The Landsat Burned Area algorithm and products for the conterminous United States
Complete and accurate burned area map data are needed to document spatial and temporal patterns of fires, to quantify their drivers, and to assess the impacts on human and natural systems. In this study, we developed the Landsat Burned Area (BA) algorithm, an update from the Landsat Burned Area Esse...
Saved in:
| Published in: | Remote sensing of environment Vol. 244; p. 111801 |
|---|---|
| Main Authors: | , , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
New York
Elsevier Inc
01.07.2020
Elsevier BV |
| Subjects: | |
| ISSN: | 0034-4257, 1879-0704 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Complete and accurate burned area map data are needed to document spatial and temporal patterns of fires, to quantify their drivers, and to assess the impacts on human and natural systems. In this study, we developed the Landsat Burned Area (BA) algorithm, an update from the Landsat Burned Area Essential Climate Variable (BAECV) algorithm. Here, we present the BA algorithm and products, changes relative to the BAECV algorithm and products, and updated validation metrics. We also present spatial and temporal patterns of burned area across the conterminous U.S., how burned area varies in relation to the number of operational Landsat sensors, and a comparison with other burned area datasets, including the BAECV, Monitoring Trends in Burn Severity (MTBS), GeoMAC, and Moderate Resolution Imaging Spectroradiometer (MODIS) MCD64A1.006 data. The BA algorithm identifies burned areas in analysis ready data (ARD) time-series of Landsat imagery from 1984 through 2018 using machine learning, thresholding, and image segmentation. Validation with reference data from high-resolution commercial satellite imagery resulted in omission and commission error rates averaging 19% and 41%, respectively. In comparison, validation with Landsat reference data had omission and commission error rates averaging 40% and 28%, respectively when burned areas in cultivated crops and pasture/hay land-cover types were excluded. Both validation tests documented lower commission error rates relative to the BAECV products. The amount of burned area detected varies not only in response to climate but also with the number of operational sensors and scenes collected. The combined amount of burned area detected by multiple sensors was larger than from any individual sensor, but there was no significant difference between individual sensors. Therefore, we used BA products from individual sensors to assess trends over time and all available sensors to compare with other existing BA products. From 1984 through 2018, annual burned area averaged 30,000 km2, ranged between 14,000 km2 in 1991 and 46,500 km2 in 2012, and increased over time at a rate of 356 km2/year. Compared to existing burned area products, the new Landsat BA products identified 29% more burned area than the BAECV products (1984–2015), 183% more than the MTBS/GeoMAC products (1984–2018), and 56% more than the MCD64A1.006 products (2003–2018). The products had similar patterns of year-to-year variability; the R2 values of linear regressions between annual burned area were >0.70 with the BAECV products and the MTBS/GeoMAC products, but somewhat lower for the MCD64A1.006 product (R2 = 0.66). The BA products are routinely produced as new Landsat data are collected and provide a unique data source to monitor and assess the spatial and temporal patterns and the impacts of fire.
[Display omitted]
•We describe the Landsat Burned Area (BA) algorithm and products for CONUS.•The algorithm operationalizes Landsat TM, ETM+, and OLI burned area products.•Commission error for wildland fires improved over the Landsat BAECV products.•Omission and commission error rates were lower than coarse-resolution BA products.•Burned area products can be consistently generated from the Landsat archive. |
|---|---|
| AbstractList | Complete and accurate burned area map data are needed to document spatial and temporal patterns of fires, to quantify their drivers, and to assess the impacts on human and natural systems. In this study, we developed the Landsat Burned Area (BA) algorithm, an update from the Landsat Burned Area Essential Climate Variable (BAECV) algorithm. Here, we present the BA algorithm and products, changes relative to the BAECV algorithm and products, and updated validation metrics. We also present spatial and temporal patterns of burned area across the conterminous U.S., how burned area varies in relation to the number of operational Landsat sensors, and a comparison with other burned area datasets, including the BAECV, Monitoring Trends in Burn Severity (MTBS), GeoMAC, and Moderate Resolution Imaging Spectroradiometer (MODIS) MCD64A1.006 data. The BA algorithm identifies burned areas in analysis ready data (ARD) time-series of Landsat imagery from 1984 through 2018 using machine learning, thresholding, and image segmentation. Validation with reference data from high-resolution commercial satellite imagery resulted in omission and commission error rates averaging 19% and 41%, respectively. In comparison, validation with Landsat reference data had omission and commission error rates averaging 40% and 28%, respectively when burned areas in cultivated crops and pasture/hay land-cover types were excluded. Both validation tests documented lower commission error rates relative to the BAECV products. The amount of burned area detected varies not only in response to climate but also with the number of operational sensors and scenes collected. The combined amount of burned area detected by multiple sensors was larger than from any individual sensor, but there was no significant difference between individual sensors. Therefore, we used BA products from individual sensors to assess trends over time and all available sensors to compare with other existing BA products. From 1984 through 2018, annual burned area averaged 30,000 km², ranged between 14,000 km² in 1991 and 46,500 km² in 2012, and increased over time at a rate of 356 km²/year. Compared to existing burned area products, the new Landsat BA products identified 29% more burned area than the BAECV products (1984–2015), 183% more than the MTBS/GeoMAC products (1984–2018), and 56% more than the MCD64A1.006 products (2003–2018). The products had similar patterns of year-to-year variability; the R² values of linear regressions between annual burned area were >0.70 with the BAECV products and the MTBS/GeoMAC products, but somewhat lower for the MCD64A1.006 product (R² = 0.66). The BA products are routinely produced as new Landsat data are collected and provide a unique data source to monitor and assess the spatial and temporal patterns and the impacts of fire. Complete and accurate burned area map data are needed to document spatial and temporal patterns of fires, to quantify their drivers, and to assess the impacts on human and natural systems. In this study, we developed the Landsat Burned Area (BA) algorithm, an update from the Landsat Burned Area Essential Climate Variable (BAECV) algorithm. Here, we present the BA algorithm and products, changes relative to the BAECV algorithm and products, and updated validation metrics. We also present spatial and temporal patterns of burned area across the conterminous U.S., how burned area varies in relation to the number of operational Landsat sensors, and a comparison with other burned area datasets, including the BAECV, Monitoring Trends in Burn Severity (MTBS), GeoMAC, and Moderate Resolution Imaging Spectroradiometer (MODIS) MCD64A1.006 data. The BA algorithm identifies burned areas in analysis ready data (ARD) time-series of Landsat imagery from 1984 through 2018 using machine learning, thresholding, and image segmentation. Validation with reference data from high-resolution commercial satellite imagery resulted in omission and commission error rates averaging 19% and 41%, respectively. In comparison, validation with Landsat reference data had omission and commission error rates averaging 40% and 28%, respectively when burned areas in cultivated crops and pasture/hay land-cover types were excluded. Both validation tests documented lower commission error rates relative to the BAECV products. The amount of burned area detected varies not only in response to climate but also with the number of operational sensors and scenes collected. The combined amount of burned area detected by multiple sensors was larger than from any individual sensor, but there was no significant difference between individual sensors. Therefore, we used BA products from individual sensors to assess trends over time and all available sensors to compare with other existing BA products. From 1984 through 2018, annual burned area averaged 30,000 km2, ranged between 14,000 km2 in 1991 and 46,500 km2 in 2012, and increased over time at a rate of 356 km2/year. Compared to existing burned area products, the new Landsat BA products identified 29% more burned area than the BAECV products (1984–2015), 183% more than the MTBS/GeoMAC products (1984–2018), and 56% more than the MCD64A1.006 products (2003–2018). The products had similar patterns of year-to-year variability; the R2 values of linear regressions between annual burned area were >0.70 with the BAECV products and the MTBS/GeoMAC products, but somewhat lower for the MCD64A1.006 product (R2 = 0.66). The BA products are routinely produced as new Landsat data are collected and provide a unique data source to monitor and assess the spatial and temporal patterns and the impacts of fire. Complete and accurate burned area map data are needed to document spatial and temporal patterns of fires, to quantify their drivers, and to assess the impacts on human and natural systems. In this study, we developed the Landsat Burned Area (BA) algorithm, an update from the Landsat Burned Area Essential Climate Variable (BAECV) algorithm. Here, we present the BA algorithm and products, changes relative to the BAECV algorithm and products, and updated validation metrics. We also present spatial and temporal patterns of burned area across the conterminous U.S., how burned area varies in relation to the number of operational Landsat sensors, and a comparison with other burned area datasets, including the BAECV, Monitoring Trends in Burn Severity (MTBS), GeoMAC, and Moderate Resolution Imaging Spectroradiometer (MODIS) MCD64A1.006 data. The BA algorithm identifies burned areas in analysis ready data (ARD) time-series of Landsat imagery from 1984 through 2018 using machine learning, thresholding, and image segmentation. Validation with reference data from high-resolution commercial satellite imagery resulted in omission and commission error rates averaging 19% and 41%, respectively. In comparison, validation with Landsat reference data had omission and commission error rates averaging 40% and 28%, respectively when burned areas in cultivated crops and pasture/hay land-cover types were excluded. Both validation tests documented lower commission error rates relative to the BAECV products. The amount of burned area detected varies not only in response to climate but also with the number of operational sensors and scenes collected. The combined amount of burned area detected by multiple sensors was larger than from any individual sensor, but there was no significant difference between individual sensors. Therefore, we used BA products from individual sensors to assess trends over time and all available sensors to compare with other existing BA products. From 1984 through 2018, annual burned area averaged 30,000 km2, ranged between 14,000 km2 in 1991 and 46,500 km2 in 2012, and increased over time at a rate of 356 km2/year. Compared to existing burned area products, the new Landsat BA products identified 29% more burned area than the BAECV products (1984–2015), 183% more than the MTBS/GeoMAC products (1984–2018), and 56% more than the MCD64A1.006 products (2003–2018). The products had similar patterns of year-to-year variability; the R2 values of linear regressions between annual burned area were >0.70 with the BAECV products and the MTBS/GeoMAC products, but somewhat lower for the MCD64A1.006 product (R2 = 0.66). The BA products are routinely produced as new Landsat data are collected and provide a unique data source to monitor and assess the spatial and temporal patterns and the impacts of fire. [Display omitted] •We describe the Landsat Burned Area (BA) algorithm and products for CONUS.•The algorithm operationalizes Landsat TM, ETM+, and OLI burned area products.•Commission error for wildland fires improved over the Landsat BAECV products.•Omission and commission error rates were lower than coarse-resolution BA products.•Burned area products can be consistently generated from the Landsat archive. |
| ArticleNumber | 111801 |
| Author | Dwyer, John L. Picotte, Joshua J. Hawbaker, Todd J. Schmidt, Gail L. Vanderhoof, Melanie K. Beal, Yen-Ju Falgout, Jeff T. Takacs, Joshua D. |
| Author_xml | – sequence: 1 givenname: Todd J. orcidid: 0000-0003-0930-9154 surname: Hawbaker fullname: Hawbaker, Todd J. email: tjhawbaker@usgs.gov organization: U.S. Geological Survey, Geosciences and Environmental Change Science Center, Denver, CO 80225, United States of America – sequence: 2 givenname: Melanie K. surname: Vanderhoof fullname: Vanderhoof, Melanie K. organization: U.S. Geological Survey, Geosciences and Environmental Change Science Center, Denver, CO 80225, United States of America – sequence: 3 givenname: Gail L. surname: Schmidt fullname: Schmidt, Gail L. organization: KBR, Contractor to the U.S. Geological Survey, Earth Resources Observation and Science Center, Sioux Falls, SD 57198, United States of America – sequence: 4 givenname: Yen-Ju surname: Beal fullname: Beal, Yen-Ju organization: U.S. Geological Survey, Geosciences and Environmental Change Science Center, Denver, CO 80225, United States of America – sequence: 5 givenname: Joshua J. surname: Picotte fullname: Picotte, Joshua J. organization: ASRC Federal Data Solutions, Contractor to the U.S. Geological Survey, Earth Resources Observation and Science Center, Sioux Falls, SD 57198, United States of America – sequence: 6 givenname: Joshua D. surname: Takacs fullname: Takacs, Joshua D. organization: U.S. Geological Survey, Geosciences and Environmental Change Science Center, Denver, CO 80225, United States of America – sequence: 7 givenname: Jeff T. surname: Falgout fullname: Falgout, Jeff T. organization: U.S. Geological Survey, Core Science, Analytics, Synthesis, and Libraries; Denver, CO 80225, United States of America – sequence: 8 givenname: John L. surname: Dwyer fullname: Dwyer, John L. organization: U.S. Geological Survey, Earth Resources Observation Science Center, Sioux Falls, SD 57198, United States of America |
| BookMark | eNp9kM1OAyEYRYmpia36AO5I3LiZCgMzzMRVbfxLmhhjuyYUvrE0U6hATXx7aeqqi64I4R5y7xmhgfMOELqhZEwJre_X4xBhXJIy3yltCD1DQ9qItiCC8AEaEsJ4wctKXKBRjGtCaNUIOkQf8xXgmXImqoQfd8GBwZMACqv-ywebVhucH_E2eLPTKeLOB5wyor1LEDbW-V3EC2dT5j6TShCv0Hmn-gjX_-clWjw_zaevxez95W06mRWa1yIVCjoDXNVGt9WyUXVdldw0ULOWt6YVqobGtBUjpDJdxTqijKpbZpatIKxSmrNLdHf4N3f73kFMcmOjhr5XDnIpWXK2F8BLkqO3R9G1z1Nzu31KcFYKVuaUOKR08DEG6KS2eZHNS4OyvaRE7lXLtcyq5V61PKjOJD0it8FuVPg9yTwcGMiOfiwEGbUFp8HYADpJ4-0J-g-pWZf4 |
| CitedBy_id | crossref_primary_10_1080_15481603_2025_2498188 crossref_primary_10_3390_f15111959 crossref_primary_10_1016_j_pce_2025_103893 crossref_primary_10_3390_fire8090337 crossref_primary_10_1016_j_isprsjprs_2024_02_014 crossref_primary_10_1016_j_catena_2021_105949 crossref_primary_10_1016_j_measurement_2023_112961 crossref_primary_10_1016_j_rse_2023_113745 crossref_primary_10_1016_j_jag_2025_104815 crossref_primary_10_3390_rs14030602 crossref_primary_10_3390_fire6050215 crossref_primary_10_1007_s11027_023_10087_0 crossref_primary_10_1016_j_ecolind_2022_108999 crossref_primary_10_3390_rs14174354 crossref_primary_10_1029_2023GB007813 crossref_primary_10_1016_j_foreco_2021_119635 crossref_primary_10_3390_rs14194714 crossref_primary_10_3390_rs14246376 crossref_primary_10_1016_j_rse_2024_114071 crossref_primary_10_3390_rs16132500 crossref_primary_10_1117_1_JRS_18_014531 crossref_primary_10_3390_f15040705 crossref_primary_10_3390_fire4020026 crossref_primary_10_1016_j_asr_2024_12_001 crossref_primary_10_1029_2020EF001960 crossref_primary_10_3390_rs14112510 crossref_primary_10_1080_17538947_2024_2376275 crossref_primary_10_1186_s42408_020_00087_9 crossref_primary_10_1109_TGRS_2024_3457543 crossref_primary_10_3390_fire8040126 crossref_primary_10_1016_j_rse_2022_113237 crossref_primary_10_1093_ornithapp_duaf029 crossref_primary_10_3390_data7060078 crossref_primary_10_3390_f14071357 crossref_primary_10_5194_essd_12_3229_2020 crossref_primary_10_1016_j_geomat_2024_100008 crossref_primary_10_1016_j_rse_2021_112569 crossref_primary_10_3390_fire4030058 crossref_primary_10_3390_fire6100372 crossref_primary_10_1029_2024JG008635 crossref_primary_10_3390_computers14080337 crossref_primary_10_3390_fire5060180 crossref_primary_10_1016_j_jag_2023_103350 crossref_primary_10_3390_fire8040160 crossref_primary_10_1002_2688_8319_12352 crossref_primary_10_1016_j_scitotenv_2024_169929 crossref_primary_10_1186_s13021_024_00274_0 crossref_primary_10_3390_land11101856 crossref_primary_10_3389_fenvs_2024_1433920 crossref_primary_10_3390_land11101615 crossref_primary_10_1016_j_isprsjprs_2024_08_019 crossref_primary_10_1016_j_isprsjprs_2025_05_016 crossref_primary_10_3390_fire6030101 crossref_primary_10_3390_rs13194005 crossref_primary_10_1016_j_rse_2023_113498 crossref_primary_10_3390_fire4030052 crossref_primary_10_3390_rs17132283 crossref_primary_10_3390_rs13214298 crossref_primary_10_3390_fire7120482 crossref_primary_10_1016_j_rse_2020_112115 crossref_primary_10_1016_j_oneear_2024_05_014 crossref_primary_10_3390_fire7070257 crossref_primary_10_1109_JSTARS_2023_3316303 crossref_primary_10_3390_rs14092075 crossref_primary_10_3390_rs13040816 crossref_primary_10_3390_f14010032 crossref_primary_10_3390_f16081205 crossref_primary_10_1080_01431161_2024_2380543 crossref_primary_10_1676_23_00049 crossref_primary_10_5194_essd_13_5353_2021 crossref_primary_10_1071_WF24137 crossref_primary_10_1071_WF24214 crossref_primary_10_1029_2020AV000298 crossref_primary_10_1016_j_rsase_2023_100925 crossref_primary_10_5194_essd_15_5227_2023 crossref_primary_10_3390_rs14153546 crossref_primary_10_1088_1748_9326_abd3d1 crossref_primary_10_3389_ffgc_2022_1052299 crossref_primary_10_3390_fire5040095 crossref_primary_10_3390_rs13193843 crossref_primary_10_1016_j_rse_2023_113918 crossref_primary_10_1093_pnasnexus_pgad315 crossref_primary_10_3390_ijgi9100564 crossref_primary_10_3390_fire8080316 crossref_primary_10_3390_rs12152438 crossref_primary_10_3390_rs16142629 crossref_primary_10_1080_10106049_2023_2285345 crossref_primary_10_1111_aje_13152 crossref_primary_10_1071_WF22044 crossref_primary_10_1016_j_rse_2022_113298 crossref_primary_10_3390_rs12132168 crossref_primary_10_1002_ecs2_4403 crossref_primary_10_1016_j_rse_2023_113753 crossref_primary_10_1016_j_scitotenv_2022_157139 crossref_primary_10_1071_WF22200 |
| Cites_doi | 10.5194/essd-10-2241-2018 10.1016/j.rse.2013.08.014 10.1016/S0034-4257(00)00078-X 10.3390/rs11050489 10.1109/LGRS.2005.857030 10.1007/s00267-014-0364-1 10.1016/0034-4257(79)90013-0 10.1016/j.rse.2008.10.006 10.1641/0006-3568(2001)051[0933:TEOTWA]2.0.CO;2 10.1016/S0034-4257(02)00096-2 10.3390/rs9070743 10.1016/j.rse.2014.02.001 10.14358/PERS.73.2.165 10.1111/geb.12440 10.1016/j.rse.2017.06.031 10.3390/rs8100873 10.1016/j.earscirev.2005.10.006 10.1016/j.rse.2018.12.011 10.1016/j.isprsjprs.2018.09.006 10.1080/10106048809354180 10.1016/j.rse.2017.11.015 10.1214/16-AOAS995 10.1016/S0034-4257(96)00067-3 10.3390/rs61212360 10.3390/rs70912503 10.1016/j.rse.2015.03.011 10.1016/j.rse.2008.05.013 10.1016/j.isprsjprs.2012.03.001 10.5194/essd-10-2015-2018 10.1016/j.rse.2009.08.017 10.1016/j.rse.2011.10.028 10.1016/j.rse.2018.10.028 10.3390/rs10111680 10.1080/10106049109354290 10.1071/WF15039 10.4996/fireecology.0301022 10.1007/BF00031911 10.1016/j.rse.2016.02.054 10.1016/j.rse.2019.02.013 10.1175/BAMS-D-11-00254.1 10.1016/j.jag.2018.05.027 10.1016/j.rse.2019.111254 10.1016/j.rse.2014.06.012 10.1016/j.rse.2017.06.027 10.1080/01431160050145045 10.3390/rs10091363 10.1080/014311698213777 10.1016/j.rse.2015.12.024 10.1016/j.rse.2014.01.011 10.1016/j.rse.2016.09.016 10.1111/j.1365-2656.2008.01390.x 10.1016/0034-4257(88)90106-X 10.1016/S0034-4257(96)00176-9 10.1080/17538947.2015.1111952 10.1080/01431160110053185 10.1029/2007GL031567 10.1016/j.rse.2015.01.005 10.1080/014311698214587 10.1016/j.rse.2017.06.041 10.3390/rs8120986 10.5194/bg-7-1171-2010 10.1080/014311600210506 10.1071/WF14190 10.1016/j.rse.2003.12.015 10.1080/0143116031000082073 10.1080/01431160500113096 10.1016/j.rse.2009.08.014 10.1016/S0034-4257(01)00318-2 10.1016/j.rse.2018.08.005 10.1016/j.rse.2015.01.022 10.1109/TGRS.2006.877436 10.1016/j.rse.2007.12.008 10.1002/2017GL073979 10.4996/fireecology.0301003 10.1016/j.jenvman.2017.08.018 10.1002/2014GL059576 10.1016/j.rse.2016.08.023 10.1175/EI-D-14-0002.1 10.1109/TGRS.2018.2824828 10.1080/01431169608948714 10.3390/rs3112403 10.3390/fire2020036 10.3390/rs11040374 10.1071/WF13019 10.1016/j.rse.2010.07.010 10.1109/TPAMI.2006.233 10.1016/j.rse.2012.12.003 10.1080/01431160903131000 10.1073/pnas.1617394114 10.1073/pnas.0911131107 10.1890/08-0879.1 10.1073/pnas.1607171113 10.1016/j.isprsjprs.2016.04.001 10.1080/01431160500239008 10.1007/s11027-006-1012-8 10.1016/j.rse.2014.03.021 10.1016/j.rse.2003.08.010 10.3390/rs11040447 10.1080/01431160210153129 10.1016/j.rse.2017.06.025 10.1016/j.rse.2019.02.015 10.1016/j.rse.2015.08.032 10.1080/01431160600954704 10.1071/WF16165 10.3390/rs11091124 10.1016/j.rse.2010.07.008 10.1016/j.rse.2005.03.002 10.1029/2018GL078679 10.1016/j.rse.2014.01.008 10.1016/j.rse.2016.04.008 |
| ContentType | Journal Article |
| Copyright | 2020 Copyright Elsevier BV Jul 2020 |
| Copyright_xml | – notice: 2020 – notice: Copyright Elsevier BV Jul 2020 |
| DBID | 6I. AAFTH AAYXX CITATION 7QF 7QO 7QQ 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7TG 7U5 8BQ 8FD C1K F28 FR3 H8D H8G JG9 JQ2 KL. KR7 L7M L~C L~D P64 7S9 L.6 |
| DOI | 10.1016/j.rse.2020.111801 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Ecology Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Meteorological & Geoastrophysical Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library Materials Research Database ProQuest Computer Science Collection Meteorological & Geoastrophysical Abstracts - Academic Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Materials Business File Environmental Sciences and Pollution Management Aerospace Database Copper Technical Reference Library Engineered Materials Abstracts Meteorological & Geoastrophysical Abstracts Biotechnology Research Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Electronics & Communications Abstracts Ceramic Abstracts Ecology Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Meteorological & Geoastrophysical Abstracts - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA Materials Research Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geography Geology Environmental Sciences |
| EISSN | 1879-0704 |
| ExternalDocumentID | 10_1016_j_rse_2020_111801 S0034425720301711 |
| GeographicLocations | United States--US United States |
| GeographicLocations_xml | – name: United States--US – name: United States |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 123 1B1 1RT 1~. 1~5 29P 4.4 41~ 457 4G. 53G 5VS 6I. 6TJ 7-5 71M 8P~ 9JM 9JN AABNK AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABEFU ABFNM ABFYP ABJNI ABLST ABMAC ABPPZ ABQEM ABQYD ABXDB ABYKQ ACDAQ ACGFS ACIWK ACLVX ACPRK ACRLP ACSBN ADBBV ADEZE ADMUD AEBSH AEKER AENEX AFFNX AFKWA AFRAH AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG ATOGT AVWKF AXJTR AZFZN BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FA8 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA HMA HMC HVGLF HZ~ H~9 IHE IMUCA J1W KCYFY KOM LY3 LY9 M41 MO0 N9A O-L O9- OAUVE OHT OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SDP SEN SEP SES SEW SPC SPCBC SSE SSJ SSZ T5K TN5 TWZ VOH WH7 WUQ XOL ZCA ZMT ~02 ~G- ~KM 9DU AAHBH AATTM AAXKI AAYWO AAYXX ABDPE ABUFD ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO ADVLN ADXHL AEGFY AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD 7QF 7QO 7QQ 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7TG 7U5 8BQ 8FD AGCQF C1K F28 FR3 H8D H8G JG9 JQ2 KL. KR7 L7M L~C L~D P64 7S9 L.6 |
| ID | FETCH-LOGICAL-c467t-aefde4a6dc95b8a66524d8e63949d97a6e8d953005df53f0ada693db97035ac43 |
| ISICitedReferencesCount | 113 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000532837400004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0034-4257 |
| IngestDate | Sat Sep 27 17:48:47 EDT 2025 Wed Aug 13 08:46:15 EDT 2025 Tue Nov 18 22:08:39 EST 2025 Sat Nov 29 07:26:53 EST 2025 Fri Feb 23 02:46:53 EST 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Burned area United States Landsat Fire Machine learning |
| Language | English |
| License | This is an open access article under the CC BY license. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c467t-aefde4a6dc95b8a66524d8e63949d97a6e8d953005df53f0ada693db97035ac43 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0003-0930-9154 |
| OpenAccessLink | https://dx.doi.org/10.1016/j.rse.2020.111801 |
| PQID | 2437432732 |
| PQPubID | 2045405 |
| ParticipantIDs | proquest_miscellaneous_2431879420 proquest_journals_2437432732 crossref_citationtrail_10_1016_j_rse_2020_111801 crossref_primary_10_1016_j_rse_2020_111801 elsevier_sciencedirect_doi_10_1016_j_rse_2020_111801 |
| PublicationCentury | 2000 |
| PublicationDate | July 2020 2020-07-00 20200701 |
| PublicationDateYYYYMMDD | 2020-07-01 |
| PublicationDate_xml | – month: 07 year: 2020 text: July 2020 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | Remote sensing of environment |
| PublicationYear | 2020 |
| Publisher | Elsevier Inc Elsevier BV |
| Publisher_xml | – name: Elsevier Inc – name: Elsevier BV |
| References | Huete, Didan, Miura, Rodriguez, Gao, Ferreira (bb0260) 2002; 83 Murphy, Evans, Storfer (bb0365) 2010; 91 Roy, Wulder, Loveland, C.E., W., Allen, Anderson, Helder, Irons, Johnson, Kennedy, Scambos, Schaaf, Schott, Sheng, Vermote, Belward, Bindschadler, Cohen, Gao, Hipple, Hostert, Huntington, Justice, Kilic, Kovalskyy, Lee, Lymburner, Masek, McCorkel, Shuai, Trezza, Vogelmann, Wynne, Zhu (bb0455) 2014; 145 Andela, Morton, Giglio, Paugam, Chen, Hantson, van der Werf, Randerson (bb0035) 2018 Chuvieco, Congalton (bb0070) 1988; 3 Kolden, Weisberg (bb0285) 2007; 3 Frantz (bb0140) 2019; 11 French, McKenzie, Erickson, Koziol, Billmire, Endsley, Scheinerman, Jenkins, Miller, Ottmar, Prichard (bb0145) 2014; 18 Zhu, Woodcock (bb0630) 2014; 152 Masek, Vermote, Saleous, Wolfe, Hall, Huemmrich, Gao, Kutler, Lim (bb0340) 2006; 3 Koutsias, Karteris (bb0295) 1998; 19 Yang, Jin, Danielson, Homer, Gass, Bender, Case, Costello, Dewitz, Fry, Funk, Granneman, Liknes, Rigge, Xian (bb0615) 2018; 146 Westerling (bb0600) 2011; 371 van Wagtendonk, Root, Key (bb0560) 2004; 92 Richter, Schläpfer (bb0435) 2016 Trigg, Flasse (bb0540) 2000; 21 Smith, Drake, Wooster, Hudak, Holden, Gibbons (bb0500) 2007; 28 Harris, Veraverbeke, Hook (bb0210) 2011; 3 Stroppiana, Bordogna, Carrara, Boschetti, Boschetti, Brivio (bb0525) 2012; 69 Hawbaker, Vanderhoof, Schmidt, Beal, Picotte, Takacs, Falgout, Dwyer (bb0230) 2020 Adler-Golden, Berk, Bernsteain, Richtsmeir, Acharyal, Matthew, Anderson, Allred, Jeong, Chetwynd (bb0020) 1998 Boschetti, Stehman, Roy (bb0060) 2016; 186 Holden, Smith, Morgan, Rollins, Gessler (bb0235) 2005; 26 Picotte, Peterson, Meier, Howard (bb0410) 2016; 25 Hollmann, Merchant, Saunders, Downy, Buchwitz, Cazenave, Chuvieco, Defourny, de Leeuw, Forsberg, Holzer-Popp, Paul, Sandven, Sathyendranath, van Roozendael, Wagner (bb0240) 2013; 94 Huang, Goward, Masek, Thomas, Zhu, Vogelmann (bb0245) 2010; 114 Huete (bb0255) 1988; 25 García, Caselles (bb0160) 1991; 6 Hansen, Egorov, Potapov, Stehman, Tyukavina, Turubanova, Roy, Goetz, Loveland, Ju, Kommareddy, Kovalskyy, Forsyth, Bents (bb0205) 2014; 140 Elith, Leathwick, Hastie (bb0130) 2008; 77 Nowell, Holmes, Robertson, Teske, Hiers (bb0370) 2018; 45 Roy, Frost, Justice, Landmann, Roux, Gumbo, Makungwa, Dunham, Toit, Mhwandagara, Zacarias, Tacheba, Dube, Pereira, Mushove, Morisette, Vannan, Davies (bb0445) 2005; 26 Verhegghen, Eva, Ceccherini, Achard, Gond, Gourlet-Fleury, Cerutti (bb0585) 2016; 8 Gorelick, Hancher, Dixon, Ilyushchenko, Thau, Moore (bb0195) 2017; 202 Epting, Verbyla, Sorbel (bb0135) 2005; 96 Padilla, Olofsson, Stehman, Tansey, Chuvieco (bb0395) 2017; 203 Koutsias, Karteris (bb0300) 2000; 21 Zhu, Woodcock (bb0620) 2012; 118 Tran, Tanase, Bennett, Aponte (bb0535) 2018; 10 Chuvieco, Mouillot, van der Werf, Miguel, Tanasse, Koutsias, García, Yebra, Padilla, Gitas, Heil, Hawbaker, Giglio (bb0090) 2019; 225 Tansey, Grégoire, Defourny, Leigh, Pekel, van Bogaert, Bartholomé (bb0530) 2008; 35 Zhu, Zhang, Yang, Aljaddani, Cohen, Qiu, Zhou (bb0635) 2019; 238 Pengra, Stehman, Horton, Dockter, Schroeder, Yang, Cohen, Healey, Loveland (bb0405) 2019; 238 Vanderhoof, Fairaux, Beail, Hawbaker (bb0575) 2020 Hastie, Tibshirani, Friedman (bb0215) 2009 Alonso-Canas, Chuvieco (bb0030) 2015; 163 Tucker (bb0550) 1979; 8 Meddens, Kolden, Lutz (bb0350) 2016; 186 Gao (bb0155) 1996; 58 Giglio, Schroeder, Justice (bb0180) 2016; 178 Cohen, Yang, Healey, Kennedy, Gorelick (bb0105) 2018; 205 Roteta, Bastarrika, Padilla, Storm, Chuvieco (bb0440) 2019; 222 Olson, Dinerstein, Wikramanayake, Burgess, Powell, Underwood, D’amico, Itoua, Strand, Morrison, Loucks, Allnutt, Ricketts, Kura, Lamoreux, Wettengel, Hedao, Kassem (bb0375) 2001; 51 Roy, Boschetti, Justice, Ju (bb0450) 2008; 112 Balch, Bradley, Abatzoglou, Nagy, Fusco, Mahood (bb0040) 2017; 114 Dwyer, Roy, Sauer, Jenkerson, Zhang, Lymburner (bb0115) 2018; 10 Boschetti, Roy, Justice (bb0050) 2009 Giglio, Boschetti, Roy, Humber, Justice (bb0185) 2018; 217 Moran, Seielstad, Cunningham, Hoff, Parsons, Ll, Sauerbrey, Wallace (bb0355) 2019; 2 Short (bb0490) 2013; 6 Huang, Roy, Boschetti, Zhang, Yan, Kumar, Gomez-Dans, Li (bb0250) 2016; 8 Plummer, Arino, Simon, Steffen (bb0420) 2006; 11 Jones (bb0265) 2015; 7 Padilla, Stehman, Ramo, Corti, Hantson, Oliva, Alonso-Canas, Bradley, Tansey, Mota, Pereira, Chuvieco (bb0390) 2015; 160 Steven, Malthus, Baret, Xu, Chopping (bb0520) 2003; 88 Bastarrika, Alvarado, Artano, Martinez, Mesanza, Torre, Ramo, Chuvieco (bb0045) 2014; 6 Boschetti, Roy, Justice, Humber (bb0055) 2015; 161 Eidenshink, Schwind, Brewer, Zhu, Quayle, Howard (bb0125) 2007; 3 Kennedy, Yang, Cohen (bb0275) 2010; 114 Roy, Huang, Boschetti, Giglio, Yan, Zhang, Li (bb0465) 2019; 231 Abatzoglou, Williams (bb0010) 2016; 113 Selkowitz, Forster (bb0480) 2016; 117 Roy, Kovalskyy, Zhang, Vermote, Yan, Kumar, Egorov (bb0460) 2016; 185 Verbesselt, Hyndman, Newnham, Culvenor (bb0580) 2010; 114 Cohen, Yang, Kennedy (bb0100) 2010; 114 Chuvieco, Yue, Heil, Mouillot, Alonso-Canas, Padilla, Pereira, Oom, Tansey (bb0080) 2016; 25 Cochran (bb0095) 1977 Sankey, Kreitler, Hawbaker, McVay, Miller, Mueller, Vaillant, Lowe, Sankey (bb0470) 2017; 44 Vogelmann, Howard, Yang, Larson, Wylie, Van Driel (bb0595) 2001; 65 Fusco, Finn, Abatzoglou, Balch, Dadashi, Bradley (bb0150) 2019; 220 Goodwin, Collett (bb0190) 2014; 148 Egorov, Roy, Zhang, Li, Yan, Huang (bb0120) 2019; 11 Vanderhoof, Fairaux, Beal, Hawbaker (bb0570) 2017; 198 Chuvieco, Lizundia-Loiola, Pettinari, Ramo, Padilla, Tansey, Mouillot, Laurent, Storm, Heil, Plummer (bb0085) 2018; 10 Liu, Wimberly (bb0320) 2015; 10 Fraser, Li, Cihlar (bb1005) 2000; 74 Malakar, Hulley, Hook, Laraby, Cook, Schott (bb0335) 2018; 56 Wulder, Loveland, Roy, Crawford, Masek, Woodcock, Allen, Anderson, Belward, Cohen, Dwyer, Erb, Gao, Griffiths, Helder, Hermosilla, Hipple, Hostert, Hughes, Huntington, Johnson, Kennedy, Kilic, Li, Lymburner, McCorkel, Pahlevan, Scambos, Schaaf, Schott, Sheng, Storey, Vermote, Vogelmann, White, Wynne, Zhu (bb0610) 2019; 225 Pinty, Verstraete (bb0415) 1992; 101 Parthum, Pindilli, Hogan (bb0400) 2017; 203 Abatzoglou, Kolden, Williams, Lutz, Smith (bb0015) 2017 Giglio, Randerson, van der Werf, Kasibhatla, Collatz, Morton, DeFries (bb0175) 2010; 7 Abatzoglou, Kolden (bb0005) 2013 Shakesby, Doerr (bb0485) 2006; 74 Jones (bb0270) 2019; 11 Trigg, Flasse (bb0545) 2001; 22 Omernik, Griffith (bb0380) 2014; 54 Vermote, Justice, Claverie, Franch (bb0590) 2016; 185 Koutsias (bb0290) 2003; 24 Adler-Golden, Matthew, Bernstein, Levine, Berk, Richtsmeier, Acharya, Anderson, Felde, Gardner, Hoke, Jeong, Pukall, Ratkowski, Burke (bb0025) 1999 Dennison, Brewer, Arnold, Moritz (bb0110) 2014; 41 Hawbaker, Radeloff, Syphard, Zhu, Stewart (bb0220) 2008; 112 Short (bb0495) 2015; 24 Long, Zhang, He, Jiao, Tang, Wu, Zhang, Wang, Yin (bb0325) 2019; 11 Stehman (bb0510) 2009; 30 Grady (bb0200) 2001; 28 Hawbaker, Vanderhoof, Beal, Takacs, Schmidt, Falgout, Williams, Fairaux, Caldwell, Picotte, Howard, Stitt, Dwyer (bb0225) 2017; 198 Stehman (bb0505) 1997; 60 Kovalskyy, Roy (bb0305) 2013; 130 Morisette, Baret, Liang (bb0360) 2006; 44 Lewis, Lymburner, Purss, Brooke, Evans, Ip, Dekker, Irons, Minchin, Mueller, Oliver, Roberts, Ryan, Thankappan, Woodcock, Wyborn (bb0315) 2015; 9 Radeloff, Helmers, Kramer, Mockrin, Alexandre, Bar-Massada, Butsic, Hawbaker, Martinuzzi, Syphard, Stewart (bb0425) 2018; 107 Kushla, Ripple (bb0310) 1998; 19 Schroeder, Oliva, Giglio, Quayle, Lorenz, Morelli (bb0475) 2016; 185 Brown, Hall, Mohrle, Reinbold (bb0065) 2002 McFeeters (bb0345) 1996; 17 Stehman, Arora, Kasetkasem, Varshney (bb0515) 2007; 73 Key, Benson (bb0280) 2006 Giglio, Loboda, Roy, Quayle, Justice (bb0170) 2009; 113 Padilla, Stehman, Chuvieco (bb0385) 2014; 144 Ramo, García, Rodríguez, Chuvieco (bb0430) 2018; 73 Chuvieco, Martín, Palacios (bb0075) 2002; 23 Ghimire, Williams, Collatz, Vanderhoof (bb0165) 2012; 2005 Ludwig, Chu, Zhu, Wang, Koehler (bb0330) 2017; 11 Urbanski, Reeves, Corley, Silverstein, Hao (bb0555) 2018; 10 Wilson, Sader (bb0605) 2002; 80 Zhu, Woodcock (bb0625) 2014; 144 Vanderhoof, Brunner, Beal, Hawbaker (bb0565) 2017; 9 Fraser (10.1016/j.rse.2020.111801_bb1005) 2000; 74 Goodwin (10.1016/j.rse.2020.111801_bb0190) 2014; 148 Hawbaker (10.1016/j.rse.2020.111801_bb0220) 2008; 112 Dennison (10.1016/j.rse.2020.111801_bb0110) 2014; 41 Zhu (10.1016/j.rse.2020.111801_bb0625) 2014; 144 Huete (10.1016/j.rse.2020.111801_bb0260) 2002; 83 Abatzoglou (10.1016/j.rse.2020.111801_bb0010) 2016; 113 Cohen (10.1016/j.rse.2020.111801_bb0100) 2010; 114 Grady (10.1016/j.rse.2020.111801_bb0200) 2001; 28 Wulder (10.1016/j.rse.2020.111801_bb0610) 2019; 225 Key (10.1016/j.rse.2020.111801_bb0280) 2006 Brown (10.1016/j.rse.2020.111801_bb0065) 2002 Richter (10.1016/j.rse.2020.111801_bb0435) Trigg (10.1016/j.rse.2020.111801_bb0545) 2001; 22 Shakesby (10.1016/j.rse.2020.111801_bb0485) 2006; 74 Jones (10.1016/j.rse.2020.111801_bb0265) 2015; 7 Roy (10.1016/j.rse.2020.111801_bb0455) 2014; 145 Giglio (10.1016/j.rse.2020.111801_bb0170) 2009; 113 Koutsias (10.1016/j.rse.2020.111801_bb0290) 2003; 24 Trigg (10.1016/j.rse.2020.111801_bb0540) 2000; 21 Meddens (10.1016/j.rse.2020.111801_bb0350) 2016; 186 Abatzoglou (10.1016/j.rse.2020.111801_bb0005) 2013 Urbanski (10.1016/j.rse.2020.111801_bb0555) 2018; 10 Schroeder (10.1016/j.rse.2020.111801_bb0475) 2016; 185 Tran (10.1016/j.rse.2020.111801_bb0535) 2018; 10 Giglio (10.1016/j.rse.2020.111801_bb0175) 2010; 7 Epting (10.1016/j.rse.2020.111801_bb0135) 2005; 96 Bastarrika (10.1016/j.rse.2020.111801_bb0045) 2014; 6 Huete (10.1016/j.rse.2020.111801_bb0255) 1988; 25 Stehman (10.1016/j.rse.2020.111801_bb0505) 1997; 60 van Wagtendonk (10.1016/j.rse.2020.111801_bb0560) 2004; 92 Fusco (10.1016/j.rse.2020.111801_bb0150) 2019; 220 Morisette (10.1016/j.rse.2020.111801_bb0360) 2006; 44 Zhu (10.1016/j.rse.2020.111801_bb0630) 2014; 152 Ludwig (10.1016/j.rse.2020.111801_bb0330) 2017; 11 Hollmann (10.1016/j.rse.2020.111801_bb0240) 2013; 94 Nowell (10.1016/j.rse.2020.111801_bb0370) 2018; 45 Vanderhoof (10.1016/j.rse.2020.111801_bb0575) 2020 Boschetti (10.1016/j.rse.2020.111801_bb0050) 2009 Chuvieco (10.1016/j.rse.2020.111801_bb0085) 2018; 10 Koutsias (10.1016/j.rse.2020.111801_bb0295) 1998; 19 Picotte (10.1016/j.rse.2020.111801_bb0410) 2016; 25 Sankey (10.1016/j.rse.2020.111801_bb0470) 2017; 44 Hawbaker (10.1016/j.rse.2020.111801_bb0230) 2020 Roy (10.1016/j.rse.2020.111801_bb0460) 2016; 185 Hawbaker (10.1016/j.rse.2020.111801_bb0225) 2017; 198 Ghimire (10.1016/j.rse.2020.111801_bb0165) 2012; 2005 Olson (10.1016/j.rse.2020.111801_bb0375) 2001; 51 French (10.1016/j.rse.2020.111801_bb0145) 2014; 18 Vermote (10.1016/j.rse.2020.111801_bb0590) 2016; 185 Vanderhoof (10.1016/j.rse.2020.111801_bb0565) 2017; 9 Chuvieco (10.1016/j.rse.2020.111801_bb0090) 2019; 225 Liu (10.1016/j.rse.2020.111801_bb0320) 2015; 10 Alonso-Canas (10.1016/j.rse.2020.111801_bb0030) 2015; 163 Boschetti (10.1016/j.rse.2020.111801_bb0060) 2016; 186 Huang (10.1016/j.rse.2020.111801_bb0245) 2010; 114 Koutsias (10.1016/j.rse.2020.111801_bb0300) 2000; 21 Omernik (10.1016/j.rse.2020.111801_bb0380) 2014; 54 Adler-Golden (10.1016/j.rse.2020.111801_bb0025) 1999 Pengra (10.1016/j.rse.2020.111801_bb0405) 2019; 238 Tucker (10.1016/j.rse.2020.111801_bb0550) 1979; 8 Eidenshink (10.1016/j.rse.2020.111801_bb0125) 2007; 3 Abatzoglou (10.1016/j.rse.2020.111801_bb0015) 2017 Egorov (10.1016/j.rse.2020.111801_bb0120) 2019; 11 Long (10.1016/j.rse.2020.111801_bb0325) 2019; 11 Hansen (10.1016/j.rse.2020.111801_bb0205) 2014; 140 Short (10.1016/j.rse.2020.111801_bb0495) 2015; 24 Balch (10.1016/j.rse.2020.111801_bb0040) 2017; 114 Malakar (10.1016/j.rse.2020.111801_bb0335) 2018; 56 Dwyer (10.1016/j.rse.2020.111801_bb0115) 2018; 10 Andela (10.1016/j.rse.2020.111801_bb0035) 2018 Roteta (10.1016/j.rse.2020.111801_bb0440) 2019; 222 Chuvieco (10.1016/j.rse.2020.111801_bb0070) 1988; 3 Stroppiana (10.1016/j.rse.2020.111801_bb0525) 2012; 69 Gorelick (10.1016/j.rse.2020.111801_bb0195) 2017; 202 Verbesselt (10.1016/j.rse.2020.111801_bb0580) 2010; 114 Lewis (10.1016/j.rse.2020.111801_bb0315) 2015; 9 Stehman (10.1016/j.rse.2020.111801_bb0510) 2009; 30 Cohen (10.1016/j.rse.2020.111801_bb0105) 2018; 205 Ramo (10.1016/j.rse.2020.111801_bb0430) 2018; 73 Chuvieco (10.1016/j.rse.2020.111801_bb0075) 2002; 23 Cochran (10.1016/j.rse.2020.111801_bb0095) 1977 Kushla (10.1016/j.rse.2020.111801_bb0310) 1998; 19 Boschetti (10.1016/j.rse.2020.111801_bb0055) 2015; 161 Roy (10.1016/j.rse.2020.111801_bb0450) 2008; 112 Adler-Golden (10.1016/j.rse.2020.111801_bb0020) 1998 Padilla (10.1016/j.rse.2020.111801_bb0385) 2014; 144 Kolden (10.1016/j.rse.2020.111801_bb0285) 2007; 3 Giglio (10.1016/j.rse.2020.111801_bb0180) 2016; 178 Vogelmann (10.1016/j.rse.2020.111801_bb0595) 2001; 65 Giglio (10.1016/j.rse.2020.111801_bb0185) 2018; 217 Zhu (10.1016/j.rse.2020.111801_bb0620) 2012; 118 Harris (10.1016/j.rse.2020.111801_bb0210) 2011; 3 Moran (10.1016/j.rse.2020.111801_bb0355) 2019; 2 Jones (10.1016/j.rse.2020.111801_bb0270) 2019; 11 Tansey (10.1016/j.rse.2020.111801_bb0530) 2008; 35 Wilson (10.1016/j.rse.2020.111801_bb0605) 2002; 80 Kennedy (10.1016/j.rse.2020.111801_bb0275) 2010; 114 Stehman (10.1016/j.rse.2020.111801_bb0515) 2007; 73 Frantz (10.1016/j.rse.2020.111801_bb0140) 2019; 11 Westerling (10.1016/j.rse.2020.111801_bb0600) 2011; 371 Yang (10.1016/j.rse.2020.111801_bb0615) 2018; 146 Radeloff (10.1016/j.rse.2020.111801_bb0425) 2018; 107 Murphy (10.1016/j.rse.2020.111801_bb0365) 2010; 91 Zhu (10.1016/j.rse.2020.111801_bb0635) 2019; 238 Steven (10.1016/j.rse.2020.111801_bb0520) 2003; 88 Roy (10.1016/j.rse.2020.111801_bb0445) 2005; 26 Elith (10.1016/j.rse.2020.111801_bb0130) 2008; 77 Gao (10.1016/j.rse.2020.111801_bb0155) 1996; 58 Holden (10.1016/j.rse.2020.111801_bb0235) 2005; 26 Smith (10.1016/j.rse.2020.111801_bb0500) 2007; 28 Masek (10.1016/j.rse.2020.111801_bb0340) 2006; 3 Roy (10.1016/j.rse.2020.111801_bb0465) 2019; 231 Chuvieco (10.1016/j.rse.2020.111801_bb0080) 2016; 25 Hastie (10.1016/j.rse.2020.111801_bb0215) 2009 Plummer (10.1016/j.rse.2020.111801_bb0420) 2006; 11 García (10.1016/j.rse.2020.111801_bb0160) 1991; 6 Pinty (10.1016/j.rse.2020.111801_bb0415) 1992; 101 Short (10.1016/j.rse.2020.111801_bb0490) 2013; 6 Kovalskyy (10.1016/j.rse.2020.111801_bb0305) 2013; 130 Parthum (10.1016/j.rse.2020.111801_bb0400) 2017; 203 McFeeters (10.1016/j.rse.2020.111801_bb0345) 1996; 17 Vanderhoof (10.1016/j.rse.2020.111801_bb0570) 2017; 198 Selkowitz (10.1016/j.rse.2020.111801_bb0480) 2016; 117 Verhegghen (10.1016/j.rse.2020.111801_bb0585) 2016; 8 Padilla (10.1016/j.rse.2020.111801_bb0395) 2017; 203 Huang (10.1016/j.rse.2020.111801_bb0250) 2016; 8 Padilla (10.1016/j.rse.2020.111801_bb0390) 2015; 160 |
| References_xml | – volume: 238 year: 2019 ident: bb0635 article-title: Continuous monitoring of land disturbance based on Landsat time series publication-title: Remote Sens. Environ. – volume: 10 start-page: 1680 year: 2018 ident: bb0535 article-title: Evaluation of spectral indices for assessing fire severity in Australian temperate forests publication-title: Remote Sens. – volume: 3 start-page: 41 year: 1988 end-page: 53 ident: bb0070 article-title: Mapping and inventory of forest fires from digital processing of TM data publication-title: Geocarto International – volume: 41 start-page: 2928 year: 2014 end-page: 2933 ident: bb0110 article-title: Large wildfire trends in the western United States, 1984–2011 publication-title: Geophys. Res. Lett. – volume: 148 start-page: 206 year: 2014 end-page: 221 ident: bb0190 article-title: Development of an automated method for mapping fire history captured in Landsat TM and ETM+ time series across Queensland, Australia publication-title: Remote Sens. Environ. – volume: 58 start-page: 257 year: 1996 end-page: 266 ident: bb0155 article-title: NDWI—a normalized difference water index for remote sensing of vegetation liquid water from space publication-title: Remote Sens. Environ. – volume: 11 start-page: 374 year: 2019 ident: bb0270 article-title: Improved automated detection of subpixel-scale inundation—revised Dynamic Surface Water Extent (DSWE) partial surface water tests publication-title: Remote Sens. – volume: 238 year: 2019 ident: bb0405 article-title: Quality control and assessment of interpreter consistency of annual land cover reference data in an operational national monitoring program publication-title: Remote Sens. Environ. – volume: 2 start-page: 36 year: 2019 ident: bb0355 article-title: Deriving fire behavior metrics from UAS imagery publication-title: Fire – volume: 3 start-page: 2403 year: 2011 end-page: 2419 ident: bb0210 article-title: Evaluating spectral indices for assessing fire severity in chaparral ecosystems (Southern California) using MODIS/ASTER (MASTER) airborne simulator data publication-title: Remote Sens. – volume: 112 start-page: 2656 year: 2008 end-page: 2664 ident: bb0220 article-title: Detection rates of the MODIS active fire product in the United States publication-title: Remote Sens. Environ. – volume: 8 start-page: 986 year: 2016 ident: bb0585 article-title: The potential of Sentinel satellites for burnt area mapping and monitoring in the Congo Basin forests publication-title: Remote Sens. – volume: 185 start-page: 46 year: 2016 end-page: 56 ident: bb0590 article-title: Preliminary analysis of the performance of the Landsat 8/OLI land surface reflectance product publication-title: Remote Sens. Environ. – volume: 114 start-page: 2946 year: 2017 end-page: 2951 ident: bb0040 article-title: Human-started wildfires expand the fire niche across the United States publication-title: Proc. Natl. Acad. Sci. – volume: 3 start-page: 68 year: 2006 end-page: 72 ident: bb0340 article-title: A Landsat surface reflectance dataset for North America, 1990–2000 publication-title: IEEE Geosci. Remote Sens. Lett. – year: 2016 ident: bb0435 article-title: Atmospheric/Topographic Correction for Satellite Imagery; ATCOR-2/3 User Guide, Version 9.0.2; ReSe Applications: Langeggweg, Switzerland – volume: 25 start-page: 619 year: 2016 end-page: 629 ident: bb0080 article-title: A new global burned area product for climate assessment of fire impacts publication-title: Glob. Ecol. Biogeogr. – volume: 9 start-page: 743 year: 2017 ident: bb0565 article-title: Evaluation of the U.S. Geological Survey Landsat burned area essential climate variable across the conterminous U.S. using commercial high-resolution imagery publication-title: Remote Sens. – volume: 225 start-page: 45 year: 2019 end-page: 64 ident: bb0090 article-title: Historical background and current developments for mapping burned area from satellite Earth observation publication-title: Remote Sens. Environ. – volume: 2005 year: 2012 ident: bb0165 article-title: Fire-induced carbon emissions and regrowth uptake in western U.S. forests: documenting variation across forest types, fire severity, and climate regions publication-title: J. Geophys. Res. Biogeosci. – volume: 83 start-page: 195 year: 2002 end-page: 213 ident: bb0260 article-title: Overview of the radiometric and biophysical performance of the MODIS vegetation indices publication-title: Remote Sens. Environ. – volume: 24 start-page: 2199 year: 2003 end-page: 2204 ident: bb0290 article-title: An autologistic regression model for increasing the accuracy of burned surface mapping using Landsat Thematic Mapper data publication-title: Int. J. Remote Sens. – volume: 220 start-page: 30 year: 2019 end-page: 40 ident: bb0150 article-title: Detection rates and biases of fire observations from MODIS and agency reports in the conterminous United States publication-title: Remote Sens. Environ. – volume: 114 start-page: 2911 year: 2010 end-page: 2924 ident: bb0100 article-title: Detecting trends in forest disturbance and recovery using yearly Landsat time series: 2. TimeSync – tools for calibration and validation publication-title: Remote Sens. Environ. – volume: 114 start-page: 183 year: 2010 end-page: 198 ident: bb0245 article-title: An automated approach for reconstructing recent forest disturbance history using dense Landsat time series stacks publication-title: Remote Sens. Environ. – volume: 203 start-page: 240 year: 2017 end-page: 255 ident: bb0395 article-title: Stratification and sample allocation for reference burned area data publication-title: Remote Sens. Environ. – volume: 202 start-page: 18 year: 2017 end-page: 27 ident: bb0195 article-title: Google Earth Engine: planetary-scale geospatial analysis for everyone publication-title: Remote Sens. Environ. – volume: 101 start-page: 15 year: 1992 end-page: 20 ident: bb0415 article-title: GEMI: a non-linear index to monitor global vegetation from satellites publication-title: Vegetatio – volume: 11 start-page: 1124 year: 2019 ident: bb0140 article-title: FORCE—Landsat + Sentinel-2 analysis ready data and beyond publication-title: Remote Sens. – volume: 19 start-page: 3499 year: 1998 end-page: 3514 ident: bb0295 article-title: Logistic regression modelling of multitemporal Thematic Mapper data for burned area mapping publication-title: Int. J. Remote Sens. – year: 2017 ident: bb0015 article-title: Climatic influences on interannual variability in regional burn severity across western US forests publication-title: Int. J. Wildland Fire – volume: 74 start-page: 269 year: 2006 end-page: 307 ident: bb0485 article-title: Wildfire as a hydrological and geomorphological agent publication-title: Earth Sci. Rev. – volume: 11 start-page: 139 year: 2017 end-page: 160 ident: bb0330 article-title: Static and roving sensor data fusion for spatio-temporal hazard mapping with application to occupational exposure assessment publication-title: Annals of Applied Statistics – volume: 145 start-page: 154 year: 2014 end-page: 172 ident: bb0455 article-title: Landsat-8: science and product vision for terrestrial global change research publication-title: Remote Sens. Environ. – volume: 19 start-page: 2493 year: 1998 end-page: 2507 ident: bb0310 article-title: Assessing wildfire effects with Landsat thematic mapper data publication-title: Int. J. Remote Sens. – year: 2009 ident: bb0215 article-title: The Elements of Statistical Learning Data Mining, Inference, and Prediction, ISBN-13: 978-0387848570 – volume: 114 start-page: 2897 year: 2010 end-page: 2910 ident: bb0275 article-title: Detecting trends in forest disturbance and recovery using yearly Landsat time series: 1. LandTrendr — temporal segmentation algorithms publication-title: Remote Sens. Environ. – volume: 186 start-page: 275 year: 2016 end-page: 285 ident: bb0350 article-title: Detecting unburned areas within wildfire perimeters using Landsat and ancillary data across the northwestern United States publication-title: Remote Sens. Environ. – start-page: 1 year: 1998 end-page: 6 ident: bb0020 article-title: FLAASH, a MODTRAN4 atmospheric correction package for hyperspectral data retrievals and simulations publication-title: Proceedings of the Summaries of the Seventh JPL Airborne Earth Science Workshop, Pasadena, CA, USA, 12–16 January 1998 – volume: 186 start-page: 465 year: 2016 end-page: 478 ident: bb0060 article-title: A stratified random sampling design in space and time for regional to global scale burned area product validation publication-title: Remote Sens. Environ. – volume: 35 year: 2008 ident: bb0530 article-title: A new, global, multi-annual (2000–2007) burnt area product at 1 km resolution publication-title: Geophys. Res. Lett. – volume: 113 start-page: 11770 year: 2016 end-page: 11775 ident: bb0010 article-title: Impact of anthropogenic climate change on wildfire across western US forests publication-title: Proc. Natl. Acad. Sci. – volume: 91 start-page: 252 year: 2010 end-page: 261 ident: bb0365 article-title: Quantifying publication-title: Ecology – volume: 113 start-page: 408 year: 2009 end-page: 420 ident: bb0170 article-title: An active-fire based burned area mapping algorithm for the MODIS sensor publication-title: Remote Sens. Environ. – volume: 77 start-page: 802 year: 2008 end-page: 813 ident: bb0130 article-title: A working guide to boosted regression trees publication-title: J. Anim. Ecol. – volume: 44 start-page: 1695 year: 2006 end-page: 1697 ident: bb0360 article-title: Special issue on global land product validation publication-title: IEEE Transactions Geosciences and Remote Sensing – volume: 7 start-page: 1171 year: 2010 end-page: 1186 ident: bb0175 article-title: Assessing variability and long-term trends in burned area by merging multiple satellite fire products publication-title: Biogeosciences – volume: 3 start-page: 3 year: 2007 end-page: 21 ident: bb0125 article-title: A project for monitoring trends in burn severity publication-title: Fire Ecology – year: 2013 ident: bb0005 article-title: Relationships between climate and macroscale area burned in the western United States publication-title: Int. J. Wildland Fire – volume: 152 start-page: 217 year: 2014 end-page: 234 ident: bb0630 article-title: Automated cloud, cloud shadow, and snow detection in multitemporal Landsat data: an algorithm designed specifically for monitoring land cover change publication-title: Remote Sens. Environ. – volume: 11 start-page: 489 year: 2019 ident: bb0325 article-title: 30 m resolution global annual burned area mapping based on Landsat images and Google Earth Engine publication-title: Remote Sens. – volume: 51 start-page: 933 year: 2001 ident: bb0375 article-title: Terrestrial ecoregions of the world: a new map of life on Earth publication-title: Bioscience – volume: 222 start-page: 1 year: 2019 end-page: 17 ident: bb0440 article-title: Development of a Sentinel-2 burned area algorithm: generation of a small fire database for sub-Saharan Africa publication-title: Remote Sens. Environ. – volume: 112 start-page: 3690 year: 2008 end-page: 3707 ident: bb0450 article-title: The collection 5 MODIS burned area product — global evaluation by comparison with the MODIS active fire product publication-title: Remote Sens. Environ. – volume: 160 start-page: 114 year: 2015 end-page: 121 ident: bb0390 article-title: Comparing the accuracies of remote sensing global burned area products using stratified random sampling and estimation publication-title: Remote Sens. Environ. – volume: 203 start-page: 375 year: 2017 end-page: 382 ident: bb0400 article-title: Benefits of the fire mitigation ecosystem service in The Great Dismal Swamp National Wildlife Refuge, Virginia, USA publication-title: J. Environ. Manag. – volume: 21 start-page: 3161 year: 2000 end-page: 3168 ident: bb0540 article-title: Characterizing the spectral-temporal response of burned savannah using in situ spectroradiometry and infrared thermometry publication-title: Int. J. Remote Sens. – volume: 60 start-page: 258 year: 1997 end-page: 269 ident: bb0505 article-title: Estimating standard errors of accuracy assessment statistics under cluster sampling publication-title: Remote Sens. Environ. – volume: 130 start-page: 280 year: 2013 end-page: 293 ident: bb0305 article-title: The global availability of Landsat 5 TM and Landsat 7 ETM+ land surface observations and implications for global 30m Landsat data product generation publication-title: Remote Sens. Environ. – volume: 225 start-page: 127 year: 2019 end-page: 147 ident: bb0610 article-title: Current status of Landsat program, science, and applications publication-title: Remote Sens. Environ. – year: 1999 ident: bb0025 article-title: Atmospheric correction for shortwave spectral imagery based on MODTRAN4 publication-title: SPIE Proceedings. Imaging Spectrometry – volume: 3 start-page: 22 year: 2007 end-page: 31 ident: bb0285 article-title: Assessing accuracy of manually-mapped wildfire perimeters in topographically dissected areas publication-title: Fire Ecology – volume: 114 start-page: 106 year: 2010 end-page: 115 ident: bb0580 article-title: Detecting trend and seasonal changes in satellite image time series publication-title: Remote Sens. Environ. – volume: 10 start-page: 2015 year: 2018 end-page: 2031 ident: bb0085 article-title: Generation and analysis of a new global burned area product based on MODIS 250 publication-title: Earth System Science Data – volume: 185 start-page: 210 year: 2016 end-page: 220 ident: bb0475 article-title: Active fire detection using Landsat-8/OLI data publication-title: Remote Sens. Environ. – volume: 205 start-page: 131 year: 2018 end-page: 140 ident: bb0105 article-title: A LandTrendr multispectral ensemble for forest disturbance detection publication-title: Remote Sens. Environ. – year: 2002 ident: bb0065 article-title: Coarse assessment of federal wildland fire occurrence data publication-title: Report for the National Wildfire Coordinating Group. Program for Climate, Ecosystem, and Fire Applications Report 02-04 – volume: 23 start-page: 5103 year: 2002 end-page: 5110 ident: bb0075 article-title: Assessment of different spectral indices in the red-near-infrared spectral domain for burned land discrimination publication-title: Int. J. Remote Sens. – volume: 96 start-page: 328 year: 2005 end-page: 339 ident: bb0135 article-title: Evaluation of remotely sensed indices for assessing burn severity in interior Alaska using Landsat TM and ETM+ publication-title: Remote Sens. Environ. – volume: 88 start-page: 412 year: 2003 end-page: 422 ident: bb0520 article-title: Intercalibration of vegetation indices from different sensor systems publication-title: Remote Sens. Environ. – year: 1977 ident: bb0095 article-title: Sampling techniques – volume: 45 start-page: 7874 year: 2018 end-page: 7884 ident: bb0370 article-title: A new picture of fire extent, variability, and drought interaction in prescribed fire landscapes: insights from Florida government records publication-title: Geophys. Res. Lett. – volume: 73 start-page: 165 year: 2007 end-page: 173 ident: bb0515 article-title: Estimation of fuzzy error matrix accuracy measures under stratified random sampling publication-title: Photogramm. Eng. Remote. Sens. – volume: 10 start-page: 1363 year: 2018 ident: bb0115 article-title: Analysis ready data: enabling analysis of the Landsat archive publication-title: Remote Sens-basel – volume: 8 start-page: 873 year: 2016 ident: bb0250 article-title: Separability analysis of Sentinel-2A multi-spectral instrument (MSI) data for burned area discrimination publication-title: Remote Sens. – volume: 24 start-page: 883 year: 2015 end-page: 891 ident: bb0495 article-title: Sources and implications of bias and uncertainty in a century of US wildfire activity data publication-title: Int. J. Wildland Fire – volume: 28 start-page: 2753 year: 2007 end-page: 2775 ident: bb0500 article-title: Production of Landsat ETM+ reference imagery of burned areas within Southern African savannahs: comparison of methods and application to MODIS publication-title: Int. J. Remote Sens. – volume: 54 start-page: 1249 year: 2014 end-page: 1266 ident: bb0380 article-title: Ecoregions of the conterminous United States: evolution of a hierarchical spatial framework publication-title: Environ. Manag. – volume: 69 start-page: 88 year: 2012 end-page: 102 ident: bb0525 article-title: A method for extracting burned areas from Landsat TM/ETM+ images by soft aggregation of multiple Spectral Indices and a region growing algorithm publication-title: ISPRS J. Photogramm. Remote Sens. – volume: 144 start-page: 187 year: 2014 end-page: 196 ident: bb0385 article-title: Validation of the 2008 MODIS-MCD45 global burned area product using stratified random sampling publication-title: Remote Sens. Environ. – volume: 30 start-page: 5243 year: 2009 end-page: 5272 ident: bb0510 article-title: Sampling designs for accuracy assessment of land cover publication-title: Int. J. Remote Sens. – volume: 80 start-page: 385 year: 2002 end-page: 396 ident: bb0605 article-title: Detection of forest harvest type using multiple dates of Landsat TM imagery publication-title: Remote Sens. Environ. – volume: 217 start-page: 72 year: 2018 end-page: 85 ident: bb0185 article-title: The collection 6 MODIS burned area mapping algorithm and product publication-title: Remote Sens. Environ. – volume: 17 start-page: 1425 year: 1996 end-page: 1432 ident: bb0345 article-title: The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features publication-title: Int. J. Remote Sens. – volume: 6 start-page: 297 year: 2013 end-page: 366 ident: bb0490 article-title: A spatial database of wildfires in the United States, 1992–2011 publication-title: Earth System Science Data Discussions – volume: 107 start-page: 940 year: 2018 end-page: 945 ident: bb0425 article-title: Rapid growth of the US wildland-urban interface raises wildfire risk publication-title: Proc. Natl. Acad. Sci. – volume: 26 start-page: 4265 year: 2005 end-page: 4292 ident: bb0445 article-title: The Southern Africa Fire Network (SAFNet) regional burned-area product-validation protocol publication-title: Int. J. Remote Sens. – volume: 371 year: 2011 ident: bb0600 article-title: Increasing western US forest wildfire activity sensitivity to changes in the timing of spring publication-title: Philosophical Transactions Royal Society B – volume: 178 start-page: 31 year: 2016 end-page: 41 ident: bb0180 article-title: The collection 6 MODIS active fire detection algorithm and fire products publication-title: Remote Sens. Environ. – volume: 198 start-page: 393 year: 2017 end-page: 406 ident: bb0570 article-title: Validation of the USGS Landsat Burned Area Essential Climate Variable (BAECV) across the conterminous United States publication-title: Remote Sens. Environ. – volume: 28 start-page: 1768 year: 2001 end-page: 1783 ident: bb0200 article-title: Random walks for image segmentation publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 163 start-page: 140 year: 2015 end-page: 152 ident: bb0030 article-title: Global burned area mapping from ENVISAT-MERIS and MODIS active fire data publication-title: Remote Sens. Environ. – volume: 6 start-page: 12360 year: 2014 end-page: 12380 ident: bb0045 article-title: BAMS: a tool for supervised burned area mapping using Landsat data publication-title: Remote Sens. – volume: 144 start-page: 152 year: 2014 end-page: 171 ident: bb0625 article-title: Continuous change detection and classification of land cover using all available Landsat data publication-title: Remote Sens. Environ. – volume: 6 start-page: 31 year: 1991 end-page: 37 ident: bb0160 article-title: Mapping burns and natural reforestation using thematic Mapper data publication-title: Geocarto International – volume: 25 start-page: 413 year: 2016 end-page: 420 ident: bb0410 article-title: 1984–2010 trends in fire burn severity and area for the conterminous US publication-title: Int. J. Wildland Fire – year: 2006 ident: bb0280 article-title: Landscape assessment: remote sensing of severity, the Normalized Burn Ratio publication-title: FIREMON: Fire Effects Monitoring and Inventory System – volume: 44 start-page: 8884 year: 2017 end-page: 8892 ident: bb0470 article-title: Climate, wildfire, and erosion ensemble foretells more sediment in western USA watersheds publication-title: Geophys. Res. Lett. – volume: 11 start-page: 97 year: 2006 end-page: 111 ident: bb0420 article-title: Establishing an Earth observation product service for the terrestrial carbon community: the Globcarbon initiative publication-title: Mitig. Adapt. Strateg. Glob. Chang. – volume: 73 start-page: 39 year: 2018 end-page: 51 ident: bb0430 article-title: A data mining approach for global burned area mapping publication-title: International Journal of Applied Earth Observation – year: 2020 ident: bb0230 article-title: The Landsat Burned Area products for the conterminous United States publication-title: U.S. Geological Survey Data Release, Science Base Catalog – volume: 7 start-page: 12503 year: 2015 end-page: 12538 ident: bb0265 article-title: Efficient wetland surface water detection and monitoring via Landsat: comparison with in situ data from the Everglades depth estimation network publication-title: Remote Sens. – volume: 74 start-page: 362 year: 2000 end-page: 376 ident: bb1005 article-title: Hotspot and NDVI differencing synergy (HANDS): A new technique for burned area mapping over boreal forest publication-title: Remote Sensing of Environment – volume: 9 start-page: 106 year: 2015 end-page: 111 ident: bb0315 article-title: Rapid, high-resolution detection of environmental change over continental scales from satellite data – the Earth Observation Data Cube publication-title: International Journal of Digit Earth – volume: 11 start-page: 447 year: 2019 ident: bb0120 article-title: Landsat 4, 5 and 7 (1982 to 2017) Analysis Ready Data (ARD) observation coverage over the Conterminous United States and implications for terrestrial monitoring publication-title: Remote Sens. – volume: 65 start-page: 650 year: 2001 end-page: 662 ident: bb0595 article-title: Completion of the 1990s National Land Cover Data set for the Conterminous United States from Landsat Thematic Mapper data and ancillary data sources publication-title: Photogramm. Eng. Remote. Sens. – volume: 117 start-page: 126 year: 2016 end-page: 140 ident: bb0480 article-title: Automated mapping of persistent ice and snow cover across the western U.S. with Landsat publication-title: ISPRS J. Photogramm. Remote Sens. – volume: 8 start-page: 127 year: 1979 end-page: 150 ident: bb0550 article-title: Red and photographic infrared linear combinations for monitoring vegetation publication-title: Remote Sens. Environ. – volume: 21 start-page: 673 year: 2000 end-page: 687 ident: bb0300 article-title: Burned area mapping using logistic regression modeling of a single post-fire Landsat-5 Thematic Mapper image publication-title: Int. J. Remote Sens. – volume: 10 start-page: 2241 year: 2018 end-page: 2274 ident: bb0555 article-title: Contiguous United States wildland fire emission estimates during 2003–2015 publication-title: Earth System Science Data – volume: 18 start-page: 1 year: 2014 end-page: 26 ident: bb0145 article-title: Modeling regional-scale wildland fire emissions with the Wildland Fire Emissions Information System publication-title: Earth Interact. – volume: 140 start-page: 466 year: 2014 end-page: 484 ident: bb0205 article-title: Monitoring conterminous United States (CONUS) land cover change with Web-Enabled Landsat Data (WELD) publication-title: Remote Sens. Environ. – volume: 231 year: 2019 ident: bb0465 article-title: Landsat-8 and Sentinel-2 burned area mapping - a combined sensor multi-temporal change detection approach publication-title: Remote Sens. Environ. – volume: 92 start-page: 397 year: 2004 end-page: 408 ident: bb0560 article-title: Comparison of AVIRIS and Landsat ETM+ detection capabilities for burn severity publication-title: Remote Sens. Environ. – start-page: 1 year: 2009 end-page: 11 ident: bb0050 article-title: International global burned area satellite product validation protocol publication-title: Part I - Production and Standardization of Validation Reference Data – volume: 118 start-page: 83 year: 2012 end-page: 94 ident: bb0620 article-title: Object-based cloud and cloud shadow detection in Landsat imagery publication-title: Remote Sens. Environ. – volume: 185 start-page: 57 year: 2016 end-page: 70 ident: bb0460 article-title: Characterization of Landsat-7 to Landsat-8 reflective wavelength and normalized difference vegetation index continuity publication-title: Remote Sens. Environ. – volume: 94 year: 2013 ident: bb0240 article-title: The ESA climate change initiative: satellite data records for essential climate variables publication-title: Bull. Am. Meteorol. Soc. – volume: 25 start-page: 295 year: 1988 end-page: 309 ident: bb0255 article-title: A soil-adjusted vegetation index (SAVI) publication-title: Remote Sens. Environ. – volume: 22 start-page: 2641 year: 2001 end-page: 2647 ident: bb0545 article-title: An evaluation of different bi-spectral spaces for discriminating burned shrub-savannah publication-title: Int. J. Remote Sens. – volume: 10 year: 2015 ident: bb0320 article-title: Climatic and landscape influences on fire regimes from 1984 to 2010 in the western United States publication-title: PLoS One – volume: 26 start-page: 4801 year: 2005 end-page: 4808 ident: bb0235 article-title: Evaluation of novel thermally enhanced spectral indices for mapping fire perimeters and comparisons with fire atlas data publication-title: International Journal of Remote Sens – volume: 56 start-page: 5717 year: 2018 end-page: 5735 ident: bb0335 article-title: An operational land surface temperature product for Landsat thermal data: methodology and validation publication-title: Ieee T Geosci Remote – year: 2020 ident: bb0575 article-title: Data release for the validation of the USGS Landsat burned area product across the conterminous U.S. U.S. Geological Survey data release publication-title: Science Base Catalog – start-page: 1 year: 2018 end-page: 28 ident: bb0035 article-title: The Global Fire Atlas of individual fire size, duration, speed, and direction publication-title: Earth System Science Data Discussions – volume: 198 start-page: 504 year: 2017 end-page: 522 ident: bb0225 article-title: Mapping burned areas using dense time-series of Landsat data publication-title: Remote Sens. Environ. – volume: 146 start-page: 108 year: 2018 end-page: 123 ident: bb0615 article-title: A new generation of the United States National Land Cover Database: requirements, research priorities, design, and implementation strategies publication-title: ISPRS J. Photogramm. Remote Sens. – volume: 161 start-page: 27 year: 2015 end-page: 42 ident: bb0055 article-title: MODIS–Landsat fusion for large area 30m burned area mapping publication-title: Remote Sens. Environ. – volume: 10 start-page: 2241 year: 2018 ident: 10.1016/j.rse.2020.111801_bb0555 article-title: Contiguous United States wildland fire emission estimates during 2003–2015 publication-title: Earth System Science Data doi: 10.5194/essd-10-2241-2018 – volume: 140 start-page: 466 year: 2014 ident: 10.1016/j.rse.2020.111801_bb0205 article-title: Monitoring conterminous United States (CONUS) land cover change with Web-Enabled Landsat Data (WELD) publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2013.08.014 – volume: 74 start-page: 362 year: 2000 ident: 10.1016/j.rse.2020.111801_bb1005 article-title: Hotspot and NDVI differencing synergy (HANDS): A new technique for burned area mapping over boreal forest publication-title: Remote Sensing of Environment doi: 10.1016/S0034-4257(00)00078-X – volume: 11 start-page: 489 year: 2019 ident: 10.1016/j.rse.2020.111801_bb0325 article-title: 30 m resolution global annual burned area mapping based on Landsat images and Google Earth Engine publication-title: Remote Sens. doi: 10.3390/rs11050489 – volume: 3 start-page: 68 year: 2006 ident: 10.1016/j.rse.2020.111801_bb0340 article-title: A Landsat surface reflectance dataset for North America, 1990–2000 publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2005.857030 – volume: 54 start-page: 1249 year: 2014 ident: 10.1016/j.rse.2020.111801_bb0380 article-title: Ecoregions of the conterminous United States: evolution of a hierarchical spatial framework publication-title: Environ. Manag. doi: 10.1007/s00267-014-0364-1 – year: 1977 ident: 10.1016/j.rse.2020.111801_bb0095 – volume: 238 year: 2019 ident: 10.1016/j.rse.2020.111801_bb0405 article-title: Quality control and assessment of interpreter consistency of annual land cover reference data in an operational national monitoring program publication-title: Remote Sens. Environ. – volume: 8 start-page: 127 year: 1979 ident: 10.1016/j.rse.2020.111801_bb0550 article-title: Red and photographic infrared linear combinations for monitoring vegetation publication-title: Remote Sens. Environ. doi: 10.1016/0034-4257(79)90013-0 – volume: 113 start-page: 408 year: 2009 ident: 10.1016/j.rse.2020.111801_bb0170 article-title: An active-fire based burned area mapping algorithm for the MODIS sensor publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2008.10.006 – volume: 51 start-page: 933 year: 2001 ident: 10.1016/j.rse.2020.111801_bb0375 article-title: Terrestrial ecoregions of the world: a new map of life on Earth publication-title: Bioscience doi: 10.1641/0006-3568(2001)051[0933:TEOTWA]2.0.CO;2 – volume: 83 start-page: 195 year: 2002 ident: 10.1016/j.rse.2020.111801_bb0260 article-title: Overview of the radiometric and biophysical performance of the MODIS vegetation indices publication-title: Remote Sens. Environ. doi: 10.1016/S0034-4257(02)00096-2 – volume: 9 start-page: 743 year: 2017 ident: 10.1016/j.rse.2020.111801_bb0565 article-title: Evaluation of the U.S. Geological Survey Landsat burned area essential climate variable across the conterminous U.S. using commercial high-resolution imagery publication-title: Remote Sens. doi: 10.3390/rs9070743 – volume: 145 start-page: 154 year: 2014 ident: 10.1016/j.rse.2020.111801_bb0455 article-title: Landsat-8: science and product vision for terrestrial global change research publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2014.02.001 – year: 2009 ident: 10.1016/j.rse.2020.111801_bb0215 – volume: 73 start-page: 165 issue: 9 year: 2007 ident: 10.1016/j.rse.2020.111801_bb0515 article-title: Estimation of fuzzy error matrix accuracy measures under stratified random sampling publication-title: Photogramm. Eng. Remote. Sens. doi: 10.14358/PERS.73.2.165 – year: 2020 ident: 10.1016/j.rse.2020.111801_bb0230 article-title: The Landsat Burned Area products for the conterminous United States publication-title: U.S. Geological Survey Data Release, Science Base Catalog – start-page: 1 year: 2009 ident: 10.1016/j.rse.2020.111801_bb0050 article-title: International global burned area satellite product validation protocol – volume: 25 start-page: 619 year: 2016 ident: 10.1016/j.rse.2020.111801_bb0080 article-title: A new global burned area product for climate assessment of fire impacts publication-title: Glob. Ecol. Biogeogr. doi: 10.1111/geb.12440 – volume: 202 start-page: 18 year: 2017 ident: 10.1016/j.rse.2020.111801_bb0195 article-title: Google Earth Engine: planetary-scale geospatial analysis for everyone publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2017.06.031 – volume: 8 start-page: 873 year: 2016 ident: 10.1016/j.rse.2020.111801_bb0250 article-title: Separability analysis of Sentinel-2A multi-spectral instrument (MSI) data for burned area discrimination publication-title: Remote Sens. doi: 10.3390/rs8100873 – volume: 74 start-page: 269 year: 2006 ident: 10.1016/j.rse.2020.111801_bb0485 article-title: Wildfire as a hydrological and geomorphological agent publication-title: Earth Sci. Rev. doi: 10.1016/j.earscirev.2005.10.006 – volume: 222 start-page: 1 year: 2019 ident: 10.1016/j.rse.2020.111801_bb0440 article-title: Development of a Sentinel-2 burned area algorithm: generation of a small fire database for sub-Saharan Africa publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2018.12.011 – volume: 146 start-page: 108 year: 2018 ident: 10.1016/j.rse.2020.111801_bb0615 article-title: A new generation of the United States National Land Cover Database: requirements, research priorities, design, and implementation strategies publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2018.09.006 – volume: 3 start-page: 41 year: 1988 ident: 10.1016/j.rse.2020.111801_bb0070 article-title: Mapping and inventory of forest fires from digital processing of TM data publication-title: Geocarto International doi: 10.1080/10106048809354180 – volume: 205 start-page: 131 year: 2018 ident: 10.1016/j.rse.2020.111801_bb0105 article-title: A LandTrendr multispectral ensemble for forest disturbance detection publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2017.11.015 – volume: 11 start-page: 139 year: 2017 ident: 10.1016/j.rse.2020.111801_bb0330 article-title: Static and roving sensor data fusion for spatio-temporal hazard mapping with application to occupational exposure assessment publication-title: Annals of Applied Statistics doi: 10.1214/16-AOAS995 – volume: 58 start-page: 257 year: 1996 ident: 10.1016/j.rse.2020.111801_bb0155 article-title: NDWI—a normalized difference water index for remote sensing of vegetation liquid water from space publication-title: Remote Sens. Environ. doi: 10.1016/S0034-4257(96)00067-3 – volume: 6 start-page: 12360 year: 2014 ident: 10.1016/j.rse.2020.111801_bb0045 article-title: BAMS: a tool for supervised burned area mapping using Landsat data publication-title: Remote Sens. doi: 10.3390/rs61212360 – volume: 7 start-page: 12503 year: 2015 ident: 10.1016/j.rse.2020.111801_bb0265 article-title: Efficient wetland surface water detection and monitoring via Landsat: comparison with in situ data from the Everglades depth estimation network publication-title: Remote Sens. doi: 10.3390/rs70912503 – volume: 163 start-page: 140 year: 2015 ident: 10.1016/j.rse.2020.111801_bb0030 article-title: Global burned area mapping from ENVISAT-MERIS and MODIS active fire data publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2015.03.011 – volume: 112 start-page: 3690 year: 2008 ident: 10.1016/j.rse.2020.111801_bb0450 article-title: The collection 5 MODIS burned area product — global evaluation by comparison with the MODIS active fire product publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2008.05.013 – volume: 69 start-page: 88 year: 2012 ident: 10.1016/j.rse.2020.111801_bb0525 article-title: A method for extracting burned areas from Landsat TM/ETM+ images by soft aggregation of multiple Spectral Indices and a region growing algorithm publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2012.03.001 – volume: 10 start-page: 2015 year: 2018 ident: 10.1016/j.rse.2020.111801_bb0085 article-title: Generation and analysis of a new global burned area product based on MODIS 250m reflectance bands and thermal anomalies publication-title: Earth System Science Data doi: 10.5194/essd-10-2015-2018 – volume: 114 start-page: 183 year: 2010 ident: 10.1016/j.rse.2020.111801_bb0245 article-title: An automated approach for reconstructing recent forest disturbance history using dense Landsat time series stacks publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2009.08.017 – year: 2020 ident: 10.1016/j.rse.2020.111801_bb0575 article-title: Data release for the validation of the USGS Landsat burned area product across the conterminous U.S. U.S. Geological Survey data release – volume: 238 issue: 1 year: 2019 ident: 10.1016/j.rse.2020.111801_bb0635 article-title: Continuous monitoring of land disturbance based on Landsat time series publication-title: Remote Sens. Environ. – volume: 118 start-page: 83 year: 2012 ident: 10.1016/j.rse.2020.111801_bb0620 article-title: Object-based cloud and cloud shadow detection in Landsat imagery publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2011.10.028 – volume: 220 start-page: 30 year: 2019 ident: 10.1016/j.rse.2020.111801_bb0150 article-title: Detection rates and biases of fire observations from MODIS and agency reports in the conterminous United States publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2018.10.028 – volume: 10 start-page: 1680 year: 2018 ident: 10.1016/j.rse.2020.111801_bb0535 article-title: Evaluation of spectral indices for assessing fire severity in Australian temperate forests publication-title: Remote Sens. doi: 10.3390/rs10111680 – volume: 6 start-page: 31 year: 1991 ident: 10.1016/j.rse.2020.111801_bb0160 article-title: Mapping burns and natural reforestation using thematic Mapper data publication-title: Geocarto International doi: 10.1080/10106049109354290 – volume: 25 start-page: 413 year: 2016 ident: 10.1016/j.rse.2020.111801_bb0410 article-title: 1984–2010 trends in fire burn severity and area for the conterminous US publication-title: Int. J. Wildland Fire doi: 10.1071/WF15039 – volume: 3 start-page: 22 year: 2007 ident: 10.1016/j.rse.2020.111801_bb0285 article-title: Assessing accuracy of manually-mapped wildfire perimeters in topographically dissected areas publication-title: Fire Ecology doi: 10.4996/fireecology.0301022 – volume: 101 start-page: 15 year: 1992 ident: 10.1016/j.rse.2020.111801_bb0415 article-title: GEMI: a non-linear index to monitor global vegetation from satellites publication-title: Vegetatio doi: 10.1007/BF00031911 – volume: 178 start-page: 31 year: 2016 ident: 10.1016/j.rse.2020.111801_bb0180 article-title: The collection 6 MODIS active fire detection algorithm and fire products publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2016.02.054 – volume: 225 start-page: 45 year: 2019 ident: 10.1016/j.rse.2020.111801_bb0090 article-title: Historical background and current developments for mapping burned area from satellite Earth observation publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2019.02.013 – volume: 94 year: 2013 ident: 10.1016/j.rse.2020.111801_bb0240 article-title: The ESA climate change initiative: satellite data records for essential climate variables publication-title: Bull. Am. Meteorol. Soc. doi: 10.1175/BAMS-D-11-00254.1 – volume: 6 start-page: 297 year: 2013 ident: 10.1016/j.rse.2020.111801_bb0490 article-title: A spatial database of wildfires in the United States, 1992–2011 publication-title: Earth System Science Data Discussions – volume: 73 start-page: 39 year: 2018 ident: 10.1016/j.rse.2020.111801_bb0430 article-title: A data mining approach for global burned area mapping publication-title: International Journal of Applied Earth Observation doi: 10.1016/j.jag.2018.05.027 – volume: 231 year: 2019 ident: 10.1016/j.rse.2020.111801_bb0465 article-title: Landsat-8 and Sentinel-2 burned area mapping - a combined sensor multi-temporal change detection approach publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2019.111254 – volume: 152 start-page: 217 year: 2014 ident: 10.1016/j.rse.2020.111801_bb0630 article-title: Automated cloud, cloud shadow, and snow detection in multitemporal Landsat data: an algorithm designed specifically for monitoring land cover change publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2014.06.012 – volume: 198 start-page: 504 year: 2017 ident: 10.1016/j.rse.2020.111801_bb0225 article-title: Mapping burned areas using dense time-series of Landsat data publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2017.06.027 – volume: 21 start-page: 3161 year: 2000 ident: 10.1016/j.rse.2020.111801_bb0540 article-title: Characterizing the spectral-temporal response of burned savannah using in situ spectroradiometry and infrared thermometry publication-title: Int. J. Remote Sens. doi: 10.1080/01431160050145045 – volume: 10 start-page: 1363 year: 2018 ident: 10.1016/j.rse.2020.111801_bb0115 article-title: Analysis ready data: enabling analysis of the Landsat archive publication-title: Remote Sens-basel doi: 10.3390/rs10091363 – volume: 19 start-page: 3499 year: 1998 ident: 10.1016/j.rse.2020.111801_bb0295 article-title: Logistic regression modelling of multitemporal Thematic Mapper data for burned area mapping publication-title: Int. J. Remote Sens. doi: 10.1080/014311698213777 – volume: 185 start-page: 57 year: 2016 ident: 10.1016/j.rse.2020.111801_bb0460 article-title: Characterization of Landsat-7 to Landsat-8 reflective wavelength and normalized difference vegetation index continuity publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2015.12.024 – volume: 144 start-page: 152 year: 2014 ident: 10.1016/j.rse.2020.111801_bb0625 article-title: Continuous change detection and classification of land cover using all available Landsat data publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2014.01.011 – volume: 186 start-page: 465 year: 2016 ident: 10.1016/j.rse.2020.111801_bb0060 article-title: A stratified random sampling design in space and time for regional to global scale burned area product validation publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2016.09.016 – volume: 77 start-page: 802 year: 2008 ident: 10.1016/j.rse.2020.111801_bb0130 article-title: A working guide to boosted regression trees publication-title: J. Anim. Ecol. doi: 10.1111/j.1365-2656.2008.01390.x – volume: 25 start-page: 295 year: 1988 ident: 10.1016/j.rse.2020.111801_bb0255 article-title: A soil-adjusted vegetation index (SAVI) publication-title: Remote Sens. Environ. doi: 10.1016/0034-4257(88)90106-X – volume: 2005 issue: 117 year: 2012 ident: 10.1016/j.rse.2020.111801_bb0165 article-title: Fire-induced carbon emissions and regrowth uptake in western U.S. forests: documenting variation across forest types, fire severity, and climate regions publication-title: J. Geophys. Res. Biogeosci. – volume: 60 start-page: 258 year: 1997 ident: 10.1016/j.rse.2020.111801_bb0505 article-title: Estimating standard errors of accuracy assessment statistics under cluster sampling publication-title: Remote Sens. Environ. doi: 10.1016/S0034-4257(96)00176-9 – year: 1999 ident: 10.1016/j.rse.2020.111801_bb0025 article-title: Atmospheric correction for shortwave spectral imagery based on MODTRAN4 – ident: 10.1016/j.rse.2020.111801_bb0435 – volume: 9 start-page: 106 year: 2015 ident: 10.1016/j.rse.2020.111801_bb0315 article-title: Rapid, high-resolution detection of environmental change over continental scales from satellite data – the Earth Observation Data Cube publication-title: International Journal of Digit Earth doi: 10.1080/17538947.2015.1111952 – volume: 22 start-page: 2641 year: 2001 ident: 10.1016/j.rse.2020.111801_bb0545 article-title: An evaluation of different bi-spectral spaces for discriminating burned shrub-savannah publication-title: Int. J. Remote Sens. doi: 10.1080/01431160110053185 – volume: 35 year: 2008 ident: 10.1016/j.rse.2020.111801_bb0530 article-title: A new, global, multi-annual (2000–2007) burnt area product at 1 km resolution publication-title: Geophys. Res. Lett. doi: 10.1029/2007GL031567 – volume: 160 start-page: 114 year: 2015 ident: 10.1016/j.rse.2020.111801_bb0390 article-title: Comparing the accuracies of remote sensing global burned area products using stratified random sampling and estimation publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2015.01.005 – volume: 19 start-page: 2493 year: 1998 ident: 10.1016/j.rse.2020.111801_bb0310 article-title: Assessing wildfire effects with Landsat thematic mapper data publication-title: Int. J. Remote Sens. doi: 10.1080/014311698214587 – volume: 203 start-page: 240 year: 2017 ident: 10.1016/j.rse.2020.111801_bb0395 article-title: Stratification and sample allocation for reference burned area data publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2017.06.041 – volume: 8 start-page: 986 year: 2016 ident: 10.1016/j.rse.2020.111801_bb0585 article-title: The potential of Sentinel satellites for burnt area mapping and monitoring in the Congo Basin forests publication-title: Remote Sens. doi: 10.3390/rs8120986 – volume: 7 start-page: 1171 year: 2010 ident: 10.1016/j.rse.2020.111801_bb0175 article-title: Assessing variability and long-term trends in burned area by merging multiple satellite fire products publication-title: Biogeosciences doi: 10.5194/bg-7-1171-2010 – volume: 21 start-page: 673 year: 2000 ident: 10.1016/j.rse.2020.111801_bb0300 article-title: Burned area mapping using logistic regression modeling of a single post-fire Landsat-5 Thematic Mapper image publication-title: Int. J. Remote Sens. doi: 10.1080/014311600210506 – volume: 24 start-page: 883 year: 2015 ident: 10.1016/j.rse.2020.111801_bb0495 article-title: Sources and implications of bias and uncertainty in a century of US wildfire activity data publication-title: Int. J. Wildland Fire doi: 10.1071/WF14190 – volume: 92 start-page: 397 year: 2004 ident: 10.1016/j.rse.2020.111801_bb0560 article-title: Comparison of AVIRIS and Landsat ETM+ detection capabilities for burn severity publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2003.12.015 – volume: 24 start-page: 2199 year: 2003 ident: 10.1016/j.rse.2020.111801_bb0290 article-title: An autologistic regression model for increasing the accuracy of burned surface mapping using Landsat Thematic Mapper data publication-title: Int. J. Remote Sens. doi: 10.1080/0143116031000082073 – volume: 10 year: 2015 ident: 10.1016/j.rse.2020.111801_bb0320 article-title: Climatic and landscape influences on fire regimes from 1984 to 2010 in the western United States publication-title: PLoS One – volume: 26 start-page: 4265 year: 2005 ident: 10.1016/j.rse.2020.111801_bb0445 article-title: The Southern Africa Fire Network (SAFNet) regional burned-area product-validation protocol publication-title: Int. J. Remote Sens. doi: 10.1080/01431160500113096 – volume: 114 start-page: 106 year: 2010 ident: 10.1016/j.rse.2020.111801_bb0580 article-title: Detecting trend and seasonal changes in satellite image time series publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2009.08.014 – volume: 80 start-page: 385 year: 2002 ident: 10.1016/j.rse.2020.111801_bb0605 article-title: Detection of forest harvest type using multiple dates of Landsat TM imagery publication-title: Remote Sens. Environ. doi: 10.1016/S0034-4257(01)00318-2 – volume: 217 start-page: 72 year: 2018 ident: 10.1016/j.rse.2020.111801_bb0185 article-title: The collection 6 MODIS burned area mapping algorithm and product publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2018.08.005 – volume: 161 start-page: 27 year: 2015 ident: 10.1016/j.rse.2020.111801_bb0055 article-title: MODIS–Landsat fusion for large area 30m burned area mapping publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2015.01.022 – volume: 44 start-page: 1695 year: 2006 ident: 10.1016/j.rse.2020.111801_bb0360 article-title: Special issue on global land product validation publication-title: IEEE Transactions Geosciences and Remote Sensing doi: 10.1109/TGRS.2006.877436 – volume: 112 start-page: 2656 year: 2008 ident: 10.1016/j.rse.2020.111801_bb0220 article-title: Detection rates of the MODIS active fire product in the United States publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2007.12.008 – year: 2006 ident: 10.1016/j.rse.2020.111801_bb0280 article-title: Landscape assessment: remote sensing of severity, the Normalized Burn Ratio – volume: 44 start-page: 8884 year: 2017 ident: 10.1016/j.rse.2020.111801_bb0470 article-title: Climate, wildfire, and erosion ensemble foretells more sediment in western USA watersheds publication-title: Geophys. Res. Lett. doi: 10.1002/2017GL073979 – year: 2002 ident: 10.1016/j.rse.2020.111801_bb0065 article-title: Coarse assessment of federal wildland fire occurrence data – volume: 3 start-page: 3 year: 2007 ident: 10.1016/j.rse.2020.111801_bb0125 article-title: A project for monitoring trends in burn severity publication-title: Fire Ecology doi: 10.4996/fireecology.0301003 – volume: 203 start-page: 375 year: 2017 ident: 10.1016/j.rse.2020.111801_bb0400 article-title: Benefits of the fire mitigation ecosystem service in The Great Dismal Swamp National Wildlife Refuge, Virginia, USA publication-title: J. Environ. Manag. doi: 10.1016/j.jenvman.2017.08.018 – volume: 41 start-page: 2928 year: 2014 ident: 10.1016/j.rse.2020.111801_bb0110 article-title: Large wildfire trends in the western United States, 1984–2011 publication-title: Geophys. Res. Lett. doi: 10.1002/2014GL059576 – volume: 186 start-page: 275 year: 2016 ident: 10.1016/j.rse.2020.111801_bb0350 article-title: Detecting unburned areas within wildfire perimeters using Landsat and ancillary data across the northwestern United States publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2016.08.023 – volume: 18 start-page: 1 year: 2014 ident: 10.1016/j.rse.2020.111801_bb0145 article-title: Modeling regional-scale wildland fire emissions with the Wildland Fire Emissions Information System publication-title: Earth Interact. doi: 10.1175/EI-D-14-0002.1 – volume: 56 start-page: 5717 year: 2018 ident: 10.1016/j.rse.2020.111801_bb0335 article-title: An operational land surface temperature product for Landsat thermal data: methodology and validation publication-title: Ieee T Geosci Remote doi: 10.1109/TGRS.2018.2824828 – start-page: 1 year: 1998 ident: 10.1016/j.rse.2020.111801_bb0020 article-title: FLAASH, a MODTRAN4 atmospheric correction package for hyperspectral data retrievals and simulations – volume: 17 start-page: 1425 year: 1996 ident: 10.1016/j.rse.2020.111801_bb0345 article-title: The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features publication-title: Int. J. Remote Sens. doi: 10.1080/01431169608948714 – volume: 3 start-page: 2403 year: 2011 ident: 10.1016/j.rse.2020.111801_bb0210 article-title: Evaluating spectral indices for assessing fire severity in chaparral ecosystems (Southern California) using MODIS/ASTER (MASTER) airborne simulator data publication-title: Remote Sens. doi: 10.3390/rs3112403 – volume: 2 start-page: 36 year: 2019 ident: 10.1016/j.rse.2020.111801_bb0355 article-title: Deriving fire behavior metrics from UAS imagery publication-title: Fire doi: 10.3390/fire2020036 – volume: 11 start-page: 374 year: 2019 ident: 10.1016/j.rse.2020.111801_bb0270 article-title: Improved automated detection of subpixel-scale inundation—revised Dynamic Surface Water Extent (DSWE) partial surface water tests publication-title: Remote Sens. doi: 10.3390/rs11040374 – year: 2013 ident: 10.1016/j.rse.2020.111801_bb0005 article-title: Relationships between climate and macroscale area burned in the western United States publication-title: Int. J. Wildland Fire doi: 10.1071/WF13019 – volume: 114 start-page: 2911 year: 2010 ident: 10.1016/j.rse.2020.111801_bb0100 article-title: Detecting trends in forest disturbance and recovery using yearly Landsat time series: 2. TimeSync – tools for calibration and validation publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2010.07.010 – volume: 371 year: 2011 ident: 10.1016/j.rse.2020.111801_bb0600 article-title: Increasing western US forest wildfire activity sensitivity to changes in the timing of spring publication-title: Philosophical Transactions Royal Society B – volume: 65 start-page: 650 year: 2001 ident: 10.1016/j.rse.2020.111801_bb0595 article-title: Completion of the 1990s National Land Cover Data set for the Conterminous United States from Landsat Thematic Mapper data and ancillary data sources publication-title: Photogramm. Eng. Remote. Sens. – volume: 28 start-page: 1768 year: 2001 ident: 10.1016/j.rse.2020.111801_bb0200 article-title: Random walks for image segmentation publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2006.233 – volume: 130 start-page: 280 year: 2013 ident: 10.1016/j.rse.2020.111801_bb0305 article-title: The global availability of Landsat 5 TM and Landsat 7 ETM+ land surface observations and implications for global 30m Landsat data product generation publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2012.12.003 – volume: 30 start-page: 5243 year: 2009 ident: 10.1016/j.rse.2020.111801_bb0510 article-title: Sampling designs for accuracy assessment of land cover publication-title: Int. J. Remote Sens. doi: 10.1080/01431160903131000 – volume: 114 start-page: 2946 year: 2017 ident: 10.1016/j.rse.2020.111801_bb0040 article-title: Human-started wildfires expand the fire niche across the United States publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.1617394114 – volume: 107 start-page: 940 year: 2018 ident: 10.1016/j.rse.2020.111801_bb0425 article-title: Rapid growth of the US wildland-urban interface raises wildfire risk publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.0911131107 – volume: 91 start-page: 252 year: 2010 ident: 10.1016/j.rse.2020.111801_bb0365 article-title: Quantifying Bufo boreas connectivity in Yellowstone National Park with landscape genetics publication-title: Ecology doi: 10.1890/08-0879.1 – volume: 113 start-page: 11770 year: 2016 ident: 10.1016/j.rse.2020.111801_bb0010 article-title: Impact of anthropogenic climate change on wildfire across western US forests publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.1607171113 – volume: 117 start-page: 126 year: 2016 ident: 10.1016/j.rse.2020.111801_bb0480 article-title: Automated mapping of persistent ice and snow cover across the western U.S. with Landsat publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2016.04.001 – volume: 26 start-page: 4801 year: 2005 ident: 10.1016/j.rse.2020.111801_bb0235 article-title: Evaluation of novel thermally enhanced spectral indices for mapping fire perimeters and comparisons with fire atlas data publication-title: International Journal of Remote Sens doi: 10.1080/01431160500239008 – volume: 11 start-page: 97 year: 2006 ident: 10.1016/j.rse.2020.111801_bb0420 article-title: Establishing an Earth observation product service for the terrestrial carbon community: the Globcarbon initiative publication-title: Mitig. Adapt. Strateg. Glob. Chang. doi: 10.1007/s11027-006-1012-8 – volume: 148 start-page: 206 year: 2014 ident: 10.1016/j.rse.2020.111801_bb0190 article-title: Development of an automated method for mapping fire history captured in Landsat TM and ETM+ time series across Queensland, Australia publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2014.03.021 – volume: 88 start-page: 412 year: 2003 ident: 10.1016/j.rse.2020.111801_bb0520 article-title: Intercalibration of vegetation indices from different sensor systems publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2003.08.010 – volume: 11 start-page: 447 year: 2019 ident: 10.1016/j.rse.2020.111801_bb0120 article-title: Landsat 4, 5 and 7 (1982 to 2017) Analysis Ready Data (ARD) observation coverage over the Conterminous United States and implications for terrestrial monitoring publication-title: Remote Sens. doi: 10.3390/rs11040447 – volume: 23 start-page: 5103 year: 2002 ident: 10.1016/j.rse.2020.111801_bb0075 article-title: Assessment of different spectral indices in the red-near-infrared spectral domain for burned land discrimination publication-title: Int. J. Remote Sens. doi: 10.1080/01431160210153129 – volume: 198 start-page: 393 year: 2017 ident: 10.1016/j.rse.2020.111801_bb0570 article-title: Validation of the USGS Landsat Burned Area Essential Climate Variable (BAECV) across the conterminous United States publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2017.06.025 – volume: 225 start-page: 127 year: 2019 ident: 10.1016/j.rse.2020.111801_bb0610 article-title: Current status of Landsat program, science, and applications publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2019.02.015 – volume: 185 start-page: 210 year: 2016 ident: 10.1016/j.rse.2020.111801_bb0475 article-title: Active fire detection using Landsat-8/OLI data publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2015.08.032 – volume: 28 start-page: 2753 year: 2007 ident: 10.1016/j.rse.2020.111801_bb0500 article-title: Production of Landsat ETM+ reference imagery of burned areas within Southern African savannahs: comparison of methods and application to MODIS publication-title: Int. J. Remote Sens. doi: 10.1080/01431160600954704 – year: 2017 ident: 10.1016/j.rse.2020.111801_bb0015 article-title: Climatic influences on interannual variability in regional burn severity across western US forests publication-title: Int. J. Wildland Fire doi: 10.1071/WF16165 – start-page: 1 year: 2018 ident: 10.1016/j.rse.2020.111801_bb0035 article-title: The Global Fire Atlas of individual fire size, duration, speed, and direction publication-title: Earth System Science Data Discussions – volume: 11 start-page: 1124 year: 2019 ident: 10.1016/j.rse.2020.111801_bb0140 article-title: FORCE—Landsat + Sentinel-2 analysis ready data and beyond publication-title: Remote Sens. doi: 10.3390/rs11091124 – volume: 114 start-page: 2897 year: 2010 ident: 10.1016/j.rse.2020.111801_bb0275 article-title: Detecting trends in forest disturbance and recovery using yearly Landsat time series: 1. LandTrendr — temporal segmentation algorithms publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2010.07.008 – volume: 96 start-page: 328 year: 2005 ident: 10.1016/j.rse.2020.111801_bb0135 article-title: Evaluation of remotely sensed indices for assessing burn severity in interior Alaska using Landsat TM and ETM+ publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2005.03.002 – volume: 45 start-page: 7874 year: 2018 ident: 10.1016/j.rse.2020.111801_bb0370 article-title: A new picture of fire extent, variability, and drought interaction in prescribed fire landscapes: insights from Florida government records publication-title: Geophys. Res. Lett. doi: 10.1029/2018GL078679 – volume: 144 start-page: 187 year: 2014 ident: 10.1016/j.rse.2020.111801_bb0385 article-title: Validation of the 2008 MODIS-MCD45 global burned area product using stratified random sampling publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2014.01.008 – volume: 185 start-page: 46 year: 2016 ident: 10.1016/j.rse.2020.111801_bb0590 article-title: Preliminary analysis of the performance of the Landsat 8/OLI land surface reflectance product publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2016.04.008 |
| SSID | ssj0015871 |
| Score | 2.6139305 |
| Snippet | Complete and accurate burned area map data are needed to document spatial and temporal patterns of fires, to quantify their drivers, and to assess the impacts... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 111801 |
| SubjectTerms | Algorithms artificial intelligence burn severity Burned area climate Climate change crops data collection Errors Fire hay Image processing Image resolution Image segmentation Land cover Landsat Landsat satellites Learning algorithms Machine learning moderate resolution imaging spectroradiometer monitoring Pasture pastures Regression analysis Remote sensing Satellite imagery Sensors Spectroradiometers time series analysis Trends United States vegetation types wildfires |
| Title | The Landsat Burned Area algorithm and products for the conterminous United States |
| URI | https://dx.doi.org/10.1016/j.rse.2020.111801 https://www.proquest.com/docview/2437432732 https://www.proquest.com/docview/2431879420 |
| Volume | 244 |
| WOSCitedRecordID | wos000532837400004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1879-0704 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0015871 issn: 0034-4257 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLZgA8ELgsJEYSAjIR6IgqLEuT0W1BWmUi7KpvJkObFDO3VJaToY_55zHOfCBNN44CWqYqetfL6c89nnRsjzPMMiWwDezM9hgwImDp2EsW4iELlhEIQ6Q-54Gs5m0XwefzSO9kq3EwiLIjo_j9f_VdRwD4SNqbP_IO72S-EGfAahwxXEDtcrC36KCby49ccTS2mNgBlaYvW13Cy3i1NTG0BXeq3aMEOMWdeBMRgT-xsT7fPXzwpEq6wKw97rcOleplynzX6kwkRrJKWUnevpWOfSLMpSl4J8r1aY4N47ac0Wp0upzcJELFdWezD9Wum-BNYXVdiHZ_2TCtiWNlGtrfb1mI06oq99gV5Ya1TcYCrtP-r0-njh5NWmwrKmrmMmdwascdrPPvCDo-mUJ-N58mL9zcbWYuiCN31WrpNdN_RjUH27o3fj-WHrbPKjsG6saP5e4_zWYYAXfvVv9OWCIdfsJLlL7phtBR3VcLhHrqliQPbGnWxg0KjxakBuTZSpVD4gNye6t_PP--QTIIca5NAaORSRQ1vkUBikDXIoIIcCcmgfObRGDq2R84AcHYyTN29t03HDzsBgbm2hcqmYCGQW-2kkgsB3mYwUsFgWyzgUgYokvMqguWXue7kjpAhiT6Yx2A1fZMzbIztFWaiHhKqMYQgxy7M0ZJHrCceTXiSA_itXOGk-JE6zkDwz5eixK8qKN3GHJxzWnuPa83rth-Rl-8i6rsVy2WTWSIcbMlmTRA64uuyx_UaS3LzUFceincwDou8OybN2GPQwOtdEoWB5cQ6ovJi5zqMrzHlMbndvyD7Z2W7O1BNyI_u-XVabpwagvwBt_agj |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Landsat+Burned+Area+algorithm+and+products+for+the+conterminous+United+States&rft.jtitle=Remote+sensing+of+environment&rft.au=Hawbaker%2C+Todd+J&rft.au=Vanderhoof%2C+Melanie+K&rft.au=Schmidt%2C+Gail+L&rft.au=Beal%2C+Yen-Ju&rft.date=2020-07-01&rft.issn=0034-4257&rft.volume=244+p.111801-&rft_id=info:doi/10.1016%2Fj.rse.2020.111801&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0034-4257&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0034-4257&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0034-4257&client=summon |