Intraflagellar transport genes are essential for differentiation and survival of vertebrate sensory neurons
Cilia play diverse roles in vertebrate and invertebrate sensory neurons. We show that a mutation of the zebrafish oval (ovl) locus affects a component of the ciliary transport (IFT) mechanism, the IFT88 polypeptide. In mutant retina, cilia are generated but not maintained, producing the absence of p...
Uloženo v:
| Vydáno v: | Neuron (Cambridge, Mass.) Ročník 42; číslo 5; s. 703 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
United States
10.06.2004
|
| Témata: | |
| ISSN: | 0896-6273 |
| On-line přístup: | Zjistit podrobnosti o přístupu |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Cilia play diverse roles in vertebrate and invertebrate sensory neurons. We show that a mutation of the zebrafish oval (ovl) locus affects a component of the ciliary transport (IFT) mechanism, the IFT88 polypeptide. In mutant retina, cilia are generated but not maintained, producing the absence of photoreceptor outer segments. A loss of cilia also occurs in auditory hair cells and olfactory sensory neurons. In all three sense organs, cilia defects are followed by degeneration of sensory cells. Similar phenotypes are induced by the absence of the IFT complex B polypeptides, ift52 and ift57, but not by the loss of complex A protein, ift140. The degeneration of mutant photoreceptor cells is caused, at least partially, by the ectopic accumulation of opsins. These studies reveal an essential role for IFT genes in vertebrate sensory neurons and implicate the molecular components of intraflagellar transport in degenerative disorders of these cells. |
|---|---|
| AbstractList | Cilia play diverse roles in vertebrate and invertebrate sensory neurons. We show that a mutation of the zebrafish oval (ovl) locus affects a component of the ciliary transport (IFT) mechanism, the IFT88 polypeptide. In mutant retina, cilia are generated but not maintained, producing the absence of photoreceptor outer segments. A loss of cilia also occurs in auditory hair cells and olfactory sensory neurons. In all three sense organs, cilia defects are followed by degeneration of sensory cells. Similar phenotypes are induced by the absence of the IFT complex B polypeptides, ift52 and ift57, but not by the loss of complex A protein, ift140. The degeneration of mutant photoreceptor cells is caused, at least partially, by the ectopic accumulation of opsins. These studies reveal an essential role for IFT genes in vertebrate sensory neurons and implicate the molecular components of intraflagellar transport in degenerative disorders of these cells.Cilia play diverse roles in vertebrate and invertebrate sensory neurons. We show that a mutation of the zebrafish oval (ovl) locus affects a component of the ciliary transport (IFT) mechanism, the IFT88 polypeptide. In mutant retina, cilia are generated but not maintained, producing the absence of photoreceptor outer segments. A loss of cilia also occurs in auditory hair cells and olfactory sensory neurons. In all three sense organs, cilia defects are followed by degeneration of sensory cells. Similar phenotypes are induced by the absence of the IFT complex B polypeptides, ift52 and ift57, but not by the loss of complex A protein, ift140. The degeneration of mutant photoreceptor cells is caused, at least partially, by the ectopic accumulation of opsins. These studies reveal an essential role for IFT genes in vertebrate sensory neurons and implicate the molecular components of intraflagellar transport in degenerative disorders of these cells. Cilia play diverse roles in vertebrate and invertebrate sensory neurons. We show that a mutation of the zebrafish oval (ovl) locus affects a component of the ciliary transport (IFT) mechanism, the IFT88 polypeptide. In mutant retina, cilia are generated but not maintained, producing the absence of photoreceptor outer segments. A loss of cilia also occurs in auditory hair cells and olfactory sensory neurons. In all three sense organs, cilia defects are followed by degeneration of sensory cells. Similar phenotypes are induced by the absence of the IFT complex B polypeptides, ift52 and ift57, but not by the loss of complex A protein, ift140. The degeneration of mutant photoreceptor cells is caused, at least partially, by the ectopic accumulation of opsins. These studies reveal an essential role for IFT genes in vertebrate sensory neurons and implicate the molecular components of intraflagellar transport in degenerative disorders of these cells. |
| Author | Tsujikawa, Motokazu Malicki, Jarema |
| Author_xml | – sequence: 1 givenname: Motokazu surname: Tsujikawa fullname: Tsujikawa, Motokazu organization: Department of Ophthalmology, Harvard Medical School, 243 Charles Street, Boston, Massachusetts 02110, USA – sequence: 2 givenname: Jarema surname: Malicki fullname: Malicki, Jarema |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/15182712$$D View this record in MEDLINE/PubMed |
| BookMark | eNo9kMtOwzAQRb0oog_4BJBXCBYBjxPb8RIhHpUqsQDWkZOMq0BqF9up1L8nQGE1mqNzR5o7JxPnHRJyBuwaGMibF1ZqmUmu8ktWXDHGZZmJCZn94ymZx_jOGBRCwzGZgoCSK-Az8rF0KRjbmzX2vQl0XFzc-pDoGh1GagJSjBFd6kxPrQ-07azF8ANS5x01rqVxCLtuNwre0h2GhHUwCekYiz7sqcMheBdPyJE1fcTTw1yQt4f717unbPX8uLy7XWVNIVXKFBcMuTYSWgVGMlEozaTNC56XKHUrTCNMnZe1ARQCuFK1bOqagbEtaKz5glz83t0G_zlgTNWmi833fw79ECsFWotcs1E8P4hDvcG22oZuY8K--quHfwG2a2qC |
| CitedBy_id | crossref_primary_10_1016_j_ydbio_2005_08_047 crossref_primary_10_1093_hmg_ddr332 crossref_primary_10_1371_journal_pgen_1000884 crossref_primary_10_1371_journal_pone_0104661 crossref_primary_10_1242_bio_021584 crossref_primary_10_1093_hmg_ddx396 crossref_primary_10_1016_j_neuron_2011_03_002 crossref_primary_10_1242_dev_02169 crossref_primary_10_1242_dev_036350 crossref_primary_10_1016_j_cub_2018_05_079 crossref_primary_10_1089_zeb_2012_0761 crossref_primary_10_1091_mbc_e10_09_0792 crossref_primary_10_1038_s41467_019_09403_7 crossref_primary_10_1091_mbc_e13_01_0033 crossref_primary_10_1002_embj_201488175 crossref_primary_10_1016_j_devcel_2005_12_013 crossref_primary_10_1016_j_mod_2009_01_002 crossref_primary_10_1186_1471_2156_11_102 crossref_primary_10_1038_eye_2016_198 crossref_primary_10_1074_jbc_M116_738658 crossref_primary_10_3389_fphys_2021_626080 crossref_primary_10_1002_cm_21173 crossref_primary_10_3390_genes13071218 crossref_primary_10_3390_cells13161357 crossref_primary_10_1083_jcb_201006020 crossref_primary_10_1038_s42003_021_01662_9 crossref_primary_10_1093_hmg_ddr164 crossref_primary_10_3390_cells4040674 crossref_primary_10_1016_j_preteyeres_2017_05_001 crossref_primary_10_1242_dev_055038 crossref_primary_10_1167_iovs_17_23351 crossref_primary_10_1073_pnas_2102562118 crossref_primary_10_1093_biolre_iox029 crossref_primary_10_1146_annurev_cellbio_23_090506_123249 crossref_primary_10_1073_pnas_1116035109 crossref_primary_10_3390_cells12121598 crossref_primary_10_1007_s11427_020_1915_y crossref_primary_10_1186_gb_2007_8_8_r173 crossref_primary_10_1242_bio_038745 crossref_primary_10_1016_j_ydbio_2006_09_001 crossref_primary_10_1371_journal_pgen_1010154 crossref_primary_10_1073_pnas_0706934104 crossref_primary_10_1371_journal_pone_0246844 crossref_primary_10_1016_j_visres_2007_08_022 crossref_primary_10_1038_ncomms8074 crossref_primary_10_1073_pnas_1005998107 crossref_primary_10_1093_hmg_ddaf058 crossref_primary_10_1371_journal_pone_0059306 crossref_primary_10_1016_j_preteyeres_2013_03_002 crossref_primary_10_1242_jcs_015826 crossref_primary_10_1002_dvdy_22010 crossref_primary_10_1083_jcb_200911095 crossref_primary_10_1093_hmg_ddw241 crossref_primary_10_1016_j_pnpbp_2021_110255 crossref_primary_10_1371_journal_pbio_3002008 crossref_primary_10_1242_dev_01772 crossref_primary_10_1073_pnas_2408551121 crossref_primary_10_1038_emboj_2011_110 crossref_primary_10_1371_journal_pone_0084394 crossref_primary_10_1002_dvdy_21797 crossref_primary_10_1002_dvdy_21554 crossref_primary_10_1074_jbc_M117_784017 crossref_primary_10_1007_s00018_010_0563_8 crossref_primary_10_1371_journal_pone_0225351 crossref_primary_10_1038_labinvest_3700253 crossref_primary_10_1111_1744_7917_13140 crossref_primary_10_1016_j_gene_2024_148237 crossref_primary_10_1016_j_ydbio_2005_06_009 crossref_primary_10_1371_journal_pone_0032472 crossref_primary_10_1016_j_cub_2020_04_020 crossref_primary_10_1038_s41588_018_0260_3 crossref_primary_10_1681_ASN_2009091001 crossref_primary_10_1016_j_bbrc_2010_08_099 crossref_primary_10_1186_s13064_016_0064_z crossref_primary_10_1002_dvdy_40 crossref_primary_10_1091_mbc_e12_02_0134 crossref_primary_10_1016_j_cub_2018_11_059 crossref_primary_10_1002_cyto_a_21097 crossref_primary_10_1016_j_ydbio_2008_09_019 crossref_primary_10_1016_j_cub_2006_03_058 crossref_primary_10_1002_jez_b_22691 crossref_primary_10_1038_srep35399 crossref_primary_10_1080_09537104_2017_1361524 crossref_primary_10_1093_hmg_ddx163 crossref_primary_10_1073_pnas_0700178104 crossref_primary_10_1146_annurev_vision_082114_035717 crossref_primary_10_1007_s13238_010_0098_7 crossref_primary_10_1002_dvdy_22199 crossref_primary_10_1073_pnas_2117090119 crossref_primary_10_1038_s41467_018_06094_4 crossref_primary_10_1096_fj_201802140R crossref_primary_10_1242_dmm_014068 crossref_primary_10_1681_ASN_2011080829 crossref_primary_10_1242_dmm_050618 crossref_primary_10_1007_s11427_008_0071_3 crossref_primary_10_1038_nm_2860 crossref_primary_10_1186_2046_2530_1_22 crossref_primary_10_3390_cells13171403 crossref_primary_10_1038_s41598_020_74360_x crossref_primary_10_3390_cells13211749 crossref_primary_10_1681_ASN_2010060665 crossref_primary_10_1186_s13630_018_0056_1 crossref_primary_10_1002_bies_20369 crossref_primary_10_1186_s40246_017_0111_9 crossref_primary_10_1016_j_gep_2018_07_002 crossref_primary_10_1016_j_ydbio_2015_02_009 crossref_primary_10_1002_cyto_a_20436 crossref_primary_10_1242_dev_041343 crossref_primary_10_3390_biom11010078 crossref_primary_10_1002_mrd_20831 crossref_primary_10_1242_bio_061690 crossref_primary_10_1242_dev_079947 crossref_primary_10_1523_JNEUROSCI_4329_08_2008 crossref_primary_10_1111_tra_12929 crossref_primary_10_1016_j_mod_2008_09_001 crossref_primary_10_1038_s41598_021_86909_5 crossref_primary_10_1038_srep34646 crossref_primary_10_1242_jcs_254995 crossref_primary_10_1016_j_mod_2007_04_004 crossref_primary_10_1089_zeb_2004_1_257 crossref_primary_10_1371_journal_pgen_1001361 crossref_primary_10_1091_mbc_e07_06_0537 crossref_primary_10_1016_j_cub_2009_04_053 crossref_primary_10_1172_JCI37041 crossref_primary_10_1002_dvdy_21521 crossref_primary_10_1111_jeu_12799 crossref_primary_10_1016_j_preteyeres_2022_101096 crossref_primary_10_3389_fonc_2024_1413255 crossref_primary_10_1093_hmg_ddz091 crossref_primary_10_1002_dneu_20919 crossref_primary_10_1038_ncb3029 crossref_primary_10_1042_BC20110034 crossref_primary_10_1534_genetics_104_039727 crossref_primary_10_1007_s00018_012_1052_z crossref_primary_10_1534_genetics_115_180943 crossref_primary_10_1038_nrmicro2009 crossref_primary_10_1002_cbf_3205 crossref_primary_10_1007_s10048_011_0273_x crossref_primary_10_1186_2046_2530_2_10 crossref_primary_10_1242_jcs_258568 crossref_primary_10_1242_dev_176677 crossref_primary_10_1242_dmm_049568 crossref_primary_10_1534_genetics_108_095141 crossref_primary_10_1242_jcs_029397 crossref_primary_10_1016_j_exer_2014_03_007 crossref_primary_10_1016_j_heares_2004_12_002 crossref_primary_10_3724_abbs_2025168 crossref_primary_10_1080_13816810_2023_2291672 crossref_primary_10_1242_dev_125724 crossref_primary_10_3390_ijms22179329 crossref_primary_10_1002_bdrc_20211 crossref_primary_10_1016_j_neuroscience_2022_12_016 crossref_primary_10_1242_dev_02776 crossref_primary_10_1016_j_preteyeres_2011_03_001 crossref_primary_10_1038_s41598_018_20489_9 crossref_primary_10_1098_rsob_230228 crossref_primary_10_1093_hmg_ddn356 crossref_primary_10_1242_dev_01606 crossref_primary_10_1002_dvdy_21999 crossref_primary_10_3390_jdb10040052 crossref_primary_10_1016_j_visres_2008_12_009 crossref_primary_10_1016_j_yexcr_2022_113273 crossref_primary_10_1080_13816810_2022_2062391 crossref_primary_10_3390_cells9102242 crossref_primary_10_1128_JVI_01272_16 crossref_primary_10_1016_j_devcel_2012_05_022 crossref_primary_10_1016_j_preteyeres_2016_05_003 crossref_primary_10_1038_ncb1706 crossref_primary_10_1093_hmg_ddr025 crossref_primary_10_1534_genetics_104_036434 crossref_primary_10_1016_j_visres_2007_09_016 crossref_primary_10_1016_j_biomaterials_2021_121268 crossref_primary_10_1038_emboj_2011_165 crossref_primary_10_1007_s10495_007_0131_3 crossref_primary_10_1091_mbc_E15_08_0578 crossref_primary_10_1002_dvdy_20375 crossref_primary_10_1089_zeb_2008_0563 crossref_primary_10_1534_g3_116_030080 |
| ContentType | Journal Article |
| DBID | CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1016/S0896-6273(04)00268-5 |
| DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | no_fulltext_linktorsrc |
| Discipline | Anatomy & Physiology Biology |
| ExternalDocumentID | 15182712 |
| Genre | Research Support, U.S. Gov't, P.H.S Comparative Study Research Support, Non-U.S. Gov't Journal Article |
| GrantInformation_xml | – fundername: NEI NIH HHS grantid: R01EY11882 – fundername: NIDCD NIH HHS grantid: R01DC005103 |
| GroupedDBID | --- --K -DZ -~X .55 .GJ 0R~ 0SF 123 1RT 1~5 26- 2WC 3O- 3V. 4.4 457 4G. 53G 5RE 62- 6I. 7-5 7RV 7X7 8C1 8FE 8FH AACTN AAEDT AAEDW AAFTH AAIKJ AAKRW AAKUH AALRI AAMRU AAVLU AAXUO ABJNI ABMAC ABVKL ACGFO ACGFS ACIWK ACNCT ACPRK ADBBV ADEZE ADFRT ADVLN AEFWE AENEX AEXQZ AFKRA AFTJW AGHFR AGKMS AHHHB AHMBA AITUG AKAPO AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ AQUVI ASPBG AVWKF AZFZN BAWUL BBNVY BENPR BHPHI BKEYQ BKNYI BPHCQ BVXVI CGR CS3 CUY CVF DIK DU5 E3Z EBS ECM EIF EJD F5P FCP FDB FEDTE FIRID HCIFZ HVGLF HZ~ IAO IHE IHR INH IXB J1W JIG K-O KQ8 L7B LK8 LX5 M0R M0T M2M M2O M3Z M41 M7P MVM N9A NCXOZ NPM O-L O9- OK1 OZT P2P P6G PQQKQ PROAC RCE RIG ROL RPZ SCP SDP SES SSZ TR2 WOW X7M 7X8 AAFWJ AAYWO ABDGV ACVFH ADCNI AEUPX AFPUW AIGII AKBMS AKYEP APXCP EFKBS |
| ID | FETCH-LOGICAL-c467t-7250e29a61d71a60547906f34238e69d5ac5ab38ba1e551277b6cbb01afd19eb2 |
| IEDL.DBID | 7X8 |
| ISICitedReferencesCount | 236 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000221975000004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0896-6273 |
| IngestDate | Mon Sep 29 06:41:19 EDT 2025 Sat Sep 28 08:32:29 EDT 2024 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c467t-7250e29a61d71a60547906f34238e69d5ac5ab38ba1e551277b6cbb01afd19eb2 |
| Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
| OpenAccessLink | http://www.cell.com/article/S0896627304002685/pdf |
| PMID | 15182712 |
| PQID | 71995390 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_71995390 pubmed_primary_15182712 |
| PublicationCentury | 2000 |
| PublicationDate | 2004-06-10 |
| PublicationDateYYYYMMDD | 2004-06-10 |
| PublicationDate_xml | – month: 06 year: 2004 text: 2004-06-10 day: 10 |
| PublicationDecade | 2000 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Neuron (Cambridge, Mass.) |
| PublicationTitleAlternate | Neuron |
| PublicationYear | 2004 |
| SSID | ssj0014591 |
| Score | 2.2890947 |
| Snippet | Cilia play diverse roles in vertebrate and invertebrate sensory neurons. We show that a mutation of the zebrafish oval (ovl) locus affects a component of the... |
| SourceID | proquest pubmed |
| SourceType | Aggregation Database Index Database |
| StartPage | 703 |
| SubjectTerms | Algal Proteins - physiology Animals Animals, Genetically Modified Biological Transport - genetics Biological Transport - physiology Blotting, Western - methods Body Patterning - genetics Body Patterning - physiology Carrier Proteins - genetics Cell Differentiation - genetics Cell Differentiation - physiology Cell Survival - genetics Cell Survival - physiology Chromosome Mapping Cilia - metabolism Cloning, Molecular - methods Embryo, Mammalian Embryo, Nonmammalian Flagella - metabolism Gene Expression Regulation, Developmental Green Fluorescent Proteins Humans Immunohistochemistry - methods In Situ Hybridization - methods In Situ Nick-End Labeling - methods Luminescent Proteins - metabolism Mice Microinjections Microscopy, Electron Molecular Sequence Data Mutation Neurons, Afferent - cytology Neurons, Afferent - ultrastructure Phalloidine Phenotype Photic Stimulation Plant Proteins Propidium Protozoan Proteins - genetics Protozoan Proteins - physiology Retina - metabolism Retina - ultrastructure Retinal Cone Photoreceptor Cells - metabolism Retinal Rod Photoreceptor Cells - metabolism Reverse Transcriptase Polymerase Chain Reaction - methods RNA, Messenger - biosynthesis Rod Opsins - metabolism Sequence Analysis, DNA Sequence Homology, Amino Acid Tubulin - metabolism Zebrafish |
| Title | Intraflagellar transport genes are essential for differentiation and survival of vertebrate sensory neurons |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/15182712 https://www.proquest.com/docview/71995390 |
| Volume | 42 |
| WOSCitedRecordID | wos000221975000004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS8MwFH9Mp-DFj82P-ZmDiB7C1i5NUhBkiENBxw4qu400TUWc7Ww7Yf-9L-2qJ_HgpYdCICQvv_d7eS_vB3CKLtBnPMCDxFWHMtblVCFRpmGgpWGBdHXRnf_5XgwGcjTyhzW4rN7C2LLKChMLoA4Tbe_I28K-JcYA_Wr6Qa1mlM2tLgQ0lqDeRSJjC7rE6CeHwLxSL0_6nHL00j_vd9rZ98_zDruwcYik3u8cs_A1_Y3_zXIT1hcck_RKo9iCmokb0OzFGF-_z8kZKao-i-v0BqyWYpTzJrzd2XveaIIAg6aRkrxqe05eLB4SlRpiG43HiAkTglyXVOIqebm9RMUhyWaIPWi9JImIlXq2eencEByWJemcFO0z42wbnvo3j9e3dCHFQDUiaU4FMiXj-oo7oXAUhkBM-B0e2faB0nA_9JT2VNCVgXIMcjBXiIDrIOg4KgodH6P3HViOk9jsARGeo7nRUnWZZjrylGCeFyqDcRDztSNbcFIt7RhN3eYvVGySWTauFrcFu-XujKdlR44x0hbpCsfd_3PsAayVtTccHdAh1CM85OYIVvRn_pqlx4UF4XcwfPgCUCfRUg |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Intraflagellar+transport+genes+are+essential+for+differentiation+and+survival+of+vertebrate+sensory+neurons&rft.jtitle=Neuron+%28Cambridge%2C+Mass.%29&rft.au=Tsujikawa%2C+Motokazu&rft.au=Malicki%2C+Jarema&rft.date=2004-06-10&rft.issn=0896-6273&rft.volume=42&rft.issue=5&rft.spage=703&rft_id=info:doi/10.1016%2Fs0896-6273%2804%2900268-5&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0896-6273&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0896-6273&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0896-6273&client=summon |