Intraflagellar transport genes are essential for differentiation and survival of vertebrate sensory neurons

Cilia play diverse roles in vertebrate and invertebrate sensory neurons. We show that a mutation of the zebrafish oval (ovl) locus affects a component of the ciliary transport (IFT) mechanism, the IFT88 polypeptide. In mutant retina, cilia are generated but not maintained, producing the absence of p...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Neuron (Cambridge, Mass.) Ročník 42; číslo 5; s. 703
Hlavní autoři: Tsujikawa, Motokazu, Malicki, Jarema
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States 10.06.2004
Témata:
ISSN:0896-6273
On-line přístup:Zjistit podrobnosti o přístupu
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Cilia play diverse roles in vertebrate and invertebrate sensory neurons. We show that a mutation of the zebrafish oval (ovl) locus affects a component of the ciliary transport (IFT) mechanism, the IFT88 polypeptide. In mutant retina, cilia are generated but not maintained, producing the absence of photoreceptor outer segments. A loss of cilia also occurs in auditory hair cells and olfactory sensory neurons. In all three sense organs, cilia defects are followed by degeneration of sensory cells. Similar phenotypes are induced by the absence of the IFT complex B polypeptides, ift52 and ift57, but not by the loss of complex A protein, ift140. The degeneration of mutant photoreceptor cells is caused, at least partially, by the ectopic accumulation of opsins. These studies reveal an essential role for IFT genes in vertebrate sensory neurons and implicate the molecular components of intraflagellar transport in degenerative disorders of these cells.
AbstractList Cilia play diverse roles in vertebrate and invertebrate sensory neurons. We show that a mutation of the zebrafish oval (ovl) locus affects a component of the ciliary transport (IFT) mechanism, the IFT88 polypeptide. In mutant retina, cilia are generated but not maintained, producing the absence of photoreceptor outer segments. A loss of cilia also occurs in auditory hair cells and olfactory sensory neurons. In all three sense organs, cilia defects are followed by degeneration of sensory cells. Similar phenotypes are induced by the absence of the IFT complex B polypeptides, ift52 and ift57, but not by the loss of complex A protein, ift140. The degeneration of mutant photoreceptor cells is caused, at least partially, by the ectopic accumulation of opsins. These studies reveal an essential role for IFT genes in vertebrate sensory neurons and implicate the molecular components of intraflagellar transport in degenerative disorders of these cells.Cilia play diverse roles in vertebrate and invertebrate sensory neurons. We show that a mutation of the zebrafish oval (ovl) locus affects a component of the ciliary transport (IFT) mechanism, the IFT88 polypeptide. In mutant retina, cilia are generated but not maintained, producing the absence of photoreceptor outer segments. A loss of cilia also occurs in auditory hair cells and olfactory sensory neurons. In all three sense organs, cilia defects are followed by degeneration of sensory cells. Similar phenotypes are induced by the absence of the IFT complex B polypeptides, ift52 and ift57, but not by the loss of complex A protein, ift140. The degeneration of mutant photoreceptor cells is caused, at least partially, by the ectopic accumulation of opsins. These studies reveal an essential role for IFT genes in vertebrate sensory neurons and implicate the molecular components of intraflagellar transport in degenerative disorders of these cells.
Cilia play diverse roles in vertebrate and invertebrate sensory neurons. We show that a mutation of the zebrafish oval (ovl) locus affects a component of the ciliary transport (IFT) mechanism, the IFT88 polypeptide. In mutant retina, cilia are generated but not maintained, producing the absence of photoreceptor outer segments. A loss of cilia also occurs in auditory hair cells and olfactory sensory neurons. In all three sense organs, cilia defects are followed by degeneration of sensory cells. Similar phenotypes are induced by the absence of the IFT complex B polypeptides, ift52 and ift57, but not by the loss of complex A protein, ift140. The degeneration of mutant photoreceptor cells is caused, at least partially, by the ectopic accumulation of opsins. These studies reveal an essential role for IFT genes in vertebrate sensory neurons and implicate the molecular components of intraflagellar transport in degenerative disorders of these cells.
Author Tsujikawa, Motokazu
Malicki, Jarema
Author_xml – sequence: 1
  givenname: Motokazu
  surname: Tsujikawa
  fullname: Tsujikawa, Motokazu
  organization: Department of Ophthalmology, Harvard Medical School, 243 Charles Street, Boston, Massachusetts 02110, USA
– sequence: 2
  givenname: Jarema
  surname: Malicki
  fullname: Malicki, Jarema
BackLink https://www.ncbi.nlm.nih.gov/pubmed/15182712$$D View this record in MEDLINE/PubMed
BookMark eNo9kMtOwzAQRb0oog_4BJBXCBYBjxPb8RIhHpUqsQDWkZOMq0BqF9up1L8nQGE1mqNzR5o7JxPnHRJyBuwaGMibF1ZqmUmu8ktWXDHGZZmJCZn94ymZx_jOGBRCwzGZgoCSK-Az8rF0KRjbmzX2vQl0XFzc-pDoGh1GagJSjBFd6kxPrQ-07azF8ANS5x01rqVxCLtuNwre0h2GhHUwCekYiz7sqcMheBdPyJE1fcTTw1yQt4f717unbPX8uLy7XWVNIVXKFBcMuTYSWgVGMlEozaTNC56XKHUrTCNMnZe1ARQCuFK1bOqagbEtaKz5glz83t0G_zlgTNWmi833fw79ECsFWotcs1E8P4hDvcG22oZuY8K--quHfwG2a2qC
CitedBy_id crossref_primary_10_1016_j_ydbio_2005_08_047
crossref_primary_10_1093_hmg_ddr332
crossref_primary_10_1371_journal_pgen_1000884
crossref_primary_10_1371_journal_pone_0104661
crossref_primary_10_1242_bio_021584
crossref_primary_10_1093_hmg_ddx396
crossref_primary_10_1016_j_neuron_2011_03_002
crossref_primary_10_1242_dev_02169
crossref_primary_10_1242_dev_036350
crossref_primary_10_1016_j_cub_2018_05_079
crossref_primary_10_1089_zeb_2012_0761
crossref_primary_10_1091_mbc_e10_09_0792
crossref_primary_10_1038_s41467_019_09403_7
crossref_primary_10_1091_mbc_e13_01_0033
crossref_primary_10_1002_embj_201488175
crossref_primary_10_1016_j_devcel_2005_12_013
crossref_primary_10_1016_j_mod_2009_01_002
crossref_primary_10_1186_1471_2156_11_102
crossref_primary_10_1038_eye_2016_198
crossref_primary_10_1074_jbc_M116_738658
crossref_primary_10_3389_fphys_2021_626080
crossref_primary_10_1002_cm_21173
crossref_primary_10_3390_genes13071218
crossref_primary_10_3390_cells13161357
crossref_primary_10_1083_jcb_201006020
crossref_primary_10_1038_s42003_021_01662_9
crossref_primary_10_1093_hmg_ddr164
crossref_primary_10_3390_cells4040674
crossref_primary_10_1016_j_preteyeres_2017_05_001
crossref_primary_10_1242_dev_055038
crossref_primary_10_1167_iovs_17_23351
crossref_primary_10_1073_pnas_2102562118
crossref_primary_10_1093_biolre_iox029
crossref_primary_10_1146_annurev_cellbio_23_090506_123249
crossref_primary_10_1073_pnas_1116035109
crossref_primary_10_3390_cells12121598
crossref_primary_10_1007_s11427_020_1915_y
crossref_primary_10_1186_gb_2007_8_8_r173
crossref_primary_10_1242_bio_038745
crossref_primary_10_1016_j_ydbio_2006_09_001
crossref_primary_10_1371_journal_pgen_1010154
crossref_primary_10_1073_pnas_0706934104
crossref_primary_10_1371_journal_pone_0246844
crossref_primary_10_1016_j_visres_2007_08_022
crossref_primary_10_1038_ncomms8074
crossref_primary_10_1073_pnas_1005998107
crossref_primary_10_1093_hmg_ddaf058
crossref_primary_10_1371_journal_pone_0059306
crossref_primary_10_1016_j_preteyeres_2013_03_002
crossref_primary_10_1242_jcs_015826
crossref_primary_10_1002_dvdy_22010
crossref_primary_10_1083_jcb_200911095
crossref_primary_10_1093_hmg_ddw241
crossref_primary_10_1016_j_pnpbp_2021_110255
crossref_primary_10_1371_journal_pbio_3002008
crossref_primary_10_1242_dev_01772
crossref_primary_10_1073_pnas_2408551121
crossref_primary_10_1038_emboj_2011_110
crossref_primary_10_1371_journal_pone_0084394
crossref_primary_10_1002_dvdy_21797
crossref_primary_10_1002_dvdy_21554
crossref_primary_10_1074_jbc_M117_784017
crossref_primary_10_1007_s00018_010_0563_8
crossref_primary_10_1371_journal_pone_0225351
crossref_primary_10_1038_labinvest_3700253
crossref_primary_10_1111_1744_7917_13140
crossref_primary_10_1016_j_gene_2024_148237
crossref_primary_10_1016_j_ydbio_2005_06_009
crossref_primary_10_1371_journal_pone_0032472
crossref_primary_10_1016_j_cub_2020_04_020
crossref_primary_10_1038_s41588_018_0260_3
crossref_primary_10_1681_ASN_2009091001
crossref_primary_10_1016_j_bbrc_2010_08_099
crossref_primary_10_1186_s13064_016_0064_z
crossref_primary_10_1002_dvdy_40
crossref_primary_10_1091_mbc_e12_02_0134
crossref_primary_10_1016_j_cub_2018_11_059
crossref_primary_10_1002_cyto_a_21097
crossref_primary_10_1016_j_ydbio_2008_09_019
crossref_primary_10_1016_j_cub_2006_03_058
crossref_primary_10_1002_jez_b_22691
crossref_primary_10_1038_srep35399
crossref_primary_10_1080_09537104_2017_1361524
crossref_primary_10_1093_hmg_ddx163
crossref_primary_10_1073_pnas_0700178104
crossref_primary_10_1146_annurev_vision_082114_035717
crossref_primary_10_1007_s13238_010_0098_7
crossref_primary_10_1002_dvdy_22199
crossref_primary_10_1073_pnas_2117090119
crossref_primary_10_1038_s41467_018_06094_4
crossref_primary_10_1096_fj_201802140R
crossref_primary_10_1242_dmm_014068
crossref_primary_10_1681_ASN_2011080829
crossref_primary_10_1242_dmm_050618
crossref_primary_10_1007_s11427_008_0071_3
crossref_primary_10_1038_nm_2860
crossref_primary_10_1186_2046_2530_1_22
crossref_primary_10_3390_cells13171403
crossref_primary_10_1038_s41598_020_74360_x
crossref_primary_10_3390_cells13211749
crossref_primary_10_1681_ASN_2010060665
crossref_primary_10_1186_s13630_018_0056_1
crossref_primary_10_1002_bies_20369
crossref_primary_10_1186_s40246_017_0111_9
crossref_primary_10_1016_j_gep_2018_07_002
crossref_primary_10_1016_j_ydbio_2015_02_009
crossref_primary_10_1002_cyto_a_20436
crossref_primary_10_1242_dev_041343
crossref_primary_10_3390_biom11010078
crossref_primary_10_1002_mrd_20831
crossref_primary_10_1242_bio_061690
crossref_primary_10_1242_dev_079947
crossref_primary_10_1523_JNEUROSCI_4329_08_2008
crossref_primary_10_1111_tra_12929
crossref_primary_10_1016_j_mod_2008_09_001
crossref_primary_10_1038_s41598_021_86909_5
crossref_primary_10_1038_srep34646
crossref_primary_10_1242_jcs_254995
crossref_primary_10_1016_j_mod_2007_04_004
crossref_primary_10_1089_zeb_2004_1_257
crossref_primary_10_1371_journal_pgen_1001361
crossref_primary_10_1091_mbc_e07_06_0537
crossref_primary_10_1016_j_cub_2009_04_053
crossref_primary_10_1172_JCI37041
crossref_primary_10_1002_dvdy_21521
crossref_primary_10_1111_jeu_12799
crossref_primary_10_1016_j_preteyeres_2022_101096
crossref_primary_10_3389_fonc_2024_1413255
crossref_primary_10_1093_hmg_ddz091
crossref_primary_10_1002_dneu_20919
crossref_primary_10_1038_ncb3029
crossref_primary_10_1042_BC20110034
crossref_primary_10_1534_genetics_104_039727
crossref_primary_10_1007_s00018_012_1052_z
crossref_primary_10_1534_genetics_115_180943
crossref_primary_10_1038_nrmicro2009
crossref_primary_10_1002_cbf_3205
crossref_primary_10_1007_s10048_011_0273_x
crossref_primary_10_1186_2046_2530_2_10
crossref_primary_10_1242_jcs_258568
crossref_primary_10_1242_dev_176677
crossref_primary_10_1242_dmm_049568
crossref_primary_10_1534_genetics_108_095141
crossref_primary_10_1242_jcs_029397
crossref_primary_10_1016_j_exer_2014_03_007
crossref_primary_10_1016_j_heares_2004_12_002
crossref_primary_10_3724_abbs_2025168
crossref_primary_10_1080_13816810_2023_2291672
crossref_primary_10_1242_dev_125724
crossref_primary_10_3390_ijms22179329
crossref_primary_10_1002_bdrc_20211
crossref_primary_10_1016_j_neuroscience_2022_12_016
crossref_primary_10_1242_dev_02776
crossref_primary_10_1016_j_preteyeres_2011_03_001
crossref_primary_10_1038_s41598_018_20489_9
crossref_primary_10_1098_rsob_230228
crossref_primary_10_1093_hmg_ddn356
crossref_primary_10_1242_dev_01606
crossref_primary_10_1002_dvdy_21999
crossref_primary_10_3390_jdb10040052
crossref_primary_10_1016_j_visres_2008_12_009
crossref_primary_10_1016_j_yexcr_2022_113273
crossref_primary_10_1080_13816810_2022_2062391
crossref_primary_10_3390_cells9102242
crossref_primary_10_1128_JVI_01272_16
crossref_primary_10_1016_j_devcel_2012_05_022
crossref_primary_10_1016_j_preteyeres_2016_05_003
crossref_primary_10_1038_ncb1706
crossref_primary_10_1093_hmg_ddr025
crossref_primary_10_1534_genetics_104_036434
crossref_primary_10_1016_j_visres_2007_09_016
crossref_primary_10_1016_j_biomaterials_2021_121268
crossref_primary_10_1038_emboj_2011_165
crossref_primary_10_1007_s10495_007_0131_3
crossref_primary_10_1091_mbc_E15_08_0578
crossref_primary_10_1002_dvdy_20375
crossref_primary_10_1089_zeb_2008_0563
crossref_primary_10_1534_g3_116_030080
ContentType Journal Article
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/S0896-6273(04)00268-5
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Anatomy & Physiology
Biology
ExternalDocumentID 15182712
Genre Research Support, U.S. Gov't, P.H.S
Comparative Study
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: NEI NIH HHS
  grantid: R01EY11882
– fundername: NIDCD NIH HHS
  grantid: R01DC005103
GroupedDBID ---
--K
-DZ
-~X
.55
.GJ
0R~
0SF
123
1RT
1~5
26-
2WC
3O-
3V.
4.4
457
4G.
53G
5RE
62-
6I.
7-5
7RV
7X7
8C1
8FE
8FH
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AAKRW
AAKUH
AALRI
AAMRU
AAVLU
AAXUO
ABJNI
ABMAC
ABVKL
ACGFO
ACGFS
ACIWK
ACNCT
ACPRK
ADBBV
ADEZE
ADFRT
ADVLN
AEFWE
AENEX
AEXQZ
AFKRA
AFTJW
AGHFR
AGKMS
AHHHB
AHMBA
AITUG
AKAPO
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AQUVI
ASPBG
AVWKF
AZFZN
BAWUL
BBNVY
BENPR
BHPHI
BKEYQ
BKNYI
BPHCQ
BVXVI
CGR
CS3
CUY
CVF
DIK
DU5
E3Z
EBS
ECM
EIF
EJD
F5P
FCP
FDB
FEDTE
FIRID
HCIFZ
HVGLF
HZ~
IAO
IHE
IHR
INH
IXB
J1W
JIG
K-O
KQ8
L7B
LK8
LX5
M0R
M0T
M2M
M2O
M3Z
M41
M7P
MVM
N9A
NCXOZ
NPM
O-L
O9-
OK1
OZT
P2P
P6G
PQQKQ
PROAC
RCE
RIG
ROL
RPZ
SCP
SDP
SES
SSZ
TR2
WOW
X7M
7X8
AAFWJ
AAYWO
ABDGV
ACVFH
ADCNI
AEUPX
AFPUW
AIGII
AKBMS
AKYEP
APXCP
EFKBS
ID FETCH-LOGICAL-c467t-7250e29a61d71a60547906f34238e69d5ac5ab38ba1e551277b6cbb01afd19eb2
IEDL.DBID 7X8
ISICitedReferencesCount 236
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000221975000004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0896-6273
IngestDate Mon Sep 29 06:41:19 EDT 2025
Sat Sep 28 08:32:29 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c467t-7250e29a61d71a60547906f34238e69d5ac5ab38ba1e551277b6cbb01afd19eb2
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
OpenAccessLink http://www.cell.com/article/S0896627304002685/pdf
PMID 15182712
PQID 71995390
PQPubID 23479
ParticipantIDs proquest_miscellaneous_71995390
pubmed_primary_15182712
PublicationCentury 2000
PublicationDate 2004-06-10
PublicationDateYYYYMMDD 2004-06-10
PublicationDate_xml – month: 06
  year: 2004
  text: 2004-06-10
  day: 10
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Neuron (Cambridge, Mass.)
PublicationTitleAlternate Neuron
PublicationYear 2004
SSID ssj0014591
Score 2.2890947
Snippet Cilia play diverse roles in vertebrate and invertebrate sensory neurons. We show that a mutation of the zebrafish oval (ovl) locus affects a component of the...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 703
SubjectTerms Algal Proteins - physiology
Animals
Animals, Genetically Modified
Biological Transport - genetics
Biological Transport - physiology
Blotting, Western - methods
Body Patterning - genetics
Body Patterning - physiology
Carrier Proteins - genetics
Cell Differentiation - genetics
Cell Differentiation - physiology
Cell Survival - genetics
Cell Survival - physiology
Chromosome Mapping
Cilia - metabolism
Cloning, Molecular - methods
Embryo, Mammalian
Embryo, Nonmammalian
Flagella - metabolism
Gene Expression Regulation, Developmental
Green Fluorescent Proteins
Humans
Immunohistochemistry - methods
In Situ Hybridization - methods
In Situ Nick-End Labeling - methods
Luminescent Proteins - metabolism
Mice
Microinjections
Microscopy, Electron
Molecular Sequence Data
Mutation
Neurons, Afferent - cytology
Neurons, Afferent - ultrastructure
Phalloidine
Phenotype
Photic Stimulation
Plant Proteins
Propidium
Protozoan Proteins - genetics
Protozoan Proteins - physiology
Retina - metabolism
Retina - ultrastructure
Retinal Cone Photoreceptor Cells - metabolism
Retinal Rod Photoreceptor Cells - metabolism
Reverse Transcriptase Polymerase Chain Reaction - methods
RNA, Messenger - biosynthesis
Rod Opsins - metabolism
Sequence Analysis, DNA
Sequence Homology, Amino Acid
Tubulin - metabolism
Zebrafish
Title Intraflagellar transport genes are essential for differentiation and survival of vertebrate sensory neurons
URI https://www.ncbi.nlm.nih.gov/pubmed/15182712
https://www.proquest.com/docview/71995390
Volume 42
WOSCitedRecordID wos000221975000004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS8MwFH9Mp-DFj82P-ZmDiB7C1i5NUhBkiENBxw4qu400TUWc7Ww7Yf-9L-2qJ_HgpYdCICQvv_d7eS_vB3CKLtBnPMCDxFWHMtblVCFRpmGgpWGBdHXRnf_5XgwGcjTyhzW4rN7C2LLKChMLoA4Tbe_I28K-JcYA_Wr6Qa1mlM2tLgQ0lqDeRSJjC7rE6CeHwLxSL0_6nHL00j_vd9rZ98_zDruwcYik3u8cs_A1_Y3_zXIT1hcck_RKo9iCmokb0OzFGF-_z8kZKao-i-v0BqyWYpTzJrzd2XveaIIAg6aRkrxqe05eLB4SlRpiG43HiAkTglyXVOIqebm9RMUhyWaIPWi9JImIlXq2eencEByWJemcFO0z42wbnvo3j9e3dCHFQDUiaU4FMiXj-oo7oXAUhkBM-B0e2faB0nA_9JT2VNCVgXIMcjBXiIDrIOg4KgodH6P3HViOk9jsARGeo7nRUnWZZjrylGCeFyqDcRDztSNbcFIt7RhN3eYvVGySWTauFrcFu-XujKdlR44x0hbpCsfd_3PsAayVtTccHdAh1CM85OYIVvRn_pqlx4UF4XcwfPgCUCfRUg
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Intraflagellar+transport+genes+are+essential+for+differentiation+and+survival+of+vertebrate+sensory+neurons&rft.jtitle=Neuron+%28Cambridge%2C+Mass.%29&rft.au=Tsujikawa%2C+Motokazu&rft.au=Malicki%2C+Jarema&rft.date=2004-06-10&rft.issn=0896-6273&rft.volume=42&rft.issue=5&rft.spage=703&rft_id=info:doi/10.1016%2Fs0896-6273%2804%2900268-5&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0896-6273&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0896-6273&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0896-6273&client=summon