Roadmap on emerging hardware and technology for machine learning
EISSN 1361-6528
ExternalDocumentID 32679577
nanoaba70f
Genre Journal Article
GrantInformation_xml – fundername: Intramural NIST DOC
  grantid: 9999-NIST
GroupedDBID ---
-~X
123
1JI
4.4
53G
5B3
5PX
5VS
5ZH
7.M
7.Q
AAGCD
AAJIO
AAJKP
AATNI
ABHWH
ABJNI
ABQJV
ABVAM
ACAFW
ACGFS
ACHIP
AEFHF
AENEX
AFYNE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
AOAED
ASPBG
ATQHT
AVWKF
AZFZN
CBCFC
CEBXE
CJUJL
CRLBU
CS3
DU5
EBS
EDWGO
EMSAF
EPQRW
EQZZN
F5P
HAK
IHE
IJHAN
IOP
IZVLO
KOT
LAP
M45
N5L
N9A
O3W
P2P
PJBAE
R4D
RIN
RNS
RO9
ROL
RPA
SY9
TN5
TSCCA
W28
XPP
ZMT
ADEQX
NPM
7X8
AEINN
ID FETCH-LOGICAL-c467t-c9b3e6003f9c3403e0616a77b013fc8b9f195e348f4f95c5dc12f2940043470d3
IEDL.DBID O3W
ISICitedReferencesCount 140
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000579646000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0957-4484
1361-6528
IngestDate Fri Sep 05 08:02:13 EDT 2025
Sat May 31 02:12:56 EDT 2025
Wed Aug 21 03:38:33 EDT 2024
Thu Jan 07 14:56:18 EST 2021
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c467t-c9b3e6003f9c3403e0616a77b013fc8b9f195e348f4f95c5dc12f2940043470d3
Notes NANO-124125.R1
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-1436-8423
0000-0002-2228-6244
0000-0003-3814-0378
0000-0002-3390-4714
0000-0002-3570-8768
0000-0003-4674-4059
0000-0001-5040-8248
0000-0001-8242-7531
0000-0002-3885-4912
0000-0002-2204-3429
0000-0003-3795-2008
0000-0002-9797-5124
0000-0001-7453-9031
0000-0002-6102-5880
OpenAccessLink https://iopscience.iop.org/article/10.1088/1361-6528/aba70f
PMID 32679577
PQID 2424996778
PQPubID 23479
PageCount 45
ParticipantIDs pubmed_primary_32679577
iop_journals_10_1088_1361_6528_aba70f
proquest_miscellaneous_2424996778
PublicationCentury 2000
PublicationDate 2021-01-01
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – month: 01
  year: 2021
  text: 2021-01-01
  day: 01
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Nanotechnology
PublicationTitleAbbrev Nano
PublicationTitleAlternate Nanotechnology
PublicationYear 2021
Publisher IOP Publishing
Publisher_xml – name: IOP Publishing
SSID ssj0011821
Score 2.666636
Snippet Recent progress in artificial intelligence is largely attributed to the rapid development of machine learning, especially in the algorithm and neural network...
SourceID proquest
pubmed
iop
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 012002
SubjectTerms artificial intelligence
hardware technologies
machine learning
neural network models
neuromorphic computing
Title Roadmap on emerging hardware and technology for machine learning
URI https://iopscience.iop.org/article/10.1088/1361-6528/aba70f
https://www.ncbi.nlm.nih.gov/pubmed/32679577
https://www.proquest.com/docview/2424996778
Volume 32
WOSCitedRecordID wos000579646000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LS_QwEB98faAH34_1RQQ9xm2btEnxoojiQVcR5dtbSPMQD7bL7qr_vpO2Ln6gIHyX0kNIwswk88s8AQ49cz7yRU5tpC3lLHK0QJhBGfLa-4DCTd215Fr0erLfz--m4GSSC1MN2qv_GH-bQsENCduAONmNWRbTLE1kVxdaRH4aZplMsyDkt-zvxIWAwDluCu0Jim8Q3voov5sB9Qou9jPGrHXN5dJ_7XIZFluISc6aoSsw5cpVWPhSeHAV_tSBn2a0Bqf3lbYvekCqkoRc4dCziIRMrHc9dESXlownxneCAJe81NGXjrTtJp7W4fHy4uH8irZdFajBS3FMTV4whzCH-dwwHjGHGj3TQgSDqDeyyH2cp45x6bnPU5NaEyc-Cf3TOeMismwDZsqqdFtAhPFZrI0oUu65jLR0mUUIYotEOieZ78ARkke1p2Kkaoe3lCrQRgXaqIY2HTj4Z1ypy0qxRMUqpPZGiRrYMOaTOwpPQHBr6NJVryMVElzw1SaE7MBmwzY1aEp14CSZQAEQ27_cyQ7MJyFopbax7MLMePjq9mDOvI2fR8N9mBZ9id_e3c1-LWwfsG_Q-g
linkProvider IOP Publishing
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFD6CchF7GNCxrRsbRoJHr0nsxM7bEFANrSoVAq1vluPLtIcmUdPC399xklVMAgmJtzwcOdbx5Xw-tw_gnWfOR77IqY20pZxFjhYIMyjDtfY-oHDTspZMxWwmF4t83vOctrUwVd1f_Wf42TUK7lTYJ8TJccyymGZpIse60CLy49r6h_AoZSkL3A1f2dU2jIDgOe6a7QmK7xDexyn_NAraFvzh33Fma28mz_97pi9gt4ea5EMn_hIeuHIIO781IBzCkzYB1DR7cP6t0napa1KVJNQMB-4iEiqyfumVI7q0ZL11whMEumTZZmE60tNOXL-CH5PP3z9e0J5dgRq8HNfU5AVzCHeYzw3jEXNo2TMtRHCMeiOL3Md56hiXnvs8Nak1ceKTwKPOGReRZfswKKvSHQIRxmexNqJIuecy0tJlFqGILRLpnGR-BO9RRao_HY1qA99SqqAfFfSjOv2M4O09uVKXlWKJilUo8Y0ShfpDmbsVUngSQnhDl67aNCoUuuDrTQg5goNu6VTdtezAQTKBm0Ac_eNM3sDT-aeJmn6ZXR7DsyTksbRul9cwWK827gQem5_rm2Z12u63W56B1GU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Roadmap+on+emerging+hardware+and+technology+for+machine+learning&rft.jtitle=Nanotechnology&rft.au=Berggren%2C+Karl&rft.au=Xia%2C+Qiangfei&rft.au=Likharev%2C+Konstantin+K&rft.au=Strukov%2C+Dmitri+B&rft.date=2021-01-01&rft.pub=IOP+Publishing&rft.issn=0957-4484&rft.eissn=1361-6528&rft.volume=32&rft.issue=1&rft_id=info:doi/10.1088%2F1361-6528%2Faba70f&rft.externalDocID=nanoaba70f
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4484&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4484&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4484&client=summon