Deep Learning Based Inter-subject Continuous Decoding of Motor Imagery for Practical Brain-Computer Interfaces

Inter-subject transfer learning is a long-standing problem in brain-computer interfaces (BCIs) and has not yet been fully realized due to high inter-subject variability in the brain signals related to motor imagery (MI). The recent success of deep learning-based algorithms in classifying different b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Frontiers in neuroscience Jg. 14; S. 918
Hauptverfasser: Roy, Sujit, Chowdhury, Anirban, McCreadie, Karl, Prasad, Girijesh
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Lausanne Frontiers Research Foundation 30.09.2020
Frontiers Media S.A
Schlagworte:
ISSN:1662-453X, 1662-4548, 1662-453X
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Inter-subject transfer learning is a long-standing problem in brain-computer interfaces (BCIs) and has not yet been fully realized due to high inter-subject variability in the brain signals related to motor imagery (MI). The recent success of deep learning-based algorithms in classifying different brain signals warrants further exploration to determine whether it is feasible for the inter-subject continuous decoding of MI signals to provide contingent neurofeedback which is important for neurorehabilitative BCI designs. In this paper, we have shown how a convolutional neural network (CNN) based deep learning framework can be used for inter-subject continuous decoding of MI related electroencephalographic (EEG) signals using the novel concept of Mega Blocks for adapting the network against inter-subject variabilities. These Mega Blocks have the capacity to repeat a specific architectural block several times such as one or more convolutional layers in a single Mega Block. The parameters of such Mega Blocks can be optimized using Bayesian hyperparameter optimization. The results, obtained on the publicly available BCI competition IV-2b dataset, yields an average inter-subject continuous decoding accuracy of 71.49% (kappa=0.42) and 70.84% (kappa =0.42) for two different training methods such as adaptive moment estimation (Adam) and stochastic gradient descent (SGDM) respectively in 7 out of 9 subjects. Our results show for the first time that it is feasible to use CNN based architectures for inter-subject continuous decoding with a sufficient level of accuracy for developing calibration-free MI-BCIs for practical purposes.
AbstractList Inter-subject transfer learning is a long-standing problem in brain-computer interfaces (BCIs) and has not yet been fully realized due to high inter-subject variability in the brain signals related to motor imagery (MI). The recent success of deep learning-based algorithms in classifying different brain signals warrants further exploration to determine whether it is feasible for the inter-subject continuous decoding of MI signals to provide contingent neurofeedback which is important for neurorehabilitative BCI designs. In this paper, we have shown how a convolutional neural network (CNN) based deep learning framework can be used for inter-subject continuous decoding of MI related electroencephalographic (EEG) signals using the novel concept of Mega Blocks for adapting the network against inter-subject variabilities. These Mega Blocks have the capacity to repeat a specific architectural block several times such as one or more convolutional layers in a single Mega Block. The parameters of such Mega Blocks can be optimized using Bayesian hyperparameter optimization. The results, obtained on the publicly available BCI competition IV-2b dataset, yields an average inter-subject continuous decoding accuracy of 71.49% (kappa=0.42) and 70.84% (kappa =0.42) for two different training methods such as adaptive moment estimation (Adam) and stochastic gradient descent (SGDM) respectively in 7 out of 9 subjects. Our results show for the first time that it is feasible to use CNN based architectures for inter-subject continuous decoding with a sufficient level of accuracy for developing calibration-free MI-BCIs for practical purposes.
Inter-subject transfer learning is a long-standing problem in brain-computer interfaces (BCIs) and has not yet been fully realized due to high inter-subject variability in the brain signals related to motor imagery (MI). The recent success of deep learning-based algorithms in classifying different brain signals warrants further exploration to determine whether it is feasible for the inter-subject continuous decoding of MI signals to provide contingent neurofeedback which is important for neurorehabilitative BCI designs. In this paper, we have shown how a convolutional neural network (CNN) based deep learning framework can be used for inter-subject continuous decoding of MI related electroencephalographic (EEG) signals using the novel concept of Mega Blocks for adapting the network against inter-subject variabilities. These Mega Blocks have the capacity to repeat a specific architectural block several times such as one or more convolutional layers in a single Mega Block. The parameters of such Mega Blocks can be optimized using Bayesian hyperparameter optimization. The results, obtained on the publicly available BCI competition IV-2b dataset, yields an average inter-subject continuous decoding accuracy of 71.49% (κ = 0.42) and 70.84% (κ = 0.42) for two different training methods such as adaptive moment estimation (Adam) and stochastic gradient descent (SGDM), respectively, in 7 out of 9 subjects. Our results show for the first time that it is feasible to use CNN based architectures for inter-subject continuous decoding with a sufficient level of accuracy for developing calibration-free MI-BCIs for practical purposes.
Inter-subject transfer learning is a long-standing problem in brain-computer interfaces (BCIs) and has not yet been fully realized due to high inter-subject variability in the brain signals related to motor imagery (MI). The recent success of deep learning-based algorithms in classifying different brain signals warrants further exploration to determine whether it is feasible for the inter-subject continuous decoding of MI signals to provide contingent neurofeedback which is important for neurorehabilitative BCI designs. In this paper, we have shown how a convolutional neural network (CNN) based deep learning framework can be used for inter-subject continuous decoding of MI related electroencephalographic (EEG) signals using the novel concept of Mega Blocks for adapting the network against inter-subject variabilities. These Mega Blocks have the capacity to repeat a specific architectural block several times such as one or more convolutional layers in a single Mega Block. The parameters of such Mega Blocks can be optimized using Bayesian hyperparameter optimization. The results, obtained on the publicly available BCI competition IV-2b dataset, yields an average inter-subject continuous decoding accuracy of 71.49% (κ = 0.42) and 70.84% (κ = 0.42) for two different training methods such as adaptive moment estimation (Adam) and stochastic gradient descent (SGDM), respectively, in 7 out of 9 subjects. Our results show for the first time that it is feasible to use CNN based architectures for inter-subject continuous decoding with a sufficient level of accuracy for developing calibration-free MI-BCIs for practical purposes.Inter-subject transfer learning is a long-standing problem in brain-computer interfaces (BCIs) and has not yet been fully realized due to high inter-subject variability in the brain signals related to motor imagery (MI). The recent success of deep learning-based algorithms in classifying different brain signals warrants further exploration to determine whether it is feasible for the inter-subject continuous decoding of MI signals to provide contingent neurofeedback which is important for neurorehabilitative BCI designs. In this paper, we have shown how a convolutional neural network (CNN) based deep learning framework can be used for inter-subject continuous decoding of MI related electroencephalographic (EEG) signals using the novel concept of Mega Blocks for adapting the network against inter-subject variabilities. These Mega Blocks have the capacity to repeat a specific architectural block several times such as one or more convolutional layers in a single Mega Block. The parameters of such Mega Blocks can be optimized using Bayesian hyperparameter optimization. The results, obtained on the publicly available BCI competition IV-2b dataset, yields an average inter-subject continuous decoding accuracy of 71.49% (κ = 0.42) and 70.84% (κ = 0.42) for two different training methods such as adaptive moment estimation (Adam) and stochastic gradient descent (SGDM), respectively, in 7 out of 9 subjects. Our results show for the first time that it is feasible to use CNN based architectures for inter-subject continuous decoding with a sufficient level of accuracy for developing calibration-free MI-BCIs for practical purposes.
Author Prasad, Girijesh
Chowdhury, Anirban
McCreadie, Karl
Roy, Sujit
AuthorAffiliation 1 School of Computing, Engineering & Intelligent Systems, Ulster University , Derry-Londonderry , United Kingdom
2 School of Computer Science and Electronic Engineering, University of Essex , Colchester , United Kingdom
AuthorAffiliation_xml – name: 1 School of Computing, Engineering & Intelligent Systems, Ulster University , Derry-Londonderry , United Kingdom
– name: 2 School of Computer Science and Electronic Engineering, University of Essex , Colchester , United Kingdom
Author_xml – sequence: 1
  givenname: Sujit
  surname: Roy
  fullname: Roy, Sujit
– sequence: 2
  givenname: Anirban
  surname: Chowdhury
  fullname: Chowdhury, Anirban
– sequence: 3
  givenname: Karl
  surname: McCreadie
  fullname: McCreadie, Karl
– sequence: 4
  givenname: Girijesh
  surname: Prasad
  fullname: Prasad, Girijesh
BookMark eNp1ks1v1DAQxSNURD_gzjESFy5Z_JXEviDRLbQrLYIDSNysiTNevErsxU6Q-t_j7FaIVuLkkf3mN0_jd1mc-eCxKF5TsuJcqnfWO59WjDCyIkRR-ay4oE3DKlHzH2f_1OfFZUp7QhomBXtRnHNOs77mF4W_QTyUW4SYUbvyGhL25cZPGKs0d3s0U7kOfnJ-DnMqb9CEftEFW34OU4jlZoQdxvvS5vprBDM5A0N5HcH5ah3Gw5xJJ54Fg-ll8dzCkPDVw3lVfP_08dv6rtp-ud2sP2wrI5p2qrraIKqGs7qXynJmSE8BeE8tWGl5z2hrZUOUUIx2puU9NKaTQJVEITtq-VWxOXH7AHt9iG6EeK8DOH28CHGnIWavA2rVAULDlSFUCkPlgrStUXlgz1opM-v9iXWYuxF7g36KMDyCPn7x7qfehd-6rWtRM5UBbx8AMfyaMU16dMngMIDHvFXNRC1E_j5FsvTNE-k-zNHnVWWVaHnD6qMjclKZGFKKaP-aoUQvwdDHYOglGPoYjNzSPGkxboLJhcWyG_7f-AdbRsDf
CitedBy_id crossref_primary_10_1016_j_bspc_2025_107640
crossref_primary_10_1016_j_compbiomed_2024_109097
crossref_primary_10_1109_JBHI_2024_3450753
crossref_primary_10_1016_j_eswa_2024_125832
crossref_primary_10_1080_10255842_2024_2356633
crossref_primary_10_1016_j_dcan_2025_04_001
crossref_primary_10_1109_TBME_2021_3105912
crossref_primary_10_1016_j_compbiomed_2024_109534
crossref_primary_10_1088_1741_2552_ad6598
crossref_primary_10_1007_s12204_022_2488_4
crossref_primary_10_1007_s00521_021_06352_5
crossref_primary_10_1002_ima_22935
crossref_primary_10_1007_s12530_025_09696_8
crossref_primary_10_1016_j_jneumeth_2024_110356
crossref_primary_10_1109_TNSRE_2023_3307814
crossref_primary_10_3390_app12031695
crossref_primary_10_3390_s21217241
crossref_primary_10_3233_JIFS_202046
crossref_primary_10_1007_s42979_024_02845_x
crossref_primary_10_1109_ACCESS_2021_3091399
crossref_primary_10_3390_s23020703
crossref_primary_10_1109_JSEN_2023_3270281
crossref_primary_10_1109_TNSRE_2024_3451716
crossref_primary_10_3390_bioengineering9120768
crossref_primary_10_3389_fnhum_2022_949224
crossref_primary_10_3390_computers12070145
crossref_primary_10_3389_fnins_2023_1173778
crossref_primary_10_1016_j_bspc_2023_105359
crossref_primary_10_7759_cureus_93011
crossref_primary_10_1109_JBHI_2023_3248139
crossref_primary_10_1016_j_neunet_2024_106847
crossref_primary_10_1088_1741_2552_ac5d69
crossref_primary_10_1016_j_neucom_2024_128577
crossref_primary_10_1016_j_eswa_2025_128730
crossref_primary_10_1016_j_jneumeth_2022_109736
crossref_primary_10_1109_JBHI_2023_3304646
Cites_doi 10.1109/TCDS.2017.2787040
10.1109/ICIST.2015.7288989
10.1109/TBME.2010.2093133
10.1088/1741-2552/aa6317
10.3389/fneng.2014.00019
10.1142/S0129065719500254
10.1109/JSEN.2019.2912790
10.1016/j.neunet.2009.06.003
10.3389/fncom.2019.00087
10.1088/1741-2552/aab2f2
10.1088/1741-2552/ab260c
10.1088/1741-2560/12/4/046027
10.1109/EMBC.2013.6610196
10.1016/j.neucom.2011.10.024
10.1109/JAS.2017.7510616
10.3389/fninf.2019.00047
10.1109/CVPR.2016.90
10.1016/j.apmr.2014.05.026
10.1088/1741-2560/11/3/035005
10.3389/fnins.2012.00055
10.5555/3020751.3020778
10.1186/1471-2202-10-S1-P85
10.1186/s12984-015-0076-7
10.1109/TNSRE.2016.2601240
10.1016/S0893-6080(98)00116-6
10.1155/2011/217987
10.3389/fnhum.2018.00312
10.1088/1741-2552/aaf3f6
10.1016/j.neuroimage.2019.04.068
10.1016/j.jneumeth.2012.09.020
10.1109/TNNLS.2019.2946869
10.1109/EMBC.2014.6945117
10.1109/LSP.2009.2022557
10.1038/s41598-018-28295-z
10.1088/1741-2560/14/1/016003
10.1002/hbm.23730
10.1007/s00521-018-3735-3
10.1109/JBHI.2018.2832538
10.1109/TBME.2017.2742541
10.1109/TNSRE.2017.2778178
10.1109/TBME.2009.2039997
10.1016/j.tics.2018.03.003
10.1016/j.jneumeth.2018.11.010
10.1371/journal.pone.0087253
10.1007/s00500-015-1937-5
10.1109/TBME.2010.2082539
10.1002/ana.23879
10.1161/STROKEAHA.116.016304
10.1109/JBHI.2018.2863212
10.1016/j.neucom.2014.12.114
10.1016/j.clinph.2011.11.082
10.1038/ncomms13749
10.1016/j.neucom.2018.04.087
10.1088/1741-2552/aace8c
10.1161/STROKEAHA.107.505313
10.1109/MCI.2015.2501545
10.1016/S1388-2457(99)00141-8
ContentType Journal Article
Copyright 2020. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright © 2020 Roy, Chowdhury, McCreadie and Prasad.
Copyright © 2020 Roy, Chowdhury, McCreadie and Prasad. 2020 Roy, Chowdhury, McCreadie and Prasad
Copyright_xml – notice: 2020. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Copyright © 2020 Roy, Chowdhury, McCreadie and Prasad.
– notice: Copyright © 2020 Roy, Chowdhury, McCreadie and Prasad. 2020 Roy, Chowdhury, McCreadie and Prasad
DBID AAYXX
CITATION
3V.
7XB
88I
8FE
8FH
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
LK8
M2P
M7P
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.3389/fnins.2020.00918
DatabaseName CrossRef
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Database
ProQuest Central
ProQuest Natural Science Collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Biological Science Collection
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Biological Science Database
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database

MEDLINE - Academic

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: ProQuest Publicly Available Content
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1662-453X
ExternalDocumentID oai_doaj_org_article_9baea639c0184c18921bf7c91aad2788
PMC7554529
10_3389_fnins_2020_00918
GroupedDBID ---
29H
2WC
53G
5GY
5VS
88I
8FE
8FH
9T4
AAFWJ
AAYXX
ABUWG
ACGFO
ACGFS
ADRAZ
AEGXH
AENEX
AFFHD
AFKRA
AFPKN
AIAGR
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BBNVY
BENPR
BHPHI
BPHCQ
CCPQU
CITATION
CS3
DIK
DU5
DWQXO
E3Z
EBS
EJD
EMOBN
F5P
FRP
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HYE
KQ8
LK8
M2P
M48
M7P
O5R
O5S
OK1
OVT
P2P
PGMZT
PHGZM
PHGZT
PIMPY
PQGLB
PQQKQ
PROAC
RNS
RPM
W2D
3V.
7XB
8FK
ACXDI
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
ID FETCH-LOGICAL-c467t-b5cee96325d89f32c0d1aa3d1faf8f3d217f86094921bc73da6cb8a198e48b1f3
IEDL.DBID M2P
ISICitedReferencesCount 43
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000578768700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1662-453X
1662-4548
IngestDate Fri Oct 03 12:51:23 EDT 2025
Tue Nov 04 01:57:54 EST 2025
Sun Nov 09 10:46:48 EST 2025
Fri Jul 25 11:42:40 EDT 2025
Sat Nov 29 02:54:55 EST 2025
Tue Nov 18 22:10:29 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c467t-b5cee96325d89f32c0d1aa3d1faf8f3d217f86094921bc73da6cb8a198e48b1f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
This article was submitted to Brain Imaging Methods, a section of the journal Frontiers in Neuroscience
Edited by: Amit Konar, Jadavpur University, India
Reviewed by: Yu Zhang, Stanford University, United States; Seong-Whan Lee, Korea University, South Korea
OpenAccessLink https://www.proquest.com/docview/2447362588?pq-origsite=%requestingapplication%
PMID 33100953
PQID 2447362588
PQPubID 4424402
ParticipantIDs doaj_primary_oai_doaj_org_article_9baea639c0184c18921bf7c91aad2788
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7554529
proquest_miscellaneous_2454409190
proquest_journals_2447362588
crossref_primary_10_3389_fnins_2020_00918
crossref_citationtrail_10_3389_fnins_2020_00918
PublicationCentury 2000
PublicationDate 2020-09-30
PublicationDateYYYYMMDD 2020-09-30
PublicationDate_xml – month: 09
  year: 2020
  text: 2020-09-30
  day: 30
PublicationDecade 2020
PublicationPlace Lausanne
PublicationPlace_xml – name: Lausanne
PublicationTitle Frontiers in neuroscience
PublicationYear 2020
Publisher Frontiers Research Foundation
Frontiers Media S.A
Publisher_xml – name: Frontiers Research Foundation
– name: Frontiers Media S.A
References Zhang (B65) 2019
Goodfellow (B19) 2014
Roy (B47)
Sussillo (B55) 2016; 7
Lawhern (B32) 2018; 15
Krizhevsky (B30) 2012
Ono (B38) 2014; 7
Jin (B25) 2020; 32
Lotte (B35) 2011; 58
Spüler (B54) 2012; 123
Carlson (B7) 2013
Saha (B49) 2018; 26
Halme (B20) 2018; 8
Kang (B27) 2009; 16
Kindermans (B28) 2014; 11
Lu (B36) 2017; 25
Tangermann (B57) 2012; 6
Li (B33) 2010; 57
Fazli (B13) 2009; 22
Foldes (B14) 2015; 12
Zubarev (B66) 2018
Zanini (B64) 2018; 65
Chowdhury (B9); 10
Raza (B44) 2016; 20
Raza (B45) 2019; 343
Bhattacharyya (B3) 2017; 4
Gelbart (B18) 2014
Gaur (B17); 19
Tariq (B58) 2018; 12
Qian (B42) 1999; 12
(B2) 2008
Jiao (B23) 2019; 23
Kwon (B31) 2019
Prins (B41) 2017; 14
Kingma (B29) 2014
Roy (B48) 2019; 16
Pohlmeyer (B40) 2014; 9
Saha (B51) 2019; 13
Wilson (B62) 2017
Pfurtscheller (B39) 1999; 110
Johnson (B26) 2013
Fahimi (B12) 2019; 16
Vidaurre (B60) 2011; 58
Seghier (B53) 2018; 22
Gandhi (B15) 2015; 170
Bundy (B6) 2017; 48
Tabar (B56) 2016; 14
Zubarev (B67) 2019; 197
Saha (B50) 2020; 13
Ramos-Murguialday (B43) 2013; 74
Morone (B37) 2015; 96
Arvaneh (B1) 2014
Lotte (B34) 2018; 15
Wang (B61) 2015
Jayaram (B22) 2016; 11
Schirrmeister (B52) 2017; 38
Roy (B46)
Buch (B5) 2008; 39
Chowdhury (B10) 2019; 312
Chowdhury (B8); 22
Wronkiewicz (B63) 2015; 12
Blankertz (B4) 2009; 10
Jin (B24) 2013; 212
Tu (B59) 2012; 82
He (B21) 2016
Devlaminck (B11) 2011; 2011
Gaur (B16); 29
References_xml – volume: 10
  start-page: 1070
  ident: B9
  article-title: Online covariate shift detection-based adaptive brain-computer interface to trigger hand exoskeleton feedback for neuro-rehabilitation
  publication-title: IEEE Trans. Cogn. Dev. Syst
  doi: 10.1109/TCDS.2017.2787040
– start-page: 315
  volume-title: 2015 5th International Conference on Information Science and Technology (ICIST)
  year: 2015
  ident: B61
  article-title: “A review on transfer learning for brain-computer interface classification,”
  doi: 10.1109/ICIST.2015.7288989
– volume: 58
  start-page: 587
  year: 2011
  ident: B60
  article-title: Toward unsupervised adaptation of LDA for brain-computer interfaces
  publication-title: IEEE Trans. Biomed. Eng
  doi: 10.1109/TBME.2010.2093133
– volume: 14
  start-page: 036016
  year: 2017
  ident: B41
  article-title: Feedback for reinforcement learning based brain-machine interfaces using confidence metrics
  publication-title: J. Neural Eng
  doi: 10.1088/1741-2552/aa6317
– volume: 7
  start-page: 19
  year: 2014
  ident: B38
  article-title: Brain-computer interface with somatosensory feedback improves functional recovery from severe hemiplegia due to chronic stroke
  publication-title: Front. Neuroeng
  doi: 10.3389/fneng.2014.00019
– volume: 29
  start-page: 1950025
  ident: B16
  article-title: Tangent space features-based transfer learning classification model for two-class motor imagery brain-computer interface
  publication-title: Int. J. Neural Syst
  doi: 10.1142/S0129065719500254
– volume: 19
  start-page: 6938
  ident: B17
  article-title: An automatic subject specific intrinsic mode function selection for enhancing two-class EEG-based motor imagery-brain computer interface
  publication-title: IEEE Sens. J
  doi: 10.1109/JSEN.2019.2912790
– start-page: 295
  volume-title: 2019 9th International IEEE/EMBS Conference on Neural Engineering (NER)
  ident: B47
  article-title: “Channel selection improves meg-based brain-computer interface,”
– volume: 22
  start-page: 1305
  year: 2009
  ident: B13
  article-title: Subject-independent mental state classification in single trials
  publication-title: Neural Netw
  doi: 10.1016/j.neunet.2009.06.003
– volume: 13
  start-page: 87
  year: 2020
  ident: B50
  article-title: Intra- and inter-subject variability in EEG-based sensorimotor brain computer interface: a review
  publication-title: Front. Comput. Neurosci
  doi: 10.3389/fncom.2019.00087
– volume: 15
  start-page: 031005
  year: 2018
  ident: B34
  article-title: A review of classification algorithms for EEG-based brain-computer interfaces: a 10 year update
  publication-title: J. Neural Eng
  doi: 10.1088/1741-2552/aab2f2
– volume: 16
  start-page: 051001
  year: 2019
  ident: B48
  article-title: Deep learning-based electroencephalography analysis: a systematic review
  publication-title: J. Neural Eng
  doi: 10.1088/1741-2552/ab260c
– volume: 12
  start-page: 046027
  year: 2015
  ident: B63
  article-title: Leveraging anatomical information to improve transfer learning in brain-computer interfaces
  publication-title: J. Neural Eng
  doi: 10.1088/1741-2560/12/4/046027
– start-page: 3097
  volume-title: 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)
  year: 2013
  ident: B7
  article-title: “A hybrid BCI for enhanced control of a telepresence robot,”
  doi: 10.1109/EMBC.2013.6610196
– volume: 82
  start-page: 109
  year: 2012
  ident: B59
  article-title: A subject transfer framework for EEG classification
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2011.10.024
– volume: 4
  start-page: 639
  year: 2017
  ident: B3
  article-title: Motor imagery and error related potential induced position control of a robotic arm
  publication-title: IEEE/CAA J. Automat. Sin
  doi: 10.1109/JAS.2017.7510616
– year: 2018
  ident: B66
  article-title: Robust and highly adaptable brain-computer interface with convolutional net architecture based on a generative model of neuromagnetic measurements
  publication-title: arXiv[Preprint].arXiv:1805.10981
– volume: 13
  start-page: 47
  year: 2019
  ident: B51
  article-title: Wavelet entropy-based inter-subject associative cortical source localization for sensorimotor BCI
  publication-title: Front. Neuroinform
  doi: 10.3389/fninf.2019.00047
– start-page: 770
  year: 2016
  ident: B21
  article-title: “Deep residual learning for image recognition,”
  publication-title: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
  doi: 10.1109/CVPR.2016.90
– volume: 96
  start-page: S71
  year: 2015
  ident: B37
  article-title: Proof of principle of a brain-computer interface approach to support poststroke arm rehabilitation in hospitalized patients: design, acceptability, and usability
  publication-title: Arch. Phys. Med. Rehabil
  doi: 10.1016/j.apmr.2014.05.026
– year: 2014
  ident: B29
  article-title: ADAM: a method for stochastic optimization
  publication-title: arXiv[Preprint].arXiv:1412.6980
– start-page: 2672
  volume-title: Proceedings of the 27th International Conference on Neural Information Processing Systems
  year: 2014
  ident: B19
  article-title: “Generative adversarial nets,”
– volume: 11
  start-page: 035005
  year: 2014
  ident: B28
  article-title: Integrating dynamic stopping, transfer learning and language models in an adaptive zero-training ERP speller
  publication-title: J. Neural Eng
  doi: 10.1088/1741-2560/11/3/035005
– volume: 6
  start-page: 55
  year: 2012
  ident: B57
  article-title: Review of the BCI competition IV
  publication-title: Front. Neurosci
  doi: 10.3389/fnins.2012.00055
– year: 2014
  ident: B18
  article-title: Bayesian optimization with unknown constraints
  publication-title: arXiv[Preprint].arXiv:1403.5607
  doi: 10.5555/3020751.3020778
– volume: 10
  start-page: P85
  year: 2009
  ident: B4
  article-title: Towards a cure for BCI illiteracy: machine learning based co-adaptive learning
  publication-title: BMC Neurosci
  doi: 10.1186/1471-2202-10-S1-P85
– volume: 12
  start-page: 85
  year: 2015
  ident: B14
  article-title: MEG-based neurofeedback for hand rehabilitation
  publication-title: J. Neuroeng. Rehabil
  doi: 10.1186/s12984-015-0076-7
– volume: 25
  start-page: 566
  year: 2017
  ident: B36
  article-title: A deep learning scheme for motor imagery classification based on restricted Boltzmann machines
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng
  doi: 10.1109/TNSRE.2016.2601240
– volume: 12
  start-page: 145
  year: 1999
  ident: B42
  article-title: On the momentum term in gradient descent learning algorithms
  publication-title: Neural Netw
  doi: 10.1016/S0893-6080(98)00116-6
– volume: 2011
  start-page: 1
  year: 2011
  ident: B11
  article-title: Multisubject learning for common spatial patterns in motor-imagery BCI
  publication-title: Comput. Intell. Neurosci
  doi: 10.1155/2011/217987
– volume: 12
  start-page: 312
  year: 2018
  ident: B58
  article-title: EEG-based BCI control schemes for lower-limb assistive-robots
  publication-title: Front. Hum. Neurosci
  doi: 10.3389/fnhum.2018.00312
– volume: 16
  start-page: 026007
  year: 2019
  ident: B12
  article-title: Inter-subject transfer learning with an end-to-end deep convolutional neural network for EEG-based BCI
  publication-title: J. Neural Eng
  doi: 10.1088/1741-2552/aaf3f6
– volume: 197
  start-page: 425
  year: 2019
  ident: B67
  article-title: Adaptive neural network classifier for decoding MEG signals
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2019.04.068
– volume: 212
  start-page: 94
  year: 2013
  ident: B24
  article-title: Whether generic model works for rapid ERP-based BCI calibration
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2012.09.020
– year: 2019
  ident: B31
  article-title: Subject-independent brain-computer interfaces based on deep convolutional neural networks
  publication-title: IEEE Trans. Neural Netw. Learn. Systems
  doi: 10.1109/TNNLS.2019.2946869
– start-page: 1097
  volume-title: Advances in Neural Information Processing Systems 25
  year: 2012
  ident: B30
  article-title: “Imagenet classification with deep convolutional neural networks,”
– start-page: 6501
  volume-title: 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society
  year: 2014
  ident: B1
  article-title: “Subject-to-subject adaptation to reduce calibration time in motor imagery-based brain-computer interface,”
  doi: 10.1109/EMBC.2014.6945117
– volume: 16
  start-page: 683
  year: 2009
  ident: B27
  article-title: Composite common spatial pattern for subject-to-subject transfer
  publication-title: IEEE Signal Process. Lett
  doi: 10.1109/LSP.2009.2022557
– volume: 8
  start-page: 10087
  year: 2018
  ident: B20
  article-title: Across-subject offline decoding of motor imagery from MEG and EEG
  publication-title: Sci. Rep
  doi: 10.1038/s41598-018-28295-z
– volume: 14
  start-page: 016003
  year: 2016
  ident: B56
  article-title: A novel deep learning approach for classification of EEG motor imagery signals
  publication-title: J. Neural Eng
  doi: 10.1088/1741-2560/14/1/016003
– volume: 38
  start-page: 5391
  year: 2017
  ident: B52
  article-title: Deep learning with convolutional neural networks for EEG decoding and visualization
  publication-title: Hum. Brain Mapp
  doi: 10.1002/hbm.23730
– start-page: 4148
  volume-title: Advances in Neural Information Processing Systems 30
  year: 2017
  ident: B62
  article-title: “The marginal value of adaptive gradient methods in machine learning,”
– volume: 32
  start-page: 6601
  year: 2020
  ident: B25
  article-title: EEG classification using sparse Bayesian extreme learning machine for brain-computer interface
  publication-title: Neural Comput. Appl
  doi: 10.1007/s00521-018-3735-3
– start-page: 315
  volume-title: Proceedings of the 26th International Conference on Neural Information Processing Systems, NIPS'13
  year: 2013
  ident: B26
  article-title: “Accelerating stochastic gradient descent using predictive variance reduction,”
– volume: 23
  start-page: 631
  year: 2019
  ident: B23
  article-title: Sparse group representation model for motor imagery EEG classification
  publication-title: IEEE J. Biomed. Health Inform
  doi: 10.1109/JBHI.2018.2832538
– volume: 65
  start-page: 1107
  year: 2018
  ident: B64
  article-title: Transfer learning: a Riemannian geometry framework with applications to brain-computer interfaces
  publication-title: IEEE Trans. Biomed. Eng
  doi: 10.1109/TBME.2017.2742541
– volume: 26
  start-page: 371
  year: 2018
  ident: B49
  article-title: Evidence of variabilities in EEG dynamics during motor imagery-based multiclass brain-computer interface
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng
  doi: 10.1109/TNSRE.2017.2778178
– year: 2019
  ident: B65
  article-title: A survey on deep learning based brain computer interface: recent advances and new Frontiers
  publication-title: arXiv
– volume: 57
  start-page: 1318
  year: 2010
  ident: B33
  article-title: Application of covariate shift adaptation techniques in brain-computer interfaces
  publication-title: IEEE Trans. Biomed. Eng
  doi: 10.1109/TBME.2009.2039997
– volume: 22
  start-page: 517
  year: 2018
  ident: B53
  article-title: Interpreting and utilising intersubject variability in brain function
  publication-title: Trends Cogn. Sci
  doi: 10.1016/j.tics.2018.03.003
– volume: 312
  start-page: 1
  year: 2019
  ident: B10
  article-title: An EEG-EMG correlation-based brain-computer interface for hand orthosis supported neuro-rehabilitation
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2018.11.010
– volume: 9
  start-page: e87253
  year: 2014
  ident: B40
  article-title: Using reinforcement learning to provide stable brain-machine interface control despite neural input reorganization
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0087253
– volume: 20
  start-page: 3085
  year: 2016
  ident: B44
  article-title: Adaptive learning with covariate shift-detection for motor imagery-based brain-computer interface
  publication-title: Soft Comput
  doi: 10.1007/s00500-015-1937-5
– volume: 58
  start-page: 355
  year: 2011
  ident: B35
  article-title: Regularizing common spatial patterns to improve BCI designs: unified theory and new algorithms
  publication-title: IEEE Trans. Biomed. Eng
  doi: 10.1109/TBME.2010.2082539
– volume: 74
  start-page: 100
  year: 2013
  ident: B43
  article-title: Brain-machine interface in chronic stroke rehabilitation: a controlled study
  publication-title: Ann. Neurol
  doi: 10.1002/ana.23879
– start-page: 1317
  volume-title: 2019 IEEE International Conference on Systems, Man and Cybernetics (SMC)
  ident: B46
  article-title: “Can a single model deep learning approach enhance classification accuracy of an EEG-based brain-computer interface?”
– volume: 48
  start-page: 1908
  year: 2017
  ident: B6
  article-title: Contralesional brain-computer interface control of a powered exoskeleton for motor recovery in chronic stroke survivors
  publication-title: Stroke
  doi: 10.1161/STROKEAHA.116.016304
– volume: 22
  start-page: 1786
  ident: B8
  article-title: Active physical practice followed by mental practice using BCI-driven hand exoskeleton: a pilot trial for clinical effectiveness and usability
  publication-title: IEEE J. Biomed. Health Inform
  doi: 10.1109/JBHI.2018.2863212
– volume: 170
  start-page: 161
  year: 2015
  ident: B15
  article-title: Evaluating quantum neural network filtered motor imagery brain-computer interface using multiple classification techniques
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2014.12.114
– volume: 123
  start-page: 1328
  year: 2012
  ident: B54
  article-title: Online use of error-related potentials in healthy users and people with severe motor impairment increases performance of a p300-bci
  publication-title: Clin. Neurophysiol
  doi: 10.1016/j.clinph.2011.11.082
– volume: 7
  start-page: 13749
  year: 2016
  ident: B55
  article-title: Making brain-machine interfaces robust to future neural variability
  publication-title: Nat. Commun
  doi: 10.1038/ncomms13749
– volume: 343
  start-page: 154
  year: 2019
  ident: B45
  article-title: Covariate shift estimation based adaptive ensemble learning for handling non-stationarity in motor imagery related EEG-based brain-computer interface
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.04.087
– volume: 15
  start-page: 056013
  year: 2018
  ident: B32
  article-title: EEGNet: a compact convolutional neural network for EEG-based brain-computer interfaces
  publication-title: J. Neural Eng
  doi: 10.1088/1741-2552/aace8c
– volume: 39
  start-page: 910
  year: 2008
  ident: B5
  article-title: Think to move: a neuromagnetic brain-computer interface (BCI) system for chronic stroke
  publication-title: Stroke
  doi: 10.1161/STROKEAHA.107.505313
– volume: 11
  start-page: 20
  year: 2016
  ident: B22
  article-title: Transfer learning in brain-computer interfaces
  publication-title: IEEE Comput. Intell. Mag
  doi: 10.1109/MCI.2015.2501545
– year: 2008
  ident: B2
  publication-title: BCI Competition 2008–Graz Data Set B
– volume: 110
  start-page: 1842
  year: 1999
  ident: B39
  article-title: Event-related EEG/MEG synchronization and desynchronization: basic principles
  publication-title: Clin. Neurophysiol
  doi: 10.1016/S1388-2457(99)00141-8
SSID ssj0062842
Score 2.4768538
Snippet Inter-subject transfer learning is a long-standing problem in brain-computer interfaces (BCIs) and has not yet been fully realized due to high inter-subject...
SourceID doaj
pubmedcentral
proquest
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 918
SubjectTerms Adaptation
adaptive learning
Algorithms
Bayesian analysis
brain-computer interface (BCI)
Calibration
Classification
Competition
convolutional neural network (CNN)
Datasets
Deep learning
Discriminant analysis
EEG
electroencephalography (EEG)
Feedback
Interfaces
Mental task performance
motor imagery
Neural networks
Neuroscience
Transfer learning
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYq1EMvVSmgbguVKyEkDtEmjhPbR5aHygHEASRukZ9lJfCuYLcS_54ZO7vaXNoL13jiODP2jD979A0hh46FMoiyKdrGaAAonhVGVazgLAhrWi91Y1OxCXF9Le_v1c1GqS_MCcv0wFlxY2W01xBGbQlYxFZSscpAN6rS2jHAb-h9S6FWYCr74BacLsuXkgDB1DjEaURuboZ5XAoLfGwEocTVP9hgDtMjN-LNxRfyud8o0pM8wG3ywcevZOckAkh-eqVHNKVupjPxHRLPvJ_Tnir1D51AZHI0nfUVL0uDJy0UWaimcQk4n54B4sSIRWeBXs0Ac9PLJ2SyeKWwgaWZwAgsRydYPaJYlX3I_QXM4Noldxfnt6e_i76QQmHBDy4K00AohJXGGidVqJktHaivdlXQQYbaASwJsgWgh8q1ona6tUbqSknPpalCvUe24iz6b4RCB1aASKWN4yIIBeGfe-6DUaXm2o3IeKXZzvYs41js4rEDtIG26JItOrRFl2wxIsfrN-aZYeMfshM01loOubHTA5gxXT9juv_NmBHZX5m66xcsfINzAbG8weZf62ZYanh_oqMH84BMwwEOwxZqRMRgigwGNGyJ04dE2i0arOauvr_HH_wgn1AnOW1ln2wtnpf-gHy0fxfTl-efaSW8AY5oEqo
  priority: 102
  providerName: Directory of Open Access Journals
Title Deep Learning Based Inter-subject Continuous Decoding of Motor Imagery for Practical Brain-Computer Interfaces
URI https://www.proquest.com/docview/2447362588
https://www.proquest.com/docview/2454409190
https://pubmed.ncbi.nlm.nih.gov/PMC7554529
https://doaj.org/article/9baea639c0184c18921bf7c91aad2788
Volume 14
WOSCitedRecordID wos000578768700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1662-453X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0062842
  issn: 1662-453X
  databaseCode: DOA
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 1662-453X
  dateEnd: 20211231
  omitProxy: false
  ssIdentifier: ssj0062842
  issn: 1662-453X
  databaseCode: M7P
  dateStart: 20071015
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1662-453X
  dateEnd: 20211231
  omitProxy: false
  ssIdentifier: ssj0062842
  issn: 1662-453X
  databaseCode: BENPR
  dateStart: 20071015
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Publicly Available Content
  customDbUrl:
  eissn: 1662-453X
  dateEnd: 20211231
  omitProxy: false
  ssIdentifier: ssj0062842
  issn: 1662-453X
  databaseCode: PIMPY
  dateStart: 20071015
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 1662-453X
  dateEnd: 20211231
  omitProxy: false
  ssIdentifier: ssj0062842
  issn: 1662-453X
  databaseCode: M2P
  dateStart: 20071015
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZolwMXXgWxUFZGQkgcok2ch-0T6tJW9LCrCIG0nCI_25VosuwDqf-eGSdZNZdeuOSQOI6tsWfmG0--IeSjZT72PM6jItcKAIpjkZYJizLmudGFEyo3odgEXyzEcinLLuC27dIqe50YFLVtDMbIp2CGOCjbXIgv6z8RVo3C09WuhMYRGYFnk2BK15yVvSYuQPWG084C_wwC17w9pgRQJqe-XtXI1s0ws0tiyY97Zimw9w9czmHC5D0LdPnsf8f-nDztfE961i6WF-SRq1-Sk7MacPftHf1EQzZoCLOfkPrcuTXt2Fev6QyMnaUhfBht9xqDNxSJrVb1vtlv6TmAWDSCtPF03gCMp1e3SI5xR8Enpi0nEiwGOsOCFFFfSaLtz2NS2Cvy8_Lix9dvUVebITKgWneRzsG6wuZluRXSp8zENlEqtYlXXvjUAtLxogDsKFmiDU-tKowWKpHCZUInPn1Njuumdm8IhQ4MhyaJ0jbjnkvwKDKXOa9lrDJlx2Tai6YyHXE51s_4XQGAQWFWQZgVCrMKwhyTz4c31i1pxwNtZyjtQzuk2w43ms111e3eSmrlFPhyJgZAbBKBk4K1LGHKlnEBnZz2gq86HQDfOEh9TD4cHsPuxSMZVTsQD7TJM0DY4JWNCR-sscGAhk_q1U3gAec5FoiXbx_--DvyBGfb5rickuPdZu_ek8fm72613UzIEV-KCRnNLhbl90mISEzCJsIrh-uovJqXv_4BsMoopg
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9NAEF2VggQXvkpFSoFFAiQOVuKN7d09INQQqkZtox6K1JvZzxKJ2mnigPKn-I3MrO2ovvTWA9d4s87Gb2fm7YzfEPLeMj_wfJBGWaoVEBTHIi1jFiXMc6MzJ1RqQrMJPp2Kiwt5tkX-tu_CYFllaxODobalwTPyPrghDsY2FeLL_DrCrlGYXW1baNSwOHbrP0DZlp8nY3i-Hxg7_Hb-9ShqugpEBoxCFekU_ALAjqVWSD9kZmBjpYY29soLP7QQo3uRAeuRLNaGD63KjBYKyLlLhI79EOa9R-4nqCyGpYLsrLX8GZj6kF3N8E0koAJ1WhRIoOz7YlagOjjDSjKJLUZuuMHQLaAT4nYLNG94vMMn_9t_9ZQ8bmJrelBvhmdkyxXPyc5Boaryak0_0lDtGtIIO6QYOzenjbrsJR2BM7c0HI9Gy5XGwymKwl2zYlWulnQMJB2dPC09PS2rckEnVyj-saYQ89Na8wnATkfYcCNqO2XU83ksentBvt_JynfJdlEW7iWhMIHhMCRW2ibccwkRU-IS57UcqETZHum3UMhNI8yO_UF-5UDQEDx5AE-O4MkDeHrk0-Yb81qU5JaxI0TXZhzKiYcPysVl3linXGrlFMSqZgCE38QCFwV7VcKSLeMCJtlvgZY3Ng7usUFZj7zbXAbrhCknVTh4PDAmhY0iIersEd7BdOcHda8Us59B55xDqJsyuXf7zd-Sh0fnpyf5yWR6_Io8wpXX9Tz7ZLtarNxr8sD8rmbLxZuwWSn5cdeI_wcCAoD2
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEF6VFCEuvAoiUGCRAImDFXtje70HhBpCRFQa5QBSOZl9lkitnSYOKH-NX8fM2o7qS289cPWu117725n5dmZnCHljmAsdD5MgTZQEgmJZoETEgpg5rlVqM5loX2yCz2bZ6amY75G_7VkYDKtsZaIX1KbUuEc-ADXEQdgmQNhcExYxH08-Li8DrCCFnta2nEYNkWO7_QP0bf1hOoZ__Zaxyedvn74ETYWBQIOAqAKVgI4ACLLEZMINmQ5NJOXQRE66zA0N2OsuS4EBCRYpzYdGplplEoi6jTMVuSGMe4vsg0kesx7Zn09P5j9aPZCC4Pe-1hTPJQExqJ2kQAnFwBWLAnOFM4wrE1hw5IpS9LUDOgZvN1zziv6b3P-fv9wDcq-xuulRvUwekj1bPCIHR4WsyostfUd9HKx3MByQYmztkjZ5Z8_oCNS8oX7jNFhvFG5bUUzptSg25WZNx0DfUf3T0tGTsipXdHqBaUG2FNgArbNBwTKgIyzFEbQ1NOrxHIbDPSbfb2TmT0ivKAv7lFAYQHPoEkllYu64AFsqtrF1SoQylqZPBi0sct2kbMfKIec5UDcEUu6BlCOQcg-kPnm_u2NZpyu5pu8Ikbbrh4nG_YVydZY3cisXSloJVqwOoyzWUYaTglUsYMqG8QwGOWxBlzfSD56xQ1yfvN41g9xCZ5QsLPwe6JPEMbyGCPuEd_DdeaFuS7H45TOgczCCEyaeXf_wV-QOAD3_Op0dPyd3ceJ1oM8h6VWrjX1Bbuvf1WK9etmsXEp-3jTk_wEso4s_
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Learning+Based+Inter-subject+Continuous+Decoding+of+Motor+Imagery+for+Practical+Brain-Computer+Interfaces&rft.jtitle=Frontiers+in+neuroscience&rft.au=Roy%2C+Sujit&rft.au=Chowdhury%2C+Anirban&rft.au=McCreadie%2C+Karl&rft.au=Prasad%2C+Girijesh&rft.date=2020-09-30&rft.issn=1662-4548&rft.volume=14&rft.spage=918&rft_id=info:doi/10.3389%2Ffnins.2020.00918&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1662-453X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1662-453X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1662-453X&client=summon