Deep Learning Based Inter-subject Continuous Decoding of Motor Imagery for Practical Brain-Computer Interfaces
Inter-subject transfer learning is a long-standing problem in brain-computer interfaces (BCIs) and has not yet been fully realized due to high inter-subject variability in the brain signals related to motor imagery (MI). The recent success of deep learning-based algorithms in classifying different b...
Gespeichert in:
| Veröffentlicht in: | Frontiers in neuroscience Jg. 14; S. 918 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Lausanne
Frontiers Research Foundation
30.09.2020
Frontiers Media S.A |
| Schlagworte: | |
| ISSN: | 1662-453X, 1662-4548, 1662-453X |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Inter-subject transfer learning is a long-standing problem in brain-computer interfaces (BCIs) and has not yet been fully realized due to high inter-subject variability in the brain signals related to motor imagery (MI). The recent success of deep learning-based algorithms in classifying different brain signals warrants further exploration to determine whether it is feasible for the inter-subject continuous decoding of MI signals to provide contingent neurofeedback which is important for neurorehabilitative BCI designs. In this paper, we have shown how a convolutional neural network (CNN) based deep learning framework can be used for inter-subject continuous decoding of MI related electroencephalographic (EEG) signals using the novel concept of Mega Blocks for adapting the network against inter-subject variabilities. These Mega Blocks have the capacity to repeat a specific architectural block several times such as one or more convolutional layers in a single Mega Block. The parameters of such Mega Blocks can be optimized using Bayesian hyperparameter optimization. The results, obtained on the publicly available BCI competition IV-2b dataset, yields an average inter-subject continuous decoding accuracy of 71.49% (kappa=0.42) and 70.84% (kappa =0.42) for two different training methods such as adaptive moment estimation (Adam) and stochastic gradient descent (SGDM) respectively in 7 out of 9 subjects. Our results show for the first time that it is feasible to use CNN based architectures for inter-subject continuous decoding with a sufficient level of accuracy for developing calibration-free MI-BCIs for practical purposes. |
|---|---|
| AbstractList | Inter-subject transfer learning is a long-standing problem in brain-computer interfaces (BCIs) and has not yet been fully realized due to high inter-subject variability in the brain signals related to motor imagery (MI). The recent success of deep learning-based algorithms in classifying different brain signals warrants further exploration to determine whether it is feasible for the inter-subject continuous decoding of MI signals to provide contingent neurofeedback which is important for neurorehabilitative BCI designs. In this paper, we have shown how a convolutional neural network (CNN) based deep learning framework can be used for inter-subject continuous decoding of MI related electroencephalographic (EEG) signals using the novel concept of Mega Blocks for adapting the network against inter-subject variabilities. These Mega Blocks have the capacity to repeat a specific architectural block several times such as one or more convolutional layers in a single Mega Block. The parameters of such Mega Blocks can be optimized using Bayesian hyperparameter optimization. The results, obtained on the publicly available BCI competition IV-2b dataset, yields an average inter-subject continuous decoding accuracy of 71.49% (kappa=0.42) and 70.84% (kappa =0.42) for two different training methods such as adaptive moment estimation (Adam) and stochastic gradient descent (SGDM) respectively in 7 out of 9 subjects. Our results show for the first time that it is feasible to use CNN based architectures for inter-subject continuous decoding with a sufficient level of accuracy for developing calibration-free MI-BCIs for practical purposes. Inter-subject transfer learning is a long-standing problem in brain-computer interfaces (BCIs) and has not yet been fully realized due to high inter-subject variability in the brain signals related to motor imagery (MI). The recent success of deep learning-based algorithms in classifying different brain signals warrants further exploration to determine whether it is feasible for the inter-subject continuous decoding of MI signals to provide contingent neurofeedback which is important for neurorehabilitative BCI designs. In this paper, we have shown how a convolutional neural network (CNN) based deep learning framework can be used for inter-subject continuous decoding of MI related electroencephalographic (EEG) signals using the novel concept of Mega Blocks for adapting the network against inter-subject variabilities. These Mega Blocks have the capacity to repeat a specific architectural block several times such as one or more convolutional layers in a single Mega Block. The parameters of such Mega Blocks can be optimized using Bayesian hyperparameter optimization. The results, obtained on the publicly available BCI competition IV-2b dataset, yields an average inter-subject continuous decoding accuracy of 71.49% (κ = 0.42) and 70.84% (κ = 0.42) for two different training methods such as adaptive moment estimation (Adam) and stochastic gradient descent (SGDM), respectively, in 7 out of 9 subjects. Our results show for the first time that it is feasible to use CNN based architectures for inter-subject continuous decoding with a sufficient level of accuracy for developing calibration-free MI-BCIs for practical purposes. Inter-subject transfer learning is a long-standing problem in brain-computer interfaces (BCIs) and has not yet been fully realized due to high inter-subject variability in the brain signals related to motor imagery (MI). The recent success of deep learning-based algorithms in classifying different brain signals warrants further exploration to determine whether it is feasible for the inter-subject continuous decoding of MI signals to provide contingent neurofeedback which is important for neurorehabilitative BCI designs. In this paper, we have shown how a convolutional neural network (CNN) based deep learning framework can be used for inter-subject continuous decoding of MI related electroencephalographic (EEG) signals using the novel concept of Mega Blocks for adapting the network against inter-subject variabilities. These Mega Blocks have the capacity to repeat a specific architectural block several times such as one or more convolutional layers in a single Mega Block. The parameters of such Mega Blocks can be optimized using Bayesian hyperparameter optimization. The results, obtained on the publicly available BCI competition IV-2b dataset, yields an average inter-subject continuous decoding accuracy of 71.49% (κ = 0.42) and 70.84% (κ = 0.42) for two different training methods such as adaptive moment estimation (Adam) and stochastic gradient descent (SGDM), respectively, in 7 out of 9 subjects. Our results show for the first time that it is feasible to use CNN based architectures for inter-subject continuous decoding with a sufficient level of accuracy for developing calibration-free MI-BCIs for practical purposes.Inter-subject transfer learning is a long-standing problem in brain-computer interfaces (BCIs) and has not yet been fully realized due to high inter-subject variability in the brain signals related to motor imagery (MI). The recent success of deep learning-based algorithms in classifying different brain signals warrants further exploration to determine whether it is feasible for the inter-subject continuous decoding of MI signals to provide contingent neurofeedback which is important for neurorehabilitative BCI designs. In this paper, we have shown how a convolutional neural network (CNN) based deep learning framework can be used for inter-subject continuous decoding of MI related electroencephalographic (EEG) signals using the novel concept of Mega Blocks for adapting the network against inter-subject variabilities. These Mega Blocks have the capacity to repeat a specific architectural block several times such as one or more convolutional layers in a single Mega Block. The parameters of such Mega Blocks can be optimized using Bayesian hyperparameter optimization. The results, obtained on the publicly available BCI competition IV-2b dataset, yields an average inter-subject continuous decoding accuracy of 71.49% (κ = 0.42) and 70.84% (κ = 0.42) for two different training methods such as adaptive moment estimation (Adam) and stochastic gradient descent (SGDM), respectively, in 7 out of 9 subjects. Our results show for the first time that it is feasible to use CNN based architectures for inter-subject continuous decoding with a sufficient level of accuracy for developing calibration-free MI-BCIs for practical purposes. |
| Author | Prasad, Girijesh Chowdhury, Anirban McCreadie, Karl Roy, Sujit |
| AuthorAffiliation | 1 School of Computing, Engineering & Intelligent Systems, Ulster University , Derry-Londonderry , United Kingdom 2 School of Computer Science and Electronic Engineering, University of Essex , Colchester , United Kingdom |
| AuthorAffiliation_xml | – name: 1 School of Computing, Engineering & Intelligent Systems, Ulster University , Derry-Londonderry , United Kingdom – name: 2 School of Computer Science and Electronic Engineering, University of Essex , Colchester , United Kingdom |
| Author_xml | – sequence: 1 givenname: Sujit surname: Roy fullname: Roy, Sujit – sequence: 2 givenname: Anirban surname: Chowdhury fullname: Chowdhury, Anirban – sequence: 3 givenname: Karl surname: McCreadie fullname: McCreadie, Karl – sequence: 4 givenname: Girijesh surname: Prasad fullname: Prasad, Girijesh |
| BookMark | eNp1ks1v1DAQxSNURD_gzjESFy5Z_JXEviDRLbQrLYIDSNysiTNevErsxU6Q-t_j7FaIVuLkkf3mN0_jd1mc-eCxKF5TsuJcqnfWO59WjDCyIkRR-ay4oE3DKlHzH2f_1OfFZUp7QhomBXtRnHNOs77mF4W_QTyUW4SYUbvyGhL25cZPGKs0d3s0U7kOfnJ-DnMqb9CEftEFW34OU4jlZoQdxvvS5vprBDM5A0N5HcH5ah3Gw5xJJ54Fg-ll8dzCkPDVw3lVfP_08dv6rtp-ud2sP2wrI5p2qrraIKqGs7qXynJmSE8BeE8tWGl5z2hrZUOUUIx2puU9NKaTQJVEITtq-VWxOXH7AHt9iG6EeK8DOH28CHGnIWavA2rVAULDlSFUCkPlgrStUXlgz1opM-v9iXWYuxF7g36KMDyCPn7x7qfehd-6rWtRM5UBbx8AMfyaMU16dMngMIDHvFXNRC1E_j5FsvTNE-k-zNHnVWWVaHnD6qMjclKZGFKKaP-aoUQvwdDHYOglGPoYjNzSPGkxboLJhcWyG_7f-AdbRsDf |
| CitedBy_id | crossref_primary_10_1016_j_bspc_2025_107640 crossref_primary_10_1016_j_compbiomed_2024_109097 crossref_primary_10_1109_JBHI_2024_3450753 crossref_primary_10_1016_j_eswa_2024_125832 crossref_primary_10_1080_10255842_2024_2356633 crossref_primary_10_1016_j_dcan_2025_04_001 crossref_primary_10_1109_TBME_2021_3105912 crossref_primary_10_1016_j_compbiomed_2024_109534 crossref_primary_10_1088_1741_2552_ad6598 crossref_primary_10_1007_s12204_022_2488_4 crossref_primary_10_1007_s00521_021_06352_5 crossref_primary_10_1002_ima_22935 crossref_primary_10_1007_s12530_025_09696_8 crossref_primary_10_1016_j_jneumeth_2024_110356 crossref_primary_10_1109_TNSRE_2023_3307814 crossref_primary_10_3390_app12031695 crossref_primary_10_3390_s21217241 crossref_primary_10_3233_JIFS_202046 crossref_primary_10_1007_s42979_024_02845_x crossref_primary_10_1109_ACCESS_2021_3091399 crossref_primary_10_3390_s23020703 crossref_primary_10_1109_JSEN_2023_3270281 crossref_primary_10_1109_TNSRE_2024_3451716 crossref_primary_10_3390_bioengineering9120768 crossref_primary_10_3389_fnhum_2022_949224 crossref_primary_10_3390_computers12070145 crossref_primary_10_3389_fnins_2023_1173778 crossref_primary_10_1016_j_bspc_2023_105359 crossref_primary_10_7759_cureus_93011 crossref_primary_10_1109_JBHI_2023_3248139 crossref_primary_10_1016_j_neunet_2024_106847 crossref_primary_10_1088_1741_2552_ac5d69 crossref_primary_10_1016_j_neucom_2024_128577 crossref_primary_10_1016_j_eswa_2025_128730 crossref_primary_10_1016_j_jneumeth_2022_109736 crossref_primary_10_1109_JBHI_2023_3304646 |
| Cites_doi | 10.1109/TCDS.2017.2787040 10.1109/ICIST.2015.7288989 10.1109/TBME.2010.2093133 10.1088/1741-2552/aa6317 10.3389/fneng.2014.00019 10.1142/S0129065719500254 10.1109/JSEN.2019.2912790 10.1016/j.neunet.2009.06.003 10.3389/fncom.2019.00087 10.1088/1741-2552/aab2f2 10.1088/1741-2552/ab260c 10.1088/1741-2560/12/4/046027 10.1109/EMBC.2013.6610196 10.1016/j.neucom.2011.10.024 10.1109/JAS.2017.7510616 10.3389/fninf.2019.00047 10.1109/CVPR.2016.90 10.1016/j.apmr.2014.05.026 10.1088/1741-2560/11/3/035005 10.3389/fnins.2012.00055 10.5555/3020751.3020778 10.1186/1471-2202-10-S1-P85 10.1186/s12984-015-0076-7 10.1109/TNSRE.2016.2601240 10.1016/S0893-6080(98)00116-6 10.1155/2011/217987 10.3389/fnhum.2018.00312 10.1088/1741-2552/aaf3f6 10.1016/j.neuroimage.2019.04.068 10.1016/j.jneumeth.2012.09.020 10.1109/TNNLS.2019.2946869 10.1109/EMBC.2014.6945117 10.1109/LSP.2009.2022557 10.1038/s41598-018-28295-z 10.1088/1741-2560/14/1/016003 10.1002/hbm.23730 10.1007/s00521-018-3735-3 10.1109/JBHI.2018.2832538 10.1109/TBME.2017.2742541 10.1109/TNSRE.2017.2778178 10.1109/TBME.2009.2039997 10.1016/j.tics.2018.03.003 10.1016/j.jneumeth.2018.11.010 10.1371/journal.pone.0087253 10.1007/s00500-015-1937-5 10.1109/TBME.2010.2082539 10.1002/ana.23879 10.1161/STROKEAHA.116.016304 10.1109/JBHI.2018.2863212 10.1016/j.neucom.2014.12.114 10.1016/j.clinph.2011.11.082 10.1038/ncomms13749 10.1016/j.neucom.2018.04.087 10.1088/1741-2552/aace8c 10.1161/STROKEAHA.107.505313 10.1109/MCI.2015.2501545 10.1016/S1388-2457(99)00141-8 |
| ContentType | Journal Article |
| Copyright | 2020. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Copyright © 2020 Roy, Chowdhury, McCreadie and Prasad. Copyright © 2020 Roy, Chowdhury, McCreadie and Prasad. 2020 Roy, Chowdhury, McCreadie and Prasad |
| Copyright_xml | – notice: 2020. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Copyright © 2020 Roy, Chowdhury, McCreadie and Prasad. – notice: Copyright © 2020 Roy, Chowdhury, McCreadie and Prasad. 2020 Roy, Chowdhury, McCreadie and Prasad |
| DBID | AAYXX CITATION 3V. 7XB 88I 8FE 8FH 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO GNUQQ HCIFZ LK8 M2P M7P PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
| DOI | 10.3389/fnins.2020.00918 |
| DatabaseName | CrossRef ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Database ProQuest Central ProQuest Natural Science Collection ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Premium Collection ProQuest Biological Science Collection Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition Biological Science Database ProQuest SciTech Collection ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | Publicly Available Content Database MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: ProQuest Publicly Available Content url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Anatomy & Physiology |
| EISSN | 1662-453X |
| ExternalDocumentID | oai_doaj_org_article_9baea639c0184c18921bf7c91aad2788 PMC7554529 10_3389_fnins_2020_00918 |
| GroupedDBID | --- 29H 2WC 53G 5GY 5VS 88I 8FE 8FH 9T4 AAFWJ AAYXX ABUWG ACGFO ACGFS ADRAZ AEGXH AENEX AFFHD AFKRA AFPKN AIAGR ALMA_UNASSIGNED_HOLDINGS AZQEC BBNVY BENPR BHPHI BPHCQ CCPQU CITATION CS3 DIK DU5 DWQXO E3Z EBS EJD EMOBN F5P FRP GNUQQ GROUPED_DOAJ GX1 HCIFZ HYE KQ8 LK8 M2P M48 M7P O5R O5S OK1 OVT P2P PGMZT PHGZM PHGZT PIMPY PQGLB PQQKQ PROAC RNS RPM W2D 3V. 7XB 8FK ACXDI PKEHL PQEST PQUKI PRINS Q9U 7X8 5PM |
| ID | FETCH-LOGICAL-c467t-b5cee96325d89f32c0d1aa3d1faf8f3d217f86094921bc73da6cb8a198e48b1f3 |
| IEDL.DBID | M2P |
| ISICitedReferencesCount | 43 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000578768700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1662-453X 1662-4548 |
| IngestDate | Fri Oct 03 12:51:23 EDT 2025 Tue Nov 04 01:57:54 EST 2025 Sun Nov 09 10:46:48 EST 2025 Fri Jul 25 11:42:40 EDT 2025 Sat Nov 29 02:54:55 EST 2025 Tue Nov 18 22:10:29 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c467t-b5cee96325d89f32c0d1aa3d1faf8f3d217f86094921bc73da6cb8a198e48b1f3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 This article was submitted to Brain Imaging Methods, a section of the journal Frontiers in Neuroscience Edited by: Amit Konar, Jadavpur University, India Reviewed by: Yu Zhang, Stanford University, United States; Seong-Whan Lee, Korea University, South Korea |
| OpenAccessLink | https://www.proquest.com/docview/2447362588?pq-origsite=%requestingapplication% |
| PMID | 33100953 |
| PQID | 2447362588 |
| PQPubID | 4424402 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_9baea639c0184c18921bf7c91aad2788 pubmedcentral_primary_oai_pubmedcentral_nih_gov_7554529 proquest_miscellaneous_2454409190 proquest_journals_2447362588 crossref_primary_10_3389_fnins_2020_00918 crossref_citationtrail_10_3389_fnins_2020_00918 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-09-30 |
| PublicationDateYYYYMMDD | 2020-09-30 |
| PublicationDate_xml | – month: 09 year: 2020 text: 2020-09-30 day: 30 |
| PublicationDecade | 2020 |
| PublicationPlace | Lausanne |
| PublicationPlace_xml | – name: Lausanne |
| PublicationTitle | Frontiers in neuroscience |
| PublicationYear | 2020 |
| Publisher | Frontiers Research Foundation Frontiers Media S.A |
| Publisher_xml | – name: Frontiers Research Foundation – name: Frontiers Media S.A |
| References | Zhang (B65) 2019 Goodfellow (B19) 2014 Roy (B47) Sussillo (B55) 2016; 7 Lawhern (B32) 2018; 15 Krizhevsky (B30) 2012 Ono (B38) 2014; 7 Jin (B25) 2020; 32 Lotte (B35) 2011; 58 Spüler (B54) 2012; 123 Carlson (B7) 2013 Saha (B49) 2018; 26 Halme (B20) 2018; 8 Kang (B27) 2009; 16 Kindermans (B28) 2014; 11 Lu (B36) 2017; 25 Tangermann (B57) 2012; 6 Li (B33) 2010; 57 Fazli (B13) 2009; 22 Foldes (B14) 2015; 12 Zubarev (B66) 2018 Zanini (B64) 2018; 65 Chowdhury (B9); 10 Raza (B44) 2016; 20 Raza (B45) 2019; 343 Bhattacharyya (B3) 2017; 4 Gelbart (B18) 2014 Gaur (B17); 19 Tariq (B58) 2018; 12 Qian (B42) 1999; 12 (B2) 2008 Jiao (B23) 2019; 23 Kwon (B31) 2019 Prins (B41) 2017; 14 Kingma (B29) 2014 Roy (B48) 2019; 16 Pohlmeyer (B40) 2014; 9 Saha (B51) 2019; 13 Wilson (B62) 2017 Pfurtscheller (B39) 1999; 110 Johnson (B26) 2013 Fahimi (B12) 2019; 16 Vidaurre (B60) 2011; 58 Seghier (B53) 2018; 22 Gandhi (B15) 2015; 170 Bundy (B6) 2017; 48 Tabar (B56) 2016; 14 Zubarev (B67) 2019; 197 Saha (B50) 2020; 13 Ramos-Murguialday (B43) 2013; 74 Morone (B37) 2015; 96 Arvaneh (B1) 2014 Lotte (B34) 2018; 15 Wang (B61) 2015 Jayaram (B22) 2016; 11 Schirrmeister (B52) 2017; 38 Roy (B46) Buch (B5) 2008; 39 Chowdhury (B10) 2019; 312 Chowdhury (B8); 22 Wronkiewicz (B63) 2015; 12 Blankertz (B4) 2009; 10 Jin (B24) 2013; 212 Tu (B59) 2012; 82 He (B21) 2016 Devlaminck (B11) 2011; 2011 Gaur (B16); 29 |
| References_xml | – volume: 10 start-page: 1070 ident: B9 article-title: Online covariate shift detection-based adaptive brain-computer interface to trigger hand exoskeleton feedback for neuro-rehabilitation publication-title: IEEE Trans. Cogn. Dev. Syst doi: 10.1109/TCDS.2017.2787040 – start-page: 315 volume-title: 2015 5th International Conference on Information Science and Technology (ICIST) year: 2015 ident: B61 article-title: “A review on transfer learning for brain-computer interface classification,” doi: 10.1109/ICIST.2015.7288989 – volume: 58 start-page: 587 year: 2011 ident: B60 article-title: Toward unsupervised adaptation of LDA for brain-computer interfaces publication-title: IEEE Trans. Biomed. Eng doi: 10.1109/TBME.2010.2093133 – volume: 14 start-page: 036016 year: 2017 ident: B41 article-title: Feedback for reinforcement learning based brain-machine interfaces using confidence metrics publication-title: J. Neural Eng doi: 10.1088/1741-2552/aa6317 – volume: 7 start-page: 19 year: 2014 ident: B38 article-title: Brain-computer interface with somatosensory feedback improves functional recovery from severe hemiplegia due to chronic stroke publication-title: Front. Neuroeng doi: 10.3389/fneng.2014.00019 – volume: 29 start-page: 1950025 ident: B16 article-title: Tangent space features-based transfer learning classification model for two-class motor imagery brain-computer interface publication-title: Int. J. Neural Syst doi: 10.1142/S0129065719500254 – volume: 19 start-page: 6938 ident: B17 article-title: An automatic subject specific intrinsic mode function selection for enhancing two-class EEG-based motor imagery-brain computer interface publication-title: IEEE Sens. J doi: 10.1109/JSEN.2019.2912790 – start-page: 295 volume-title: 2019 9th International IEEE/EMBS Conference on Neural Engineering (NER) ident: B47 article-title: “Channel selection improves meg-based brain-computer interface,” – volume: 22 start-page: 1305 year: 2009 ident: B13 article-title: Subject-independent mental state classification in single trials publication-title: Neural Netw doi: 10.1016/j.neunet.2009.06.003 – volume: 13 start-page: 87 year: 2020 ident: B50 article-title: Intra- and inter-subject variability in EEG-based sensorimotor brain computer interface: a review publication-title: Front. Comput. Neurosci doi: 10.3389/fncom.2019.00087 – volume: 15 start-page: 031005 year: 2018 ident: B34 article-title: A review of classification algorithms for EEG-based brain-computer interfaces: a 10 year update publication-title: J. Neural Eng doi: 10.1088/1741-2552/aab2f2 – volume: 16 start-page: 051001 year: 2019 ident: B48 article-title: Deep learning-based electroencephalography analysis: a systematic review publication-title: J. Neural Eng doi: 10.1088/1741-2552/ab260c – volume: 12 start-page: 046027 year: 2015 ident: B63 article-title: Leveraging anatomical information to improve transfer learning in brain-computer interfaces publication-title: J. Neural Eng doi: 10.1088/1741-2560/12/4/046027 – start-page: 3097 volume-title: 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) year: 2013 ident: B7 article-title: “A hybrid BCI for enhanced control of a telepresence robot,” doi: 10.1109/EMBC.2013.6610196 – volume: 82 start-page: 109 year: 2012 ident: B59 article-title: A subject transfer framework for EEG classification publication-title: Neurocomputing doi: 10.1016/j.neucom.2011.10.024 – volume: 4 start-page: 639 year: 2017 ident: B3 article-title: Motor imagery and error related potential induced position control of a robotic arm publication-title: IEEE/CAA J. Automat. Sin doi: 10.1109/JAS.2017.7510616 – year: 2018 ident: B66 article-title: Robust and highly adaptable brain-computer interface with convolutional net architecture based on a generative model of neuromagnetic measurements publication-title: arXiv[Preprint].arXiv:1805.10981 – volume: 13 start-page: 47 year: 2019 ident: B51 article-title: Wavelet entropy-based inter-subject associative cortical source localization for sensorimotor BCI publication-title: Front. Neuroinform doi: 10.3389/fninf.2019.00047 – start-page: 770 year: 2016 ident: B21 article-title: “Deep residual learning for image recognition,” publication-title: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) doi: 10.1109/CVPR.2016.90 – volume: 96 start-page: S71 year: 2015 ident: B37 article-title: Proof of principle of a brain-computer interface approach to support poststroke arm rehabilitation in hospitalized patients: design, acceptability, and usability publication-title: Arch. Phys. Med. Rehabil doi: 10.1016/j.apmr.2014.05.026 – year: 2014 ident: B29 article-title: ADAM: a method for stochastic optimization publication-title: arXiv[Preprint].arXiv:1412.6980 – start-page: 2672 volume-title: Proceedings of the 27th International Conference on Neural Information Processing Systems year: 2014 ident: B19 article-title: “Generative adversarial nets,” – volume: 11 start-page: 035005 year: 2014 ident: B28 article-title: Integrating dynamic stopping, transfer learning and language models in an adaptive zero-training ERP speller publication-title: J. Neural Eng doi: 10.1088/1741-2560/11/3/035005 – volume: 6 start-page: 55 year: 2012 ident: B57 article-title: Review of the BCI competition IV publication-title: Front. Neurosci doi: 10.3389/fnins.2012.00055 – year: 2014 ident: B18 article-title: Bayesian optimization with unknown constraints publication-title: arXiv[Preprint].arXiv:1403.5607 doi: 10.5555/3020751.3020778 – volume: 10 start-page: P85 year: 2009 ident: B4 article-title: Towards a cure for BCI illiteracy: machine learning based co-adaptive learning publication-title: BMC Neurosci doi: 10.1186/1471-2202-10-S1-P85 – volume: 12 start-page: 85 year: 2015 ident: B14 article-title: MEG-based neurofeedback for hand rehabilitation publication-title: J. Neuroeng. Rehabil doi: 10.1186/s12984-015-0076-7 – volume: 25 start-page: 566 year: 2017 ident: B36 article-title: A deep learning scheme for motor imagery classification based on restricted Boltzmann machines publication-title: IEEE Trans. Neural Syst. Rehabil. Eng doi: 10.1109/TNSRE.2016.2601240 – volume: 12 start-page: 145 year: 1999 ident: B42 article-title: On the momentum term in gradient descent learning algorithms publication-title: Neural Netw doi: 10.1016/S0893-6080(98)00116-6 – volume: 2011 start-page: 1 year: 2011 ident: B11 article-title: Multisubject learning for common spatial patterns in motor-imagery BCI publication-title: Comput. Intell. Neurosci doi: 10.1155/2011/217987 – volume: 12 start-page: 312 year: 2018 ident: B58 article-title: EEG-based BCI control schemes for lower-limb assistive-robots publication-title: Front. Hum. Neurosci doi: 10.3389/fnhum.2018.00312 – volume: 16 start-page: 026007 year: 2019 ident: B12 article-title: Inter-subject transfer learning with an end-to-end deep convolutional neural network for EEG-based BCI publication-title: J. Neural Eng doi: 10.1088/1741-2552/aaf3f6 – volume: 197 start-page: 425 year: 2019 ident: B67 article-title: Adaptive neural network classifier for decoding MEG signals publication-title: Neuroimage doi: 10.1016/j.neuroimage.2019.04.068 – volume: 212 start-page: 94 year: 2013 ident: B24 article-title: Whether generic model works for rapid ERP-based BCI calibration publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2012.09.020 – year: 2019 ident: B31 article-title: Subject-independent brain-computer interfaces based on deep convolutional neural networks publication-title: IEEE Trans. Neural Netw. Learn. Systems doi: 10.1109/TNNLS.2019.2946869 – start-page: 1097 volume-title: Advances in Neural Information Processing Systems 25 year: 2012 ident: B30 article-title: “Imagenet classification with deep convolutional neural networks,” – start-page: 6501 volume-title: 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society year: 2014 ident: B1 article-title: “Subject-to-subject adaptation to reduce calibration time in motor imagery-based brain-computer interface,” doi: 10.1109/EMBC.2014.6945117 – volume: 16 start-page: 683 year: 2009 ident: B27 article-title: Composite common spatial pattern for subject-to-subject transfer publication-title: IEEE Signal Process. Lett doi: 10.1109/LSP.2009.2022557 – volume: 8 start-page: 10087 year: 2018 ident: B20 article-title: Across-subject offline decoding of motor imagery from MEG and EEG publication-title: Sci. Rep doi: 10.1038/s41598-018-28295-z – volume: 14 start-page: 016003 year: 2016 ident: B56 article-title: A novel deep learning approach for classification of EEG motor imagery signals publication-title: J. Neural Eng doi: 10.1088/1741-2560/14/1/016003 – volume: 38 start-page: 5391 year: 2017 ident: B52 article-title: Deep learning with convolutional neural networks for EEG decoding and visualization publication-title: Hum. Brain Mapp doi: 10.1002/hbm.23730 – start-page: 4148 volume-title: Advances in Neural Information Processing Systems 30 year: 2017 ident: B62 article-title: “The marginal value of adaptive gradient methods in machine learning,” – volume: 32 start-page: 6601 year: 2020 ident: B25 article-title: EEG classification using sparse Bayesian extreme learning machine for brain-computer interface publication-title: Neural Comput. Appl doi: 10.1007/s00521-018-3735-3 – start-page: 315 volume-title: Proceedings of the 26th International Conference on Neural Information Processing Systems, NIPS'13 year: 2013 ident: B26 article-title: “Accelerating stochastic gradient descent using predictive variance reduction,” – volume: 23 start-page: 631 year: 2019 ident: B23 article-title: Sparse group representation model for motor imagery EEG classification publication-title: IEEE J. Biomed. Health Inform doi: 10.1109/JBHI.2018.2832538 – volume: 65 start-page: 1107 year: 2018 ident: B64 article-title: Transfer learning: a Riemannian geometry framework with applications to brain-computer interfaces publication-title: IEEE Trans. Biomed. Eng doi: 10.1109/TBME.2017.2742541 – volume: 26 start-page: 371 year: 2018 ident: B49 article-title: Evidence of variabilities in EEG dynamics during motor imagery-based multiclass brain-computer interface publication-title: IEEE Trans. Neural Syst. Rehabil. Eng doi: 10.1109/TNSRE.2017.2778178 – year: 2019 ident: B65 article-title: A survey on deep learning based brain computer interface: recent advances and new Frontiers publication-title: arXiv – volume: 57 start-page: 1318 year: 2010 ident: B33 article-title: Application of covariate shift adaptation techniques in brain-computer interfaces publication-title: IEEE Trans. Biomed. Eng doi: 10.1109/TBME.2009.2039997 – volume: 22 start-page: 517 year: 2018 ident: B53 article-title: Interpreting and utilising intersubject variability in brain function publication-title: Trends Cogn. Sci doi: 10.1016/j.tics.2018.03.003 – volume: 312 start-page: 1 year: 2019 ident: B10 article-title: An EEG-EMG correlation-based brain-computer interface for hand orthosis supported neuro-rehabilitation publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2018.11.010 – volume: 9 start-page: e87253 year: 2014 ident: B40 article-title: Using reinforcement learning to provide stable brain-machine interface control despite neural input reorganization publication-title: PLoS ONE doi: 10.1371/journal.pone.0087253 – volume: 20 start-page: 3085 year: 2016 ident: B44 article-title: Adaptive learning with covariate shift-detection for motor imagery-based brain-computer interface publication-title: Soft Comput doi: 10.1007/s00500-015-1937-5 – volume: 58 start-page: 355 year: 2011 ident: B35 article-title: Regularizing common spatial patterns to improve BCI designs: unified theory and new algorithms publication-title: IEEE Trans. Biomed. Eng doi: 10.1109/TBME.2010.2082539 – volume: 74 start-page: 100 year: 2013 ident: B43 article-title: Brain-machine interface in chronic stroke rehabilitation: a controlled study publication-title: Ann. Neurol doi: 10.1002/ana.23879 – start-page: 1317 volume-title: 2019 IEEE International Conference on Systems, Man and Cybernetics (SMC) ident: B46 article-title: “Can a single model deep learning approach enhance classification accuracy of an EEG-based brain-computer interface?” – volume: 48 start-page: 1908 year: 2017 ident: B6 article-title: Contralesional brain-computer interface control of a powered exoskeleton for motor recovery in chronic stroke survivors publication-title: Stroke doi: 10.1161/STROKEAHA.116.016304 – volume: 22 start-page: 1786 ident: B8 article-title: Active physical practice followed by mental practice using BCI-driven hand exoskeleton: a pilot trial for clinical effectiveness and usability publication-title: IEEE J. Biomed. Health Inform doi: 10.1109/JBHI.2018.2863212 – volume: 170 start-page: 161 year: 2015 ident: B15 article-title: Evaluating quantum neural network filtered motor imagery brain-computer interface using multiple classification techniques publication-title: Neurocomputing doi: 10.1016/j.neucom.2014.12.114 – volume: 123 start-page: 1328 year: 2012 ident: B54 article-title: Online use of error-related potentials in healthy users and people with severe motor impairment increases performance of a p300-bci publication-title: Clin. Neurophysiol doi: 10.1016/j.clinph.2011.11.082 – volume: 7 start-page: 13749 year: 2016 ident: B55 article-title: Making brain-machine interfaces robust to future neural variability publication-title: Nat. Commun doi: 10.1038/ncomms13749 – volume: 343 start-page: 154 year: 2019 ident: B45 article-title: Covariate shift estimation based adaptive ensemble learning for handling non-stationarity in motor imagery related EEG-based brain-computer interface publication-title: Neurocomputing doi: 10.1016/j.neucom.2018.04.087 – volume: 15 start-page: 056013 year: 2018 ident: B32 article-title: EEGNet: a compact convolutional neural network for EEG-based brain-computer interfaces publication-title: J. Neural Eng doi: 10.1088/1741-2552/aace8c – volume: 39 start-page: 910 year: 2008 ident: B5 article-title: Think to move: a neuromagnetic brain-computer interface (BCI) system for chronic stroke publication-title: Stroke doi: 10.1161/STROKEAHA.107.505313 – volume: 11 start-page: 20 year: 2016 ident: B22 article-title: Transfer learning in brain-computer interfaces publication-title: IEEE Comput. Intell. Mag doi: 10.1109/MCI.2015.2501545 – year: 2008 ident: B2 publication-title: BCI Competition 2008–Graz Data Set B – volume: 110 start-page: 1842 year: 1999 ident: B39 article-title: Event-related EEG/MEG synchronization and desynchronization: basic principles publication-title: Clin. Neurophysiol doi: 10.1016/S1388-2457(99)00141-8 |
| SSID | ssj0062842 |
| Score | 2.4768538 |
| Snippet | Inter-subject transfer learning is a long-standing problem in brain-computer interfaces (BCIs) and has not yet been fully realized due to high inter-subject... |
| SourceID | doaj pubmedcentral proquest crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database |
| StartPage | 918 |
| SubjectTerms | Adaptation adaptive learning Algorithms Bayesian analysis brain-computer interface (BCI) Calibration Classification Competition convolutional neural network (CNN) Datasets Deep learning Discriminant analysis EEG electroencephalography (EEG) Feedback Interfaces Mental task performance motor imagery Neural networks Neuroscience Transfer learning |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYq1EMvVSmgbguVKyEkDtEmjhPbR5aHygHEASRukZ9lJfCuYLcS_54ZO7vaXNoL13jiODP2jD979A0hh46FMoiyKdrGaAAonhVGVazgLAhrWi91Y1OxCXF9Le_v1c1GqS_MCcv0wFlxY2W01xBGbQlYxFZSscpAN6rS2jHAb-h9S6FWYCr74BacLsuXkgDB1DjEaURuboZ5XAoLfGwEocTVP9hgDtMjN-LNxRfyud8o0pM8wG3ywcevZOckAkh-eqVHNKVupjPxHRLPvJ_Tnir1D51AZHI0nfUVL0uDJy0UWaimcQk4n54B4sSIRWeBXs0Ac9PLJ2SyeKWwgaWZwAgsRydYPaJYlX3I_QXM4Noldxfnt6e_i76QQmHBDy4K00AohJXGGidVqJktHaivdlXQQYbaASwJsgWgh8q1ona6tUbqSknPpalCvUe24iz6b4RCB1aASKWN4yIIBeGfe-6DUaXm2o3IeKXZzvYs41js4rEDtIG26JItOrRFl2wxIsfrN-aZYeMfshM01loOubHTA5gxXT9juv_NmBHZX5m66xcsfINzAbG8weZf62ZYanh_oqMH84BMwwEOwxZqRMRgigwGNGyJ04dE2i0arOauvr_HH_wgn1AnOW1ln2wtnpf-gHy0fxfTl-efaSW8AY5oEqo priority: 102 providerName: Directory of Open Access Journals |
| Title | Deep Learning Based Inter-subject Continuous Decoding of Motor Imagery for Practical Brain-Computer Interfaces |
| URI | https://www.proquest.com/docview/2447362588 https://www.proquest.com/docview/2454409190 https://pubmed.ncbi.nlm.nih.gov/PMC7554529 https://doaj.org/article/9baea639c0184c18921bf7c91aad2788 |
| Volume | 14 |
| WOSCitedRecordID | wos000578768700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1662-453X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0062842 issn: 1662-453X databaseCode: DOA dateStart: 20070101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 1662-453X dateEnd: 20211231 omitProxy: false ssIdentifier: ssj0062842 issn: 1662-453X databaseCode: M7P dateStart: 20071015 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1662-453X dateEnd: 20211231 omitProxy: false ssIdentifier: ssj0062842 issn: 1662-453X databaseCode: BENPR dateStart: 20071015 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Publicly Available Content customDbUrl: eissn: 1662-453X dateEnd: 20211231 omitProxy: false ssIdentifier: ssj0062842 issn: 1662-453X databaseCode: PIMPY dateStart: 20071015 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database customDbUrl: eissn: 1662-453X dateEnd: 20211231 omitProxy: false ssIdentifier: ssj0062842 issn: 1662-453X databaseCode: M2P dateStart: 20071015 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZolwMXXgWxUFZGQkgcok2ch-0T6tJW9LCrCIG0nCI_25VosuwDqf-eGSdZNZdeuOSQOI6tsWfmG0--IeSjZT72PM6jItcKAIpjkZYJizLmudGFEyo3odgEXyzEcinLLuC27dIqe50YFLVtDMbIp2CGOCjbXIgv6z8RVo3C09WuhMYRGYFnk2BK15yVvSYuQPWG084C_wwC17w9pgRQJqe-XtXI1s0ws0tiyY97Zimw9w9czmHC5D0LdPnsf8f-nDztfE961i6WF-SRq1-Sk7MacPftHf1EQzZoCLOfkPrcuTXt2Fev6QyMnaUhfBht9xqDNxSJrVb1vtlv6TmAWDSCtPF03gCMp1e3SI5xR8Enpi0nEiwGOsOCFFFfSaLtz2NS2Cvy8_Lix9dvUVebITKgWneRzsG6wuZluRXSp8zENlEqtYlXXvjUAtLxogDsKFmiDU-tKowWKpHCZUInPn1Njuumdm8IhQ4MhyaJ0jbjnkvwKDKXOa9lrDJlx2Tai6YyHXE51s_4XQGAQWFWQZgVCrMKwhyTz4c31i1pxwNtZyjtQzuk2w43ms111e3eSmrlFPhyJgZAbBKBk4K1LGHKlnEBnZz2gq86HQDfOEh9TD4cHsPuxSMZVTsQD7TJM0DY4JWNCR-sscGAhk_q1U3gAec5FoiXbx_--DvyBGfb5rickuPdZu_ek8fm72613UzIEV-KCRnNLhbl90mISEzCJsIrh-uovJqXv_4BsMoopg |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9NAEF2VggQXvkpFSoFFAiQOVuKN7d09INQQqkZtox6K1JvZzxKJ2mnigPKn-I3MrO2ovvTWA9d4s87Gb2fm7YzfEPLeMj_wfJBGWaoVEBTHIi1jFiXMc6MzJ1RqQrMJPp2Kiwt5tkX-tu_CYFllaxODobalwTPyPrghDsY2FeLL_DrCrlGYXW1baNSwOHbrP0DZlp8nY3i-Hxg7_Hb-9ShqugpEBoxCFekU_ALAjqVWSD9kZmBjpYY29soLP7QQo3uRAeuRLNaGD63KjBYKyLlLhI79EOa9R-4nqCyGpYLsrLX8GZj6kF3N8E0koAJ1WhRIoOz7YlagOjjDSjKJLUZuuMHQLaAT4nYLNG94vMMn_9t_9ZQ8bmJrelBvhmdkyxXPyc5Boaryak0_0lDtGtIIO6QYOzenjbrsJR2BM7c0HI9Gy5XGwymKwl2zYlWulnQMJB2dPC09PS2rckEnVyj-saYQ89Na8wnATkfYcCNqO2XU83ksentBvt_JynfJdlEW7iWhMIHhMCRW2ibccwkRU-IS57UcqETZHum3UMhNI8yO_UF-5UDQEDx5AE-O4MkDeHrk0-Yb81qU5JaxI0TXZhzKiYcPysVl3linXGrlFMSqZgCE38QCFwV7VcKSLeMCJtlvgZY3Ng7usUFZj7zbXAbrhCknVTh4PDAmhY0iIersEd7BdOcHda8Us59B55xDqJsyuXf7zd-Sh0fnpyf5yWR6_Io8wpXX9Tz7ZLtarNxr8sD8rmbLxZuwWSn5cdeI_wcCAoD2 |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEF6VFCEuvAoiUGCRAImDFXtje70HhBpCRFQa5QBSOZl9lkitnSYOKH-NX8fM2o7qS289cPWu117725n5dmZnCHljmAsdD5MgTZQEgmJZoETEgpg5rlVqM5loX2yCz2bZ6amY75G_7VkYDKtsZaIX1KbUuEc-ADXEQdgmQNhcExYxH08-Li8DrCCFnta2nEYNkWO7_QP0bf1hOoZ__Zaxyedvn74ETYWBQIOAqAKVgI4ACLLEZMINmQ5NJOXQRE66zA0N2OsuS4EBCRYpzYdGplplEoi6jTMVuSGMe4vsg0kesx7Zn09P5j9aPZCC4Pe-1hTPJQExqJ2kQAnFwBWLAnOFM4wrE1hw5IpS9LUDOgZvN1zziv6b3P-fv9wDcq-xuulRvUwekj1bPCIHR4WsyostfUd9HKx3MByQYmztkjZ5Z8_oCNS8oX7jNFhvFG5bUUzptSg25WZNx0DfUf3T0tGTsipXdHqBaUG2FNgArbNBwTKgIyzFEbQ1NOrxHIbDPSbfb2TmT0ivKAv7lFAYQHPoEkllYu64AFsqtrF1SoQylqZPBi0sct2kbMfKIec5UDcEUu6BlCOQcg-kPnm_u2NZpyu5pu8Ikbbrh4nG_YVydZY3cisXSloJVqwOoyzWUYaTglUsYMqG8QwGOWxBlzfSD56xQ1yfvN41g9xCZ5QsLPwe6JPEMbyGCPuEd_DdeaFuS7H45TOgczCCEyaeXf_wV-QOAD3_Op0dPyd3ceJ1oM8h6VWrjX1Bbuvf1WK9etmsXEp-3jTk_wEso4s_ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Learning+Based+Inter-subject+Continuous+Decoding+of+Motor+Imagery+for+Practical+Brain-Computer+Interfaces&rft.jtitle=Frontiers+in+neuroscience&rft.au=Roy%2C+Sujit&rft.au=Chowdhury%2C+Anirban&rft.au=McCreadie%2C+Karl&rft.au=Prasad%2C+Girijesh&rft.date=2020-09-30&rft.issn=1662-4548&rft.volume=14&rft.spage=918&rft_id=info:doi/10.3389%2Ffnins.2020.00918&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1662-453X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1662-453X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1662-453X&client=summon |