Subtyping Hyperchloremia among Hospitalized Patients by Machine Learning Consensus Clustering
Background and Objectives: Despite the association between hyperchloremia and adverse outcomes, mortality risks among patients with hyperchloremia have not consistently been observed among all studies with different patient populations with hyperchloremia. The objective of this study was to characte...
Saved in:
| Published in: | Medicina (Kaunas, Lithuania) Vol. 57; no. 9; p. 903 |
|---|---|
| Main Authors: | , , , , , , , , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Basel
MDPI AG
30.08.2021
MDPI |
| Subjects: | |
| ISSN: | 1648-9144, 1010-660X, 1648-9144 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Background and Objectives: Despite the association between hyperchloremia and adverse outcomes, mortality risks among patients with hyperchloremia have not consistently been observed among all studies with different patient populations with hyperchloremia. The objective of this study was to characterize hyperchloremic patients at hospital admission into clusters using an unsupervised machine learning approach and to evaluate the mortality risk among these distinct clusters. Materials and Methods: We performed consensus cluster analysis based on demographic information, principal diagnoses, comorbidities, and laboratory data among 11,394 hospitalized adult patients with admission serum chloride of >108 mEq/L. We calculated the standardized mean difference of each variable to identify each cluster’s key features. We assessed the association of each hyperchloremia cluster with hospital and one-year mortality. Results: There were three distinct clusters of patients with admission hyperchloremia: 3237 (28%), 4059 (36%), and 4098 (36%) patients in clusters 1 through 3, respectively. Cluster 1 was characterized by higher serum chloride but lower serum sodium, bicarbonate, hemoglobin, and albumin. Cluster 2 was characterized by younger age, lower comorbidity score, lower serum chloride, and higher estimated glomerular filtration (eGFR), hemoglobin, and albumin. Cluster 3 was characterized by older age, higher comorbidity score, higher serum sodium, potassium, and lower eGFR. Compared with cluster 2, odds ratios for hospital mortality were 3.60 (95% CI 2.33–5.56) for cluster 1, and 4.83 (95% CI 3.21–7.28) for cluster 3, whereas hazard ratios for one-year mortality were 4.49 (95% CI 3.53–5.70) for cluster 1 and 6.96 (95% CI 5.56–8.72) for cluster 3. Conclusions: Our cluster analysis identified three clinically distinct phenotypes with differing mortality risks in hospitalized patients with admission hyperchloremia. |
|---|---|
| AbstractList | Background and Objectives: Despite the association between hyperchloremia and adverse outcomes, mortality risks among patients with hyperchloremia have not consistently been observed among all studies with different patient populations with hyperchloremia. The objective of this study was to characterize hyperchloremic patients at hospital admission into clusters using an unsupervised machine learning approach and to evaluate the mortality risk among these distinct clusters. Materials and Methods: We performed consensus cluster analysis based on demographic information, principal diagnoses, comorbidities, and laboratory data among 11,394 hospitalized adult patients with admission serum chloride of >108 mEq/L. We calculated the standardized mean difference of each variable to identify each cluster’s key features. We assessed the association of each hyperchloremia cluster with hospital and one-year mortality. Results: There were three distinct clusters of patients with admission hyperchloremia: 3237 (28%), 4059 (36%), and 4098 (36%) patients in clusters 1 through 3, respectively. Cluster 1 was characterized by higher serum chloride but lower serum sodium, bicarbonate, hemoglobin, and albumin. Cluster 2 was characterized by younger age, lower comorbidity score, lower serum chloride, and higher estimated glomerular filtration (eGFR), hemoglobin, and albumin. Cluster 3 was characterized by older age, higher comorbidity score, higher serum sodium, potassium, and lower eGFR. Compared with cluster 2, odds ratios for hospital mortality were 3.60 (95% CI 2.33–5.56) for cluster 1, and 4.83 (95% CI 3.21–7.28) for cluster 3, whereas hazard ratios for one-year mortality were 4.49 (95% CI 3.53–5.70) for cluster 1 and 6.96 (95% CI 5.56–8.72) for cluster 3. Conclusions: Our cluster analysis identified three clinically distinct phenotypes with differing mortality risks in hospitalized patients with admission hyperchloremia. Background and Objectives: Despite the association between hyperchloremia and adverse outcomes, mortality risks among patients with hyperchloremia have not consistently been observed among all studies with different patient populations with hyperchloremia. The objective of this study was to characterize hyperchloremic patients at hospital admission into clusters using an unsupervised machine learning approach and to evaluate the mortality risk among these distinct clusters. Materials and Methods: We performed consensus cluster analysis based on demographic information, principal diagnoses, comorbidities, and laboratory data among 11,394 hospitalized adult patients with admission serum chloride of >108 mEq/L. We calculated the standardized mean difference of each variable to identify each cluster's key features. We assessed the association of each hyperchloremia cluster with hospital and one-year mortality. Results: There were three distinct clusters of patients with admission hyperchloremia: 3237 (28%), 4059 (36%), and 4098 (36%) patients in clusters 1 through 3, respectively. Cluster 1 was characterized by higher serum chloride but lower serum sodium, bicarbonate, hemoglobin, and albumin. Cluster 2 was characterized by younger age, lower comorbidity score, lower serum chloride, and higher estimated glomerular filtration (eGFR), hemoglobin, and albumin. Cluster 3 was characterized by older age, higher comorbidity score, higher serum sodium, potassium, and lower eGFR. Compared with cluster 2, odds ratios for hospital mortality were 3.60 (95% CI 2.33-5.56) for cluster 1, and 4.83 (95% CI 3.21-7.28) for cluster 3, whereas hazard ratios for one-year mortality were 4.49 (95% CI 3.53-5.70) for cluster 1 and 6.96 (95% CI 5.56-8.72) for cluster 3. Conclusions: Our cluster analysis identified three clinically distinct phenotypes with differing mortality risks in hospitalized patients with admission hyperchloremia.Background and Objectives: Despite the association between hyperchloremia and adverse outcomes, mortality risks among patients with hyperchloremia have not consistently been observed among all studies with different patient populations with hyperchloremia. The objective of this study was to characterize hyperchloremic patients at hospital admission into clusters using an unsupervised machine learning approach and to evaluate the mortality risk among these distinct clusters. Materials and Methods: We performed consensus cluster analysis based on demographic information, principal diagnoses, comorbidities, and laboratory data among 11,394 hospitalized adult patients with admission serum chloride of >108 mEq/L. We calculated the standardized mean difference of each variable to identify each cluster's key features. We assessed the association of each hyperchloremia cluster with hospital and one-year mortality. Results: There were three distinct clusters of patients with admission hyperchloremia: 3237 (28%), 4059 (36%), and 4098 (36%) patients in clusters 1 through 3, respectively. Cluster 1 was characterized by higher serum chloride but lower serum sodium, bicarbonate, hemoglobin, and albumin. Cluster 2 was characterized by younger age, lower comorbidity score, lower serum chloride, and higher estimated glomerular filtration (eGFR), hemoglobin, and albumin. Cluster 3 was characterized by older age, higher comorbidity score, higher serum sodium, potassium, and lower eGFR. Compared with cluster 2, odds ratios for hospital mortality were 3.60 (95% CI 2.33-5.56) for cluster 1, and 4.83 (95% CI 3.21-7.28) for cluster 3, whereas hazard ratios for one-year mortality were 4.49 (95% CI 3.53-5.70) for cluster 1 and 6.96 (95% CI 5.56-8.72) for cluster 3. Conclusions: Our cluster analysis identified three clinically distinct phenotypes with differing mortality risks in hospitalized patients with admission hyperchloremia. |
| Author | Cheungpasitporn, Wisit Kattah, Andrea G. Kashani, Kianoush B. Vallabhajosyula, Saraschandra Dumancas, Carissa Y. Garovic, Vesna D. Pattharanitima, Pattharawin Erickson, Stephen B. Mao, Michael A. Keddis, Mira T. Nissaisorakarn, Voravech Thongprayoon, Charat Petnak, Tananchai Dillon, John J. |
| AuthorAffiliation | 3 Department of Internal Medicine, Faculty of Medicine, Thammasat University, Pathum Thani 12120, Thailand; pattharawin@hotmail.com 7 Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA; petnak@yahoo.com 6 Section of Cardiovascular Medicine, Department of Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27101, USA; svallabh@wakehealth.edu 4 Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Jacksonville, FL 32224, USA; mao.michael@mayo.edu 5 Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Phoenix, AZ 85054, USA; keddis.Mira@mayo.edu 2 Department of Internal Medicine, MetroWest Medical Center, Tufts University School of Medicine, Boston, MA 01702, USA; voravech.niss@gmail.com 1 Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA; charat.thongprayoon@gmail.com (C.T.); kattah.andrea@mayo.edu (A.G.K.); dumanc |
| AuthorAffiliation_xml | – name: 6 Section of Cardiovascular Medicine, Department of Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27101, USA; svallabh@wakehealth.edu – name: 3 Department of Internal Medicine, Faculty of Medicine, Thammasat University, Pathum Thani 12120, Thailand; pattharawin@hotmail.com – name: 7 Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA; petnak@yahoo.com – name: 2 Department of Internal Medicine, MetroWest Medical Center, Tufts University School of Medicine, Boston, MA 01702, USA; voravech.niss@gmail.com – name: 1 Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA; charat.thongprayoon@gmail.com (C.T.); kattah.andrea@mayo.edu (A.G.K.); dumancas.carissa@mayo.edu (C.Y.D.); erickson.stephen@mayo.edu (S.B.E.); dillon.John@mayo.edu (J.J.D.); garovic.Vesna@mayo.edu (V.D.G.); kashani.Kianoush@mayo.edu (K.B.K.) – name: 4 Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Jacksonville, FL 32224, USA; mao.michael@mayo.edu – name: 5 Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Phoenix, AZ 85054, USA; keddis.Mira@mayo.edu |
| Author_xml | – sequence: 1 givenname: Charat surname: Thongprayoon fullname: Thongprayoon, Charat – sequence: 2 givenname: Voravech orcidid: 0000-0002-9389-073X surname: Nissaisorakarn fullname: Nissaisorakarn, Voravech – sequence: 3 givenname: Pattharawin orcidid: 0000-0002-6010-0033 surname: Pattharanitima fullname: Pattharanitima, Pattharawin – sequence: 4 givenname: Michael A. orcidid: 0000-0003-1814-7003 surname: Mao fullname: Mao, Michael A. – sequence: 5 givenname: Andrea G. surname: Kattah fullname: Kattah, Andrea G. – sequence: 6 givenname: Mira T. orcidid: 0000-0001-8249-0848 surname: Keddis fullname: Keddis, Mira T. – sequence: 7 givenname: Carissa Y. surname: Dumancas fullname: Dumancas, Carissa Y. – sequence: 8 givenname: Saraschandra orcidid: 0000-0002-1631-8238 surname: Vallabhajosyula fullname: Vallabhajosyula, Saraschandra – sequence: 9 givenname: Tananchai orcidid: 0000-0002-7633-4029 surname: Petnak fullname: Petnak, Tananchai – sequence: 10 givenname: Stephen B. surname: Erickson fullname: Erickson, Stephen B. – sequence: 11 givenname: John J. surname: Dillon fullname: Dillon, John J. – sequence: 12 givenname: Vesna D. surname: Garovic fullname: Garovic, Vesna D. – sequence: 13 givenname: Kianoush B. orcidid: 0000-0003-2184-3683 surname: Kashani fullname: Kashani, Kianoush B. – sequence: 14 givenname: Wisit orcidid: 0000-0001-9954-9711 surname: Cheungpasitporn fullname: Cheungpasitporn, Wisit |
| BookMark | eNp1Uk2LFDEQDbLifujdY4MXL6Pd-ey-CDKouzCLC6tHCdVJ9UyG7qRNuoXx15t2VnAHlhwSXt57Rb2qS3Lmg0dCXlflO8aa8v2A1hnnQaiyyYc9IxeV5PWqqTg_--99Ti5T2pclo0LRF-SccaFUTeUF-XE_t9NhdH5bXB9GjGbXh4iDgwKGsIAhjW6C3v1GW9zB5NBPqWgPxS2YnfNYbBCiX-Tr4BP6NKdi3c9pwpjBl-R5B33CVw_3Ffn--dO39fVq8_XLzfrjZmW4VNOq5lx1neVUIlVWMGEtSFTAqLUdN5JVaMFaSw1rjBB1ZVvJRQdlx1FJ1bIrcnP0tQH2eoxugHjQAZz-C4S41RAnZ3rUErDOsQBYYznndU5NtKwD0RpbGtlkrw9Hr3Fuc74mNxyhf2T6-Me7nd6GX7rmUjT1YvD2wSCGnzOmSQ8uGex78BjmpPMMFBdNRXmmvjmh7sMcfY5qYeUeKypoZskjy8SQUsROmzySyYWlvut1VeplG_TpNmRheSL818WTkj-qI71z |
| CitedBy_id | crossref_primary_10_1016_j_acra_2023_12_025 crossref_primary_10_3389_fncel_2023_1132015 crossref_primary_10_3390_diseases11010018 crossref_primary_10_1109_ACCESS_2024_3351188 crossref_primary_10_3390_medsci9040060 crossref_primary_10_1093_ckj_sfab190 crossref_primary_10_3390_jcm10194441 crossref_primary_10_3390_medicina58121831 |
| Cites_doi | 10.1371/journal.pone.0160322 10.1097/01.ASN.0000023430.92674.E5 10.1016/j.ajog.2021.06.068 10.1002/art.41516 10.3390/jcm10051121 10.1001/jama.2015.12334 10.1186/1471-2369-14-235 10.1093/qjmed/hcab194 10.1097/CCM.0000000000001161 10.3389/fpsyt.2021.637022 10.1016/j.nefro.2016.04.001 10.1038/s41598-018-27214-6 10.1038/ki.2009.159 10.1001/archinte.1952.00240090076007 10.1161/01.HYP.32.6.1066 10.1016/j.jcrc.2010.04.013 10.3390/jcm9061767 10.1093/bioinformatics/btq170 10.1016/j.jss.2009.09.010 10.1038/srep06207 10.1371/journal.pone.0174430 10.1080/08998280.2016.11929341 10.1186/s13054-016-1499-7 10.1038/s41598-021-91297-x 10.1186/s13613-016-0193-x 10.1038/s41584-020-00538-2 10.1136/postgradmedj-2019-137270 10.1213/ANE.0b013e318293d81e 10.3390/jcm9041107 10.1001/jama.2012.13356 10.21037/atm.2019.12.48 10.1186/s13049-016-0311-7 10.12688/f1000research.11401.1 10.1172/JCI110820 10.1023/A:1023949509487 |
| ContentType | Journal Article |
| Copyright | 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2021 by the authors. 2021 |
| Copyright_xml | – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2021 by the authors. 2021 |
| DBID | AAYXX CITATION 3V. 7X7 7XB 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI 7X8 5PM DOA |
| DOI | 10.3390/medicina57090903 |
| DatabaseName | CrossRef ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni Edition) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) Health & Medical Collection (Alumni Edition) ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest One Health & Nursing ProQuest Hospital Collection (Alumni) ProQuest Central ProQuest Health & Medical Complete ProQuest Health & Medical Research Collection Health Research Premium Collection ProQuest One Academic UKI Edition Health and Medicine Complete (Alumni Edition) ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | Publicly Available Content Database MEDLINE - Academic CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: ProQuest Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 1648-9144 |
| ExternalDocumentID | oai_doaj_org_article_6ae8648aadcd44489035b3fa5bcd0c69 PMC8465989 10_3390_medicina57090903 |
| GeographicLocations | United States--US |
| GeographicLocations_xml | – name: United States--US |
| GroupedDBID | 0R~ 29M 2WC 4.4 457 53G 5GY 5VS 7X7 8FI 8FJ AADQD AAEDT AAFWJ AAIKJ AAYXX ABMAC ABUWG ACGFS ADBBV ADEZE AFFHD AFKRA AFPKN AFZYC AGHFR AHDRD ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BCNDV BENPR CCPQU CITATION EMOBN F5P FDB FYUFA GROUPED_DOAJ HMCUK HYE IAO IHR ITC KQ8 MODMG O9- OK1 OVT PGMZT PHGZM PHGZT PIMPY RPM UKHRP XSB 3V. 7XB 8FK AZQEC DWQXO K9. PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI 7X8 5PM |
| ID | FETCH-LOGICAL-c467t-8447ffd426e27d535dda6e7a32ddf4c631edaddd2c39c5581db645fa0f4e767b3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 7 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000699686700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1648-9144 1010-660X |
| IngestDate | Fri Oct 03 12:43:28 EDT 2025 Tue Nov 04 01:58:08 EST 2025 Sun Nov 09 14:11:20 EST 2025 Tue Oct 07 06:46:16 EDT 2025 Sat Nov 29 07:13:33 EST 2025 Tue Nov 18 21:14:22 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 9 |
| Language | English |
| License | Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c467t-8447ffd426e27d535dda6e7a32ddf4c631edaddd2c39c5581db645fa0f4e767b3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-6010-0033 0000-0003-1814-7003 0000-0002-9389-073X 0000-0002-7633-4029 0000-0001-9954-9711 0000-0003-2184-3683 0000-0002-1631-8238 0000-0001-8249-0848 |
| OpenAccessLink | https://doaj.org/article/6ae8648aadcd44489035b3fa5bcd0c69 |
| PMID | 34577826 |
| PQID | 2576451252 |
| PQPubID | 5046879 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_6ae8648aadcd44489035b3fa5bcd0c69 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8465989 proquest_miscellaneous_2577459124 proquest_journals_2576451252 crossref_citationtrail_10_3390_medicina57090903 crossref_primary_10_3390_medicina57090903 |
| PublicationCentury | 2000 |
| PublicationDate | 20210830 |
| PublicationDateYYYYMMDD | 2021-08-30 |
| PublicationDate_xml | – month: 8 year: 2021 text: 20210830 day: 30 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Medicina (Kaunas, Lithuania) |
| PublicationYear | 2021 |
| Publisher | MDPI AG MDPI |
| Publisher_xml | – name: MDPI AG – name: MDPI |
| References | Yunos (ref_12) 2012; 308 Wilcox (ref_4) 1983; 71 Neyra (ref_21) 2019; 7 Neyra (ref_8) 2015; 43 ref_32 ref_30 Hansen (ref_5) 1998; 32 Welt (ref_11) 1952; 90 Michailidis (ref_35) 2014; 4 ref_17 Chang (ref_24) 2018; 8 ref_16 Nagami (ref_10) 2016; 36 Bouchard (ref_9) 2009; 76 Patel (ref_14) 2016; 29 Bandak (ref_1) 2017; 6 Lee (ref_20) 2016; 24 Suetrong (ref_15) 2016; 20 Plant (ref_22) 2021; 17 Wilkerson (ref_34) 2010; 26 Forte (ref_31) 2021; 11 Soriano (ref_36) 2002; 13 Tao (ref_23) 2021; 73 Verbrugghe (ref_18) 2016; 6 Monti (ref_33) 2003; 52 Boniatti (ref_7) 2011; 26 Thongprayoon (ref_3) 2020; 96 ref_2 ref_29 ref_28 ref_27 ref_26 Young (ref_13) 2015; 314 McCluskey (ref_19) 2013; 117 Shah (ref_6) 2011; 166 Adam (ref_25) 2020; 4 |
| References_xml | – ident: ref_16 doi: 10.1371/journal.pone.0160322 – volume: 13 start-page: 2160 year: 2002 ident: ref_36 article-title: Renal Tubular Acidosis: The Clinical Entity publication-title: J. Am. Soc. Nephrol. doi: 10.1097/01.ASN.0000023430.92674.E5 – ident: ref_30 doi: 10.1016/j.ajog.2021.06.068 – volume: 73 start-page: 212 year: 2021 ident: ref_23 article-title: Multiomics and Machine Learning Accurately Predict Clinical Response to Adalimumab and Etanercept Therapy in Patients With Rheumatoid Arthritis publication-title: Arthritis Rheumatol. doi: 10.1002/art.41516 – ident: ref_29 doi: 10.3390/jcm10051121 – volume: 314 start-page: 1701 year: 2015 ident: ref_13 article-title: Effect of a Buffered Crystalloid Solution vs Saline on Acute Kidney Injury Among Patients in the Intensive Care Unit:: The SPLIT Randomized Clinical Trial publication-title: JAMA doi: 10.1001/jama.2015.12334 – ident: ref_17 doi: 10.1186/1471-2369-14-235 – ident: ref_26 doi: 10.1093/qjmed/hcab194 – volume: 43 start-page: 1938 year: 2015 ident: ref_8 article-title: Association of Hyperchloremia With Hospital Mortality in Critically Ill Septic Patients publication-title: Crit. Care Med. doi: 10.1097/CCM.0000000000001161 – ident: ref_32 doi: 10.3389/fpsyt.2021.637022 – volume: 36 start-page: 347 year: 2016 ident: ref_10 article-title: Hyperchloremia—Why and how publication-title: Nefrologia doi: 10.1016/j.nefro.2016.04.001 – volume: 8 start-page: 8857 year: 2018 ident: ref_24 article-title: Cancer Drug Response Profile scan (CDRscan): A Deep Learning Model That Predicts Drug Effectiveness from Cancer Genomic Signature publication-title: Sci. Rep. doi: 10.1038/s41598-018-27214-6 – volume: 76 start-page: 422 year: 2009 ident: ref_9 article-title: Fluid accumulation, survival and recovery of kidney function in critically ill patients with acute kidney injury publication-title: Kidney Int. doi: 10.1038/ki.2009.159 – volume: 90 start-page: 355 year: 1952 ident: ref_11 article-title: Role of the central nervous system in metabolism of electrolytes and water publication-title: AMA Arch. Intern. Med. doi: 10.1001/archinte.1952.00240090076007 – volume: 32 start-page: 1066 year: 1998 ident: ref_5 article-title: Chloride Regulates Afferent Arteriolar Contraction in Response to Depolarization publication-title: Hypertension doi: 10.1161/01.HYP.32.6.1066 – volume: 26 start-page: 175 year: 2011 ident: ref_7 article-title: Is hyperchloremia associated with mortality in critically ill patients? A prospective cohort study publication-title: J. Crit. Care doi: 10.1016/j.jcrc.2010.04.013 – ident: ref_28 doi: 10.3390/jcm9061767 – volume: 26 start-page: 1572 year: 2010 ident: ref_34 article-title: ConsensusClusterPlus: A class discovery tool with confidence assessments and item tracking publication-title: Bioinformatics doi: 10.1093/bioinformatics/btq170 – volume: 166 start-page: 120 year: 2011 ident: ref_6 article-title: Resuscitation-Induced Intestinal Edema and Related Dysfunction: State of the Science publication-title: J. Surg. Res. doi: 10.1016/j.jss.2009.09.010 – volume: 4 start-page: 1 year: 2020 ident: ref_25 article-title: Machine learning approaches to drug response prediction: Challenges and recent progress publication-title: npj Precis. Oncol. – volume: 4 start-page: 06207 year: 2014 ident: ref_35 article-title: Critical limitations of consensus clustering in class discovery publication-title: Sci. Rep. doi: 10.1038/srep06207 – ident: ref_2 doi: 10.1371/journal.pone.0174430 – volume: 29 start-page: 7 year: 2016 ident: ref_14 article-title: Serum hyperchloremia as a risk factor for acute kidney injury in patients with ST-segment elevation myocardial infarction undergoing percutaneous coronary intervention publication-title: Bayl. Univ. Med Cent. Proc. doi: 10.1080/08998280.2016.11929341 – volume: 20 start-page: 315 year: 2016 ident: ref_15 article-title: Hyperchloremia and moderate increase in serum chloride are associated with acute kidney injury in severe sepsis and septic shock patients publication-title: Crit. Care doi: 10.1186/s13054-016-1499-7 – volume: 11 start-page: 12109 year: 2021 ident: ref_31 article-title: Identifying and characterizing high-risk clusters in a heterogeneous ICU population with deep embedded clustering publication-title: Sci. Rep. doi: 10.1038/s41598-021-91297-x – volume: 6 start-page: 91 year: 2016 ident: ref_18 article-title: Impact of chloride and strong ion difference on ICU and hospital mortality in a mixed intensive care population publication-title: Ann. Intensive Care doi: 10.1186/s13613-016-0193-x – volume: 17 start-page: 5 year: 2021 ident: ref_22 article-title: Machine learning in precision medicine: Lessons to learn publication-title: Nat. Rev. Rheumatol. doi: 10.1038/s41584-020-00538-2 – volume: 96 start-page: 731 year: 2020 ident: ref_3 article-title: Association of serum chloride level alterations with in-hospital mortality publication-title: Postgrad. Med. J. doi: 10.1136/postgradmedj-2019-137270 – volume: 117 start-page: 412 year: 2013 ident: ref_19 article-title: Hyperchloremia after noncardiac surgery is independently associated with increased morbidity and mortality: A propensity-matched cohort study publication-title: Anesth Analg. doi: 10.1213/ANE.0b013e318293d81e – ident: ref_27 doi: 10.3390/jcm9041107 – volume: 308 start-page: 1566 year: 2012 ident: ref_12 article-title: Association Between a Chloride-Liberal vs Chloride-Restrictive Intravenous Fluid Administration Strategy and Kidney Injury in Critically Ill Adults publication-title: JAMA doi: 10.1001/jama.2012.13356 – volume: 7 start-page: S264 year: 2019 ident: ref_21 article-title: Is dyschloremia a marker of critical illness or euchloremia an interventional target to improve outcomes? publication-title: Ann. Transl. Med. doi: 10.21037/atm.2019.12.48 – volume: 24 start-page: 11 year: 2016 ident: ref_20 article-title: Hyperchloremia is associated with 30-day mortality in major trauma patients: A retrospective observational study publication-title: Scand. J. Trauma Resusc. Emerg. Med. doi: 10.1186/s13049-016-0311-7 – volume: 6 start-page: 1930 year: 2017 ident: ref_1 article-title: Chloride in intensive care units: A key electrolyte publication-title: F1000Res. doi: 10.12688/f1000research.11401.1 – volume: 71 start-page: 726 year: 1983 ident: ref_4 article-title: Regulation of Renal Blood Flow by Plasma Chloride publication-title: J. Clin. Investig. doi: 10.1172/JCI110820 – volume: 52 start-page: 91 year: 2003 ident: ref_33 article-title: Consensus Clustering: A Resampling-Based Method for Class Discovery and Visualization of Gene Expression Microarray Data publication-title: Mach. Learn. doi: 10.1023/A:1023949509487 |
| SSID | ssj0032572 |
| Score | 2.2741907 |
| Snippet | Background and Objectives: Despite the association between hyperchloremia and adverse outcomes, mortality risks among patients with hyperchloremia have not... |
| SourceID | doaj pubmedcentral proquest crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database |
| StartPage | 903 |
| SubjectTerms | Acidosis Algorithms artificial intelligence Chloride Clinical outcomes Cluster analysis Clustering Comorbidity Hemoglobin Hospitalization hyperchloremia Laboratories Machine learning Mortality Patients Potassium Sodium Variables Variance analysis |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB5BilAv5a0aSrWVuHCw4tr7sE-IVq16aKOoApQLsvblNlJxSpwglV_fGXsdMIdeuNq7ttfjee2Mvw_ggygq7aQUscVgIeYG7aBBPxvb1GZGcOd0y3X47VxNJvlsVkzDhlsT2ip7m9gaarewtEc-psCYo3cS6afbnzGxRlF1NVBoPIYtQirjI9g6OplML3tbnOGsrt6J1kbKZNYVKjNM9Mehdq2FSgrarBg4pha_fxB0Dlsm__JBp8_-9-mfw06IPtnn7nN5AY98_RKeXoT6-iv4jnZkdUe_ULEzTFBRBzCd9z_mmrWkRKxnGZn_9o5NO0jWhpk7dtH2ZHoW4FqvGBGBEotGw45v1gTGgAdfw9fTky_HZ3EgYIgt2s9VnHOuqsqhE_epciITKDrplc5S5ypuZXboHdpHh3ItrBAY-hpcZaWTinsllcnewKhe1H4XmPGpw1GHqS489-gUrcALVk5b6sZKfATj_u2XNqCTE0nGTYlZCsmr_FdeEXzczLjtkDkeGHtEAt2MI0zt9sBieVUGFS2l9rnkudbOOo5ZK84TJqu0MNYlVhYR7PWyLYOiN-UfwUZwsDmNKkp1F137xbodo7jAtfMI1OAzGjzQ8Ew9v27BvjE-FEVevH345u9gO6VmG9rsTvZgtFqu_Xt4Yn-t5s1yP2jFPdkTHKo priority: 102 providerName: ProQuest |
| Title | Subtyping Hyperchloremia among Hospitalized Patients by Machine Learning Consensus Clustering |
| URI | https://www.proquest.com/docview/2576451252 https://www.proquest.com/docview/2577459124 https://pubmed.ncbi.nlm.nih.gov/PMC8465989 https://doaj.org/article/6ae8648aadcd44489035b3fa5bcd0c69 |
| Volume | 57 |
| WOSCitedRecordID | wos000699686700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1648-9144 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0032572 issn: 1648-9144 databaseCode: DOA dateStart: 20070101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1648-9144 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0032572 issn: 1648-9144 databaseCode: 7X7 dateStart: 20180101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1648-9144 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0032572 issn: 1648-9144 databaseCode: BENPR dateStart: 20180101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Publicly Available Content Database customDbUrl: eissn: 1648-9144 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0032572 issn: 1648-9144 databaseCode: PIMPY dateStart: 20180101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dS9xAEB_UivSltH7QWHus4IsP4WL2K3msoljwjiAq54OE_YoeXGPx7gT713d2kztMH-yLL4Ekk7CZnZ2PnclvAA54XikrBI8NOgsx06gHNdrZ2KSGas6sVaHX4c2FHA6z0SgvXrX68jVhDTxww7i-UC4TLFPKGsswlsgTyjWtFNfGJkaEX_fQ61kEU40OpiiITZ4TtYwQyahJUFIM8PttzlpxmeR-k6JjkAJuf8fZ7JZKvrI9Z5_hU-s0kh_NYL_Aiqs3YWPQpsW34A6X_-zF__lEzjGuRNHFKNz9GisSegmRRXOQ8R9nSdEgqU6JfiGDUErpSIuyek98_07f_GJKTiZzj6GAF7fh-uz06uQ8bvsmxAbV3izOGJNVZdH2ulRaTjlyXDipaGptxYygR86iWrM4HbnhHD1WLRivVFIxJ4XUdAfW6sfafQWiXWqR6ihVuWMObZnh-MLKKuOLqBIXQX_BvNK0oOK-t8WkxODCs7v8l90RHC6f-N0AarxBe-znY0nnobDDBRSQshWQ8n8CEsHeYjbLdn1OSx9mMfR1eBrB_vI2riyfLlG1e5wHGsk4fjuLQHakoDOg7p16_BAwutGt43mW777HF3yDj6mvpPE72ckerM2e5u47rJvn2Xj61INVOZLhmPXgw_HpsLjshcWAZ8XPQXH7F2pmE0I |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lj9MwEB4tXQRceKMNLGAkOHCImk1sJzkgBAurVttWPSyoHFDwK7uVSrI0Laj8KH4j48QphMPe9sA1tpNxMv5m7JnMB_CcpbnQnDNfobPgU4k4KNHO-ipUkWRUa1FzHX4cxZNJMpul0x341f4LY9MqW0ysgVqXyp6R961jTNE6sfD1-TffskbZ6GpLodGoxbHZ_MAtW_Vq-A6_74swPHp_cjjwHauArxAUVn5CaZznGi2TCWPNIobycBOLKNQ6p4pHB0bjotcobKoYQ39O4oNzEeTUxDyWEd73CuxSVPakB7vT4Xj6qcX-CKVs4quIbpwHsyYwGkVp0HexcsHiILWHIx1DWPMFdJzcbormXzbv6Nb_9rZuw03nXZM3zXK4AzumuAvXxi5_4B58RpxcbewvYmSAG3AUb1Euzde5IDXpEmlZVOY_jSbTpuRsReSGjOucU0NcOdpTYolOLUtIRQ4Xa1tsAi_ehw-XMrkH0CvKwuwBkSbU2OsgFKmhBo2-YnjDXAtls80C40G__dqZctXXLQnIIsNdmNWP7F_98ODldsR5U3nkgr5vrQJt-9ma4fWFcnmaOQjKuDAJp4kQWmmKu3Icx2SUCyaVDhRPPdhvdSlzQFZlfxTJg2fbZoQgG1cShSnXdZ-YMpw79SDuqG1HoG5LMT-ri5mj_8vSJH148cOfwvXByXiUjYaT40dwI7SJRfZgP9iH3mq5No_hqvq-mlfLJ25FEvhy2Wr9G5XkfHk |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9NAEB2VFlVc-EYYCiwSHDhYce3dtX1ACFqiRm0iHwCFAzLr_WgjpXaJE1D4afw6Zu11wBx664GrvXbG8ds3szvjeQAvWGqE4pz5EoMFnxbIgwX6WV-GMioYVUo0WoefTuLJJJlO02wLfnXfwtiyyo4TG6JWlbR75AMbGFP0TiwcGFcWkR0O31x8862ClM20dnIaLUSO9foHLt_q16NDfNcvw3D4_sPBke8UBnyJBLH0E0pjYxR6KR3GikUMbeM6FlGolKGSR_taIQEoNDyVjGFsV6ARRgSG6pjHRYT3vQY7GJJTnGM72Wicfe78QIQWt7lWZDrOg2mbJI2iNBi4vLlgcZDajZKeU2y0A3oBb79c8y__N7z1P_9zt-Gmi7rJ23aa3IEtXd6F3bGrK7gHX5A_l2v76Rg5woU5mjevFvp8JkgjxkQ6dZXZT61I1rairUmxJuOmFlUT16b2lFgBVKseUpOD-co2ocCD9-HjlTzcA9guq1I_BFLoUOGo_VCkmmoMBiTDGxolpK1CC7QHg-7N59J1ZbfiIPMcV2cWK_m_WPHg1eaKi7YjySVj31kwbcbZXuLNgWpxmjtqyrnQCaeJEEoqiqt1vI4VkRGskCqQPPVgr8NV7giuzv-AyoPnm9NITTbfJEpdrZoxMWX47NSDuAfhnkH9M-XsrGlyjnExS5P00eU__gx2Ecv5yWhy_BhuhLbeyO73B3uwvVys9BO4Lr8vZ_XiqZucBL5eNap_A_UAhTk |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Subtyping+Hyperchloremia+among+Hospitalized+Patients+by+Machine+Learning+Consensus+Clustering&rft.jtitle=Medicina+%28Kaunas%2C+Lithuania%29&rft.au=Charat+Thongprayoon&rft.au=Voravech+Nissaisorakarn&rft.au=Pattharawin+Pattharanitima&rft.au=Michael+A.+Mao&rft.date=2021-08-30&rft.pub=MDPI+AG&rft.issn=1010-660X&rft.eissn=1648-9144&rft.volume=57&rft.issue=9&rft.spage=903&rft_id=info:doi/10.3390%2Fmedicina57090903&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_6ae8648aadcd44489035b3fa5bcd0c69 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1648-9144&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1648-9144&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1648-9144&client=summon |