A novel alpha finite element method ( αFEM) for exact solution to mechanics problems using triangular and tetrahedral elements

The paper presents an alpha finite element method ( αFEM) for computing nearly exact solution in energy norm for mechanics problems using meshes that can be generated automatically for arbitrarily complicated domains. Three-node triangular ( αFEM-T3) and four-node tetrahedral ( αFEM-T4) elements wit...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Computer methods in applied mechanics and engineering Ročník 197; číslo 45; s. 3883 - 3897
Hlavní autoři: Liu, G.R., Nguyen-Thoi, T., Lam, K.Y.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Amsterdam Elsevier B.V 15.08.2008
Elsevier
Témata:
ISSN:0045-7825, 1879-2138
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The paper presents an alpha finite element method ( αFEM) for computing nearly exact solution in energy norm for mechanics problems using meshes that can be generated automatically for arbitrarily complicated domains. Three-node triangular ( αFEM-T3) and four-node tetrahedral ( αFEM-T4) elements with a scale factor α are formulated for two-dimensional (2D) and three-dimensional (3D) problems, respectively. The essential idea of the method is the use of a scale factor α ∈ [0,1] to obtain a combined model of the standard fully compatible model of the FEM and a quasi-equilibrium model of the node-based smoothed FEM (N-SFEM). This novel combination of the FEM and N-SFEM makes the best use of the upper bound property of the N-SFEM and the lower bound property of the standard FEM. Using meshes with the same aspect ratio, a unified approach has been proposed to obtain a nearly exact solution in strain energy for linear problems. The proposed elements are also applied to improve the accuracy of the solution of nonlinear problems of large deformation. Numerical results for 2D (using αFEM-T3) and 3D (using αFEM-T4) problems confirm that the present method gives the much more accurate solution comparing to both the standard FEM and the N-SFEM with the same number of degrees of freedom and similar computational efforts for both linear and nonlinear problems.
AbstractList The paper presents an alpha finite element method ( αFEM) for computing nearly exact solution in energy norm for mechanics problems using meshes that can be generated automatically for arbitrarily complicated domains. Three-node triangular ( αFEM-T3) and four-node tetrahedral ( αFEM-T4) elements with a scale factor α are formulated for two-dimensional (2D) and three-dimensional (3D) problems, respectively. The essential idea of the method is the use of a scale factor α ∈ [0,1] to obtain a combined model of the standard fully compatible model of the FEM and a quasi-equilibrium model of the node-based smoothed FEM (N-SFEM). This novel combination of the FEM and N-SFEM makes the best use of the upper bound property of the N-SFEM and the lower bound property of the standard FEM. Using meshes with the same aspect ratio, a unified approach has been proposed to obtain a nearly exact solution in strain energy for linear problems. The proposed elements are also applied to improve the accuracy of the solution of nonlinear problems of large deformation. Numerical results for 2D (using αFEM-T3) and 3D (using αFEM-T4) problems confirm that the present method gives the much more accurate solution comparing to both the standard FEM and the N-SFEM with the same number of degrees of freedom and similar computational efforts for both linear and nonlinear problems.
The paper presents an alpha finite element method (alphaFEM) for computing nearly exact solution in energy norm for mechanics problems using meshes that can be generated automatically for arbitrarily complicated domains. Three-node triangular (alphaFEM-T3) and four-node tetrahedral (alphaFEM-T4) elements with a scale factor alpha are formulated for two-dimensional (2D) and three-dimensional (3D) problems, respectively. The essential idea of the method is the use of a scale factor alpha [0,1] to obtain a combined model of the standard fully compatible model of the FEM and a quasi-equilibrium model of the node-based smoothed FEM (N-SFEM). This novel combination of the FEM and N-SFEM makes the best use of the upper bound property of the N-SFEM and the lower bound property of the standard FEM. Using meshes with the same aspect ratio, a unified approach has been proposed to obtain a nearly exact solution in strain energy for linear problems. The proposed elements are also applied to improve the accuracy of the solution of nonlinear problems of large deformation. Numerical results for 2D (using alphaFEM-T3) and 3D (using alphaFEM-T4) problems confirm that the present method gives the much more accurate solution comparing to both the standard FEM and the N-SFEM with the same number of degrees of freedom and similar computational efforts for both linear and nonlinear problems.
Author Liu, G.R.
Lam, K.Y.
Nguyen-Thoi, T.
Author_xml – sequence: 1
  givenname: G.R.
  surname: Liu
  fullname: Liu, G.R.
  organization: Center for Advanced Computations in Engineering Science (ACES), Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117576, Singapore
– sequence: 2
  givenname: T.
  surname: Nguyen-Thoi
  fullname: Nguyen-Thoi, T.
  email: g0500347@nus.edu.sg
  organization: Center for Advanced Computations in Engineering Science (ACES), Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117576, Singapore
– sequence: 3
  givenname: K.Y.
  surname: Lam
  fullname: Lam, K.Y.
  organization: School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20652099$$DView record in Pascal Francis
BookMark eNp9kc1u1DAQxy1UJLaFB-DmCwgOCf5I4kScqqofSEVc4GxNnEnXK8debKcqJ56JF-GZ8GrbC4f6Ysn6_cYz8z8lJz54JOQtZzVnvPu0q80CtWCsr5msGecvyIb3aqgEl_0J2TDWtJXqRfuKnKa0Y-X0XGzI73Pqwz06Cm6_BTpbbzNSdLigz3TBvA0T_UD__rm6_PqRziFSfACTaQpuzTZ4mkOhzBa8NYnuYxiLmuiarL-jOVrwd6uDSMFPNGOOsMUpgnv6Ib0mL2dwCd883mfkx9Xl94ub6vbb9ZeL89vKNJ3KleFs7lohhq6ZmIAOzKRkP3FjRtWClO3AhBk705XXTkompmFUqh-hUSOOE5Nn5P2xbmnx54op68Umg86Bx7AmLZthYIMSBXz3CEIy4OYI3tik99EuEH9pwUobbBgKp46ciSGliLM2NsNhJWVI6zRn-hCM3ukSjD4Eo5nUJZhi8v_Mp-LPOZ-PDpYd3VuMOhmL3uBkI5qsp2Cfsf8BOi6pqA
CODEN CMMECC
CitedBy_id crossref_primary_10_1002_nme_5738
crossref_primary_10_1016_j_advengsoft_2022_103365
crossref_primary_10_1016_j_enganabound_2021_03_025
crossref_primary_10_1080_10407790_2015_1104215
crossref_primary_10_1108_EC_12_2022_0725
crossref_primary_10_1007_s10665_015_9825_7
crossref_primary_10_1007_s00466_010_0516_y
crossref_primary_10_1007_s00466_013_0851_x
crossref_primary_10_1016_j_compstruc_2011_04_002
crossref_primary_10_1016_j_enganabound_2017_07_022
crossref_primary_10_1002_nme_5337
crossref_primary_10_1002_nme_6547
crossref_primary_10_1142_S3060932125500050
crossref_primary_10_1016_j_cma_2023_116091
crossref_primary_10_1016_j_enganabound_2013_11_008
crossref_primary_10_1016_j_finel_2011_01_004
crossref_primary_10_1142_S0219876213500205
crossref_primary_10_1016_j_tws_2022_109140
crossref_primary_10_1063_5_0264825
crossref_primary_10_1155_2019_8610790
crossref_primary_10_1155_2019_3269276
crossref_primary_10_1038_s41598_025_03520_8
crossref_primary_10_1002_nme_6793
crossref_primary_10_1002_nme_2977
crossref_primary_10_1002_nme_5324
crossref_primary_10_1002_nme_2459
crossref_primary_10_1002_nme_4754
crossref_primary_10_1007_s00466_021_02114_1
crossref_primary_10_1016_j_enganabound_2023_03_018
crossref_primary_10_1016_j_jcp_2017_02_022
crossref_primary_10_1016_j_enganabound_2015_07_018
crossref_primary_10_1016_j_enganabound_2024_106007
crossref_primary_10_1080_10407780802483516
crossref_primary_10_1142_S175882511750079X
crossref_primary_10_1016_j_cma_2018_09_029
crossref_primary_10_1016_j_euromechsol_2016_10_006
crossref_primary_10_1016_j_compstruc_2015_09_007
crossref_primary_10_1002_nme_7355
crossref_primary_10_1002_nme_3156
crossref_primary_10_1016_j_compstruc_2012_04_011
crossref_primary_10_1016_j_cma_2015_09_005
crossref_primary_10_1002_cnm_1291
crossref_primary_10_1016_j_camwa_2023_01_020
crossref_primary_10_1007_s00466_012_0705_y
crossref_primary_10_1002_nme_2889
crossref_primary_10_1016_j_euromechsol_2019_04_010
crossref_primary_10_1016_j_compositesb_2013_12_044
crossref_primary_10_1002_nme_2804
crossref_primary_10_1016_j_cma_2010_06_017
crossref_primary_10_1016_j_ijthermalsci_2016_06_027
crossref_primary_10_1155_2014_247932
crossref_primary_10_1016_j_cma_2014_12_003
crossref_primary_10_1186_2196_1166_1_6
crossref_primary_10_1016_j_enganabound_2011_09_003
crossref_primary_10_1007_s00466_009_0420_5
crossref_primary_10_1016_j_amc_2018_05_006
crossref_primary_10_1016_j_compstruc_2020_106298
crossref_primary_10_1088_0964_1726_22_9_095026
crossref_primary_10_1002_nme_2491
crossref_primary_10_1007_s10950_024_10236_1
crossref_primary_10_1155_2015_456740
crossref_primary_10_1016_j_cma_2009_07_001
crossref_primary_10_1016_j_cma_2009_09_014
crossref_primary_10_1002_nme_2493
crossref_primary_10_1016_j_compgeo_2020_103865
crossref_primary_10_1155_2020_8881983
crossref_primary_10_1016_j_ijthermalsci_2018_05_039
crossref_primary_10_1016_j_advengsoft_2018_09_005
crossref_primary_10_1016_j_enganabound_2017_10_013
crossref_primary_10_1016_j_jsv_2008_08_027
crossref_primary_10_3390_app8122488
crossref_primary_10_1108_EC_04_2024_0266
crossref_primary_10_1016_j_cma_2014_01_009
crossref_primary_10_1016_j_enganabound_2016_09_008
crossref_primary_10_1016_j_cam_2014_04_004
crossref_primary_10_1016_j_apm_2022_02_026
crossref_primary_10_1016_j_commatsci_2014_04_043
crossref_primary_10_1016_j_cma_2021_114179
crossref_primary_10_1002_nme_5233
crossref_primary_10_1016_j_enganabound_2017_10_006
crossref_primary_10_1002_nme_4662
crossref_primary_10_1016_j_cma_2009_09_001
crossref_primary_10_1142_S0219876216300014
crossref_primary_10_1016_j_apm_2017_06_046
crossref_primary_10_1016_j_compgeo_2022_105047
crossref_primary_10_1002_nme_4965
crossref_primary_10_1016_j_engfracmech_2022_108685
crossref_primary_10_1155_2019_7137036
crossref_primary_10_1016_j_oceaneng_2023_113767
crossref_primary_10_1155_2017_1467356
crossref_primary_10_1016_j_engfracmech_2020_107476
crossref_primary_10_1016_j_tafmec_2014_02_004
crossref_primary_10_1002_nme_2941
crossref_primary_10_1016_j_enganabound_2015_10_001
crossref_primary_10_1177_00375497231163642
crossref_primary_10_1016_j_camwa_2017_06_047
crossref_primary_10_1108_EC_10_2011_0125
crossref_primary_10_1007_s11517_019_02118_3
crossref_primary_10_1016_j_enganabound_2021_10_015
crossref_primary_10_1002_nme_3082
crossref_primary_10_1016_j_engfracmech_2021_107919
crossref_primary_10_1016_j_cam_2009_08_117
crossref_primary_10_1007_s00707_018_2124_4
crossref_primary_10_1002_nme_4694
crossref_primary_10_1007_s10338_024_00577_2
crossref_primary_10_1007_s11831_016_9202_3
crossref_primary_10_1007_s00466_013_0860_9
crossref_primary_10_1007_s00707_015_1456_6
crossref_primary_10_1016_j_cma_2023_116743
crossref_primary_10_1002_cnm_2697
crossref_primary_10_1016_j_cma_2022_114660
crossref_primary_10_1016_j_finel_2024_104272
crossref_primary_10_1016_j_enganabound_2021_09_021
crossref_primary_10_1016_j_compstruc_2008_09_003
crossref_primary_10_1002_nme_6062
crossref_primary_10_1108_HFF_12_2020_0809
crossref_primary_10_1007_s11709_015_0302_1
crossref_primary_10_1016_j_advengsoft_2020_102805
crossref_primary_10_3390_app9245410
crossref_primary_10_1002_nag_3446
crossref_primary_10_1007_s11831_010_9040_7
crossref_primary_10_1016_j_engfracmech_2021_107920
crossref_primary_10_1016_j_cam_2014_12_006
crossref_primary_10_1002_nme_4289
crossref_primary_10_1016_j_compstruct_2013_04_040
crossref_primary_10_1016_j_enganabound_2020_12_018
crossref_primary_10_1016_j_cma_2013_11_019
crossref_primary_10_1007_s00366_015_0416_z
crossref_primary_10_1007_s00466_008_0336_5
crossref_primary_10_1016_j_finel_2010_05_005
crossref_primary_10_1002_cnm_1375
crossref_primary_10_1016_j_compstruc_2014_01_011
crossref_primary_10_1007_s00707_021_03018_0
crossref_primary_10_1016_j_ijmecsci_2025_110087
crossref_primary_10_1002_fld_4406
crossref_primary_10_1007_s00466_018_1641_2
crossref_primary_10_1016_j_enganabound_2025_106416
crossref_primary_10_1016_j_jcp_2009_02_017
crossref_primary_10_1016_j_compstruc_2019_07_007
crossref_primary_10_1016_j_enganabound_2022_12_005
crossref_primary_10_1016_j_compgeo_2022_104701
crossref_primary_10_1016_j_engfracmech_2018_10_026
crossref_primary_10_1007_s00466_010_0509_x
crossref_primary_10_1007_s10999_023_09687_0
crossref_primary_10_1016_j_compgeo_2016_05_020
crossref_primary_10_1002_nme_6515
crossref_primary_10_1016_j_apm_2019_05_019
crossref_primary_10_1016_j_amc_2014_01_052
crossref_primary_10_1007_s00707_015_1496_y
crossref_primary_10_1016_j_enganabound_2024_105892
crossref_primary_10_1080_15502287_2021_1916793
crossref_primary_10_1016_j_commatsci_2016_05_004
crossref_primary_10_1007_s00466_012_0809_4
crossref_primary_10_1016_j_enganabound_2024_105937
crossref_primary_10_1007_s00466_009_0415_2
crossref_primary_10_1016_j_cma_2020_112975
crossref_primary_10_1007_s11709_019_0519_5
crossref_primary_10_1016_j_compfluid_2011_06_016
crossref_primary_10_1016_j_enganabound_2015_04_019
crossref_primary_10_1016_j_enganabound_2021_09_008
crossref_primary_10_1016_j_enganabound_2023_02_049
crossref_primary_10_1016_j_euromechsol_2022_104606
crossref_primary_10_1016_j_enganabound_2014_02_003
crossref_primary_10_1016_j_compstruc_2025_107893
crossref_primary_10_1016_j_compstruct_2013_10_016
crossref_primary_10_1155_2015_292809
Cites_doi 10.1002/nme.1620310502
10.1002/cnm.721
10.1002/1097-0207(20010120)50:2<435::AID-NME32>3.0.CO;2-A
10.1016/0045-7825(86)90107-6
10.1002/nme.972
10.1142/S0219876205000661
10.1002/nme.1620261205
10.1061/JSDEAG.0003877
10.1002/nme.1620170504
10.1007/s00466-006-0075-4
10.1002/cnm.967
10.1002/nme.1968
10.1016/S0045-7825(01)00281-X
10.1016/S0045-7825(03)00460-2
10.1115/1.3171737
10.1016/j.finel.2007.05.009
10.1002/nme.1620100602
10.1002/(SICI)1097-0207(19980815)42:7<1181::AID-NME402>3.0.CO;2-P
10.1142/S0219876206001132
10.1002/nme.1620200911
10.1002/nme.151
10.1002/nme.877
10.1002/(SICI)1097-0207(20000330)47:9<1549::AID-NME842>3.0.CO;2-K
10.1016/0045-7825(85)90113-6
10.1016/0045-7949(84)90197-4
10.1002/nme.1133
10.1016/0045-7825(90)90168-L
10.1016/S0045-7949(99)00095-4
10.1002/nag.1610020105
10.1002/nme.2384
ContentType Journal Article
Copyright 2008 Elsevier B.V.
2008 INIST-CNRS
Copyright_xml – notice: 2008 Elsevier B.V.
– notice: 2008 INIST-CNRS
DBID AAYXX
CITATION
IQODW
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1016/j.cma.2008.03.011
DatabaseName CrossRef
Pascal-Francis
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
Physics
EISSN 1879-2138
EndPage 3897
ExternalDocumentID 20652099
10_1016_j_cma_2008_03_011
S0045782508001199
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
AAYOK
ABAOU
ABBOA
ABEFU
ABFNM
ABJNI
ABMAC
ABTAH
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACIWK
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADIYS
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AI.
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG9
LY7
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
RNS
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SST
SSV
SSW
SSZ
T5K
TN5
VH1
VOH
WH7
WUQ
XPP
ZMT
ZY4
~02
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
AFXIZ
AGCQF
AGRNS
BNPGV
IQODW
SSH
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c467t-c10f6522964d02a6acd738d1ccb75a335902cb6c673863302d9b778ba47bebd03
ISICitedReferencesCount 198
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000259750600024&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0045-7825
IngestDate Thu Oct 02 09:21:06 EDT 2025
Mon Jul 21 09:11:09 EDT 2025
Sat Nov 29 03:21:21 EST 2025
Tue Nov 18 22:08:23 EST 2025
Fri Feb 23 02:33:59 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 45
Keywords Finite element method (FEM)
Lower bound
Upper bound
Alpha finite element method ( αFEM)
Numerical methods
Node-based smoothed finite element method (N-SFEM)
High strain
Strain energy
Triangular finite element
Tetrahedral shape
Scale factor
Aspect ratio
Modeling
Exact solution
Finite element method
System with n degrees of freedom
Numerical methods;Finite element method (FEM);Node-based smoothed finite element method (N-SFEM);Upper bound;Lower bound;Alpha finite element method (aFEM)
Non linear effect
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c467t-c10f6522964d02a6acd738d1ccb75a335902cb6c673863302d9b778ba47bebd03
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
OpenAccessLink http://scholarbank.nus.edu.sg/handle/10635/54580
PQID 34990972
PQPubID 23500
PageCount 15
ParticipantIDs proquest_miscellaneous_34990972
pascalfrancis_primary_20652099
crossref_citationtrail_10_1016_j_cma_2008_03_011
crossref_primary_10_1016_j_cma_2008_03_011
elsevier_sciencedirect_doi_10_1016_j_cma_2008_03_011
PublicationCentury 2000
PublicationDate 2008-08-15
PublicationDateYYYYMMDD 2008-08-15
PublicationDate_xml – month: 08
  year: 2008
  text: 2008-08-15
  day: 15
PublicationDecade 2000
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Computer methods in applied mechanics and engineering
PublicationYear 2008
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Simo, Hughes (bib29) 1986; 53
Pian, Sumihara (bib37) 1984; 20
Johnson (bib23) 1987
Hughes (bib24) 1987
F. Cugnon, Automatisation des calculs elements finis dans le cadre de la methode-p, Universite de Lie, Ph.D. Thesis, 2000.
Xie (bib38) 2005; 21
Allman (bib1) 1984; 19
Cook (bib31) 1974; 100
Liu, Nguyen, Dai, Lam (bib12) 2007; 71
Dai, Liu, Nguyen (bib13) 2007; 43
Belytschko, Bachrach (bib35) 1986; 54
FEM), Comput. Mech. (revised).
Reddy (bib27) 2004
Zienkiewicz, Taylor (bib26) 2000
Flanagan, Belytschko (bib34) 1981; 17
Timoshenko, Goodier (bib30) 1970
Zhou, Nie (bib39) 2001; 51
Liu, Dai, Nguyen (bib43) 2007; 39
Cook (bib4) 1991; 31
Arnold (bib16) 1990; 82
Fredriksson, Ottosen (bib32) 2004; 61
Liu, Zhang, Dai, Wang, Zhong, Li, Han (bib10) 2005; 2
Piltner, Taylor (bib5) 2000; 75
Chen, Wu, Yoon, You (bib8) 2000; 50
Bathe (bib22) 1996
Mijuca, Berković (bib19) 1998
Liu, Quek (bib25) 2003
G.R. Liu, T.T. Nguyen, X.H. Nguyen, K.Y. Lam, A node-based smoothed finite element method for upper bound solution to solid problems (N-SFEM), Comput. Struct. (Revised).
Rong, Lu (bib18) 2003; 192
Yoo, Moran, Chen (bib9) 2004; 60
T.T. Nguyen, G.R. Liu, K.Y. Lam, A FEM using scaled gradient of strains with scaling factor alpha (alpha-FEM), in: Proceeding of the International Conference on Computational Methods 2007 (ICCM07), 2007, p. 194.
Pian, Wu (bib28) 2006
Kosloff, Frazier (bib36) 1978; 2
Xie, Zhou (bib40) 2004; 59
Liu, Li, Dai, Luan, Xue (bib11) 2006; 3
G.R. Liu, G.Y. Zhang, Upper bound solution to elasticity problems: A unique property of the linearly conforming point interpolation method (LC-PIM), Int. J. Numer. Method Engrg. in press (Published online 8 Oct, 2007).
Almeida Pereira (bib41) 2008; 24
Dohrmann, Heinstein, Jung, Key, Witkowski (bib7) 2000; 47
Bergan, Felippa (bib3) 1985; 50
G.R Liu, T.T. Nguyen, K.Y. Lam, A novel FEM by scaling the gradient of strains with scaling factor
Allman (bib2) 1988; 26
Rong, Lu (bib17) 2001; 191
Taylor, Beresford, Wilson (bib33) 1976; 10
Dohrmann, Key, Heinstein, Jung (bib6) 1998; 42
Timoshenko (10.1016/j.cma.2008.03.011_bib30) 1970
Liu (10.1016/j.cma.2008.03.011_bib10) 2005; 2
Reddy (10.1016/j.cma.2008.03.011_bib27) 2004
10.1016/j.cma.2008.03.011_bib20
10.1016/j.cma.2008.03.011_bib42
Allman (10.1016/j.cma.2008.03.011_bib2) 1988; 26
Liu (10.1016/j.cma.2008.03.011_bib12) 2007; 71
10.1016/j.cma.2008.03.011_bib21
Kosloff (10.1016/j.cma.2008.03.011_bib36) 1978; 2
Cook (10.1016/j.cma.2008.03.011_bib31) 1974; 100
Allman (10.1016/j.cma.2008.03.011_bib1) 1984; 19
Zienkiewicz (10.1016/j.cma.2008.03.011_bib26) 2000
Liu (10.1016/j.cma.2008.03.011_bib11) 2006; 3
Yoo (10.1016/j.cma.2008.03.011_bib9) 2004; 60
Johnson (10.1016/j.cma.2008.03.011_bib23) 1987
Dohrmann (10.1016/j.cma.2008.03.011_bib6) 1998; 42
Simo (10.1016/j.cma.2008.03.011_bib29) 1986; 53
Pian (10.1016/j.cma.2008.03.011_bib37) 1984; 20
Rong (10.1016/j.cma.2008.03.011_bib18) 2003; 192
Dai (10.1016/j.cma.2008.03.011_bib13) 2007; 43
Rong (10.1016/j.cma.2008.03.011_bib17) 2001; 191
Pian (10.1016/j.cma.2008.03.011_bib28) 2006
Liu (10.1016/j.cma.2008.03.011_bib25) 2003
Cook (10.1016/j.cma.2008.03.011_bib4) 1991; 31
Taylor (10.1016/j.cma.2008.03.011_bib33) 1976; 10
10.1016/j.cma.2008.03.011_bib14
10.1016/j.cma.2008.03.011_bib15
Arnold (10.1016/j.cma.2008.03.011_bib16) 1990; 82
Bathe (10.1016/j.cma.2008.03.011_bib22) 1996
Bergan (10.1016/j.cma.2008.03.011_bib3) 1985; 50
Dohrmann (10.1016/j.cma.2008.03.011_bib7) 2000; 47
Almeida Pereira (10.1016/j.cma.2008.03.011_bib41) 2008; 24
Fredriksson (10.1016/j.cma.2008.03.011_bib32) 2004; 61
Flanagan (10.1016/j.cma.2008.03.011_bib34) 1981; 17
Piltner (10.1016/j.cma.2008.03.011_bib5) 2000; 75
Hughes (10.1016/j.cma.2008.03.011_bib24) 1987
Xie (10.1016/j.cma.2008.03.011_bib40) 2004; 59
Chen (10.1016/j.cma.2008.03.011_bib8) 2000; 50
Zhou (10.1016/j.cma.2008.03.011_bib39) 2001; 51
Xie (10.1016/j.cma.2008.03.011_bib38) 2005; 21
Liu (10.1016/j.cma.2008.03.011_bib43) 2007; 39
Belytschko (10.1016/j.cma.2008.03.011_bib35) 1986; 54
Mijuca (10.1016/j.cma.2008.03.011_bib19) 1998
References_xml – reference: G.R. Liu, G.Y. Zhang, Upper bound solution to elasticity problems: A unique property of the linearly conforming point interpolation method (LC-PIM), Int. J. Numer. Method Engrg. in press (Published online 8 Oct, 2007).
– reference: G.R. Liu, T.T. Nguyen, X.H. Nguyen, K.Y. Lam, A node-based smoothed finite element method for upper bound solution to solid problems (N-SFEM), Comput. Struct. (Revised).
– year: 2004
  ident: bib27
  article-title: An Introduction to Nonlinear Finite Element Analysis
– volume: 82
  start-page: 281
  year: 1990
  end-page: 300
  ident: bib16
  article-title: Mixed finite element methods for elliptic problems
  publication-title: Comput. Method Appl. Mech. Engrg.
– reference: G.R Liu, T.T. Nguyen, K.Y. Lam, A novel FEM by scaling the gradient of strains with scaling factor
– volume: 2
  start-page: 57
  year: 1978
  end-page: 72
  ident: bib36
  article-title: Treatment of hourglass patterns in low order finite element codes
  publication-title: Int. J. Numer. Anal. Method Geomech.
– reference: (
– volume: 54
  start-page: 279
  year: 1986
  end-page: 301
  ident: bib35
  article-title: Efficient implementation of quadrilaterals with high coarse-mesh accuracy
  publication-title: Comput. Method Appl. Mech. Engrg.
– volume: 42
  start-page: 1181
  year: 1998
  end-page: 1197
  ident: bib6
  article-title: A least squares approach for uniform strain triangular and tetrahedral finite elements
  publication-title: Int. J. Numer. Method Engrg.
– volume: 100
  start-page: 1851
  year: 1974
  end-page: 1863
  ident: bib31
  article-title: Improved two-dimensional finite element
  publication-title: J. Struct. Div., ASCE
– year: 1970
  ident: bib30
  article-title: Theory of Elasticity
– volume: 71
  start-page: 902
  year: 2007
  end-page: 930
  ident: bib12
  article-title: Theoretical aspects of the smoothed finite element method (SFEM)
  publication-title: Int. J. Numer. Method Engrg.
– volume: 26
  start-page: 2645
  year: 1988
  end-page: 2655
  ident: bib2
  article-title: Evaluation of the constant strain triangle with drilling rotations
  publication-title: Int. J. Numer. Method Engrg.
– volume: 10
  start-page: 1211
  year: 1976
  end-page: 1219
  ident: bib33
  article-title: A non-conforming element for stress analysis
  publication-title: Int. J. Numer. Method Engrg.
– volume: 61
  start-page: 1809
  year: 2004
  end-page: 1834
  ident: bib32
  article-title: Fast and accurate four-node quadrilateral
  publication-title: Int. J. Numer. Method Engrg.
– volume: 43
  start-page: 847
  year: 2007
  end-page: 860
  ident: bib13
  article-title: An
  publication-title: Finite Elem. Anal. Des.
– year: 1987
  ident: bib24
  article-title: The Finite Element Method: Linear Static and Dynamic Finite Element Analysis
– volume: 17
  start-page: 679
  year: 1981
  end-page: 706
  ident: bib34
  article-title: A uniform strain hexahedron and quadrilateral with orthogonal hourglass control
  publication-title: Int. J. Numer. Method Engrg.
– volume: 19
  start-page: 1
  year: 1984
  end-page: 8
  ident: bib1
  article-title: A compatible triangular element including vertex rotations for plane elasticity analysis
  publication-title: Comput. Struct.
– volume: 50
  start-page: 25
  year: 1985
  end-page: 69
  ident: bib3
  article-title: A triangular membrane element with rotational degrees of freedom
  publication-title: Comput. Method Appl. Mech. Engrg.
– reference: FEM), Comput. Mech. (revised).
– year: 1987
  ident: bib23
  article-title: Numerical Solution of Partial Differential Equations by the Finite Element Method
– volume: 51
  start-page: 181
  year: 2001
  end-page: 202
  ident: bib39
  article-title: A combined hybrid approach to finite element schemes of high performance
  publication-title: Int. J. Numer. Method Engrg.
– reference: F. Cugnon, Automatisation des calculs elements finis dans le cadre de la methode-p, Universite de Lie, Ph.D. Thesis, 2000.
– volume: 53
  start-page: 51
  year: 1986
  end-page: 54
  ident: bib29
  article-title: On the variational foundations of assumed strain methods
  publication-title: J. Appl. Mech.
– volume: 47
  start-page: 1549
  year: 2000
  end-page: 1568
  ident: bib7
  article-title: Node-based uniform strain elements for three-node triangular and four-node tetrahedral meshes
  publication-title: Int. J. Numer. Method Engrg.
– volume: 24
  start-page: 157
  year: 2008
  end-page: 165
  ident: bib41
  article-title: Hybrid equilibrium hexahedral elements and super-elements
  publication-title: Commun. Numer. Method Engrg.
– year: 2000
  ident: bib26
  article-title: The Finite Element Method
– year: 2006
  ident: bib28
  article-title: Hybrid and Incompatible Finite Element Methods
– year: 1996
  ident: bib22
  article-title: Finite Element Procedures
– volume: 59
  start-page: 293
  year: 2004
  end-page: 313
  ident: bib40
  article-title: Optimization of stress modes by energy compatibility for four-node hybrid quadrilaterals
  publication-title: Int. J. Numer. Method Engrg.
– year: 1998
  ident: bib19
  article-title: On the efficiency of the primal-mixed finite element scheme
  publication-title: Advances in Computational Structured Mechanics
– year: 2003
  ident: bib25
  article-title: The Finite Element Method: A Practical Course
– volume: 192
  start-page: 4981
  year: 2003
  end-page: 5000
  ident: bib18
  article-title: Generalized mixed variational principles and solutions for ill-conditioned problems in computational mechanics: Part II. Shear locking
  publication-title: Comput. Method Appl. Mech. Engrg.
– volume: 2
  start-page: 645
  year: 2005
  end-page: 665
  ident: bib10
  article-title: A linearly conforming point interpolation method (LC-PIM) for 2D solid mechanics problems
  publication-title: Int. J. Comput. Method
– volume: 60
  start-page: 861
  year: 2004
  end-page: 890
  ident: bib9
  article-title: Stabilized conforming nodal integration in the natural-element method
  publication-title: Int. J. Numer. Method Engrg.
– volume: 31
  start-page: 825
  year: 1991
  end-page: 835
  ident: bib4
  article-title: Modified formulations for nine-dof plane triangles that include vertex rotations
  publication-title: Int. J. Numer. Method Engrg.
– reference: T.T. Nguyen, G.R. Liu, K.Y. Lam, A FEM using scaled gradient of strains with scaling factor alpha (alpha-FEM), in: Proceeding of the International Conference on Computational Methods 2007 (ICCM07), 2007, p. 194.
– volume: 191
  start-page: 407
  year: 2001
  end-page: 422
  ident: bib17
  article-title: Generalized mixed variational principles and solutions for ill-conditioned problems in computational mechanics: Part I. Volumetric locking
  publication-title: Comput. Method Appl. Mech. Engrg.
– volume: 75
  start-page: 361
  year: 2000
  end-page: 368
  ident: bib5
  article-title: Triangular finite elements with rotational degrees of freedom and enhanced strain modes
  publication-title: Comput. Struct.
– volume: 21
  start-page: 1
  year: 2005
  end-page: 12
  ident: bib38
  article-title: An accurate hybrid macro-element with linear displacements
  publication-title: Commun. Numer. Method Engrg.
– volume: 50
  start-page: 435
  year: 2000
  end-page: 466
  ident: bib8
  article-title: A stabilized conforming nodal integration for Galerkin meshfree method
  publication-title: Int. J. Numer. Method Engrg.
– volume: 39
  start-page: 859
  year: 2007
  end-page: 877
  ident: bib43
  article-title: A smoothed finite element method for mechanics problems
  publication-title: Comput. Mech.
– volume: 3
  start-page: 401
  year: 2006
  end-page: 428
  ident: bib11
  article-title: A Linearly conforming radial point interpolation method for solid mechanics problems
  publication-title: Int. J. Comput. Method
– volume: 20
  start-page: 1685
  year: 1984
  end-page: 1695
  ident: bib37
  article-title: Rational approach for assumed stress finite elements
  publication-title: Int. J. Numer. Method Engrg.
– volume: 31
  start-page: 825
  year: 1991
  ident: 10.1016/j.cma.2008.03.011_bib4
  article-title: Modified formulations for nine-dof plane triangles that include vertex rotations
  publication-title: Int. J. Numer. Method Engrg.
  doi: 10.1002/nme.1620310502
– year: 2006
  ident: 10.1016/j.cma.2008.03.011_bib28
– volume: 21
  start-page: 1
  year: 2005
  ident: 10.1016/j.cma.2008.03.011_bib38
  article-title: An accurate hybrid macro-element with linear displacements
  publication-title: Commun. Numer. Method Engrg.
  doi: 10.1002/cnm.721
– volume: 50
  start-page: 435
  year: 2000
  ident: 10.1016/j.cma.2008.03.011_bib8
  article-title: A stabilized conforming nodal integration for Galerkin meshfree method
  publication-title: Int. J. Numer. Method Engrg.
  doi: 10.1002/1097-0207(20010120)50:2<435::AID-NME32>3.0.CO;2-A
– year: 1970
  ident: 10.1016/j.cma.2008.03.011_bib30
– ident: 10.1016/j.cma.2008.03.011_bib42
– ident: 10.1016/j.cma.2008.03.011_bib21
– year: 1998
  ident: 10.1016/j.cma.2008.03.011_bib19
  article-title: On the efficiency of the primal-mixed finite element scheme
– volume: 54
  start-page: 279
  year: 1986
  ident: 10.1016/j.cma.2008.03.011_bib35
  article-title: Efficient implementation of quadrilaterals with high coarse-mesh accuracy
  publication-title: Comput. Method Appl. Mech. Engrg.
  doi: 10.1016/0045-7825(86)90107-6
– year: 1987
  ident: 10.1016/j.cma.2008.03.011_bib24
– volume: 60
  start-page: 861
  year: 2004
  ident: 10.1016/j.cma.2008.03.011_bib9
  article-title: Stabilized conforming nodal integration in the natural-element method
  publication-title: Int. J. Numer. Method Engrg.
  doi: 10.1002/nme.972
– volume: 2
  start-page: 645
  issue: 4
  year: 2005
  ident: 10.1016/j.cma.2008.03.011_bib10
  article-title: A linearly conforming point interpolation method (LC-PIM) for 2D solid mechanics problems
  publication-title: Int. J. Comput. Method
  doi: 10.1142/S0219876205000661
– volume: 26
  start-page: 2645
  issue: 12
  year: 1988
  ident: 10.1016/j.cma.2008.03.011_bib2
  article-title: Evaluation of the constant strain triangle with drilling rotations
  publication-title: Int. J. Numer. Method Engrg.
  doi: 10.1002/nme.1620261205
– volume: 100
  start-page: 1851
  issue: ST6
  year: 1974
  ident: 10.1016/j.cma.2008.03.011_bib31
  article-title: Improved two-dimensional finite element
  publication-title: J. Struct. Div., ASCE
  doi: 10.1061/JSDEAG.0003877
– volume: 17
  start-page: 679
  year: 1981
  ident: 10.1016/j.cma.2008.03.011_bib34
  article-title: A uniform strain hexahedron and quadrilateral with orthogonal hourglass control
  publication-title: Int. J. Numer. Method Engrg.
  doi: 10.1002/nme.1620170504
– volume: 39
  start-page: 859
  year: 2007
  ident: 10.1016/j.cma.2008.03.011_bib43
  article-title: A smoothed finite element method for mechanics problems
  publication-title: Comput. Mech.
  doi: 10.1007/s00466-006-0075-4
– volume: 24
  start-page: 157
  issue: 2
  year: 2008
  ident: 10.1016/j.cma.2008.03.011_bib41
  article-title: Hybrid equilibrium hexahedral elements and super-elements
  publication-title: Commun. Numer. Method Engrg.
  doi: 10.1002/cnm.967
– volume: 71
  start-page: 902
  year: 2007
  ident: 10.1016/j.cma.2008.03.011_bib12
  article-title: Theoretical aspects of the smoothed finite element method (SFEM)
  publication-title: Int. J. Numer. Method Engrg.
  doi: 10.1002/nme.1968
– volume: 191
  start-page: 407
  year: 2001
  ident: 10.1016/j.cma.2008.03.011_bib17
  article-title: Generalized mixed variational principles and solutions for ill-conditioned problems in computational mechanics: Part I. Volumetric locking
  publication-title: Comput. Method Appl. Mech. Engrg.
  doi: 10.1016/S0045-7825(01)00281-X
– volume: 192
  start-page: 4981
  year: 2003
  ident: 10.1016/j.cma.2008.03.011_bib18
  article-title: Generalized mixed variational principles and solutions for ill-conditioned problems in computational mechanics: Part II. Shear locking
  publication-title: Comput. Method Appl. Mech. Engrg.
  doi: 10.1016/S0045-7825(03)00460-2
– year: 1987
  ident: 10.1016/j.cma.2008.03.011_bib23
– ident: 10.1016/j.cma.2008.03.011_bib14
– year: 1996
  ident: 10.1016/j.cma.2008.03.011_bib22
– volume: 53
  start-page: 51
  year: 1986
  ident: 10.1016/j.cma.2008.03.011_bib29
  article-title: On the variational foundations of assumed strain methods
  publication-title: J. Appl. Mech.
  doi: 10.1115/1.3171737
– volume: 43
  start-page: 847
  year: 2007
  ident: 10.1016/j.cma.2008.03.011_bib13
  article-title: An n-sided polygonal smoothed finite element method (nSFEM) for solid mechanics
  publication-title: Finite Elem. Anal. Des.
  doi: 10.1016/j.finel.2007.05.009
– year: 2003
  ident: 10.1016/j.cma.2008.03.011_bib25
– volume: 10
  start-page: 1211
  year: 1976
  ident: 10.1016/j.cma.2008.03.011_bib33
  article-title: A non-conforming element for stress analysis
  publication-title: Int. J. Numer. Method Engrg.
  doi: 10.1002/nme.1620100602
– ident: 10.1016/j.cma.2008.03.011_bib20
– year: 2004
  ident: 10.1016/j.cma.2008.03.011_bib27
– volume: 42
  start-page: 1181
  year: 1998
  ident: 10.1016/j.cma.2008.03.011_bib6
  article-title: A least squares approach for uniform strain triangular and tetrahedral finite elements
  publication-title: Int. J. Numer. Method Engrg.
  doi: 10.1002/(SICI)1097-0207(19980815)42:7<1181::AID-NME402>3.0.CO;2-P
– volume: 3
  start-page: 401
  issue: 4
  year: 2006
  ident: 10.1016/j.cma.2008.03.011_bib11
  article-title: A Linearly conforming radial point interpolation method for solid mechanics problems
  publication-title: Int. J. Comput. Method
  doi: 10.1142/S0219876206001132
– volume: 20
  start-page: 1685
  year: 1984
  ident: 10.1016/j.cma.2008.03.011_bib37
  article-title: Rational approach for assumed stress finite elements
  publication-title: Int. J. Numer. Method Engrg.
  doi: 10.1002/nme.1620200911
– volume: 51
  start-page: 181
  year: 2001
  ident: 10.1016/j.cma.2008.03.011_bib39
  article-title: A combined hybrid approach to finite element schemes of high performance
  publication-title: Int. J. Numer. Method Engrg.
  doi: 10.1002/nme.151
– volume: 59
  start-page: 293
  year: 2004
  ident: 10.1016/j.cma.2008.03.011_bib40
  article-title: Optimization of stress modes by energy compatibility for four-node hybrid quadrilaterals
  publication-title: Int. J. Numer. Method Engrg.
  doi: 10.1002/nme.877
– volume: 47
  start-page: 1549
  year: 2000
  ident: 10.1016/j.cma.2008.03.011_bib7
  article-title: Node-based uniform strain elements for three-node triangular and four-node tetrahedral meshes
  publication-title: Int. J. Numer. Method Engrg.
  doi: 10.1002/(SICI)1097-0207(20000330)47:9<1549::AID-NME842>3.0.CO;2-K
– volume: 50
  start-page: 25
  year: 1985
  ident: 10.1016/j.cma.2008.03.011_bib3
  article-title: A triangular membrane element with rotational degrees of freedom
  publication-title: Comput. Method Appl. Mech. Engrg.
  doi: 10.1016/0045-7825(85)90113-6
– volume: 19
  start-page: 1
  issue: 2
  year: 1984
  ident: 10.1016/j.cma.2008.03.011_bib1
  article-title: A compatible triangular element including vertex rotations for plane elasticity analysis
  publication-title: Comput. Struct.
  doi: 10.1016/0045-7949(84)90197-4
– volume: 61
  start-page: 1809
  year: 2004
  ident: 10.1016/j.cma.2008.03.011_bib32
  article-title: Fast and accurate four-node quadrilateral
  publication-title: Int. J. Numer. Method Engrg.
  doi: 10.1002/nme.1133
– volume: 82
  start-page: 281
  year: 1990
  ident: 10.1016/j.cma.2008.03.011_bib16
  article-title: Mixed finite element methods for elliptic problems
  publication-title: Comput. Method Appl. Mech. Engrg.
  doi: 10.1016/0045-7825(90)90168-L
– volume: 75
  start-page: 361
  year: 2000
  ident: 10.1016/j.cma.2008.03.011_bib5
  article-title: Triangular finite elements with rotational degrees of freedom and enhanced strain modes
  publication-title: Comput. Struct.
  doi: 10.1016/S0045-7949(99)00095-4
– year: 2000
  ident: 10.1016/j.cma.2008.03.011_bib26
– volume: 2
  start-page: 57
  year: 1978
  ident: 10.1016/j.cma.2008.03.011_bib36
  article-title: Treatment of hourglass patterns in low order finite element codes
  publication-title: Int. J. Numer. Anal. Method Geomech.
  doi: 10.1002/nag.1610020105
– ident: 10.1016/j.cma.2008.03.011_bib15
  doi: 10.1002/nme.2384
SSID ssj0000812
Score 2.385132
Snippet The paper presents an alpha finite element method ( αFEM) for computing nearly exact solution in energy norm for mechanics problems using meshes that can be...
The paper presents an alpha finite element method (alphaFEM) for computing nearly exact solution in energy norm for mechanics problems using meshes that can be...
SourceID proquest
pascalfrancis
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3883
SubjectTerms Alpha finite element method ( αFEM)
Computational techniques
Exact sciences and technology
Finite element method (FEM)
Fundamental areas of phenomenology (including applications)
Lower bound
Mathematical methods in physics
Node-based smoothed finite element method (N-SFEM)
Numerical methods
Physics
Solid mechanics
Static elasticity (thermoelasticity...)
Structural and continuum mechanics
Upper bound
Title A novel alpha finite element method ( αFEM) for exact solution to mechanics problems using triangular and tetrahedral elements
URI https://dx.doi.org/10.1016/j.cma.2008.03.011
https://www.proquest.com/docview/34990972
Volume 197
WOSCitedRecordID wos000259750600024&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-2138
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000812
  issn: 0045-7825
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jj9MwFLbKDAcQYhkGUZbBB4SAKiiNkzg5VqgVSykcOlJvUbyE6WhIw6SpypFfw9_keWtalgEOXKI2deK278vzZ_u97yH0OCik4JypgCcSe2HO4ZljNPAKrfXiiySlOlF4TCeTZDZLP3Q631wuzOqMlmWyXqfVfzU1nANjq9TZfzD35qZwAl6D0eEIZofjXxl-0CsXK6kCj6uTvFfMFansSRMlbgtGK1qpPx4N36llAS37vVbZku6rKUr6SaqsYKXibKvO1L2mNmUl5mqVU8Wv6vhLuQSPJYVK9bf91Nuc1xWOsJ3rANzckt-2D3Un2YojbgKF5o1eum8DGycfmy-y9KYni_lOkPfYQPutHVHcSoZSxvZMLqfzzmHkAWOJdryzCd-1MIQGRpjT-luSmDI4duwG9kV_OS6YJYrTF9xoTSVa2NZ6-R0N7sn7bHQ8HmfT4Wz6pPrsqfJkahvf1mq5hPYDGqXgPvcHr4ezN-2gn_SNML39CW4DXYcS_tDr7yjQtSqv4cEsTEWVn8iBZjzTm-i6narggYHYLdSR5QG6Yact2A4K9QG6uqVpeRt9HWCNP6wBhg3-sMUFNhDATx36nmHAHtbYww57eLnAG1xghz2ssYdb7GFADN7CnuujPkTHo-H05SvP1vnwOAzTS4_3_SKGeUAah8IP8jjngpJE9MGH0CgnRCkMcRZzXaCWED8QKaM0YXlImWTCJ3fQXrko5V2E-_AeCLPkqRBhlBJo4jOWkzhmUrJIdJHv_vqMWxF8VYvlLHPRjqcZWMsWZyUZWKuLnm8uqYwCzEWNQ2fPzFJYQ00zQOJFlx3t2H7TUQAzBJXc3kWPHBgy8P9qUy8v5aKpMxICn0xpcO-PLe6jK-1T9wDtLc8b-RBd5qvlvD4_soD-DoMR1Wg
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+alpha+finite+element+method+%28alphaFEM%29+for+exact+solution+to+mechanics+problems+using+triangular+and+tetrahedral+elements&rft.jtitle=Computer+methods+in+applied+mechanics+and+engineering&rft.au=Liu%2C+G+R&rft.au=Nguyen-Thoi%2C+T&rft.au=Lam%2C+K+Y&rft.date=2008-08-15&rft.issn=0045-7825&rft.volume=197&rft.issue=45-48&rft.spage=3883&rft.epage=3897&rft_id=info:doi/10.1016%2Fj.cma.2008.03.011&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0045-7825&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0045-7825&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0045-7825&client=summon