The Landsat Burned Area algorithm and products for the conterminous United States

Complete and accurate burned area map data are needed to document spatial and temporal patterns of fires, to quantify their drivers, and to assess the impacts on human and natural systems. In this study, we developed the Landsat Burned Area (BA) algorithm, an update from the Landsat Burned Area Esse...

Full description

Saved in:
Bibliographic Details
Published in:Remote sensing of environment Vol. 244; p. 111801
Main Authors: Hawbaker, Todd J., Vanderhoof, Melanie K., Schmidt, Gail L., Beal, Yen-Ju, Picotte, Joshua J., Takacs, Joshua D., Falgout, Jeff T., Dwyer, John L.
Format: Journal Article
Language:English
Published: New York Elsevier Inc 01.07.2020
Elsevier BV
Subjects:
ISSN:0034-4257, 1879-0704
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Complete and accurate burned area map data are needed to document spatial and temporal patterns of fires, to quantify their drivers, and to assess the impacts on human and natural systems. In this study, we developed the Landsat Burned Area (BA) algorithm, an update from the Landsat Burned Area Essential Climate Variable (BAECV) algorithm. Here, we present the BA algorithm and products, changes relative to the BAECV algorithm and products, and updated validation metrics. We also present spatial and temporal patterns of burned area across the conterminous U.S., how burned area varies in relation to the number of operational Landsat sensors, and a comparison with other burned area datasets, including the BAECV, Monitoring Trends in Burn Severity (MTBS), GeoMAC, and Moderate Resolution Imaging Spectroradiometer (MODIS) MCD64A1.006 data. The BA algorithm identifies burned areas in analysis ready data (ARD) time-series of Landsat imagery from 1984 through 2018 using machine learning, thresholding, and image segmentation. Validation with reference data from high-resolution commercial satellite imagery resulted in omission and commission error rates averaging 19% and 41%, respectively. In comparison, validation with Landsat reference data had omission and commission error rates averaging 40% and 28%, respectively when burned areas in cultivated crops and pasture/hay land-cover types were excluded. Both validation tests documented lower commission error rates relative to the BAECV products. The amount of burned area detected varies not only in response to climate but also with the number of operational sensors and scenes collected. The combined amount of burned area detected by multiple sensors was larger than from any individual sensor, but there was no significant difference between individual sensors. Therefore, we used BA products from individual sensors to assess trends over time and all available sensors to compare with other existing BA products. From 1984 through 2018, annual burned area averaged 30,000 km2, ranged between 14,000 km2 in 1991 and 46,500 km2 in 2012, and increased over time at a rate of 356 km2/year. Compared to existing burned area products, the new Landsat BA products identified 29% more burned area than the BAECV products (1984–2015), 183% more than the MTBS/GeoMAC products (1984–2018), and 56% more than the MCD64A1.006 products (2003–2018). The products had similar patterns of year-to-year variability; the R2 values of linear regressions between annual burned area were >0.70 with the BAECV products and the MTBS/GeoMAC products, but somewhat lower for the MCD64A1.006 product (R2 = 0.66). The BA products are routinely produced as new Landsat data are collected and provide a unique data source to monitor and assess the spatial and temporal patterns and the impacts of fire. [Display omitted] •We describe the Landsat Burned Area (BA) algorithm and products for CONUS.•The algorithm operationalizes Landsat TM, ETM+, and OLI burned area products.•Commission error for wildland fires improved over the Landsat BAECV products.•Omission and commission error rates were lower than coarse-resolution BA products.•Burned area products can be consistently generated from the Landsat archive.
AbstractList Complete and accurate burned area map data are needed to document spatial and temporal patterns of fires, to quantify their drivers, and to assess the impacts on human and natural systems. In this study, we developed the Landsat Burned Area (BA) algorithm, an update from the Landsat Burned Area Essential Climate Variable (BAECV) algorithm. Here, we present the BA algorithm and products, changes relative to the BAECV algorithm and products, and updated validation metrics. We also present spatial and temporal patterns of burned area across the conterminous U.S., how burned area varies in relation to the number of operational Landsat sensors, and a comparison with other burned area datasets, including the BAECV, Monitoring Trends in Burn Severity (MTBS), GeoMAC, and Moderate Resolution Imaging Spectroradiometer (MODIS) MCD64A1.006 data. The BA algorithm identifies burned areas in analysis ready data (ARD) time-series of Landsat imagery from 1984 through 2018 using machine learning, thresholding, and image segmentation. Validation with reference data from high-resolution commercial satellite imagery resulted in omission and commission error rates averaging 19% and 41%, respectively. In comparison, validation with Landsat reference data had omission and commission error rates averaging 40% and 28%, respectively when burned areas in cultivated crops and pasture/hay land-cover types were excluded. Both validation tests documented lower commission error rates relative to the BAECV products. The amount of burned area detected varies not only in response to climate but also with the number of operational sensors and scenes collected. The combined amount of burned area detected by multiple sensors was larger than from any individual sensor, but there was no significant difference between individual sensors. Therefore, we used BA products from individual sensors to assess trends over time and all available sensors to compare with other existing BA products. From 1984 through 2018, annual burned area averaged 30,000 km², ranged between 14,000 km² in 1991 and 46,500 km² in 2012, and increased over time at a rate of 356 km²/year. Compared to existing burned area products, the new Landsat BA products identified 29% more burned area than the BAECV products (1984–2015), 183% more than the MTBS/GeoMAC products (1984–2018), and 56% more than the MCD64A1.006 products (2003–2018). The products had similar patterns of year-to-year variability; the R² values of linear regressions between annual burned area were >0.70 with the BAECV products and the MTBS/GeoMAC products, but somewhat lower for the MCD64A1.006 product (R² = 0.66). The BA products are routinely produced as new Landsat data are collected and provide a unique data source to monitor and assess the spatial and temporal patterns and the impacts of fire.
Complete and accurate burned area map data are needed to document spatial and temporal patterns of fires, to quantify their drivers, and to assess the impacts on human and natural systems. In this study, we developed the Landsat Burned Area (BA) algorithm, an update from the Landsat Burned Area Essential Climate Variable (BAECV) algorithm. Here, we present the BA algorithm and products, changes relative to the BAECV algorithm and products, and updated validation metrics. We also present spatial and temporal patterns of burned area across the conterminous U.S., how burned area varies in relation to the number of operational Landsat sensors, and a comparison with other burned area datasets, including the BAECV, Monitoring Trends in Burn Severity (MTBS), GeoMAC, and Moderate Resolution Imaging Spectroradiometer (MODIS) MCD64A1.006 data. The BA algorithm identifies burned areas in analysis ready data (ARD) time-series of Landsat imagery from 1984 through 2018 using machine learning, thresholding, and image segmentation. Validation with reference data from high-resolution commercial satellite imagery resulted in omission and commission error rates averaging 19% and 41%, respectively. In comparison, validation with Landsat reference data had omission and commission error rates averaging 40% and 28%, respectively when burned areas in cultivated crops and pasture/hay land-cover types were excluded. Both validation tests documented lower commission error rates relative to the BAECV products. The amount of burned area detected varies not only in response to climate but also with the number of operational sensors and scenes collected. The combined amount of burned area detected by multiple sensors was larger than from any individual sensor, but there was no significant difference between individual sensors. Therefore, we used BA products from individual sensors to assess trends over time and all available sensors to compare with other existing BA products. From 1984 through 2018, annual burned area averaged 30,000 km2, ranged between 14,000 km2 in 1991 and 46,500 km2 in 2012, and increased over time at a rate of 356 km2/year. Compared to existing burned area products, the new Landsat BA products identified 29% more burned area than the BAECV products (1984–2015), 183% more than the MTBS/GeoMAC products (1984–2018), and 56% more than the MCD64A1.006 products (2003–2018). The products had similar patterns of year-to-year variability; the R2 values of linear regressions between annual burned area were >0.70 with the BAECV products and the MTBS/GeoMAC products, but somewhat lower for the MCD64A1.006 product (R2 = 0.66). The BA products are routinely produced as new Landsat data are collected and provide a unique data source to monitor and assess the spatial and temporal patterns and the impacts of fire.
Complete and accurate burned area map data are needed to document spatial and temporal patterns of fires, to quantify their drivers, and to assess the impacts on human and natural systems. In this study, we developed the Landsat Burned Area (BA) algorithm, an update from the Landsat Burned Area Essential Climate Variable (BAECV) algorithm. Here, we present the BA algorithm and products, changes relative to the BAECV algorithm and products, and updated validation metrics. We also present spatial and temporal patterns of burned area across the conterminous U.S., how burned area varies in relation to the number of operational Landsat sensors, and a comparison with other burned area datasets, including the BAECV, Monitoring Trends in Burn Severity (MTBS), GeoMAC, and Moderate Resolution Imaging Spectroradiometer (MODIS) MCD64A1.006 data. The BA algorithm identifies burned areas in analysis ready data (ARD) time-series of Landsat imagery from 1984 through 2018 using machine learning, thresholding, and image segmentation. Validation with reference data from high-resolution commercial satellite imagery resulted in omission and commission error rates averaging 19% and 41%, respectively. In comparison, validation with Landsat reference data had omission and commission error rates averaging 40% and 28%, respectively when burned areas in cultivated crops and pasture/hay land-cover types were excluded. Both validation tests documented lower commission error rates relative to the BAECV products. The amount of burned area detected varies not only in response to climate but also with the number of operational sensors and scenes collected. The combined amount of burned area detected by multiple sensors was larger than from any individual sensor, but there was no significant difference between individual sensors. Therefore, we used BA products from individual sensors to assess trends over time and all available sensors to compare with other existing BA products. From 1984 through 2018, annual burned area averaged 30,000 km2, ranged between 14,000 km2 in 1991 and 46,500 km2 in 2012, and increased over time at a rate of 356 km2/year. Compared to existing burned area products, the new Landsat BA products identified 29% more burned area than the BAECV products (1984–2015), 183% more than the MTBS/GeoMAC products (1984–2018), and 56% more than the MCD64A1.006 products (2003–2018). The products had similar patterns of year-to-year variability; the R2 values of linear regressions between annual burned area were >0.70 with the BAECV products and the MTBS/GeoMAC products, but somewhat lower for the MCD64A1.006 product (R2 = 0.66). The BA products are routinely produced as new Landsat data are collected and provide a unique data source to monitor and assess the spatial and temporal patterns and the impacts of fire. [Display omitted] •We describe the Landsat Burned Area (BA) algorithm and products for CONUS.•The algorithm operationalizes Landsat TM, ETM+, and OLI burned area products.•Commission error for wildland fires improved over the Landsat BAECV products.•Omission and commission error rates were lower than coarse-resolution BA products.•Burned area products can be consistently generated from the Landsat archive.
ArticleNumber 111801
Author Dwyer, John L.
Picotte, Joshua J.
Hawbaker, Todd J.
Schmidt, Gail L.
Vanderhoof, Melanie K.
Beal, Yen-Ju
Falgout, Jeff T.
Takacs, Joshua D.
Author_xml – sequence: 1
  givenname: Todd J.
  orcidid: 0000-0003-0930-9154
  surname: Hawbaker
  fullname: Hawbaker, Todd J.
  email: tjhawbaker@usgs.gov
  organization: U.S. Geological Survey, Geosciences and Environmental Change Science Center, Denver, CO 80225, United States of America
– sequence: 2
  givenname: Melanie K.
  surname: Vanderhoof
  fullname: Vanderhoof, Melanie K.
  organization: U.S. Geological Survey, Geosciences and Environmental Change Science Center, Denver, CO 80225, United States of America
– sequence: 3
  givenname: Gail L.
  surname: Schmidt
  fullname: Schmidt, Gail L.
  organization: KBR, Contractor to the U.S. Geological Survey, Earth Resources Observation and Science Center, Sioux Falls, SD 57198, United States of America
– sequence: 4
  givenname: Yen-Ju
  surname: Beal
  fullname: Beal, Yen-Ju
  organization: U.S. Geological Survey, Geosciences and Environmental Change Science Center, Denver, CO 80225, United States of America
– sequence: 5
  givenname: Joshua J.
  surname: Picotte
  fullname: Picotte, Joshua J.
  organization: ASRC Federal Data Solutions, Contractor to the U.S. Geological Survey, Earth Resources Observation and Science Center, Sioux Falls, SD 57198, United States of America
– sequence: 6
  givenname: Joshua D.
  surname: Takacs
  fullname: Takacs, Joshua D.
  organization: U.S. Geological Survey, Geosciences and Environmental Change Science Center, Denver, CO 80225, United States of America
– sequence: 7
  givenname: Jeff T.
  surname: Falgout
  fullname: Falgout, Jeff T.
  organization: U.S. Geological Survey, Core Science, Analytics, Synthesis, and Libraries; Denver, CO 80225, United States of America
– sequence: 8
  givenname: John L.
  surname: Dwyer
  fullname: Dwyer, John L.
  organization: U.S. Geological Survey, Earth Resources Observation Science Center, Sioux Falls, SD 57198, United States of America
BookMark eNp9kM1OAyEYRYmpia36AO5I3LiZCgMzzMRVbfxLmhhjuyYUvrE0U6hATXx7aeqqi64I4R5y7xmhgfMOELqhZEwJre_X4xBhXJIy3yltCD1DQ9qItiCC8AEaEsJ4wctKXKBRjGtCaNUIOkQf8xXgmXImqoQfd8GBwZMACqv-ywebVhucH_E2eLPTKeLOB5wyor1LEDbW-V3EC2dT5j6TShCv0Hmn-gjX_-clWjw_zaevxez95W06mRWa1yIVCjoDXNVGt9WyUXVdldw0ULOWt6YVqobGtBUjpDJdxTqijKpbZpatIKxSmrNLdHf4N3f73kFMcmOjhr5XDnIpWXK2F8BLkqO3R9G1z1Nzu31KcFYKVuaUOKR08DEG6KS2eZHNS4OyvaRE7lXLtcyq5V61PKjOJD0it8FuVPg9yTwcGMiOfiwEGbUFp8HYADpJ4-0J-g-pWZf4
CitedBy_id crossref_primary_10_1080_15481603_2025_2498188
crossref_primary_10_3390_f15111959
crossref_primary_10_1016_j_pce_2025_103893
crossref_primary_10_3390_fire8090337
crossref_primary_10_1016_j_isprsjprs_2024_02_014
crossref_primary_10_1016_j_catena_2021_105949
crossref_primary_10_1016_j_measurement_2023_112961
crossref_primary_10_1016_j_rse_2023_113745
crossref_primary_10_1016_j_jag_2025_104815
crossref_primary_10_3390_rs14030602
crossref_primary_10_3390_fire6050215
crossref_primary_10_1007_s11027_023_10087_0
crossref_primary_10_1016_j_ecolind_2022_108999
crossref_primary_10_3390_rs14174354
crossref_primary_10_1029_2023GB007813
crossref_primary_10_1016_j_foreco_2021_119635
crossref_primary_10_3390_rs14194714
crossref_primary_10_3390_rs14246376
crossref_primary_10_1016_j_rse_2024_114071
crossref_primary_10_3390_rs16132500
crossref_primary_10_1117_1_JRS_18_014531
crossref_primary_10_3390_f15040705
crossref_primary_10_3390_fire4020026
crossref_primary_10_1016_j_asr_2024_12_001
crossref_primary_10_1029_2020EF001960
crossref_primary_10_3390_rs14112510
crossref_primary_10_1080_17538947_2024_2376275
crossref_primary_10_1186_s42408_020_00087_9
crossref_primary_10_1109_TGRS_2024_3457543
crossref_primary_10_3390_fire8040126
crossref_primary_10_1016_j_rse_2022_113237
crossref_primary_10_1093_ornithapp_duaf029
crossref_primary_10_3390_data7060078
crossref_primary_10_3390_f14071357
crossref_primary_10_5194_essd_12_3229_2020
crossref_primary_10_1016_j_geomat_2024_100008
crossref_primary_10_1016_j_rse_2021_112569
crossref_primary_10_3390_fire4030058
crossref_primary_10_3390_fire6100372
crossref_primary_10_1029_2024JG008635
crossref_primary_10_3390_computers14080337
crossref_primary_10_3390_fire5060180
crossref_primary_10_1016_j_jag_2023_103350
crossref_primary_10_3390_fire8040160
crossref_primary_10_1002_2688_8319_12352
crossref_primary_10_1016_j_scitotenv_2024_169929
crossref_primary_10_1186_s13021_024_00274_0
crossref_primary_10_3390_land11101856
crossref_primary_10_3389_fenvs_2024_1433920
crossref_primary_10_3390_land11101615
crossref_primary_10_1016_j_isprsjprs_2024_08_019
crossref_primary_10_1016_j_isprsjprs_2025_05_016
crossref_primary_10_3390_fire6030101
crossref_primary_10_3390_rs13194005
crossref_primary_10_1016_j_rse_2023_113498
crossref_primary_10_3390_fire4030052
crossref_primary_10_3390_rs17132283
crossref_primary_10_3390_rs13214298
crossref_primary_10_3390_fire7120482
crossref_primary_10_1016_j_rse_2020_112115
crossref_primary_10_1016_j_oneear_2024_05_014
crossref_primary_10_3390_fire7070257
crossref_primary_10_1109_JSTARS_2023_3316303
crossref_primary_10_3390_rs14092075
crossref_primary_10_3390_rs13040816
crossref_primary_10_3390_f14010032
crossref_primary_10_3390_f16081205
crossref_primary_10_1080_01431161_2024_2380543
crossref_primary_10_1676_23_00049
crossref_primary_10_5194_essd_13_5353_2021
crossref_primary_10_1071_WF24137
crossref_primary_10_1071_WF24214
crossref_primary_10_1029_2020AV000298
crossref_primary_10_1016_j_rsase_2023_100925
crossref_primary_10_5194_essd_15_5227_2023
crossref_primary_10_3390_rs14153546
crossref_primary_10_1088_1748_9326_abd3d1
crossref_primary_10_3389_ffgc_2022_1052299
crossref_primary_10_3390_fire5040095
crossref_primary_10_3390_rs13193843
crossref_primary_10_1016_j_rse_2023_113918
crossref_primary_10_1093_pnasnexus_pgad315
crossref_primary_10_3390_ijgi9100564
crossref_primary_10_3390_fire8080316
crossref_primary_10_3390_rs12152438
crossref_primary_10_3390_rs16142629
crossref_primary_10_1080_10106049_2023_2285345
crossref_primary_10_1111_aje_13152
crossref_primary_10_1071_WF22044
crossref_primary_10_1016_j_rse_2022_113298
crossref_primary_10_3390_rs12132168
crossref_primary_10_1002_ecs2_4403
crossref_primary_10_1016_j_rse_2023_113753
crossref_primary_10_1016_j_scitotenv_2022_157139
crossref_primary_10_1071_WF22200
Cites_doi 10.5194/essd-10-2241-2018
10.1016/j.rse.2013.08.014
10.1016/S0034-4257(00)00078-X
10.3390/rs11050489
10.1109/LGRS.2005.857030
10.1007/s00267-014-0364-1
10.1016/0034-4257(79)90013-0
10.1016/j.rse.2008.10.006
10.1641/0006-3568(2001)051[0933:TEOTWA]2.0.CO;2
10.1016/S0034-4257(02)00096-2
10.3390/rs9070743
10.1016/j.rse.2014.02.001
10.14358/PERS.73.2.165
10.1111/geb.12440
10.1016/j.rse.2017.06.031
10.3390/rs8100873
10.1016/j.earscirev.2005.10.006
10.1016/j.rse.2018.12.011
10.1016/j.isprsjprs.2018.09.006
10.1080/10106048809354180
10.1016/j.rse.2017.11.015
10.1214/16-AOAS995
10.1016/S0034-4257(96)00067-3
10.3390/rs61212360
10.3390/rs70912503
10.1016/j.rse.2015.03.011
10.1016/j.rse.2008.05.013
10.1016/j.isprsjprs.2012.03.001
10.5194/essd-10-2015-2018
10.1016/j.rse.2009.08.017
10.1016/j.rse.2011.10.028
10.1016/j.rse.2018.10.028
10.3390/rs10111680
10.1080/10106049109354290
10.1071/WF15039
10.4996/fireecology.0301022
10.1007/BF00031911
10.1016/j.rse.2016.02.054
10.1016/j.rse.2019.02.013
10.1175/BAMS-D-11-00254.1
10.1016/j.jag.2018.05.027
10.1016/j.rse.2019.111254
10.1016/j.rse.2014.06.012
10.1016/j.rse.2017.06.027
10.1080/01431160050145045
10.3390/rs10091363
10.1080/014311698213777
10.1016/j.rse.2015.12.024
10.1016/j.rse.2014.01.011
10.1016/j.rse.2016.09.016
10.1111/j.1365-2656.2008.01390.x
10.1016/0034-4257(88)90106-X
10.1016/S0034-4257(96)00176-9
10.1080/17538947.2015.1111952
10.1080/01431160110053185
10.1029/2007GL031567
10.1016/j.rse.2015.01.005
10.1080/014311698214587
10.1016/j.rse.2017.06.041
10.3390/rs8120986
10.5194/bg-7-1171-2010
10.1080/014311600210506
10.1071/WF14190
10.1016/j.rse.2003.12.015
10.1080/0143116031000082073
10.1080/01431160500113096
10.1016/j.rse.2009.08.014
10.1016/S0034-4257(01)00318-2
10.1016/j.rse.2018.08.005
10.1016/j.rse.2015.01.022
10.1109/TGRS.2006.877436
10.1016/j.rse.2007.12.008
10.1002/2017GL073979
10.4996/fireecology.0301003
10.1016/j.jenvman.2017.08.018
10.1002/2014GL059576
10.1016/j.rse.2016.08.023
10.1175/EI-D-14-0002.1
10.1109/TGRS.2018.2824828
10.1080/01431169608948714
10.3390/rs3112403
10.3390/fire2020036
10.3390/rs11040374
10.1071/WF13019
10.1016/j.rse.2010.07.010
10.1109/TPAMI.2006.233
10.1016/j.rse.2012.12.003
10.1080/01431160903131000
10.1073/pnas.1617394114
10.1073/pnas.0911131107
10.1890/08-0879.1
10.1073/pnas.1607171113
10.1016/j.isprsjprs.2016.04.001
10.1080/01431160500239008
10.1007/s11027-006-1012-8
10.1016/j.rse.2014.03.021
10.1016/j.rse.2003.08.010
10.3390/rs11040447
10.1080/01431160210153129
10.1016/j.rse.2017.06.025
10.1016/j.rse.2019.02.015
10.1016/j.rse.2015.08.032
10.1080/01431160600954704
10.1071/WF16165
10.3390/rs11091124
10.1016/j.rse.2010.07.008
10.1016/j.rse.2005.03.002
10.1029/2018GL078679
10.1016/j.rse.2014.01.008
10.1016/j.rse.2016.04.008
ContentType Journal Article
Copyright 2020
Copyright Elsevier BV Jul 2020
Copyright_xml – notice: 2020
– notice: Copyright Elsevier BV Jul 2020
DBID 6I.
AAFTH
AAYXX
CITATION
7QF
7QO
7QQ
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7TG
7U5
8BQ
8FD
C1K
F28
FR3
H8D
H8G
JG9
JQ2
KL.
KR7
L7M
L~C
L~D
P64
7S9
L.6
DOI 10.1016/j.rse.2020.111801
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Ecology Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Meteorological & Geoastrophysical Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
Materials Research Database
ProQuest Computer Science Collection
Meteorological & Geoastrophysical Abstracts - Academic
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Materials Business File
Environmental Sciences and Pollution Management
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Meteorological & Geoastrophysical Abstracts
Biotechnology Research Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
Ecology Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Geography
Geology
Environmental Sciences
EISSN 1879-0704
ExternalDocumentID 10_1016_j_rse_2020_111801
S0034425720301711
GeographicLocations United States--US
United States
GeographicLocations_xml – name: United States--US
– name: United States
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
123
1B1
1RT
1~.
1~5
29P
4.4
41~
457
4G.
53G
5VS
6I.
6TJ
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABEFU
ABFNM
ABFYP
ABJNI
ABLST
ABMAC
ABPPZ
ABQEM
ABQYD
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIWK
ACLVX
ACPRK
ACRLP
ACSBN
ADBBV
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AFFNX
AFKWA
AFRAH
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FA8
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
HMA
HMC
HVGLF
HZ~
H~9
IHE
IMUCA
J1W
KCYFY
KOM
LY3
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OHT
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SEN
SEP
SES
SEW
SPC
SPCBC
SSE
SSJ
SSZ
T5K
TN5
TWZ
VOH
WH7
WUQ
XOL
ZCA
ZMT
~02
~G-
~KM
9DU
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABUFD
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
ADXHL
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7QF
7QO
7QQ
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7TG
7U5
8BQ
8FD
AGCQF
C1K
F28
FR3
H8D
H8G
JG9
JQ2
KL.
KR7
L7M
L~C
L~D
P64
7S9
L.6
ID FETCH-LOGICAL-c467t-aefde4a6dc95b8a66524d8e63949d97a6e8d953005df53f0ada693db97035ac43
ISICitedReferencesCount 113
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000532837400004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0034-4257
IngestDate Sat Sep 27 17:48:47 EDT 2025
Wed Aug 13 08:46:15 EDT 2025
Tue Nov 18 22:08:39 EST 2025
Sat Nov 29 07:26:53 EST 2025
Fri Feb 23 02:46:53 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Burned area
United States
Landsat
Fire
Machine learning
Language English
License This is an open access article under the CC BY license.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c467t-aefde4a6dc95b8a66524d8e63949d97a6e8d953005df53f0ada693db97035ac43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-0930-9154
OpenAccessLink https://dx.doi.org/10.1016/j.rse.2020.111801
PQID 2437432732
PQPubID 2045405
ParticipantIDs proquest_miscellaneous_2431879420
proquest_journals_2437432732
crossref_citationtrail_10_1016_j_rse_2020_111801
crossref_primary_10_1016_j_rse_2020_111801
elsevier_sciencedirect_doi_10_1016_j_rse_2020_111801
PublicationCentury 2000
PublicationDate July 2020
2020-07-00
20200701
PublicationDateYYYYMMDD 2020-07-01
PublicationDate_xml – month: 07
  year: 2020
  text: July 2020
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Remote sensing of environment
PublicationYear 2020
Publisher Elsevier Inc
Elsevier BV
Publisher_xml – name: Elsevier Inc
– name: Elsevier BV
References Huete, Didan, Miura, Rodriguez, Gao, Ferreira (bb0260) 2002; 83
Murphy, Evans, Storfer (bb0365) 2010; 91
Roy, Wulder, Loveland, C.E., W., Allen, Anderson, Helder, Irons, Johnson, Kennedy, Scambos, Schaaf, Schott, Sheng, Vermote, Belward, Bindschadler, Cohen, Gao, Hipple, Hostert, Huntington, Justice, Kilic, Kovalskyy, Lee, Lymburner, Masek, McCorkel, Shuai, Trezza, Vogelmann, Wynne, Zhu (bb0455) 2014; 145
Andela, Morton, Giglio, Paugam, Chen, Hantson, van der Werf, Randerson (bb0035) 2018
Chuvieco, Congalton (bb0070) 1988; 3
Kolden, Weisberg (bb0285) 2007; 3
Frantz (bb0140) 2019; 11
French, McKenzie, Erickson, Koziol, Billmire, Endsley, Scheinerman, Jenkins, Miller, Ottmar, Prichard (bb0145) 2014; 18
Zhu, Woodcock (bb0630) 2014; 152
Masek, Vermote, Saleous, Wolfe, Hall, Huemmrich, Gao, Kutler, Lim (bb0340) 2006; 3
Koutsias, Karteris (bb0295) 1998; 19
Yang, Jin, Danielson, Homer, Gass, Bender, Case, Costello, Dewitz, Fry, Funk, Granneman, Liknes, Rigge, Xian (bb0615) 2018; 146
Westerling (bb0600) 2011; 371
van Wagtendonk, Root, Key (bb0560) 2004; 92
Richter, Schläpfer (bb0435) 2016
Trigg, Flasse (bb0540) 2000; 21
Smith, Drake, Wooster, Hudak, Holden, Gibbons (bb0500) 2007; 28
Harris, Veraverbeke, Hook (bb0210) 2011; 3
Stroppiana, Bordogna, Carrara, Boschetti, Boschetti, Brivio (bb0525) 2012; 69
Hawbaker, Vanderhoof, Schmidt, Beal, Picotte, Takacs, Falgout, Dwyer (bb0230) 2020
Adler-Golden, Berk, Bernsteain, Richtsmeir, Acharyal, Matthew, Anderson, Allred, Jeong, Chetwynd (bb0020) 1998
Boschetti, Stehman, Roy (bb0060) 2016; 186
Holden, Smith, Morgan, Rollins, Gessler (bb0235) 2005; 26
Picotte, Peterson, Meier, Howard (bb0410) 2016; 25
Hollmann, Merchant, Saunders, Downy, Buchwitz, Cazenave, Chuvieco, Defourny, de Leeuw, Forsberg, Holzer-Popp, Paul, Sandven, Sathyendranath, van Roozendael, Wagner (bb0240) 2013; 94
Huang, Goward, Masek, Thomas, Zhu, Vogelmann (bb0245) 2010; 114
Huete (bb0255) 1988; 25
García, Caselles (bb0160) 1991; 6
Hansen, Egorov, Potapov, Stehman, Tyukavina, Turubanova, Roy, Goetz, Loveland, Ju, Kommareddy, Kovalskyy, Forsyth, Bents (bb0205) 2014; 140
Elith, Leathwick, Hastie (bb0130) 2008; 77
Nowell, Holmes, Robertson, Teske, Hiers (bb0370) 2018; 45
Roy, Frost, Justice, Landmann, Roux, Gumbo, Makungwa, Dunham, Toit, Mhwandagara, Zacarias, Tacheba, Dube, Pereira, Mushove, Morisette, Vannan, Davies (bb0445) 2005; 26
Verhegghen, Eva, Ceccherini, Achard, Gond, Gourlet-Fleury, Cerutti (bb0585) 2016; 8
Gorelick, Hancher, Dixon, Ilyushchenko, Thau, Moore (bb0195) 2017; 202
Epting, Verbyla, Sorbel (bb0135) 2005; 96
Padilla, Olofsson, Stehman, Tansey, Chuvieco (bb0395) 2017; 203
Koutsias, Karteris (bb0300) 2000; 21
Zhu, Woodcock (bb0620) 2012; 118
Tran, Tanase, Bennett, Aponte (bb0535) 2018; 10
Chuvieco, Mouillot, van der Werf, Miguel, Tanasse, Koutsias, García, Yebra, Padilla, Gitas, Heil, Hawbaker, Giglio (bb0090) 2019; 225
Tansey, Grégoire, Defourny, Leigh, Pekel, van Bogaert, Bartholomé (bb0530) 2008; 35
Zhu, Zhang, Yang, Aljaddani, Cohen, Qiu, Zhou (bb0635) 2019; 238
Pengra, Stehman, Horton, Dockter, Schroeder, Yang, Cohen, Healey, Loveland (bb0405) 2019; 238
Vanderhoof, Fairaux, Beail, Hawbaker (bb0575) 2020
Hastie, Tibshirani, Friedman (bb0215) 2009
Alonso-Canas, Chuvieco (bb0030) 2015; 163
Tucker (bb0550) 1979; 8
Meddens, Kolden, Lutz (bb0350) 2016; 186
Gao (bb0155) 1996; 58
Giglio, Schroeder, Justice (bb0180) 2016; 178
Cohen, Yang, Healey, Kennedy, Gorelick (bb0105) 2018; 205
Roteta, Bastarrika, Padilla, Storm, Chuvieco (bb0440) 2019; 222
Olson, Dinerstein, Wikramanayake, Burgess, Powell, Underwood, D’amico, Itoua, Strand, Morrison, Loucks, Allnutt, Ricketts, Kura, Lamoreux, Wettengel, Hedao, Kassem (bb0375) 2001; 51
Roy, Boschetti, Justice, Ju (bb0450) 2008; 112
Balch, Bradley, Abatzoglou, Nagy, Fusco, Mahood (bb0040) 2017; 114
Dwyer, Roy, Sauer, Jenkerson, Zhang, Lymburner (bb0115) 2018; 10
Boschetti, Roy, Justice (bb0050) 2009
Giglio, Boschetti, Roy, Humber, Justice (bb0185) 2018; 217
Moran, Seielstad, Cunningham, Hoff, Parsons, Ll, Sauerbrey, Wallace (bb0355) 2019; 2
Short (bb0490) 2013; 6
Huang, Roy, Boschetti, Zhang, Yan, Kumar, Gomez-Dans, Li (bb0250) 2016; 8
Plummer, Arino, Simon, Steffen (bb0420) 2006; 11
Jones (bb0265) 2015; 7
Padilla, Stehman, Ramo, Corti, Hantson, Oliva, Alonso-Canas, Bradley, Tansey, Mota, Pereira, Chuvieco (bb0390) 2015; 160
Steven, Malthus, Baret, Xu, Chopping (bb0520) 2003; 88
Bastarrika, Alvarado, Artano, Martinez, Mesanza, Torre, Ramo, Chuvieco (bb0045) 2014; 6
Boschetti, Roy, Justice, Humber (bb0055) 2015; 161
Eidenshink, Schwind, Brewer, Zhu, Quayle, Howard (bb0125) 2007; 3
Kennedy, Yang, Cohen (bb0275) 2010; 114
Roy, Huang, Boschetti, Giglio, Yan, Zhang, Li (bb0465) 2019; 231
Abatzoglou, Williams (bb0010) 2016; 113
Selkowitz, Forster (bb0480) 2016; 117
Roy, Kovalskyy, Zhang, Vermote, Yan, Kumar, Egorov (bb0460) 2016; 185
Verbesselt, Hyndman, Newnham, Culvenor (bb0580) 2010; 114
Cohen, Yang, Kennedy (bb0100) 2010; 114
Chuvieco, Yue, Heil, Mouillot, Alonso-Canas, Padilla, Pereira, Oom, Tansey (bb0080) 2016; 25
Cochran (bb0095) 1977
Sankey, Kreitler, Hawbaker, McVay, Miller, Mueller, Vaillant, Lowe, Sankey (bb0470) 2017; 44
Vogelmann, Howard, Yang, Larson, Wylie, Van Driel (bb0595) 2001; 65
Fusco, Finn, Abatzoglou, Balch, Dadashi, Bradley (bb0150) 2019; 220
Goodwin, Collett (bb0190) 2014; 148
Egorov, Roy, Zhang, Li, Yan, Huang (bb0120) 2019; 11
Vanderhoof, Fairaux, Beal, Hawbaker (bb0570) 2017; 198
Chuvieco, Lizundia-Loiola, Pettinari, Ramo, Padilla, Tansey, Mouillot, Laurent, Storm, Heil, Plummer (bb0085) 2018; 10
Liu, Wimberly (bb0320) 2015; 10
Fraser, Li, Cihlar (bb1005) 2000; 74
Malakar, Hulley, Hook, Laraby, Cook, Schott (bb0335) 2018; 56
Wulder, Loveland, Roy, Crawford, Masek, Woodcock, Allen, Anderson, Belward, Cohen, Dwyer, Erb, Gao, Griffiths, Helder, Hermosilla, Hipple, Hostert, Hughes, Huntington, Johnson, Kennedy, Kilic, Li, Lymburner, McCorkel, Pahlevan, Scambos, Schaaf, Schott, Sheng, Storey, Vermote, Vogelmann, White, Wynne, Zhu (bb0610) 2019; 225
Pinty, Verstraete (bb0415) 1992; 101
Parthum, Pindilli, Hogan (bb0400) 2017; 203
Abatzoglou, Kolden, Williams, Lutz, Smith (bb0015) 2017
Giglio, Randerson, van der Werf, Kasibhatla, Collatz, Morton, DeFries (bb0175) 2010; 7
Abatzoglou, Kolden (bb0005) 2013
Shakesby, Doerr (bb0485) 2006; 74
Jones (bb0270) 2019; 11
Trigg, Flasse (bb0545) 2001; 22
Omernik, Griffith (bb0380) 2014; 54
Vermote, Justice, Claverie, Franch (bb0590) 2016; 185
Koutsias (bb0290) 2003; 24
Adler-Golden, Matthew, Bernstein, Levine, Berk, Richtsmeier, Acharya, Anderson, Felde, Gardner, Hoke, Jeong, Pukall, Ratkowski, Burke (bb0025) 1999
Dennison, Brewer, Arnold, Moritz (bb0110) 2014; 41
Hawbaker, Radeloff, Syphard, Zhu, Stewart (bb0220) 2008; 112
Short (bb0495) 2015; 24
Long, Zhang, He, Jiao, Tang, Wu, Zhang, Wang, Yin (bb0325) 2019; 11
Stehman (bb0510) 2009; 30
Grady (bb0200) 2001; 28
Hawbaker, Vanderhoof, Beal, Takacs, Schmidt, Falgout, Williams, Fairaux, Caldwell, Picotte, Howard, Stitt, Dwyer (bb0225) 2017; 198
Stehman (bb0505) 1997; 60
Kovalskyy, Roy (bb0305) 2013; 130
Morisette, Baret, Liang (bb0360) 2006; 44
Lewis, Lymburner, Purss, Brooke, Evans, Ip, Dekker, Irons, Minchin, Mueller, Oliver, Roberts, Ryan, Thankappan, Woodcock, Wyborn (bb0315) 2015; 9
Radeloff, Helmers, Kramer, Mockrin, Alexandre, Bar-Massada, Butsic, Hawbaker, Martinuzzi, Syphard, Stewart (bb0425) 2018; 107
Kushla, Ripple (bb0310) 1998; 19
Schroeder, Oliva, Giglio, Quayle, Lorenz, Morelli (bb0475) 2016; 185
Brown, Hall, Mohrle, Reinbold (bb0065) 2002
McFeeters (bb0345) 1996; 17
Stehman, Arora, Kasetkasem, Varshney (bb0515) 2007; 73
Key, Benson (bb0280) 2006
Giglio, Loboda, Roy, Quayle, Justice (bb0170) 2009; 113
Padilla, Stehman, Chuvieco (bb0385) 2014; 144
Ramo, García, Rodríguez, Chuvieco (bb0430) 2018; 73
Chuvieco, Martín, Palacios (bb0075) 2002; 23
Ghimire, Williams, Collatz, Vanderhoof (bb0165) 2012; 2005
Ludwig, Chu, Zhu, Wang, Koehler (bb0330) 2017; 11
Urbanski, Reeves, Corley, Silverstein, Hao (bb0555) 2018; 10
Wilson, Sader (bb0605) 2002; 80
Zhu, Woodcock (bb0625) 2014; 144
Vanderhoof, Brunner, Beal, Hawbaker (bb0565) 2017; 9
Fraser (10.1016/j.rse.2020.111801_bb1005) 2000; 74
Goodwin (10.1016/j.rse.2020.111801_bb0190) 2014; 148
Hawbaker (10.1016/j.rse.2020.111801_bb0220) 2008; 112
Dennison (10.1016/j.rse.2020.111801_bb0110) 2014; 41
Zhu (10.1016/j.rse.2020.111801_bb0625) 2014; 144
Huete (10.1016/j.rse.2020.111801_bb0260) 2002; 83
Abatzoglou (10.1016/j.rse.2020.111801_bb0010) 2016; 113
Cohen (10.1016/j.rse.2020.111801_bb0100) 2010; 114
Grady (10.1016/j.rse.2020.111801_bb0200) 2001; 28
Wulder (10.1016/j.rse.2020.111801_bb0610) 2019; 225
Key (10.1016/j.rse.2020.111801_bb0280) 2006
Brown (10.1016/j.rse.2020.111801_bb0065) 2002
Richter (10.1016/j.rse.2020.111801_bb0435)
Trigg (10.1016/j.rse.2020.111801_bb0545) 2001; 22
Shakesby (10.1016/j.rse.2020.111801_bb0485) 2006; 74
Jones (10.1016/j.rse.2020.111801_bb0265) 2015; 7
Roy (10.1016/j.rse.2020.111801_bb0455) 2014; 145
Giglio (10.1016/j.rse.2020.111801_bb0170) 2009; 113
Koutsias (10.1016/j.rse.2020.111801_bb0290) 2003; 24
Trigg (10.1016/j.rse.2020.111801_bb0540) 2000; 21
Meddens (10.1016/j.rse.2020.111801_bb0350) 2016; 186
Abatzoglou (10.1016/j.rse.2020.111801_bb0005) 2013
Urbanski (10.1016/j.rse.2020.111801_bb0555) 2018; 10
Schroeder (10.1016/j.rse.2020.111801_bb0475) 2016; 185
Tran (10.1016/j.rse.2020.111801_bb0535) 2018; 10
Giglio (10.1016/j.rse.2020.111801_bb0175) 2010; 7
Epting (10.1016/j.rse.2020.111801_bb0135) 2005; 96
Bastarrika (10.1016/j.rse.2020.111801_bb0045) 2014; 6
Huete (10.1016/j.rse.2020.111801_bb0255) 1988; 25
Stehman (10.1016/j.rse.2020.111801_bb0505) 1997; 60
van Wagtendonk (10.1016/j.rse.2020.111801_bb0560) 2004; 92
Fusco (10.1016/j.rse.2020.111801_bb0150) 2019; 220
Morisette (10.1016/j.rse.2020.111801_bb0360) 2006; 44
Zhu (10.1016/j.rse.2020.111801_bb0630) 2014; 152
Ludwig (10.1016/j.rse.2020.111801_bb0330) 2017; 11
Hollmann (10.1016/j.rse.2020.111801_bb0240) 2013; 94
Nowell (10.1016/j.rse.2020.111801_bb0370) 2018; 45
Vanderhoof (10.1016/j.rse.2020.111801_bb0575) 2020
Boschetti (10.1016/j.rse.2020.111801_bb0050) 2009
Chuvieco (10.1016/j.rse.2020.111801_bb0085) 2018; 10
Koutsias (10.1016/j.rse.2020.111801_bb0295) 1998; 19
Picotte (10.1016/j.rse.2020.111801_bb0410) 2016; 25
Sankey (10.1016/j.rse.2020.111801_bb0470) 2017; 44
Hawbaker (10.1016/j.rse.2020.111801_bb0230) 2020
Roy (10.1016/j.rse.2020.111801_bb0460) 2016; 185
Hawbaker (10.1016/j.rse.2020.111801_bb0225) 2017; 198
Ghimire (10.1016/j.rse.2020.111801_bb0165) 2012; 2005
Olson (10.1016/j.rse.2020.111801_bb0375) 2001; 51
French (10.1016/j.rse.2020.111801_bb0145) 2014; 18
Vermote (10.1016/j.rse.2020.111801_bb0590) 2016; 185
Vanderhoof (10.1016/j.rse.2020.111801_bb0565) 2017; 9
Chuvieco (10.1016/j.rse.2020.111801_bb0090) 2019; 225
Liu (10.1016/j.rse.2020.111801_bb0320) 2015; 10
Alonso-Canas (10.1016/j.rse.2020.111801_bb0030) 2015; 163
Boschetti (10.1016/j.rse.2020.111801_bb0060) 2016; 186
Huang (10.1016/j.rse.2020.111801_bb0245) 2010; 114
Koutsias (10.1016/j.rse.2020.111801_bb0300) 2000; 21
Omernik (10.1016/j.rse.2020.111801_bb0380) 2014; 54
Adler-Golden (10.1016/j.rse.2020.111801_bb0025) 1999
Pengra (10.1016/j.rse.2020.111801_bb0405) 2019; 238
Tucker (10.1016/j.rse.2020.111801_bb0550) 1979; 8
Eidenshink (10.1016/j.rse.2020.111801_bb0125) 2007; 3
Abatzoglou (10.1016/j.rse.2020.111801_bb0015) 2017
Egorov (10.1016/j.rse.2020.111801_bb0120) 2019; 11
Long (10.1016/j.rse.2020.111801_bb0325) 2019; 11
Hansen (10.1016/j.rse.2020.111801_bb0205) 2014; 140
Short (10.1016/j.rse.2020.111801_bb0495) 2015; 24
Balch (10.1016/j.rse.2020.111801_bb0040) 2017; 114
Malakar (10.1016/j.rse.2020.111801_bb0335) 2018; 56
Dwyer (10.1016/j.rse.2020.111801_bb0115) 2018; 10
Andela (10.1016/j.rse.2020.111801_bb0035) 2018
Roteta (10.1016/j.rse.2020.111801_bb0440) 2019; 222
Chuvieco (10.1016/j.rse.2020.111801_bb0070) 1988; 3
Stroppiana (10.1016/j.rse.2020.111801_bb0525) 2012; 69
Gorelick (10.1016/j.rse.2020.111801_bb0195) 2017; 202
Verbesselt (10.1016/j.rse.2020.111801_bb0580) 2010; 114
Lewis (10.1016/j.rse.2020.111801_bb0315) 2015; 9
Stehman (10.1016/j.rse.2020.111801_bb0510) 2009; 30
Cohen (10.1016/j.rse.2020.111801_bb0105) 2018; 205
Ramo (10.1016/j.rse.2020.111801_bb0430) 2018; 73
Chuvieco (10.1016/j.rse.2020.111801_bb0075) 2002; 23
Cochran (10.1016/j.rse.2020.111801_bb0095) 1977
Kushla (10.1016/j.rse.2020.111801_bb0310) 1998; 19
Boschetti (10.1016/j.rse.2020.111801_bb0055) 2015; 161
Roy (10.1016/j.rse.2020.111801_bb0450) 2008; 112
Adler-Golden (10.1016/j.rse.2020.111801_bb0020) 1998
Padilla (10.1016/j.rse.2020.111801_bb0385) 2014; 144
Kolden (10.1016/j.rse.2020.111801_bb0285) 2007; 3
Giglio (10.1016/j.rse.2020.111801_bb0180) 2016; 178
Vogelmann (10.1016/j.rse.2020.111801_bb0595) 2001; 65
Giglio (10.1016/j.rse.2020.111801_bb0185) 2018; 217
Zhu (10.1016/j.rse.2020.111801_bb0620) 2012; 118
Harris (10.1016/j.rse.2020.111801_bb0210) 2011; 3
Moran (10.1016/j.rse.2020.111801_bb0355) 2019; 2
Jones (10.1016/j.rse.2020.111801_bb0270) 2019; 11
Tansey (10.1016/j.rse.2020.111801_bb0530) 2008; 35
Wilson (10.1016/j.rse.2020.111801_bb0605) 2002; 80
Kennedy (10.1016/j.rse.2020.111801_bb0275) 2010; 114
Stehman (10.1016/j.rse.2020.111801_bb0515) 2007; 73
Frantz (10.1016/j.rse.2020.111801_bb0140) 2019; 11
Westerling (10.1016/j.rse.2020.111801_bb0600) 2011; 371
Yang (10.1016/j.rse.2020.111801_bb0615) 2018; 146
Radeloff (10.1016/j.rse.2020.111801_bb0425) 2018; 107
Murphy (10.1016/j.rse.2020.111801_bb0365) 2010; 91
Zhu (10.1016/j.rse.2020.111801_bb0635) 2019; 238
Steven (10.1016/j.rse.2020.111801_bb0520) 2003; 88
Roy (10.1016/j.rse.2020.111801_bb0445) 2005; 26
Elith (10.1016/j.rse.2020.111801_bb0130) 2008; 77
Gao (10.1016/j.rse.2020.111801_bb0155) 1996; 58
Holden (10.1016/j.rse.2020.111801_bb0235) 2005; 26
Smith (10.1016/j.rse.2020.111801_bb0500) 2007; 28
Masek (10.1016/j.rse.2020.111801_bb0340) 2006; 3
Roy (10.1016/j.rse.2020.111801_bb0465) 2019; 231
Chuvieco (10.1016/j.rse.2020.111801_bb0080) 2016; 25
Hastie (10.1016/j.rse.2020.111801_bb0215) 2009
Plummer (10.1016/j.rse.2020.111801_bb0420) 2006; 11
García (10.1016/j.rse.2020.111801_bb0160) 1991; 6
Pinty (10.1016/j.rse.2020.111801_bb0415) 1992; 101
Short (10.1016/j.rse.2020.111801_bb0490) 2013; 6
Kovalskyy (10.1016/j.rse.2020.111801_bb0305) 2013; 130
Parthum (10.1016/j.rse.2020.111801_bb0400) 2017; 203
McFeeters (10.1016/j.rse.2020.111801_bb0345) 1996; 17
Vanderhoof (10.1016/j.rse.2020.111801_bb0570) 2017; 198
Selkowitz (10.1016/j.rse.2020.111801_bb0480) 2016; 117
Verhegghen (10.1016/j.rse.2020.111801_bb0585) 2016; 8
Padilla (10.1016/j.rse.2020.111801_bb0395) 2017; 203
Huang (10.1016/j.rse.2020.111801_bb0250) 2016; 8
Padilla (10.1016/j.rse.2020.111801_bb0390) 2015; 160
References_xml – volume: 238
  year: 2019
  ident: bb0635
  article-title: Continuous monitoring of land disturbance based on Landsat time series
  publication-title: Remote Sens. Environ.
– volume: 10
  start-page: 1680
  year: 2018
  ident: bb0535
  article-title: Evaluation of spectral indices for assessing fire severity in Australian temperate forests
  publication-title: Remote Sens.
– volume: 3
  start-page: 41
  year: 1988
  end-page: 53
  ident: bb0070
  article-title: Mapping and inventory of forest fires from digital processing of TM data
  publication-title: Geocarto International
– volume: 41
  start-page: 2928
  year: 2014
  end-page: 2933
  ident: bb0110
  article-title: Large wildfire trends in the western United States, 1984–2011
  publication-title: Geophys. Res. Lett.
– volume: 148
  start-page: 206
  year: 2014
  end-page: 221
  ident: bb0190
  article-title: Development of an automated method for mapping fire history captured in Landsat TM and ETM+ time series across Queensland, Australia
  publication-title: Remote Sens. Environ.
– volume: 58
  start-page: 257
  year: 1996
  end-page: 266
  ident: bb0155
  article-title: NDWI—a normalized difference water index for remote sensing of vegetation liquid water from space
  publication-title: Remote Sens. Environ.
– volume: 11
  start-page: 374
  year: 2019
  ident: bb0270
  article-title: Improved automated detection of subpixel-scale inundation—revised Dynamic Surface Water Extent (DSWE) partial surface water tests
  publication-title: Remote Sens.
– volume: 238
  year: 2019
  ident: bb0405
  article-title: Quality control and assessment of interpreter consistency of annual land cover reference data in an operational national monitoring program
  publication-title: Remote Sens. Environ.
– volume: 2
  start-page: 36
  year: 2019
  ident: bb0355
  article-title: Deriving fire behavior metrics from UAS imagery
  publication-title: Fire
– volume: 3
  start-page: 2403
  year: 2011
  end-page: 2419
  ident: bb0210
  article-title: Evaluating spectral indices for assessing fire severity in chaparral ecosystems (Southern California) using MODIS/ASTER (MASTER) airborne simulator data
  publication-title: Remote Sens.
– volume: 112
  start-page: 2656
  year: 2008
  end-page: 2664
  ident: bb0220
  article-title: Detection rates of the MODIS active fire product in the United States
  publication-title: Remote Sens. Environ.
– volume: 8
  start-page: 986
  year: 2016
  ident: bb0585
  article-title: The potential of Sentinel satellites for burnt area mapping and monitoring in the Congo Basin forests
  publication-title: Remote Sens.
– volume: 185
  start-page: 46
  year: 2016
  end-page: 56
  ident: bb0590
  article-title: Preliminary analysis of the performance of the Landsat 8/OLI land surface reflectance product
  publication-title: Remote Sens. Environ.
– volume: 114
  start-page: 2946
  year: 2017
  end-page: 2951
  ident: bb0040
  article-title: Human-started wildfires expand the fire niche across the United States
  publication-title: Proc. Natl. Acad. Sci.
– volume: 3
  start-page: 68
  year: 2006
  end-page: 72
  ident: bb0340
  article-title: A Landsat surface reflectance dataset for North America, 1990–2000
  publication-title: IEEE Geosci. Remote Sens. Lett.
– year: 2016
  ident: bb0435
  article-title: Atmospheric/Topographic Correction for Satellite Imagery; ATCOR-2/3 User Guide, Version 9.0.2; ReSe Applications: Langeggweg, Switzerland
– volume: 25
  start-page: 619
  year: 2016
  end-page: 629
  ident: bb0080
  article-title: A new global burned area product for climate assessment of fire impacts
  publication-title: Glob. Ecol. Biogeogr.
– volume: 9
  start-page: 743
  year: 2017
  ident: bb0565
  article-title: Evaluation of the U.S. Geological Survey Landsat burned area essential climate variable across the conterminous U.S. using commercial high-resolution imagery
  publication-title: Remote Sens.
– volume: 225
  start-page: 45
  year: 2019
  end-page: 64
  ident: bb0090
  article-title: Historical background and current developments for mapping burned area from satellite Earth observation
  publication-title: Remote Sens. Environ.
– volume: 2005
  year: 2012
  ident: bb0165
  article-title: Fire-induced carbon emissions and regrowth uptake in western U.S. forests: documenting variation across forest types, fire severity, and climate regions
  publication-title: J. Geophys. Res. Biogeosci.
– volume: 83
  start-page: 195
  year: 2002
  end-page: 213
  ident: bb0260
  article-title: Overview of the radiometric and biophysical performance of the MODIS vegetation indices
  publication-title: Remote Sens. Environ.
– volume: 24
  start-page: 2199
  year: 2003
  end-page: 2204
  ident: bb0290
  article-title: An autologistic regression model for increasing the accuracy of burned surface mapping using Landsat Thematic Mapper data
  publication-title: Int. J. Remote Sens.
– volume: 220
  start-page: 30
  year: 2019
  end-page: 40
  ident: bb0150
  article-title: Detection rates and biases of fire observations from MODIS and agency reports in the conterminous United States
  publication-title: Remote Sens. Environ.
– volume: 114
  start-page: 2911
  year: 2010
  end-page: 2924
  ident: bb0100
  article-title: Detecting trends in forest disturbance and recovery using yearly Landsat time series: 2. TimeSync – tools for calibration and validation
  publication-title: Remote Sens. Environ.
– volume: 114
  start-page: 183
  year: 2010
  end-page: 198
  ident: bb0245
  article-title: An automated approach for reconstructing recent forest disturbance history using dense Landsat time series stacks
  publication-title: Remote Sens. Environ.
– volume: 203
  start-page: 240
  year: 2017
  end-page: 255
  ident: bb0395
  article-title: Stratification and sample allocation for reference burned area data
  publication-title: Remote Sens. Environ.
– volume: 202
  start-page: 18
  year: 2017
  end-page: 27
  ident: bb0195
  article-title: Google Earth Engine: planetary-scale geospatial analysis for everyone
  publication-title: Remote Sens. Environ.
– volume: 101
  start-page: 15
  year: 1992
  end-page: 20
  ident: bb0415
  article-title: GEMI: a non-linear index to monitor global vegetation from satellites
  publication-title: Vegetatio
– volume: 11
  start-page: 1124
  year: 2019
  ident: bb0140
  article-title: FORCE—Landsat + Sentinel-2 analysis ready data and beyond
  publication-title: Remote Sens.
– volume: 19
  start-page: 3499
  year: 1998
  end-page: 3514
  ident: bb0295
  article-title: Logistic regression modelling of multitemporal Thematic Mapper data for burned area mapping
  publication-title: Int. J. Remote Sens.
– year: 2017
  ident: bb0015
  article-title: Climatic influences on interannual variability in regional burn severity across western US forests
  publication-title: Int. J. Wildland Fire
– volume: 74
  start-page: 269
  year: 2006
  end-page: 307
  ident: bb0485
  article-title: Wildfire as a hydrological and geomorphological agent
  publication-title: Earth Sci. Rev.
– volume: 11
  start-page: 139
  year: 2017
  end-page: 160
  ident: bb0330
  article-title: Static and roving sensor data fusion for spatio-temporal hazard mapping with application to occupational exposure assessment
  publication-title: Annals of Applied Statistics
– volume: 145
  start-page: 154
  year: 2014
  end-page: 172
  ident: bb0455
  article-title: Landsat-8: science and product vision for terrestrial global change research
  publication-title: Remote Sens. Environ.
– volume: 19
  start-page: 2493
  year: 1998
  end-page: 2507
  ident: bb0310
  article-title: Assessing wildfire effects with Landsat thematic mapper data
  publication-title: Int. J. Remote Sens.
– year: 2009
  ident: bb0215
  article-title: The Elements of Statistical Learning Data Mining, Inference, and Prediction, ISBN-13: 978-0387848570
– volume: 114
  start-page: 2897
  year: 2010
  end-page: 2910
  ident: bb0275
  article-title: Detecting trends in forest disturbance and recovery using yearly Landsat time series: 1. LandTrendr — temporal segmentation algorithms
  publication-title: Remote Sens. Environ.
– volume: 186
  start-page: 275
  year: 2016
  end-page: 285
  ident: bb0350
  article-title: Detecting unburned areas within wildfire perimeters using Landsat and ancillary data across the northwestern United States
  publication-title: Remote Sens. Environ.
– start-page: 1
  year: 1998
  end-page: 6
  ident: bb0020
  article-title: FLAASH, a MODTRAN4 atmospheric correction package for hyperspectral data retrievals and simulations
  publication-title: Proceedings of the Summaries of the Seventh JPL Airborne Earth Science Workshop, Pasadena, CA, USA, 12–16 January 1998
– volume: 186
  start-page: 465
  year: 2016
  end-page: 478
  ident: bb0060
  article-title: A stratified random sampling design in space and time for regional to global scale burned area product validation
  publication-title: Remote Sens. Environ.
– volume: 35
  year: 2008
  ident: bb0530
  article-title: A new, global, multi-annual (2000–2007) burnt area product at 1 km resolution
  publication-title: Geophys. Res. Lett.
– volume: 113
  start-page: 11770
  year: 2016
  end-page: 11775
  ident: bb0010
  article-title: Impact of anthropogenic climate change on wildfire across western US forests
  publication-title: Proc. Natl. Acad. Sci.
– volume: 91
  start-page: 252
  year: 2010
  end-page: 261
  ident: bb0365
  article-title: Quantifying
  publication-title: Ecology
– volume: 113
  start-page: 408
  year: 2009
  end-page: 420
  ident: bb0170
  article-title: An active-fire based burned area mapping algorithm for the MODIS sensor
  publication-title: Remote Sens. Environ.
– volume: 77
  start-page: 802
  year: 2008
  end-page: 813
  ident: bb0130
  article-title: A working guide to boosted regression trees
  publication-title: J. Anim. Ecol.
– volume: 44
  start-page: 1695
  year: 2006
  end-page: 1697
  ident: bb0360
  article-title: Special issue on global land product validation
  publication-title: IEEE Transactions Geosciences and Remote Sensing
– volume: 7
  start-page: 1171
  year: 2010
  end-page: 1186
  ident: bb0175
  article-title: Assessing variability and long-term trends in burned area by merging multiple satellite fire products
  publication-title: Biogeosciences
– volume: 3
  start-page: 3
  year: 2007
  end-page: 21
  ident: bb0125
  article-title: A project for monitoring trends in burn severity
  publication-title: Fire Ecology
– year: 2013
  ident: bb0005
  article-title: Relationships between climate and macroscale area burned in the western United States
  publication-title: Int. J. Wildland Fire
– volume: 152
  start-page: 217
  year: 2014
  end-page: 234
  ident: bb0630
  article-title: Automated cloud, cloud shadow, and snow detection in multitemporal Landsat data: an algorithm designed specifically for monitoring land cover change
  publication-title: Remote Sens. Environ.
– volume: 11
  start-page: 489
  year: 2019
  ident: bb0325
  article-title: 30 m resolution global annual burned area mapping based on Landsat images and Google Earth Engine
  publication-title: Remote Sens.
– volume: 51
  start-page: 933
  year: 2001
  ident: bb0375
  article-title: Terrestrial ecoregions of the world: a new map of life on Earth
  publication-title: Bioscience
– volume: 222
  start-page: 1
  year: 2019
  end-page: 17
  ident: bb0440
  article-title: Development of a Sentinel-2 burned area algorithm: generation of a small fire database for sub-Saharan Africa
  publication-title: Remote Sens. Environ.
– volume: 112
  start-page: 3690
  year: 2008
  end-page: 3707
  ident: bb0450
  article-title: The collection 5 MODIS burned area product — global evaluation by comparison with the MODIS active fire product
  publication-title: Remote Sens. Environ.
– volume: 160
  start-page: 114
  year: 2015
  end-page: 121
  ident: bb0390
  article-title: Comparing the accuracies of remote sensing global burned area products using stratified random sampling and estimation
  publication-title: Remote Sens. Environ.
– volume: 203
  start-page: 375
  year: 2017
  end-page: 382
  ident: bb0400
  article-title: Benefits of the fire mitigation ecosystem service in The Great Dismal Swamp National Wildlife Refuge, Virginia, USA
  publication-title: J. Environ. Manag.
– volume: 21
  start-page: 3161
  year: 2000
  end-page: 3168
  ident: bb0540
  article-title: Characterizing the spectral-temporal response of burned savannah using in situ spectroradiometry and infrared thermometry
  publication-title: Int. J. Remote Sens.
– volume: 60
  start-page: 258
  year: 1997
  end-page: 269
  ident: bb0505
  article-title: Estimating standard errors of accuracy assessment statistics under cluster sampling
  publication-title: Remote Sens. Environ.
– volume: 130
  start-page: 280
  year: 2013
  end-page: 293
  ident: bb0305
  article-title: The global availability of Landsat 5 TM and Landsat 7 ETM+ land surface observations and implications for global 30m Landsat data product generation
  publication-title: Remote Sens. Environ.
– volume: 225
  start-page: 127
  year: 2019
  end-page: 147
  ident: bb0610
  article-title: Current status of Landsat program, science, and applications
  publication-title: Remote Sens. Environ.
– year: 1999
  ident: bb0025
  article-title: Atmospheric correction for shortwave spectral imagery based on MODTRAN4
  publication-title: SPIE Proceedings. Imaging Spectrometry
– volume: 3
  start-page: 22
  year: 2007
  end-page: 31
  ident: bb0285
  article-title: Assessing accuracy of manually-mapped wildfire perimeters in topographically dissected areas
  publication-title: Fire Ecology
– volume: 114
  start-page: 106
  year: 2010
  end-page: 115
  ident: bb0580
  article-title: Detecting trend and seasonal changes in satellite image time series
  publication-title: Remote Sens. Environ.
– volume: 10
  start-page: 2015
  year: 2018
  end-page: 2031
  ident: bb0085
  article-title: Generation and analysis of a new global burned area product based on MODIS 250
  publication-title: Earth System Science Data
– volume: 185
  start-page: 210
  year: 2016
  end-page: 220
  ident: bb0475
  article-title: Active fire detection using Landsat-8/OLI data
  publication-title: Remote Sens. Environ.
– volume: 205
  start-page: 131
  year: 2018
  end-page: 140
  ident: bb0105
  article-title: A LandTrendr multispectral ensemble for forest disturbance detection
  publication-title: Remote Sens. Environ.
– year: 2002
  ident: bb0065
  article-title: Coarse assessment of federal wildland fire occurrence data
  publication-title: Report for the National Wildfire Coordinating Group. Program for Climate, Ecosystem, and Fire Applications Report 02-04
– volume: 23
  start-page: 5103
  year: 2002
  end-page: 5110
  ident: bb0075
  article-title: Assessment of different spectral indices in the red-near-infrared spectral domain for burned land discrimination
  publication-title: Int. J. Remote Sens.
– volume: 96
  start-page: 328
  year: 2005
  end-page: 339
  ident: bb0135
  article-title: Evaluation of remotely sensed indices for assessing burn severity in interior Alaska using Landsat TM and ETM+
  publication-title: Remote Sens. Environ.
– volume: 88
  start-page: 412
  year: 2003
  end-page: 422
  ident: bb0520
  article-title: Intercalibration of vegetation indices from different sensor systems
  publication-title: Remote Sens. Environ.
– year: 1977
  ident: bb0095
  article-title: Sampling techniques
– volume: 45
  start-page: 7874
  year: 2018
  end-page: 7884
  ident: bb0370
  article-title: A new picture of fire extent, variability, and drought interaction in prescribed fire landscapes: insights from Florida government records
  publication-title: Geophys. Res. Lett.
– volume: 73
  start-page: 165
  year: 2007
  end-page: 173
  ident: bb0515
  article-title: Estimation of fuzzy error matrix accuracy measures under stratified random sampling
  publication-title: Photogramm. Eng. Remote. Sens.
– volume: 10
  start-page: 1363
  year: 2018
  ident: bb0115
  article-title: Analysis ready data: enabling analysis of the Landsat archive
  publication-title: Remote Sens-basel
– volume: 8
  start-page: 873
  year: 2016
  ident: bb0250
  article-title: Separability analysis of Sentinel-2A multi-spectral instrument (MSI) data for burned area discrimination
  publication-title: Remote Sens.
– volume: 24
  start-page: 883
  year: 2015
  end-page: 891
  ident: bb0495
  article-title: Sources and implications of bias and uncertainty in a century of US wildfire activity data
  publication-title: Int. J. Wildland Fire
– volume: 28
  start-page: 2753
  year: 2007
  end-page: 2775
  ident: bb0500
  article-title: Production of Landsat ETM+ reference imagery of burned areas within Southern African savannahs: comparison of methods and application to MODIS
  publication-title: Int. J. Remote Sens.
– volume: 54
  start-page: 1249
  year: 2014
  end-page: 1266
  ident: bb0380
  article-title: Ecoregions of the conterminous United States: evolution of a hierarchical spatial framework
  publication-title: Environ. Manag.
– volume: 69
  start-page: 88
  year: 2012
  end-page: 102
  ident: bb0525
  article-title: A method for extracting burned areas from Landsat TM/ETM+ images by soft aggregation of multiple Spectral Indices and a region growing algorithm
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: 144
  start-page: 187
  year: 2014
  end-page: 196
  ident: bb0385
  article-title: Validation of the 2008 MODIS-MCD45 global burned area product using stratified random sampling
  publication-title: Remote Sens. Environ.
– volume: 30
  start-page: 5243
  year: 2009
  end-page: 5272
  ident: bb0510
  article-title: Sampling designs for accuracy assessment of land cover
  publication-title: Int. J. Remote Sens.
– volume: 80
  start-page: 385
  year: 2002
  end-page: 396
  ident: bb0605
  article-title: Detection of forest harvest type using multiple dates of Landsat TM imagery
  publication-title: Remote Sens. Environ.
– volume: 217
  start-page: 72
  year: 2018
  end-page: 85
  ident: bb0185
  article-title: The collection 6 MODIS burned area mapping algorithm and product
  publication-title: Remote Sens. Environ.
– volume: 17
  start-page: 1425
  year: 1996
  end-page: 1432
  ident: bb0345
  article-title: The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features
  publication-title: Int. J. Remote Sens.
– volume: 6
  start-page: 297
  year: 2013
  end-page: 366
  ident: bb0490
  article-title: A spatial database of wildfires in the United States, 1992–2011
  publication-title: Earth System Science Data Discussions
– volume: 107
  start-page: 940
  year: 2018
  end-page: 945
  ident: bb0425
  article-title: Rapid growth of the US wildland-urban interface raises wildfire risk
  publication-title: Proc. Natl. Acad. Sci.
– volume: 26
  start-page: 4265
  year: 2005
  end-page: 4292
  ident: bb0445
  article-title: The Southern Africa Fire Network (SAFNet) regional burned-area product-validation protocol
  publication-title: Int. J. Remote Sens.
– volume: 371
  year: 2011
  ident: bb0600
  article-title: Increasing western US forest wildfire activity sensitivity to changes in the timing of spring
  publication-title: Philosophical Transactions Royal Society B
– volume: 178
  start-page: 31
  year: 2016
  end-page: 41
  ident: bb0180
  article-title: The collection 6 MODIS active fire detection algorithm and fire products
  publication-title: Remote Sens. Environ.
– volume: 198
  start-page: 393
  year: 2017
  end-page: 406
  ident: bb0570
  article-title: Validation of the USGS Landsat Burned Area Essential Climate Variable (BAECV) across the conterminous United States
  publication-title: Remote Sens. Environ.
– volume: 28
  start-page: 1768
  year: 2001
  end-page: 1783
  ident: bb0200
  article-title: Random walks for image segmentation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 163
  start-page: 140
  year: 2015
  end-page: 152
  ident: bb0030
  article-title: Global burned area mapping from ENVISAT-MERIS and MODIS active fire data
  publication-title: Remote Sens. Environ.
– volume: 6
  start-page: 12360
  year: 2014
  end-page: 12380
  ident: bb0045
  article-title: BAMS: a tool for supervised burned area mapping using Landsat data
  publication-title: Remote Sens.
– volume: 144
  start-page: 152
  year: 2014
  end-page: 171
  ident: bb0625
  article-title: Continuous change detection and classification of land cover using all available Landsat data
  publication-title: Remote Sens. Environ.
– volume: 6
  start-page: 31
  year: 1991
  end-page: 37
  ident: bb0160
  article-title: Mapping burns and natural reforestation using thematic Mapper data
  publication-title: Geocarto International
– volume: 25
  start-page: 413
  year: 2016
  end-page: 420
  ident: bb0410
  article-title: 1984–2010 trends in fire burn severity and area for the conterminous US
  publication-title: Int. J. Wildland Fire
– year: 2006
  ident: bb0280
  article-title: Landscape assessment: remote sensing of severity, the Normalized Burn Ratio
  publication-title: FIREMON: Fire Effects Monitoring and Inventory System
– volume: 44
  start-page: 8884
  year: 2017
  end-page: 8892
  ident: bb0470
  article-title: Climate, wildfire, and erosion ensemble foretells more sediment in western USA watersheds
  publication-title: Geophys. Res. Lett.
– volume: 11
  start-page: 97
  year: 2006
  end-page: 111
  ident: bb0420
  article-title: Establishing an Earth observation product service for the terrestrial carbon community: the Globcarbon initiative
  publication-title: Mitig. Adapt. Strateg. Glob. Chang.
– volume: 73
  start-page: 39
  year: 2018
  end-page: 51
  ident: bb0430
  article-title: A data mining approach for global burned area mapping
  publication-title: International Journal of Applied Earth Observation
– year: 2020
  ident: bb0230
  article-title: The Landsat Burned Area products for the conterminous United States
  publication-title: U.S. Geological Survey Data Release, Science Base Catalog
– volume: 7
  start-page: 12503
  year: 2015
  end-page: 12538
  ident: bb0265
  article-title: Efficient wetland surface water detection and monitoring via Landsat: comparison with in situ data from the Everglades depth estimation network
  publication-title: Remote Sens.
– volume: 74
  start-page: 362
  year: 2000
  end-page: 376
  ident: bb1005
  article-title: Hotspot and NDVI differencing synergy (HANDS): A new technique for burned area mapping over boreal forest
  publication-title: Remote Sensing of Environment
– volume: 9
  start-page: 106
  year: 2015
  end-page: 111
  ident: bb0315
  article-title: Rapid, high-resolution detection of environmental change over continental scales from satellite data – the Earth Observation Data Cube
  publication-title: International Journal of Digit Earth
– volume: 11
  start-page: 447
  year: 2019
  ident: bb0120
  article-title: Landsat 4, 5 and 7 (1982 to 2017) Analysis Ready Data (ARD) observation coverage over the Conterminous United States and implications for terrestrial monitoring
  publication-title: Remote Sens.
– volume: 65
  start-page: 650
  year: 2001
  end-page: 662
  ident: bb0595
  article-title: Completion of the 1990s National Land Cover Data set for the Conterminous United States from Landsat Thematic Mapper data and ancillary data sources
  publication-title: Photogramm. Eng. Remote. Sens.
– volume: 117
  start-page: 126
  year: 2016
  end-page: 140
  ident: bb0480
  article-title: Automated mapping of persistent ice and snow cover across the western U.S. with Landsat
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: 8
  start-page: 127
  year: 1979
  end-page: 150
  ident: bb0550
  article-title: Red and photographic infrared linear combinations for monitoring vegetation
  publication-title: Remote Sens. Environ.
– volume: 21
  start-page: 673
  year: 2000
  end-page: 687
  ident: bb0300
  article-title: Burned area mapping using logistic regression modeling of a single post-fire Landsat-5 Thematic Mapper image
  publication-title: Int. J. Remote Sens.
– volume: 10
  start-page: 2241
  year: 2018
  end-page: 2274
  ident: bb0555
  article-title: Contiguous United States wildland fire emission estimates during 2003–2015
  publication-title: Earth System Science Data
– volume: 18
  start-page: 1
  year: 2014
  end-page: 26
  ident: bb0145
  article-title: Modeling regional-scale wildland fire emissions with the Wildland Fire Emissions Information System
  publication-title: Earth Interact.
– volume: 140
  start-page: 466
  year: 2014
  end-page: 484
  ident: bb0205
  article-title: Monitoring conterminous United States (CONUS) land cover change with Web-Enabled Landsat Data (WELD)
  publication-title: Remote Sens. Environ.
– volume: 231
  year: 2019
  ident: bb0465
  article-title: Landsat-8 and Sentinel-2 burned area mapping - a combined sensor multi-temporal change detection approach
  publication-title: Remote Sens. Environ.
– volume: 92
  start-page: 397
  year: 2004
  end-page: 408
  ident: bb0560
  article-title: Comparison of AVIRIS and Landsat ETM+ detection capabilities for burn severity
  publication-title: Remote Sens. Environ.
– start-page: 1
  year: 2009
  end-page: 11
  ident: bb0050
  article-title: International global burned area satellite product validation protocol
  publication-title: Part I - Production and Standardization of Validation Reference Data
– volume: 118
  start-page: 83
  year: 2012
  end-page: 94
  ident: bb0620
  article-title: Object-based cloud and cloud shadow detection in Landsat imagery
  publication-title: Remote Sens. Environ.
– volume: 185
  start-page: 57
  year: 2016
  end-page: 70
  ident: bb0460
  article-title: Characterization of Landsat-7 to Landsat-8 reflective wavelength and normalized difference vegetation index continuity
  publication-title: Remote Sens. Environ.
– volume: 94
  year: 2013
  ident: bb0240
  article-title: The ESA climate change initiative: satellite data records for essential climate variables
  publication-title: Bull. Am. Meteorol. Soc.
– volume: 25
  start-page: 295
  year: 1988
  end-page: 309
  ident: bb0255
  article-title: A soil-adjusted vegetation index (SAVI)
  publication-title: Remote Sens. Environ.
– volume: 22
  start-page: 2641
  year: 2001
  end-page: 2647
  ident: bb0545
  article-title: An evaluation of different bi-spectral spaces for discriminating burned shrub-savannah
  publication-title: Int. J. Remote Sens.
– volume: 10
  year: 2015
  ident: bb0320
  article-title: Climatic and landscape influences on fire regimes from 1984 to 2010 in the western United States
  publication-title: PLoS One
– volume: 26
  start-page: 4801
  year: 2005
  end-page: 4808
  ident: bb0235
  article-title: Evaluation of novel thermally enhanced spectral indices for mapping fire perimeters and comparisons with fire atlas data
  publication-title: International Journal of Remote Sens
– volume: 56
  start-page: 5717
  year: 2018
  end-page: 5735
  ident: bb0335
  article-title: An operational land surface temperature product for Landsat thermal data: methodology and validation
  publication-title: Ieee T Geosci Remote
– year: 2020
  ident: bb0575
  article-title: Data release for the validation of the USGS Landsat burned area product across the conterminous U.S. U.S. Geological Survey data release
  publication-title: Science Base Catalog
– start-page: 1
  year: 2018
  end-page: 28
  ident: bb0035
  article-title: The Global Fire Atlas of individual fire size, duration, speed, and direction
  publication-title: Earth System Science Data Discussions
– volume: 198
  start-page: 504
  year: 2017
  end-page: 522
  ident: bb0225
  article-title: Mapping burned areas using dense time-series of Landsat data
  publication-title: Remote Sens. Environ.
– volume: 146
  start-page: 108
  year: 2018
  end-page: 123
  ident: bb0615
  article-title: A new generation of the United States National Land Cover Database: requirements, research priorities, design, and implementation strategies
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: 161
  start-page: 27
  year: 2015
  end-page: 42
  ident: bb0055
  article-title: MODIS–Landsat fusion for large area 30m burned area mapping
  publication-title: Remote Sens. Environ.
– volume: 10
  start-page: 2241
  year: 2018
  ident: 10.1016/j.rse.2020.111801_bb0555
  article-title: Contiguous United States wildland fire emission estimates during 2003–2015
  publication-title: Earth System Science Data
  doi: 10.5194/essd-10-2241-2018
– volume: 140
  start-page: 466
  year: 2014
  ident: 10.1016/j.rse.2020.111801_bb0205
  article-title: Monitoring conterminous United States (CONUS) land cover change with Web-Enabled Landsat Data (WELD)
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2013.08.014
– volume: 74
  start-page: 362
  year: 2000
  ident: 10.1016/j.rse.2020.111801_bb1005
  article-title: Hotspot and NDVI differencing synergy (HANDS): A new technique for burned area mapping over boreal forest
  publication-title: Remote Sensing of Environment
  doi: 10.1016/S0034-4257(00)00078-X
– volume: 11
  start-page: 489
  year: 2019
  ident: 10.1016/j.rse.2020.111801_bb0325
  article-title: 30 m resolution global annual burned area mapping based on Landsat images and Google Earth Engine
  publication-title: Remote Sens.
  doi: 10.3390/rs11050489
– volume: 3
  start-page: 68
  year: 2006
  ident: 10.1016/j.rse.2020.111801_bb0340
  article-title: A Landsat surface reflectance dataset for North America, 1990–2000
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2005.857030
– volume: 54
  start-page: 1249
  year: 2014
  ident: 10.1016/j.rse.2020.111801_bb0380
  article-title: Ecoregions of the conterminous United States: evolution of a hierarchical spatial framework
  publication-title: Environ. Manag.
  doi: 10.1007/s00267-014-0364-1
– year: 1977
  ident: 10.1016/j.rse.2020.111801_bb0095
– volume: 238
  year: 2019
  ident: 10.1016/j.rse.2020.111801_bb0405
  article-title: Quality control and assessment of interpreter consistency of annual land cover reference data in an operational national monitoring program
  publication-title: Remote Sens. Environ.
– volume: 8
  start-page: 127
  year: 1979
  ident: 10.1016/j.rse.2020.111801_bb0550
  article-title: Red and photographic infrared linear combinations for monitoring vegetation
  publication-title: Remote Sens. Environ.
  doi: 10.1016/0034-4257(79)90013-0
– volume: 113
  start-page: 408
  year: 2009
  ident: 10.1016/j.rse.2020.111801_bb0170
  article-title: An active-fire based burned area mapping algorithm for the MODIS sensor
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2008.10.006
– volume: 51
  start-page: 933
  year: 2001
  ident: 10.1016/j.rse.2020.111801_bb0375
  article-title: Terrestrial ecoregions of the world: a new map of life on Earth
  publication-title: Bioscience
  doi: 10.1641/0006-3568(2001)051[0933:TEOTWA]2.0.CO;2
– volume: 83
  start-page: 195
  year: 2002
  ident: 10.1016/j.rse.2020.111801_bb0260
  article-title: Overview of the radiometric and biophysical performance of the MODIS vegetation indices
  publication-title: Remote Sens. Environ.
  doi: 10.1016/S0034-4257(02)00096-2
– volume: 9
  start-page: 743
  year: 2017
  ident: 10.1016/j.rse.2020.111801_bb0565
  article-title: Evaluation of the U.S. Geological Survey Landsat burned area essential climate variable across the conterminous U.S. using commercial high-resolution imagery
  publication-title: Remote Sens.
  doi: 10.3390/rs9070743
– volume: 145
  start-page: 154
  year: 2014
  ident: 10.1016/j.rse.2020.111801_bb0455
  article-title: Landsat-8: science and product vision for terrestrial global change research
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2014.02.001
– year: 2009
  ident: 10.1016/j.rse.2020.111801_bb0215
– volume: 73
  start-page: 165
  issue: 9
  year: 2007
  ident: 10.1016/j.rse.2020.111801_bb0515
  article-title: Estimation of fuzzy error matrix accuracy measures under stratified random sampling
  publication-title: Photogramm. Eng. Remote. Sens.
  doi: 10.14358/PERS.73.2.165
– year: 2020
  ident: 10.1016/j.rse.2020.111801_bb0230
  article-title: The Landsat Burned Area products for the conterminous United States
  publication-title: U.S. Geological Survey Data Release, Science Base Catalog
– start-page: 1
  year: 2009
  ident: 10.1016/j.rse.2020.111801_bb0050
  article-title: International global burned area satellite product validation protocol
– volume: 25
  start-page: 619
  year: 2016
  ident: 10.1016/j.rse.2020.111801_bb0080
  article-title: A new global burned area product for climate assessment of fire impacts
  publication-title: Glob. Ecol. Biogeogr.
  doi: 10.1111/geb.12440
– volume: 202
  start-page: 18
  year: 2017
  ident: 10.1016/j.rse.2020.111801_bb0195
  article-title: Google Earth Engine: planetary-scale geospatial analysis for everyone
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2017.06.031
– volume: 8
  start-page: 873
  year: 2016
  ident: 10.1016/j.rse.2020.111801_bb0250
  article-title: Separability analysis of Sentinel-2A multi-spectral instrument (MSI) data for burned area discrimination
  publication-title: Remote Sens.
  doi: 10.3390/rs8100873
– volume: 74
  start-page: 269
  year: 2006
  ident: 10.1016/j.rse.2020.111801_bb0485
  article-title: Wildfire as a hydrological and geomorphological agent
  publication-title: Earth Sci. Rev.
  doi: 10.1016/j.earscirev.2005.10.006
– volume: 222
  start-page: 1
  year: 2019
  ident: 10.1016/j.rse.2020.111801_bb0440
  article-title: Development of a Sentinel-2 burned area algorithm: generation of a small fire database for sub-Saharan Africa
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2018.12.011
– volume: 146
  start-page: 108
  year: 2018
  ident: 10.1016/j.rse.2020.111801_bb0615
  article-title: A new generation of the United States National Land Cover Database: requirements, research priorities, design, and implementation strategies
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2018.09.006
– volume: 3
  start-page: 41
  year: 1988
  ident: 10.1016/j.rse.2020.111801_bb0070
  article-title: Mapping and inventory of forest fires from digital processing of TM data
  publication-title: Geocarto International
  doi: 10.1080/10106048809354180
– volume: 205
  start-page: 131
  year: 2018
  ident: 10.1016/j.rse.2020.111801_bb0105
  article-title: A LandTrendr multispectral ensemble for forest disturbance detection
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2017.11.015
– volume: 11
  start-page: 139
  year: 2017
  ident: 10.1016/j.rse.2020.111801_bb0330
  article-title: Static and roving sensor data fusion for spatio-temporal hazard mapping with application to occupational exposure assessment
  publication-title: Annals of Applied Statistics
  doi: 10.1214/16-AOAS995
– volume: 58
  start-page: 257
  year: 1996
  ident: 10.1016/j.rse.2020.111801_bb0155
  article-title: NDWI—a normalized difference water index for remote sensing of vegetation liquid water from space
  publication-title: Remote Sens. Environ.
  doi: 10.1016/S0034-4257(96)00067-3
– volume: 6
  start-page: 12360
  year: 2014
  ident: 10.1016/j.rse.2020.111801_bb0045
  article-title: BAMS: a tool for supervised burned area mapping using Landsat data
  publication-title: Remote Sens.
  doi: 10.3390/rs61212360
– volume: 7
  start-page: 12503
  year: 2015
  ident: 10.1016/j.rse.2020.111801_bb0265
  article-title: Efficient wetland surface water detection and monitoring via Landsat: comparison with in situ data from the Everglades depth estimation network
  publication-title: Remote Sens.
  doi: 10.3390/rs70912503
– volume: 163
  start-page: 140
  year: 2015
  ident: 10.1016/j.rse.2020.111801_bb0030
  article-title: Global burned area mapping from ENVISAT-MERIS and MODIS active fire data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2015.03.011
– volume: 112
  start-page: 3690
  year: 2008
  ident: 10.1016/j.rse.2020.111801_bb0450
  article-title: The collection 5 MODIS burned area product — global evaluation by comparison with the MODIS active fire product
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2008.05.013
– volume: 69
  start-page: 88
  year: 2012
  ident: 10.1016/j.rse.2020.111801_bb0525
  article-title: A method for extracting burned areas from Landsat TM/ETM+ images by soft aggregation of multiple Spectral Indices and a region growing algorithm
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2012.03.001
– volume: 10
  start-page: 2015
  year: 2018
  ident: 10.1016/j.rse.2020.111801_bb0085
  article-title: Generation and analysis of a new global burned area product based on MODIS 250m reflectance bands and thermal anomalies
  publication-title: Earth System Science Data
  doi: 10.5194/essd-10-2015-2018
– volume: 114
  start-page: 183
  year: 2010
  ident: 10.1016/j.rse.2020.111801_bb0245
  article-title: An automated approach for reconstructing recent forest disturbance history using dense Landsat time series stacks
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2009.08.017
– year: 2020
  ident: 10.1016/j.rse.2020.111801_bb0575
  article-title: Data release for the validation of the USGS Landsat burned area product across the conterminous U.S. U.S. Geological Survey data release
– volume: 238
  issue: 1
  year: 2019
  ident: 10.1016/j.rse.2020.111801_bb0635
  article-title: Continuous monitoring of land disturbance based on Landsat time series
  publication-title: Remote Sens. Environ.
– volume: 118
  start-page: 83
  year: 2012
  ident: 10.1016/j.rse.2020.111801_bb0620
  article-title: Object-based cloud and cloud shadow detection in Landsat imagery
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2011.10.028
– volume: 220
  start-page: 30
  year: 2019
  ident: 10.1016/j.rse.2020.111801_bb0150
  article-title: Detection rates and biases of fire observations from MODIS and agency reports in the conterminous United States
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2018.10.028
– volume: 10
  start-page: 1680
  year: 2018
  ident: 10.1016/j.rse.2020.111801_bb0535
  article-title: Evaluation of spectral indices for assessing fire severity in Australian temperate forests
  publication-title: Remote Sens.
  doi: 10.3390/rs10111680
– volume: 6
  start-page: 31
  year: 1991
  ident: 10.1016/j.rse.2020.111801_bb0160
  article-title: Mapping burns and natural reforestation using thematic Mapper data
  publication-title: Geocarto International
  doi: 10.1080/10106049109354290
– volume: 25
  start-page: 413
  year: 2016
  ident: 10.1016/j.rse.2020.111801_bb0410
  article-title: 1984–2010 trends in fire burn severity and area for the conterminous US
  publication-title: Int. J. Wildland Fire
  doi: 10.1071/WF15039
– volume: 3
  start-page: 22
  year: 2007
  ident: 10.1016/j.rse.2020.111801_bb0285
  article-title: Assessing accuracy of manually-mapped wildfire perimeters in topographically dissected areas
  publication-title: Fire Ecology
  doi: 10.4996/fireecology.0301022
– volume: 101
  start-page: 15
  year: 1992
  ident: 10.1016/j.rse.2020.111801_bb0415
  article-title: GEMI: a non-linear index to monitor global vegetation from satellites
  publication-title: Vegetatio
  doi: 10.1007/BF00031911
– volume: 178
  start-page: 31
  year: 2016
  ident: 10.1016/j.rse.2020.111801_bb0180
  article-title: The collection 6 MODIS active fire detection algorithm and fire products
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2016.02.054
– volume: 225
  start-page: 45
  year: 2019
  ident: 10.1016/j.rse.2020.111801_bb0090
  article-title: Historical background and current developments for mapping burned area from satellite Earth observation
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2019.02.013
– volume: 94
  year: 2013
  ident: 10.1016/j.rse.2020.111801_bb0240
  article-title: The ESA climate change initiative: satellite data records for essential climate variables
  publication-title: Bull. Am. Meteorol. Soc.
  doi: 10.1175/BAMS-D-11-00254.1
– volume: 6
  start-page: 297
  year: 2013
  ident: 10.1016/j.rse.2020.111801_bb0490
  article-title: A spatial database of wildfires in the United States, 1992–2011
  publication-title: Earth System Science Data Discussions
– volume: 73
  start-page: 39
  year: 2018
  ident: 10.1016/j.rse.2020.111801_bb0430
  article-title: A data mining approach for global burned area mapping
  publication-title: International Journal of Applied Earth Observation
  doi: 10.1016/j.jag.2018.05.027
– volume: 231
  year: 2019
  ident: 10.1016/j.rse.2020.111801_bb0465
  article-title: Landsat-8 and Sentinel-2 burned area mapping - a combined sensor multi-temporal change detection approach
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2019.111254
– volume: 152
  start-page: 217
  year: 2014
  ident: 10.1016/j.rse.2020.111801_bb0630
  article-title: Automated cloud, cloud shadow, and snow detection in multitemporal Landsat data: an algorithm designed specifically for monitoring land cover change
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2014.06.012
– volume: 198
  start-page: 504
  year: 2017
  ident: 10.1016/j.rse.2020.111801_bb0225
  article-title: Mapping burned areas using dense time-series of Landsat data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2017.06.027
– volume: 21
  start-page: 3161
  year: 2000
  ident: 10.1016/j.rse.2020.111801_bb0540
  article-title: Characterizing the spectral-temporal response of burned savannah using in situ spectroradiometry and infrared thermometry
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431160050145045
– volume: 10
  start-page: 1363
  year: 2018
  ident: 10.1016/j.rse.2020.111801_bb0115
  article-title: Analysis ready data: enabling analysis of the Landsat archive
  publication-title: Remote Sens-basel
  doi: 10.3390/rs10091363
– volume: 19
  start-page: 3499
  year: 1998
  ident: 10.1016/j.rse.2020.111801_bb0295
  article-title: Logistic regression modelling of multitemporal Thematic Mapper data for burned area mapping
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/014311698213777
– volume: 185
  start-page: 57
  year: 2016
  ident: 10.1016/j.rse.2020.111801_bb0460
  article-title: Characterization of Landsat-7 to Landsat-8 reflective wavelength and normalized difference vegetation index continuity
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2015.12.024
– volume: 144
  start-page: 152
  year: 2014
  ident: 10.1016/j.rse.2020.111801_bb0625
  article-title: Continuous change detection and classification of land cover using all available Landsat data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2014.01.011
– volume: 186
  start-page: 465
  year: 2016
  ident: 10.1016/j.rse.2020.111801_bb0060
  article-title: A stratified random sampling design in space and time for regional to global scale burned area product validation
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2016.09.016
– volume: 77
  start-page: 802
  year: 2008
  ident: 10.1016/j.rse.2020.111801_bb0130
  article-title: A working guide to boosted regression trees
  publication-title: J. Anim. Ecol.
  doi: 10.1111/j.1365-2656.2008.01390.x
– volume: 25
  start-page: 295
  year: 1988
  ident: 10.1016/j.rse.2020.111801_bb0255
  article-title: A soil-adjusted vegetation index (SAVI)
  publication-title: Remote Sens. Environ.
  doi: 10.1016/0034-4257(88)90106-X
– volume: 2005
  issue: 117
  year: 2012
  ident: 10.1016/j.rse.2020.111801_bb0165
  article-title: Fire-induced carbon emissions and regrowth uptake in western U.S. forests: documenting variation across forest types, fire severity, and climate regions
  publication-title: J. Geophys. Res. Biogeosci.
– volume: 60
  start-page: 258
  year: 1997
  ident: 10.1016/j.rse.2020.111801_bb0505
  article-title: Estimating standard errors of accuracy assessment statistics under cluster sampling
  publication-title: Remote Sens. Environ.
  doi: 10.1016/S0034-4257(96)00176-9
– year: 1999
  ident: 10.1016/j.rse.2020.111801_bb0025
  article-title: Atmospheric correction for shortwave spectral imagery based on MODTRAN4
– ident: 10.1016/j.rse.2020.111801_bb0435
– volume: 9
  start-page: 106
  year: 2015
  ident: 10.1016/j.rse.2020.111801_bb0315
  article-title: Rapid, high-resolution detection of environmental change over continental scales from satellite data – the Earth Observation Data Cube
  publication-title: International Journal of Digit Earth
  doi: 10.1080/17538947.2015.1111952
– volume: 22
  start-page: 2641
  year: 2001
  ident: 10.1016/j.rse.2020.111801_bb0545
  article-title: An evaluation of different bi-spectral spaces for discriminating burned shrub-savannah
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431160110053185
– volume: 35
  year: 2008
  ident: 10.1016/j.rse.2020.111801_bb0530
  article-title: A new, global, multi-annual (2000–2007) burnt area product at 1 km resolution
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/2007GL031567
– volume: 160
  start-page: 114
  year: 2015
  ident: 10.1016/j.rse.2020.111801_bb0390
  article-title: Comparing the accuracies of remote sensing global burned area products using stratified random sampling and estimation
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2015.01.005
– volume: 19
  start-page: 2493
  year: 1998
  ident: 10.1016/j.rse.2020.111801_bb0310
  article-title: Assessing wildfire effects with Landsat thematic mapper data
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/014311698214587
– volume: 203
  start-page: 240
  year: 2017
  ident: 10.1016/j.rse.2020.111801_bb0395
  article-title: Stratification and sample allocation for reference burned area data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2017.06.041
– volume: 8
  start-page: 986
  year: 2016
  ident: 10.1016/j.rse.2020.111801_bb0585
  article-title: The potential of Sentinel satellites for burnt area mapping and monitoring in the Congo Basin forests
  publication-title: Remote Sens.
  doi: 10.3390/rs8120986
– volume: 7
  start-page: 1171
  year: 2010
  ident: 10.1016/j.rse.2020.111801_bb0175
  article-title: Assessing variability and long-term trends in burned area by merging multiple satellite fire products
  publication-title: Biogeosciences
  doi: 10.5194/bg-7-1171-2010
– volume: 21
  start-page: 673
  year: 2000
  ident: 10.1016/j.rse.2020.111801_bb0300
  article-title: Burned area mapping using logistic regression modeling of a single post-fire Landsat-5 Thematic Mapper image
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/014311600210506
– volume: 24
  start-page: 883
  year: 2015
  ident: 10.1016/j.rse.2020.111801_bb0495
  article-title: Sources and implications of bias and uncertainty in a century of US wildfire activity data
  publication-title: Int. J. Wildland Fire
  doi: 10.1071/WF14190
– volume: 92
  start-page: 397
  year: 2004
  ident: 10.1016/j.rse.2020.111801_bb0560
  article-title: Comparison of AVIRIS and Landsat ETM+ detection capabilities for burn severity
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2003.12.015
– volume: 24
  start-page: 2199
  year: 2003
  ident: 10.1016/j.rse.2020.111801_bb0290
  article-title: An autologistic regression model for increasing the accuracy of burned surface mapping using Landsat Thematic Mapper data
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/0143116031000082073
– volume: 10
  year: 2015
  ident: 10.1016/j.rse.2020.111801_bb0320
  article-title: Climatic and landscape influences on fire regimes from 1984 to 2010 in the western United States
  publication-title: PLoS One
– volume: 26
  start-page: 4265
  year: 2005
  ident: 10.1016/j.rse.2020.111801_bb0445
  article-title: The Southern Africa Fire Network (SAFNet) regional burned-area product-validation protocol
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431160500113096
– volume: 114
  start-page: 106
  year: 2010
  ident: 10.1016/j.rse.2020.111801_bb0580
  article-title: Detecting trend and seasonal changes in satellite image time series
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2009.08.014
– volume: 80
  start-page: 385
  year: 2002
  ident: 10.1016/j.rse.2020.111801_bb0605
  article-title: Detection of forest harvest type using multiple dates of Landsat TM imagery
  publication-title: Remote Sens. Environ.
  doi: 10.1016/S0034-4257(01)00318-2
– volume: 217
  start-page: 72
  year: 2018
  ident: 10.1016/j.rse.2020.111801_bb0185
  article-title: The collection 6 MODIS burned area mapping algorithm and product
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2018.08.005
– volume: 161
  start-page: 27
  year: 2015
  ident: 10.1016/j.rse.2020.111801_bb0055
  article-title: MODIS–Landsat fusion for large area 30m burned area mapping
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2015.01.022
– volume: 44
  start-page: 1695
  year: 2006
  ident: 10.1016/j.rse.2020.111801_bb0360
  article-title: Special issue on global land product validation
  publication-title: IEEE Transactions Geosciences and Remote Sensing
  doi: 10.1109/TGRS.2006.877436
– volume: 112
  start-page: 2656
  year: 2008
  ident: 10.1016/j.rse.2020.111801_bb0220
  article-title: Detection rates of the MODIS active fire product in the United States
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2007.12.008
– year: 2006
  ident: 10.1016/j.rse.2020.111801_bb0280
  article-title: Landscape assessment: remote sensing of severity, the Normalized Burn Ratio
– volume: 44
  start-page: 8884
  year: 2017
  ident: 10.1016/j.rse.2020.111801_bb0470
  article-title: Climate, wildfire, and erosion ensemble foretells more sediment in western USA watersheds
  publication-title: Geophys. Res. Lett.
  doi: 10.1002/2017GL073979
– year: 2002
  ident: 10.1016/j.rse.2020.111801_bb0065
  article-title: Coarse assessment of federal wildland fire occurrence data
– volume: 3
  start-page: 3
  year: 2007
  ident: 10.1016/j.rse.2020.111801_bb0125
  article-title: A project for monitoring trends in burn severity
  publication-title: Fire Ecology
  doi: 10.4996/fireecology.0301003
– volume: 203
  start-page: 375
  year: 2017
  ident: 10.1016/j.rse.2020.111801_bb0400
  article-title: Benefits of the fire mitigation ecosystem service in The Great Dismal Swamp National Wildlife Refuge, Virginia, USA
  publication-title: J. Environ. Manag.
  doi: 10.1016/j.jenvman.2017.08.018
– volume: 41
  start-page: 2928
  year: 2014
  ident: 10.1016/j.rse.2020.111801_bb0110
  article-title: Large wildfire trends in the western United States, 1984–2011
  publication-title: Geophys. Res. Lett.
  doi: 10.1002/2014GL059576
– volume: 186
  start-page: 275
  year: 2016
  ident: 10.1016/j.rse.2020.111801_bb0350
  article-title: Detecting unburned areas within wildfire perimeters using Landsat and ancillary data across the northwestern United States
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2016.08.023
– volume: 18
  start-page: 1
  year: 2014
  ident: 10.1016/j.rse.2020.111801_bb0145
  article-title: Modeling regional-scale wildland fire emissions with the Wildland Fire Emissions Information System
  publication-title: Earth Interact.
  doi: 10.1175/EI-D-14-0002.1
– volume: 56
  start-page: 5717
  year: 2018
  ident: 10.1016/j.rse.2020.111801_bb0335
  article-title: An operational land surface temperature product for Landsat thermal data: methodology and validation
  publication-title: Ieee T Geosci Remote
  doi: 10.1109/TGRS.2018.2824828
– start-page: 1
  year: 1998
  ident: 10.1016/j.rse.2020.111801_bb0020
  article-title: FLAASH, a MODTRAN4 atmospheric correction package for hyperspectral data retrievals and simulations
– volume: 17
  start-page: 1425
  year: 1996
  ident: 10.1016/j.rse.2020.111801_bb0345
  article-title: The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431169608948714
– volume: 3
  start-page: 2403
  year: 2011
  ident: 10.1016/j.rse.2020.111801_bb0210
  article-title: Evaluating spectral indices for assessing fire severity in chaparral ecosystems (Southern California) using MODIS/ASTER (MASTER) airborne simulator data
  publication-title: Remote Sens.
  doi: 10.3390/rs3112403
– volume: 2
  start-page: 36
  year: 2019
  ident: 10.1016/j.rse.2020.111801_bb0355
  article-title: Deriving fire behavior metrics from UAS imagery
  publication-title: Fire
  doi: 10.3390/fire2020036
– volume: 11
  start-page: 374
  year: 2019
  ident: 10.1016/j.rse.2020.111801_bb0270
  article-title: Improved automated detection of subpixel-scale inundation—revised Dynamic Surface Water Extent (DSWE) partial surface water tests
  publication-title: Remote Sens.
  doi: 10.3390/rs11040374
– year: 2013
  ident: 10.1016/j.rse.2020.111801_bb0005
  article-title: Relationships between climate and macroscale area burned in the western United States
  publication-title: Int. J. Wildland Fire
  doi: 10.1071/WF13019
– volume: 114
  start-page: 2911
  year: 2010
  ident: 10.1016/j.rse.2020.111801_bb0100
  article-title: Detecting trends in forest disturbance and recovery using yearly Landsat time series: 2. TimeSync – tools for calibration and validation
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2010.07.010
– volume: 371
  year: 2011
  ident: 10.1016/j.rse.2020.111801_bb0600
  article-title: Increasing western US forest wildfire activity sensitivity to changes in the timing of spring
  publication-title: Philosophical Transactions Royal Society B
– volume: 65
  start-page: 650
  year: 2001
  ident: 10.1016/j.rse.2020.111801_bb0595
  article-title: Completion of the 1990s National Land Cover Data set for the Conterminous United States from Landsat Thematic Mapper data and ancillary data sources
  publication-title: Photogramm. Eng. Remote. Sens.
– volume: 28
  start-page: 1768
  year: 2001
  ident: 10.1016/j.rse.2020.111801_bb0200
  article-title: Random walks for image segmentation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2006.233
– volume: 130
  start-page: 280
  year: 2013
  ident: 10.1016/j.rse.2020.111801_bb0305
  article-title: The global availability of Landsat 5 TM and Landsat 7 ETM+ land surface observations and implications for global 30m Landsat data product generation
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2012.12.003
– volume: 30
  start-page: 5243
  year: 2009
  ident: 10.1016/j.rse.2020.111801_bb0510
  article-title: Sampling designs for accuracy assessment of land cover
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431160903131000
– volume: 114
  start-page: 2946
  year: 2017
  ident: 10.1016/j.rse.2020.111801_bb0040
  article-title: Human-started wildfires expand the fire niche across the United States
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.1617394114
– volume: 107
  start-page: 940
  year: 2018
  ident: 10.1016/j.rse.2020.111801_bb0425
  article-title: Rapid growth of the US wildland-urban interface raises wildfire risk
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.0911131107
– volume: 91
  start-page: 252
  year: 2010
  ident: 10.1016/j.rse.2020.111801_bb0365
  article-title: Quantifying Bufo boreas connectivity in Yellowstone National Park with landscape genetics
  publication-title: Ecology
  doi: 10.1890/08-0879.1
– volume: 113
  start-page: 11770
  year: 2016
  ident: 10.1016/j.rse.2020.111801_bb0010
  article-title: Impact of anthropogenic climate change on wildfire across western US forests
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.1607171113
– volume: 117
  start-page: 126
  year: 2016
  ident: 10.1016/j.rse.2020.111801_bb0480
  article-title: Automated mapping of persistent ice and snow cover across the western U.S. with Landsat
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2016.04.001
– volume: 26
  start-page: 4801
  year: 2005
  ident: 10.1016/j.rse.2020.111801_bb0235
  article-title: Evaluation of novel thermally enhanced spectral indices for mapping fire perimeters and comparisons with fire atlas data
  publication-title: International Journal of Remote Sens
  doi: 10.1080/01431160500239008
– volume: 11
  start-page: 97
  year: 2006
  ident: 10.1016/j.rse.2020.111801_bb0420
  article-title: Establishing an Earth observation product service for the terrestrial carbon community: the Globcarbon initiative
  publication-title: Mitig. Adapt. Strateg. Glob. Chang.
  doi: 10.1007/s11027-006-1012-8
– volume: 148
  start-page: 206
  year: 2014
  ident: 10.1016/j.rse.2020.111801_bb0190
  article-title: Development of an automated method for mapping fire history captured in Landsat TM and ETM+ time series across Queensland, Australia
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2014.03.021
– volume: 88
  start-page: 412
  year: 2003
  ident: 10.1016/j.rse.2020.111801_bb0520
  article-title: Intercalibration of vegetation indices from different sensor systems
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2003.08.010
– volume: 11
  start-page: 447
  year: 2019
  ident: 10.1016/j.rse.2020.111801_bb0120
  article-title: Landsat 4, 5 and 7 (1982 to 2017) Analysis Ready Data (ARD) observation coverage over the Conterminous United States and implications for terrestrial monitoring
  publication-title: Remote Sens.
  doi: 10.3390/rs11040447
– volume: 23
  start-page: 5103
  year: 2002
  ident: 10.1016/j.rse.2020.111801_bb0075
  article-title: Assessment of different spectral indices in the red-near-infrared spectral domain for burned land discrimination
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431160210153129
– volume: 198
  start-page: 393
  year: 2017
  ident: 10.1016/j.rse.2020.111801_bb0570
  article-title: Validation of the USGS Landsat Burned Area Essential Climate Variable (BAECV) across the conterminous United States
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2017.06.025
– volume: 225
  start-page: 127
  year: 2019
  ident: 10.1016/j.rse.2020.111801_bb0610
  article-title: Current status of Landsat program, science, and applications
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2019.02.015
– volume: 185
  start-page: 210
  year: 2016
  ident: 10.1016/j.rse.2020.111801_bb0475
  article-title: Active fire detection using Landsat-8/OLI data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2015.08.032
– volume: 28
  start-page: 2753
  year: 2007
  ident: 10.1016/j.rse.2020.111801_bb0500
  article-title: Production of Landsat ETM+ reference imagery of burned areas within Southern African savannahs: comparison of methods and application to MODIS
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431160600954704
– year: 2017
  ident: 10.1016/j.rse.2020.111801_bb0015
  article-title: Climatic influences on interannual variability in regional burn severity across western US forests
  publication-title: Int. J. Wildland Fire
  doi: 10.1071/WF16165
– start-page: 1
  year: 2018
  ident: 10.1016/j.rse.2020.111801_bb0035
  article-title: The Global Fire Atlas of individual fire size, duration, speed, and direction
  publication-title: Earth System Science Data Discussions
– volume: 11
  start-page: 1124
  year: 2019
  ident: 10.1016/j.rse.2020.111801_bb0140
  article-title: FORCE—Landsat + Sentinel-2 analysis ready data and beyond
  publication-title: Remote Sens.
  doi: 10.3390/rs11091124
– volume: 114
  start-page: 2897
  year: 2010
  ident: 10.1016/j.rse.2020.111801_bb0275
  article-title: Detecting trends in forest disturbance and recovery using yearly Landsat time series: 1. LandTrendr — temporal segmentation algorithms
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2010.07.008
– volume: 96
  start-page: 328
  year: 2005
  ident: 10.1016/j.rse.2020.111801_bb0135
  article-title: Evaluation of remotely sensed indices for assessing burn severity in interior Alaska using Landsat TM and ETM+
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2005.03.002
– volume: 45
  start-page: 7874
  year: 2018
  ident: 10.1016/j.rse.2020.111801_bb0370
  article-title: A new picture of fire extent, variability, and drought interaction in prescribed fire landscapes: insights from Florida government records
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/2018GL078679
– volume: 144
  start-page: 187
  year: 2014
  ident: 10.1016/j.rse.2020.111801_bb0385
  article-title: Validation of the 2008 MODIS-MCD45 global burned area product using stratified random sampling
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2014.01.008
– volume: 185
  start-page: 46
  year: 2016
  ident: 10.1016/j.rse.2020.111801_bb0590
  article-title: Preliminary analysis of the performance of the Landsat 8/OLI land surface reflectance product
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2016.04.008
SSID ssj0015871
Score 2.6139305
Snippet Complete and accurate burned area map data are needed to document spatial and temporal patterns of fires, to quantify their drivers, and to assess the impacts...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 111801
SubjectTerms Algorithms
artificial intelligence
burn severity
Burned area
climate
Climate change
crops
data collection
Errors
Fire
hay
Image processing
Image resolution
Image segmentation
Land cover
Landsat
Landsat satellites
Learning algorithms
Machine learning
moderate resolution imaging spectroradiometer
monitoring
Pasture
pastures
Regression analysis
Remote sensing
Satellite imagery
Sensors
Spectroradiometers
time series analysis
Trends
United States
vegetation types
wildfires
Title The Landsat Burned Area algorithm and products for the conterminous United States
URI https://dx.doi.org/10.1016/j.rse.2020.111801
https://www.proquest.com/docview/2437432732
https://www.proquest.com/docview/2431879420
Volume 244
WOSCitedRecordID wos000532837400004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-0704
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0015871
  issn: 0034-4257
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLZgA8ELgsJEYSAjIR6IgqLEuT0W1BWmUi7KpvJkObFDO3VJaToY_55zHOfCBNN44CWqYqetfL6c89nnRsjzPMMiWwDezM9hgwImDp2EsW4iELlhEIQ6Q-54Gs5m0XwefzSO9kq3EwiLIjo_j9f_VdRwD4SNqbP_IO72S-EGfAahwxXEDtcrC36KCby49ccTS2mNgBlaYvW13Cy3i1NTG0BXeq3aMEOMWdeBMRgT-xsT7fPXzwpEq6wKw97rcOleplynzX6kwkRrJKWUnevpWOfSLMpSl4J8r1aY4N47ac0Wp0upzcJELFdWezD9Wum-BNYXVdiHZ_2TCtiWNlGtrfb1mI06oq99gV5Ya1TcYCrtP-r0-njh5NWmwrKmrmMmdwascdrPPvCDo-mUJ-N58mL9zcbWYuiCN31WrpNdN_RjUH27o3fj-WHrbPKjsG6saP5e4_zWYYAXfvVv9OWCIdfsJLlL7phtBR3VcLhHrqliQPbGnWxg0KjxakBuTZSpVD4gNye6t_PP--QTIIca5NAaORSRQ1vkUBikDXIoIIcCcmgfObRGDq2R84AcHYyTN29t03HDzsBgbm2hcqmYCGQW-2kkgsB3mYwUsFgWyzgUgYokvMqguWXue7kjpAhiT6Yx2A1fZMzbIztFWaiHhKqMYQgxy7M0ZJHrCceTXiSA_itXOGk-JE6zkDwz5eixK8qKN3GHJxzWnuPa83rth-Rl-8i6rsVy2WTWSIcbMlmTRA64uuyx_UaS3LzUFceincwDou8OybN2GPQwOtdEoWB5cQ6ovJi5zqMrzHlMbndvyD7Z2W7O1BNyI_u-XVabpwagvwBt_agj
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Landsat+Burned+Area+algorithm+and+products+for+the+conterminous+United+States&rft.jtitle=Remote+sensing+of+environment&rft.au=Hawbaker%2C+Todd+J&rft.au=Vanderhoof%2C+Melanie+K&rft.au=Schmidt%2C+Gail+L&rft.au=Beal%2C+Yen-Ju&rft.date=2020-07-01&rft.issn=0034-4257&rft.volume=244+p.111801-&rft_id=info:doi/10.1016%2Fj.rse.2020.111801&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0034-4257&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0034-4257&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0034-4257&client=summon