Subtyping Hyperchloremia among Hospitalized Patients by Machine Learning Consensus Clustering

Background and Objectives: Despite the association between hyperchloremia and adverse outcomes, mortality risks among patients with hyperchloremia have not consistently been observed among all studies with different patient populations with hyperchloremia. The objective of this study was to characte...

Full description

Saved in:
Bibliographic Details
Published in:Medicina (Kaunas, Lithuania) Vol. 57; no. 9; p. 903
Main Authors: Thongprayoon, Charat, Nissaisorakarn, Voravech, Pattharanitima, Pattharawin, Mao, Michael A., Kattah, Andrea G., Keddis, Mira T., Dumancas, Carissa Y., Vallabhajosyula, Saraschandra, Petnak, Tananchai, Erickson, Stephen B., Dillon, John J., Garovic, Vesna D., Kashani, Kianoush B., Cheungpasitporn, Wisit
Format: Journal Article
Language:English
Published: Basel MDPI AG 30.08.2021
MDPI
Subjects:
ISSN:1648-9144, 1010-660X, 1648-9144
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Background and Objectives: Despite the association between hyperchloremia and adverse outcomes, mortality risks among patients with hyperchloremia have not consistently been observed among all studies with different patient populations with hyperchloremia. The objective of this study was to characterize hyperchloremic patients at hospital admission into clusters using an unsupervised machine learning approach and to evaluate the mortality risk among these distinct clusters. Materials and Methods: We performed consensus cluster analysis based on demographic information, principal diagnoses, comorbidities, and laboratory data among 11,394 hospitalized adult patients with admission serum chloride of >108 mEq/L. We calculated the standardized mean difference of each variable to identify each cluster’s key features. We assessed the association of each hyperchloremia cluster with hospital and one-year mortality. Results: There were three distinct clusters of patients with admission hyperchloremia: 3237 (28%), 4059 (36%), and 4098 (36%) patients in clusters 1 through 3, respectively. Cluster 1 was characterized by higher serum chloride but lower serum sodium, bicarbonate, hemoglobin, and albumin. Cluster 2 was characterized by younger age, lower comorbidity score, lower serum chloride, and higher estimated glomerular filtration (eGFR), hemoglobin, and albumin. Cluster 3 was characterized by older age, higher comorbidity score, higher serum sodium, potassium, and lower eGFR. Compared with cluster 2, odds ratios for hospital mortality were 3.60 (95% CI 2.33–5.56) for cluster 1, and 4.83 (95% CI 3.21–7.28) for cluster 3, whereas hazard ratios for one-year mortality were 4.49 (95% CI 3.53–5.70) for cluster 1 and 6.96 (95% CI 5.56–8.72) for cluster 3. Conclusions: Our cluster analysis identified three clinically distinct phenotypes with differing mortality risks in hospitalized patients with admission hyperchloremia.
AbstractList Background and Objectives: Despite the association between hyperchloremia and adverse outcomes, mortality risks among patients with hyperchloremia have not consistently been observed among all studies with different patient populations with hyperchloremia. The objective of this study was to characterize hyperchloremic patients at hospital admission into clusters using an unsupervised machine learning approach and to evaluate the mortality risk among these distinct clusters. Materials and Methods: We performed consensus cluster analysis based on demographic information, principal diagnoses, comorbidities, and laboratory data among 11,394 hospitalized adult patients with admission serum chloride of >108 mEq/L. We calculated the standardized mean difference of each variable to identify each cluster’s key features. We assessed the association of each hyperchloremia cluster with hospital and one-year mortality. Results: There were three distinct clusters of patients with admission hyperchloremia: 3237 (28%), 4059 (36%), and 4098 (36%) patients in clusters 1 through 3, respectively. Cluster 1 was characterized by higher serum chloride but lower serum sodium, bicarbonate, hemoglobin, and albumin. Cluster 2 was characterized by younger age, lower comorbidity score, lower serum chloride, and higher estimated glomerular filtration (eGFR), hemoglobin, and albumin. Cluster 3 was characterized by older age, higher comorbidity score, higher serum sodium, potassium, and lower eGFR. Compared with cluster 2, odds ratios for hospital mortality were 3.60 (95% CI 2.33–5.56) for cluster 1, and 4.83 (95% CI 3.21–7.28) for cluster 3, whereas hazard ratios for one-year mortality were 4.49 (95% CI 3.53–5.70) for cluster 1 and 6.96 (95% CI 5.56–8.72) for cluster 3. Conclusions: Our cluster analysis identified three clinically distinct phenotypes with differing mortality risks in hospitalized patients with admission hyperchloremia.
Background and Objectives: Despite the association between hyperchloremia and adverse outcomes, mortality risks among patients with hyperchloremia have not consistently been observed among all studies with different patient populations with hyperchloremia. The objective of this study was to characterize hyperchloremic patients at hospital admission into clusters using an unsupervised machine learning approach and to evaluate the mortality risk among these distinct clusters. Materials and Methods: We performed consensus cluster analysis based on demographic information, principal diagnoses, comorbidities, and laboratory data among 11,394 hospitalized adult patients with admission serum chloride of >108 mEq/L. We calculated the standardized mean difference of each variable to identify each cluster's key features. We assessed the association of each hyperchloremia cluster with hospital and one-year mortality. Results: There were three distinct clusters of patients with admission hyperchloremia: 3237 (28%), 4059 (36%), and 4098 (36%) patients in clusters 1 through 3, respectively. Cluster 1 was characterized by higher serum chloride but lower serum sodium, bicarbonate, hemoglobin, and albumin. Cluster 2 was characterized by younger age, lower comorbidity score, lower serum chloride, and higher estimated glomerular filtration (eGFR), hemoglobin, and albumin. Cluster 3 was characterized by older age, higher comorbidity score, higher serum sodium, potassium, and lower eGFR. Compared with cluster 2, odds ratios for hospital mortality were 3.60 (95% CI 2.33-5.56) for cluster 1, and 4.83 (95% CI 3.21-7.28) for cluster 3, whereas hazard ratios for one-year mortality were 4.49 (95% CI 3.53-5.70) for cluster 1 and 6.96 (95% CI 5.56-8.72) for cluster 3. Conclusions: Our cluster analysis identified three clinically distinct phenotypes with differing mortality risks in hospitalized patients with admission hyperchloremia.Background and Objectives: Despite the association between hyperchloremia and adverse outcomes, mortality risks among patients with hyperchloremia have not consistently been observed among all studies with different patient populations with hyperchloremia. The objective of this study was to characterize hyperchloremic patients at hospital admission into clusters using an unsupervised machine learning approach and to evaluate the mortality risk among these distinct clusters. Materials and Methods: We performed consensus cluster analysis based on demographic information, principal diagnoses, comorbidities, and laboratory data among 11,394 hospitalized adult patients with admission serum chloride of >108 mEq/L. We calculated the standardized mean difference of each variable to identify each cluster's key features. We assessed the association of each hyperchloremia cluster with hospital and one-year mortality. Results: There were three distinct clusters of patients with admission hyperchloremia: 3237 (28%), 4059 (36%), and 4098 (36%) patients in clusters 1 through 3, respectively. Cluster 1 was characterized by higher serum chloride but lower serum sodium, bicarbonate, hemoglobin, and albumin. Cluster 2 was characterized by younger age, lower comorbidity score, lower serum chloride, and higher estimated glomerular filtration (eGFR), hemoglobin, and albumin. Cluster 3 was characterized by older age, higher comorbidity score, higher serum sodium, potassium, and lower eGFR. Compared with cluster 2, odds ratios for hospital mortality were 3.60 (95% CI 2.33-5.56) for cluster 1, and 4.83 (95% CI 3.21-7.28) for cluster 3, whereas hazard ratios for one-year mortality were 4.49 (95% CI 3.53-5.70) for cluster 1 and 6.96 (95% CI 5.56-8.72) for cluster 3. Conclusions: Our cluster analysis identified three clinically distinct phenotypes with differing mortality risks in hospitalized patients with admission hyperchloremia.
Author Cheungpasitporn, Wisit
Kattah, Andrea G.
Kashani, Kianoush B.
Vallabhajosyula, Saraschandra
Dumancas, Carissa Y.
Garovic, Vesna D.
Pattharanitima, Pattharawin
Erickson, Stephen B.
Mao, Michael A.
Keddis, Mira T.
Nissaisorakarn, Voravech
Thongprayoon, Charat
Petnak, Tananchai
Dillon, John J.
AuthorAffiliation 3 Department of Internal Medicine, Faculty of Medicine, Thammasat University, Pathum Thani 12120, Thailand; pattharawin@hotmail.com
7 Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA; petnak@yahoo.com
6 Section of Cardiovascular Medicine, Department of Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27101, USA; svallabh@wakehealth.edu
4 Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Jacksonville, FL 32224, USA; mao.michael@mayo.edu
5 Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Phoenix, AZ 85054, USA; keddis.Mira@mayo.edu
2 Department of Internal Medicine, MetroWest Medical Center, Tufts University School of Medicine, Boston, MA 01702, USA; voravech.niss@gmail.com
1 Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA; charat.thongprayoon@gmail.com (C.T.); kattah.andrea@mayo.edu (A.G.K.); dumanc
AuthorAffiliation_xml – name: 6 Section of Cardiovascular Medicine, Department of Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27101, USA; svallabh@wakehealth.edu
– name: 3 Department of Internal Medicine, Faculty of Medicine, Thammasat University, Pathum Thani 12120, Thailand; pattharawin@hotmail.com
– name: 7 Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA; petnak@yahoo.com
– name: 2 Department of Internal Medicine, MetroWest Medical Center, Tufts University School of Medicine, Boston, MA 01702, USA; voravech.niss@gmail.com
– name: 1 Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA; charat.thongprayoon@gmail.com (C.T.); kattah.andrea@mayo.edu (A.G.K.); dumancas.carissa@mayo.edu (C.Y.D.); erickson.stephen@mayo.edu (S.B.E.); dillon.John@mayo.edu (J.J.D.); garovic.Vesna@mayo.edu (V.D.G.); kashani.Kianoush@mayo.edu (K.B.K.)
– name: 4 Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Jacksonville, FL 32224, USA; mao.michael@mayo.edu
– name: 5 Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Phoenix, AZ 85054, USA; keddis.Mira@mayo.edu
Author_xml – sequence: 1
  givenname: Charat
  surname: Thongprayoon
  fullname: Thongprayoon, Charat
– sequence: 2
  givenname: Voravech
  orcidid: 0000-0002-9389-073X
  surname: Nissaisorakarn
  fullname: Nissaisorakarn, Voravech
– sequence: 3
  givenname: Pattharawin
  orcidid: 0000-0002-6010-0033
  surname: Pattharanitima
  fullname: Pattharanitima, Pattharawin
– sequence: 4
  givenname: Michael A.
  orcidid: 0000-0003-1814-7003
  surname: Mao
  fullname: Mao, Michael A.
– sequence: 5
  givenname: Andrea G.
  surname: Kattah
  fullname: Kattah, Andrea G.
– sequence: 6
  givenname: Mira T.
  orcidid: 0000-0001-8249-0848
  surname: Keddis
  fullname: Keddis, Mira T.
– sequence: 7
  givenname: Carissa Y.
  surname: Dumancas
  fullname: Dumancas, Carissa Y.
– sequence: 8
  givenname: Saraschandra
  orcidid: 0000-0002-1631-8238
  surname: Vallabhajosyula
  fullname: Vallabhajosyula, Saraschandra
– sequence: 9
  givenname: Tananchai
  orcidid: 0000-0002-7633-4029
  surname: Petnak
  fullname: Petnak, Tananchai
– sequence: 10
  givenname: Stephen B.
  surname: Erickson
  fullname: Erickson, Stephen B.
– sequence: 11
  givenname: John J.
  surname: Dillon
  fullname: Dillon, John J.
– sequence: 12
  givenname: Vesna D.
  surname: Garovic
  fullname: Garovic, Vesna D.
– sequence: 13
  givenname: Kianoush B.
  orcidid: 0000-0003-2184-3683
  surname: Kashani
  fullname: Kashani, Kianoush B.
– sequence: 14
  givenname: Wisit
  orcidid: 0000-0001-9954-9711
  surname: Cheungpasitporn
  fullname: Cheungpasitporn, Wisit
BookMark eNp1Uk2LFDEQDbLifujdY4MXL6Pd-ey-CDKouzCLC6tHCdVJ9UyG7qRNuoXx15t2VnAHlhwSXt57Rb2qS3Lmg0dCXlflO8aa8v2A1hnnQaiyyYc9IxeV5PWqqTg_--99Ti5T2pclo0LRF-SccaFUTeUF-XE_t9NhdH5bXB9GjGbXh4iDgwKGsIAhjW6C3v1GW9zB5NBPqWgPxS2YnfNYbBCiX-Tr4BP6NKdi3c9pwpjBl-R5B33CVw_3Ffn--dO39fVq8_XLzfrjZmW4VNOq5lx1neVUIlVWMGEtSFTAqLUdN5JVaMFaSw1rjBB1ZVvJRQdlx1FJ1bIrcnP0tQH2eoxugHjQAZz-C4S41RAnZ3rUErDOsQBYYznndU5NtKwD0RpbGtlkrw9Hr3Fuc74mNxyhf2T6-Me7nd6GX7rmUjT1YvD2wSCGnzOmSQ8uGex78BjmpPMMFBdNRXmmvjmh7sMcfY5qYeUeKypoZskjy8SQUsROmzySyYWlvut1VeplG_TpNmRheSL818WTkj-qI71z
CitedBy_id crossref_primary_10_1016_j_acra_2023_12_025
crossref_primary_10_3389_fncel_2023_1132015
crossref_primary_10_3390_diseases11010018
crossref_primary_10_1109_ACCESS_2024_3351188
crossref_primary_10_3390_medsci9040060
crossref_primary_10_1093_ckj_sfab190
crossref_primary_10_3390_jcm10194441
crossref_primary_10_3390_medicina58121831
Cites_doi 10.1371/journal.pone.0160322
10.1097/01.ASN.0000023430.92674.E5
10.1016/j.ajog.2021.06.068
10.1002/art.41516
10.3390/jcm10051121
10.1001/jama.2015.12334
10.1186/1471-2369-14-235
10.1093/qjmed/hcab194
10.1097/CCM.0000000000001161
10.3389/fpsyt.2021.637022
10.1016/j.nefro.2016.04.001
10.1038/s41598-018-27214-6
10.1038/ki.2009.159
10.1001/archinte.1952.00240090076007
10.1161/01.HYP.32.6.1066
10.1016/j.jcrc.2010.04.013
10.3390/jcm9061767
10.1093/bioinformatics/btq170
10.1016/j.jss.2009.09.010
10.1038/srep06207
10.1371/journal.pone.0174430
10.1080/08998280.2016.11929341
10.1186/s13054-016-1499-7
10.1038/s41598-021-91297-x
10.1186/s13613-016-0193-x
10.1038/s41584-020-00538-2
10.1136/postgradmedj-2019-137270
10.1213/ANE.0b013e318293d81e
10.3390/jcm9041107
10.1001/jama.2012.13356
10.21037/atm.2019.12.48
10.1186/s13049-016-0311-7
10.12688/f1000research.11401.1
10.1172/JCI110820
10.1023/A:1023949509487
ContentType Journal Article
Copyright 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2021 by the authors. 2021
Copyright_xml – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2021 by the authors. 2021
DBID AAYXX
CITATION
3V.
7X7
7XB
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
7X8
5PM
DOA
DOI 10.3390/medicina57090903
DatabaseName CrossRef
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni Edition)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni Edition)
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest One Health & Nursing
ProQuest Hospital Collection (Alumni)
ProQuest Central
ProQuest Health & Medical Complete
ProQuest Health & Medical Research Collection
Health Research Premium Collection
ProQuest One Academic UKI Edition
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database

MEDLINE - Academic

CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: ProQuest Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1648-9144
ExternalDocumentID oai_doaj_org_article_6ae8648aadcd44489035b3fa5bcd0c69
PMC8465989
10_3390_medicina57090903
GeographicLocations United States--US
GeographicLocations_xml – name: United States--US
GroupedDBID 0R~
29M
2WC
4.4
457
53G
5GY
5VS
7X7
8FI
8FJ
AADQD
AAEDT
AAFWJ
AAIKJ
AAYXX
ABMAC
ABUWG
ACGFS
ADBBV
ADEZE
AFFHD
AFKRA
AFPKN
AFZYC
AGHFR
AHDRD
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BCNDV
BENPR
CCPQU
CITATION
EMOBN
F5P
FDB
FYUFA
GROUPED_DOAJ
HMCUK
HYE
IAO
IHR
ITC
KQ8
MODMG
O9-
OK1
OVT
PGMZT
PHGZM
PHGZT
PIMPY
RPM
UKHRP
XSB
3V.
7XB
8FK
AZQEC
DWQXO
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
7X8
5PM
ID FETCH-LOGICAL-c467t-8447ffd426e27d535dda6e7a32ddf4c631edaddd2c39c5581db645fa0f4e767b3
IEDL.DBID DOA
ISICitedReferencesCount 7
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000699686700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1648-9144
1010-660X
IngestDate Fri Oct 03 12:43:28 EDT 2025
Tue Nov 04 01:58:08 EST 2025
Sun Nov 09 14:11:20 EST 2025
Tue Oct 07 06:46:16 EDT 2025
Sat Nov 29 07:13:33 EST 2025
Tue Nov 18 21:14:22 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c467t-8447ffd426e27d535dda6e7a32ddf4c631edaddd2c39c5581db645fa0f4e767b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-6010-0033
0000-0003-1814-7003
0000-0002-9389-073X
0000-0002-7633-4029
0000-0001-9954-9711
0000-0003-2184-3683
0000-0002-1631-8238
0000-0001-8249-0848
OpenAccessLink https://doaj.org/article/6ae8648aadcd44489035b3fa5bcd0c69
PMID 34577826
PQID 2576451252
PQPubID 5046879
ParticipantIDs doaj_primary_oai_doaj_org_article_6ae8648aadcd44489035b3fa5bcd0c69
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8465989
proquest_miscellaneous_2577459124
proquest_journals_2576451252
crossref_citationtrail_10_3390_medicina57090903
crossref_primary_10_3390_medicina57090903
PublicationCentury 2000
PublicationDate 20210830
PublicationDateYYYYMMDD 2021-08-30
PublicationDate_xml – month: 8
  year: 2021
  text: 20210830
  day: 30
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Medicina (Kaunas, Lithuania)
PublicationYear 2021
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Yunos (ref_12) 2012; 308
Wilcox (ref_4) 1983; 71
Neyra (ref_21) 2019; 7
Neyra (ref_8) 2015; 43
ref_32
ref_30
Hansen (ref_5) 1998; 32
Welt (ref_11) 1952; 90
Michailidis (ref_35) 2014; 4
ref_17
Chang (ref_24) 2018; 8
ref_16
Nagami (ref_10) 2016; 36
Bouchard (ref_9) 2009; 76
Patel (ref_14) 2016; 29
Bandak (ref_1) 2017; 6
Lee (ref_20) 2016; 24
Suetrong (ref_15) 2016; 20
Plant (ref_22) 2021; 17
Wilkerson (ref_34) 2010; 26
Forte (ref_31) 2021; 11
Soriano (ref_36) 2002; 13
Tao (ref_23) 2021; 73
Verbrugghe (ref_18) 2016; 6
Monti (ref_33) 2003; 52
Boniatti (ref_7) 2011; 26
Thongprayoon (ref_3) 2020; 96
ref_2
ref_29
ref_28
ref_27
ref_26
Young (ref_13) 2015; 314
McCluskey (ref_19) 2013; 117
Shah (ref_6) 2011; 166
Adam (ref_25) 2020; 4
References_xml – ident: ref_16
  doi: 10.1371/journal.pone.0160322
– volume: 13
  start-page: 2160
  year: 2002
  ident: ref_36
  article-title: Renal Tubular Acidosis: The Clinical Entity
  publication-title: J. Am. Soc. Nephrol.
  doi: 10.1097/01.ASN.0000023430.92674.E5
– ident: ref_30
  doi: 10.1016/j.ajog.2021.06.068
– volume: 73
  start-page: 212
  year: 2021
  ident: ref_23
  article-title: Multiomics and Machine Learning Accurately Predict Clinical Response to Adalimumab and Etanercept Therapy in Patients With Rheumatoid Arthritis
  publication-title: Arthritis Rheumatol.
  doi: 10.1002/art.41516
– ident: ref_29
  doi: 10.3390/jcm10051121
– volume: 314
  start-page: 1701
  year: 2015
  ident: ref_13
  article-title: Effect of a Buffered Crystalloid Solution vs Saline on Acute Kidney Injury Among Patients in the Intensive Care Unit:: The SPLIT Randomized Clinical Trial
  publication-title: JAMA
  doi: 10.1001/jama.2015.12334
– ident: ref_17
  doi: 10.1186/1471-2369-14-235
– ident: ref_26
  doi: 10.1093/qjmed/hcab194
– volume: 43
  start-page: 1938
  year: 2015
  ident: ref_8
  article-title: Association of Hyperchloremia With Hospital Mortality in Critically Ill Septic Patients
  publication-title: Crit. Care Med.
  doi: 10.1097/CCM.0000000000001161
– ident: ref_32
  doi: 10.3389/fpsyt.2021.637022
– volume: 36
  start-page: 347
  year: 2016
  ident: ref_10
  article-title: Hyperchloremia—Why and how
  publication-title: Nefrologia
  doi: 10.1016/j.nefro.2016.04.001
– volume: 8
  start-page: 8857
  year: 2018
  ident: ref_24
  article-title: Cancer Drug Response Profile scan (CDRscan): A Deep Learning Model That Predicts Drug Effectiveness from Cancer Genomic Signature
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-27214-6
– volume: 76
  start-page: 422
  year: 2009
  ident: ref_9
  article-title: Fluid accumulation, survival and recovery of kidney function in critically ill patients with acute kidney injury
  publication-title: Kidney Int.
  doi: 10.1038/ki.2009.159
– volume: 90
  start-page: 355
  year: 1952
  ident: ref_11
  article-title: Role of the central nervous system in metabolism of electrolytes and water
  publication-title: AMA Arch. Intern. Med.
  doi: 10.1001/archinte.1952.00240090076007
– volume: 32
  start-page: 1066
  year: 1998
  ident: ref_5
  article-title: Chloride Regulates Afferent Arteriolar Contraction in Response to Depolarization
  publication-title: Hypertension
  doi: 10.1161/01.HYP.32.6.1066
– volume: 26
  start-page: 175
  year: 2011
  ident: ref_7
  article-title: Is hyperchloremia associated with mortality in critically ill patients? A prospective cohort study
  publication-title: J. Crit. Care
  doi: 10.1016/j.jcrc.2010.04.013
– ident: ref_28
  doi: 10.3390/jcm9061767
– volume: 26
  start-page: 1572
  year: 2010
  ident: ref_34
  article-title: ConsensusClusterPlus: A class discovery tool with confidence assessments and item tracking
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btq170
– volume: 166
  start-page: 120
  year: 2011
  ident: ref_6
  article-title: Resuscitation-Induced Intestinal Edema and Related Dysfunction: State of the Science
  publication-title: J. Surg. Res.
  doi: 10.1016/j.jss.2009.09.010
– volume: 4
  start-page: 1
  year: 2020
  ident: ref_25
  article-title: Machine learning approaches to drug response prediction: Challenges and recent progress
  publication-title: npj Precis. Oncol.
– volume: 4
  start-page: 06207
  year: 2014
  ident: ref_35
  article-title: Critical limitations of consensus clustering in class discovery
  publication-title: Sci. Rep.
  doi: 10.1038/srep06207
– ident: ref_2
  doi: 10.1371/journal.pone.0174430
– volume: 29
  start-page: 7
  year: 2016
  ident: ref_14
  article-title: Serum hyperchloremia as a risk factor for acute kidney injury in patients with ST-segment elevation myocardial infarction undergoing percutaneous coronary intervention
  publication-title: Bayl. Univ. Med Cent. Proc.
  doi: 10.1080/08998280.2016.11929341
– volume: 20
  start-page: 315
  year: 2016
  ident: ref_15
  article-title: Hyperchloremia and moderate increase in serum chloride are associated with acute kidney injury in severe sepsis and septic shock patients
  publication-title: Crit. Care
  doi: 10.1186/s13054-016-1499-7
– volume: 11
  start-page: 12109
  year: 2021
  ident: ref_31
  article-title: Identifying and characterizing high-risk clusters in a heterogeneous ICU population with deep embedded clustering
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-021-91297-x
– volume: 6
  start-page: 91
  year: 2016
  ident: ref_18
  article-title: Impact of chloride and strong ion difference on ICU and hospital mortality in a mixed intensive care population
  publication-title: Ann. Intensive Care
  doi: 10.1186/s13613-016-0193-x
– volume: 17
  start-page: 5
  year: 2021
  ident: ref_22
  article-title: Machine learning in precision medicine: Lessons to learn
  publication-title: Nat. Rev. Rheumatol.
  doi: 10.1038/s41584-020-00538-2
– volume: 96
  start-page: 731
  year: 2020
  ident: ref_3
  article-title: Association of serum chloride level alterations with in-hospital mortality
  publication-title: Postgrad. Med. J.
  doi: 10.1136/postgradmedj-2019-137270
– volume: 117
  start-page: 412
  year: 2013
  ident: ref_19
  article-title: Hyperchloremia after noncardiac surgery is independently associated with increased morbidity and mortality: A propensity-matched cohort study
  publication-title: Anesth Analg.
  doi: 10.1213/ANE.0b013e318293d81e
– ident: ref_27
  doi: 10.3390/jcm9041107
– volume: 308
  start-page: 1566
  year: 2012
  ident: ref_12
  article-title: Association Between a Chloride-Liberal vs Chloride-Restrictive Intravenous Fluid Administration Strategy and Kidney Injury in Critically Ill Adults
  publication-title: JAMA
  doi: 10.1001/jama.2012.13356
– volume: 7
  start-page: S264
  year: 2019
  ident: ref_21
  article-title: Is dyschloremia a marker of critical illness or euchloremia an interventional target to improve outcomes?
  publication-title: Ann. Transl. Med.
  doi: 10.21037/atm.2019.12.48
– volume: 24
  start-page: 11
  year: 2016
  ident: ref_20
  article-title: Hyperchloremia is associated with 30-day mortality in major trauma patients: A retrospective observational study
  publication-title: Scand. J. Trauma Resusc. Emerg. Med.
  doi: 10.1186/s13049-016-0311-7
– volume: 6
  start-page: 1930
  year: 2017
  ident: ref_1
  article-title: Chloride in intensive care units: A key electrolyte
  publication-title: F1000Res.
  doi: 10.12688/f1000research.11401.1
– volume: 71
  start-page: 726
  year: 1983
  ident: ref_4
  article-title: Regulation of Renal Blood Flow by Plasma Chloride
  publication-title: J. Clin. Investig.
  doi: 10.1172/JCI110820
– volume: 52
  start-page: 91
  year: 2003
  ident: ref_33
  article-title: Consensus Clustering: A Resampling-Based Method for Class Discovery and Visualization of Gene Expression Microarray Data
  publication-title: Mach. Learn.
  doi: 10.1023/A:1023949509487
SSID ssj0032572
Score 2.2741907
Snippet Background and Objectives: Despite the association between hyperchloremia and adverse outcomes, mortality risks among patients with hyperchloremia have not...
SourceID doaj
pubmedcentral
proquest
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 903
SubjectTerms Acidosis
Algorithms
artificial intelligence
Chloride
Clinical outcomes
Cluster analysis
Clustering
Comorbidity
Hemoglobin
Hospitalization
hyperchloremia
Laboratories
Machine learning
Mortality
Patients
Potassium
Sodium
Variables
Variance analysis
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB5BilAv5a0aSrWVuHCw4tr7sE-IVq16aKOoApQLsvblNlJxSpwglV_fGXsdMIdeuNq7ttfjee2Mvw_ggygq7aQUscVgIeYG7aBBPxvb1GZGcOd0y3X47VxNJvlsVkzDhlsT2ip7m9gaarewtEc-psCYo3cS6afbnzGxRlF1NVBoPIYtQirjI9g6OplML3tbnOGsrt6J1kbKZNYVKjNM9Mehdq2FSgrarBg4pha_fxB0Dlsm__JBp8_-9-mfw06IPtnn7nN5AY98_RKeXoT6-iv4jnZkdUe_ULEzTFBRBzCd9z_mmrWkRKxnGZn_9o5NO0jWhpk7dtH2ZHoW4FqvGBGBEotGw45v1gTGgAdfw9fTky_HZ3EgYIgt2s9VnHOuqsqhE_epciITKDrplc5S5ypuZXboHdpHh3ItrBAY-hpcZaWTinsllcnewKhe1H4XmPGpw1GHqS489-gUrcALVk5b6sZKfATj_u2XNqCTE0nGTYlZCsmr_FdeEXzczLjtkDkeGHtEAt2MI0zt9sBieVUGFS2l9rnkudbOOo5ZK84TJqu0MNYlVhYR7PWyLYOiN-UfwUZwsDmNKkp1F137xbodo7jAtfMI1OAzGjzQ8Ew9v27BvjE-FEVevH345u9gO6VmG9rsTvZgtFqu_Xt4Yn-t5s1yP2jFPdkTHKo
  priority: 102
  providerName: ProQuest
Title Subtyping Hyperchloremia among Hospitalized Patients by Machine Learning Consensus Clustering
URI https://www.proquest.com/docview/2576451252
https://www.proquest.com/docview/2577459124
https://pubmed.ncbi.nlm.nih.gov/PMC8465989
https://doaj.org/article/6ae8648aadcd44489035b3fa5bcd0c69
Volume 57
WOSCitedRecordID wos000699686700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1648-9144
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0032572
  issn: 1648-9144
  databaseCode: DOA
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1648-9144
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0032572
  issn: 1648-9144
  databaseCode: 7X7
  dateStart: 20180101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1648-9144
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0032572
  issn: 1648-9144
  databaseCode: BENPR
  dateStart: 20180101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Publicly Available Content Database
  customDbUrl:
  eissn: 1648-9144
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0032572
  issn: 1648-9144
  databaseCode: PIMPY
  dateStart: 20180101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dS9xAEB_UivSltH7QWHus4IsP4WL2K3msoljwjiAq54OE_YoeXGPx7gT713d2kztMH-yLL4Ekk7CZnZ2PnclvAA54XikrBI8NOgsx06gHNdrZ2KSGas6sVaHX4c2FHA6z0SgvXrX68jVhDTxww7i-UC4TLFPKGsswlsgTyjWtFNfGJkaEX_fQ61kEU40OpiiITZ4TtYwQyahJUFIM8PttzlpxmeR-k6JjkAJuf8fZ7JZKvrI9Z5_hU-s0kh_NYL_Aiqs3YWPQpsW34A6X_-zF__lEzjGuRNHFKNz9GisSegmRRXOQ8R9nSdEgqU6JfiGDUErpSIuyek98_07f_GJKTiZzj6GAF7fh-uz06uQ8bvsmxAbV3izOGJNVZdH2ulRaTjlyXDipaGptxYygR86iWrM4HbnhHD1WLRivVFIxJ4XUdAfW6sfafQWiXWqR6ihVuWMObZnh-MLKKuOLqBIXQX_BvNK0oOK-t8WkxODCs7v8l90RHC6f-N0AarxBe-znY0nnobDDBRSQshWQ8n8CEsHeYjbLdn1OSx9mMfR1eBrB_vI2riyfLlG1e5wHGsk4fjuLQHakoDOg7p16_BAwutGt43mW777HF3yDj6mvpPE72ckerM2e5u47rJvn2Xj61INVOZLhmPXgw_HpsLjshcWAZ8XPQXH7F2pmE0I
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lj9MwEB4tXQRceKMNLGAkOHCImk1sJzkgBAurVttWPSyoHFDwK7uVSrI0Laj8KH4j48QphMPe9sA1tpNxMv5m7JnMB_CcpbnQnDNfobPgU4k4KNHO-ipUkWRUa1FzHX4cxZNJMpul0x341f4LY9MqW0ysgVqXyp6R961jTNE6sfD1-TffskbZ6GpLodGoxbHZ_MAtW_Vq-A6_74swPHp_cjjwHauArxAUVn5CaZznGi2TCWPNIobycBOLKNQ6p4pHB0bjotcobKoYQ39O4oNzEeTUxDyWEd73CuxSVPakB7vT4Xj6qcX-CKVs4quIbpwHsyYwGkVp0HexcsHiILWHIx1DWPMFdJzcbormXzbv6Nb_9rZuw03nXZM3zXK4AzumuAvXxi5_4B58RpxcbewvYmSAG3AUb1Euzde5IDXpEmlZVOY_jSbTpuRsReSGjOucU0NcOdpTYolOLUtIRQ4Xa1tsAi_ehw-XMrkH0CvKwuwBkSbU2OsgFKmhBo2-YnjDXAtls80C40G__dqZctXXLQnIIsNdmNWP7F_98ODldsR5U3nkgr5vrQJt-9ma4fWFcnmaOQjKuDAJp4kQWmmKu3Icx2SUCyaVDhRPPdhvdSlzQFZlfxTJg2fbZoQgG1cShSnXdZ-YMpw79SDuqG1HoG5LMT-ri5mj_8vSJH148cOfwvXByXiUjYaT40dwI7SJRfZgP9iH3mq5No_hqvq-mlfLJ25FEvhy2Wr9G5XkfHk
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9NAEB2VFlVc-EYYCiwSHDhYce3dtX1ACFqiRm0iHwCFAzLr_WgjpXaJE1D4afw6Zu11wBx664GrvXbG8ds3szvjeQAvWGqE4pz5EoMFnxbIgwX6WV-GMioYVUo0WoefTuLJJJlO02wLfnXfwtiyyo4TG6JWlbR75AMbGFP0TiwcGFcWkR0O31x8862ClM20dnIaLUSO9foHLt_q16NDfNcvw3D4_sPBke8UBnyJBLH0E0pjYxR6KR3GikUMbeM6FlGolKGSR_taIQEoNDyVjGFsV6ARRgSG6pjHRYT3vQY7GJJTnGM72Wicfe78QIQWt7lWZDrOg2mbJI2iNBi4vLlgcZDajZKeU2y0A3oBb79c8y__N7z1P_9zt-Gmi7rJ23aa3IEtXd6F3bGrK7gHX5A_l2v76Rg5woU5mjevFvp8JkgjxkQ6dZXZT61I1rairUmxJuOmFlUT16b2lFgBVKseUpOD-co2ocCD9-HjlTzcA9guq1I_BFLoUOGo_VCkmmoMBiTDGxolpK1CC7QHg-7N59J1ZbfiIPMcV2cWK_m_WPHg1eaKi7YjySVj31kwbcbZXuLNgWpxmjtqyrnQCaeJEEoqiqt1vI4VkRGskCqQPPVgr8NV7giuzv-AyoPnm9NITTbfJEpdrZoxMWX47NSDuAfhnkH9M-XsrGlyjnExS5P00eU__gx2Ecv5yWhy_BhuhLbeyO73B3uwvVys9BO4Lr8vZ_XiqZucBL5eNap_A_UAhTk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Subtyping+Hyperchloremia+among+Hospitalized+Patients+by+Machine+Learning+Consensus+Clustering&rft.jtitle=Medicina+%28Kaunas%2C+Lithuania%29&rft.au=Charat+Thongprayoon&rft.au=Voravech+Nissaisorakarn&rft.au=Pattharawin+Pattharanitima&rft.au=Michael+A.+Mao&rft.date=2021-08-30&rft.pub=MDPI+AG&rft.issn=1010-660X&rft.eissn=1648-9144&rft.volume=57&rft.issue=9&rft.spage=903&rft_id=info:doi/10.3390%2Fmedicina57090903&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_6ae8648aadcd44489035b3fa5bcd0c69
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1648-9144&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1648-9144&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1648-9144&client=summon