A Symmetry-Based Method to Infer Structural Brain Networks from Probabilistic Tractography Data

Recent progress in diffusion MRI and tractography algorithms as well as the launch of the Human Connectome Project (HCP) have provided brain research with an abundance of structural connectivity data. In this work, we describe and evaluate a method that can infer the structural brain network that in...

Full description

Saved in:
Bibliographic Details
Published in:Frontiers in neuroinformatics Vol. 10; p. 46
Main Authors: Shadi, Kamal, Bakhshi, Saideh, Gutman, David A., Mayberg, Helen S., Dovrolis, Constantine
Format: Journal Article
Language:English
Published: Lausanne Frontiers Research Foundation 04.11.2016
Frontiers Media S.A
Subjects:
ISSN:1662-5196, 1662-5196
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Recent progress in diffusion MRI and tractography algorithms as well as the launch of the Human Connectome Project (HCP) have provided brain research with an abundance of structural connectivity data. In this work, we describe and evaluate a method that can infer the structural brain network that interconnects a given set of Regions of Interest (ROIs) from probabilistic tractography data. The proposed method, referred to as Minimum Asymmetry Network Inference Algorithm (MANIA), does not determine the connectivity between two ROIs based on an arbitrary connectivity threshold. Instead, we exploit a basic limitation of the tractography process: the observed streamlines from a source to a target do not provide any information about the polarity of the underlying white matter, and so if there are some fibers connecting two voxels (or two ROIs) X and Y, tractography should be able in principle to follow this connection in both directions, from X to Y and from Y to X. We leverage this limitation to formulate the network inference process as an optimization problem that minimizes the (appropriately normalized) asymmetry of the observed network. We evaluate the proposed method using both the FiberCup dataset and based on a noise model that randomly corrupts the observed connectivity of synthetic networks. As a case-study, we apply MANIA on diffusion MRI data from 28 healthy subjects to infer the structural network between 18 corticolimbic ROIs that are associated with various neuropsychiatric conditions including depression, anxiety and addiction.
AbstractList Recent progress in diffusion MRI and tractography algorithms as well as the launch of the Human Connectome Project (HCP) have provided brain research with an abundance of structural connectivity data. In this work, we describe and evaluate a method that can infer the structural brain network that interconnects a given set of Regions of Interest (ROIs) from probabilistic tractography data. The proposed method, referred to as Minimum Asymmetry Network Inference Algorithm (MANIA), does not determine the connectivity between two ROIs based on an arbitrary connectivity threshold. Instead, we exploit a basic limitation of the tractography process: the observed streamlines from a source to a target do not provide any information about the polarity of the underlying white matter, and so if there are some fibers connecting two voxels (or two ROIs) X and Y, tractography should be able in principle to follow this connection in both directions, from X to Y and from Y to X. We leverage this limitation to formulate the network inference process as an optimization problem that minimizes the (appropriately normalized) asymmetry of the observed network. We evaluate the proposed method using both the FiberCup dataset and based on a noise model that randomly corrupts the observed connectivity of synthetic networks. As a case-study, we apply MANIA on diffusion MRI data from 28 healthy subjects to infer the structural network between 18 corticolimbic ROIs that are associated with various neuropsychiatric conditions including depression, anxiety and addiction.Recent progress in diffusion MRI and tractography algorithms as well as the launch of the Human Connectome Project (HCP) have provided brain research with an abundance of structural connectivity data. In this work, we describe and evaluate a method that can infer the structural brain network that interconnects a given set of Regions of Interest (ROIs) from probabilistic tractography data. The proposed method, referred to as Minimum Asymmetry Network Inference Algorithm (MANIA), does not determine the connectivity between two ROIs based on an arbitrary connectivity threshold. Instead, we exploit a basic limitation of the tractography process: the observed streamlines from a source to a target do not provide any information about the polarity of the underlying white matter, and so if there are some fibers connecting two voxels (or two ROIs) X and Y, tractography should be able in principle to follow this connection in both directions, from X to Y and from Y to X. We leverage this limitation to formulate the network inference process as an optimization problem that minimizes the (appropriately normalized) asymmetry of the observed network. We evaluate the proposed method using both the FiberCup dataset and based on a noise model that randomly corrupts the observed connectivity of synthetic networks. As a case-study, we apply MANIA on diffusion MRI data from 28 healthy subjects to infer the structural network between 18 corticolimbic ROIs that are associated with various neuropsychiatric conditions including depression, anxiety and addiction.
Recent progress in diffusion MRI and tractography algorithms as well as the launch of the Human Connectome Project (HCP)1 have provided brain research with an abundance of structural connectivity data. In this work, we describe and evaluate a method that can infer the structural brain network that interconnects a given set of Regions of Interest (ROIs) from probabilistic tractography data. The proposed method, referred to as Minimum Asymmetry Network Inference Algorithm (MANIA), does not determine the connectivity between two ROIs based on an arbitrary connectivity threshold. Instead, we exploit a basic limitation of the tractography process: the observed streamlines from a source to a target do not provide any information about the polarity of the underlying white matter, and so if there are some fibers connecting two voxels (or two ROIs) X and Y, tractography should be able in principle to follow this connection in both directions, from X to Y and from Y to X. We leverage this limitation to formulate the network inference process as an optimization problem that minimizes the (appropriately normalized) asymmetry of the observed network. We evaluate the proposed method using both the FiberCup dataset and based on a noise model that randomly corrupts the observed connectivity of synthetic networks. As a case-study, we apply MANIA on diffusion MRI data from 28 healthy subjects to infer the structural network between 18 corticolimbic ROIs that are associated with various neuropsychiatric conditions including depression, anxiety and addiction.
Recent progress in diffusion MRI and tractography algorithms as well as the launch of the Human Connectome Project (HCP) have provided brain research with an abundance of structural connectivity data. In this work, we describe and evaluate a method that can infer the structural brain network that interconnects a given set of Regions of Interest (ROIs) from probabilistic tractography data. The proposed method, referred to as Minimum Asymmetry Network Inference Algorithm (MANIA), does not determine the connectivity between two ROIs based on an arbitrary connectivity threshold. Instead, we exploit a basic limitation of the tractography process: the observed streamlines from a source to a target do not provide any information about the polarity of the underlying white matter, and so if there are some fibers connecting two voxels (or two ROIs) X and Y, tractography should be able in principle to follow this connection in both directions, from X to Y and from Y to X. We leverage this limitation to formulate the network inference process as an optimization problem that minimizes the (appropriately normalized) asymmetry of the observed network. We evaluate the proposed method using both the FiberCup dataset and based on a noise model that randomly corrupts the observed connectivity of synthetic networks. As a case-study, we apply MANIA on diffusion MRI data from 28 healthy subjects to infer the structural network between 18 corticolimbic ROIs that are associated with various neuropsychiatric conditions including depression, anxiety and addiction.
Author Shadi, Kamal
Bakhshi, Saideh
Mayberg, Helen S.
Dovrolis, Constantine
Gutman, David A.
AuthorAffiliation 1 School of Computer Science, Georgia Institute of Technology Atlanta, GA, USA
3 Psychiatric Neuroimaging and Therapeutics, Department of Psychiatry, Neurology, and Radiology, Emory University Atlanta, GA, USA
2 Department of Neurology, Psychiatry and Biomedical Informatics, Emory University Atlanta, GA, USA
AuthorAffiliation_xml – name: 2 Department of Neurology, Psychiatry and Biomedical Informatics, Emory University Atlanta, GA, USA
– name: 1 School of Computer Science, Georgia Institute of Technology Atlanta, GA, USA
– name: 3 Psychiatric Neuroimaging and Therapeutics, Department of Psychiatry, Neurology, and Radiology, Emory University Atlanta, GA, USA
Author_xml – sequence: 1
  givenname: Kamal
  surname: Shadi
  fullname: Shadi, Kamal
– sequence: 2
  givenname: Saideh
  surname: Bakhshi
  fullname: Bakhshi, Saideh
– sequence: 3
  givenname: David A.
  surname: Gutman
  fullname: Gutman, David A.
– sequence: 4
  givenname: Helen S.
  surname: Mayberg
  fullname: Mayberg, Helen S.
– sequence: 5
  givenname: Constantine
  surname: Dovrolis
  fullname: Dovrolis, Constantine
BookMark eNp1kktv1DAUhS1URB-wZ2mJDZsMfjvZILXlNVJ5SC1ry3FuZjwk8WA7oPn3eGYqRCuxsmWf8-ncq3OOTqYwAUIvKVlwXjdv-slP_YIRqhaEEKGeoDOqFKskbdTJP_dTdJ7ShhDFlNTP0CnTtdJcijNkLvHtbhwhx111ZRN0-DPkdehwDng59RDxbY6zy3O0A76K1k_4C-TfIf5IuI9hxN9iaG3rB5-yd_guWpfDKtrteoff2Wyfo6e9HRK8uD8v0PcP7--uP1U3Xz8ury9vKieUzpWsCbEUZCtaIAAOuNas7bRUbVfXVjshaq4caN1zUL1kXFitGxAOyiy94xdoeeR2wW7MNvrRxp0J1pvDQ4grY2NJOIBR0GhJNRW1Y4LVqqGM16TtFSdOC90W1tsjazu3I3QOplymfwB9-DP5tVmFX0aSpmyYF8Dre0AMP2dI2Yw-ORgGO0GYk6G1YFJo3pAiffVIuglznMqqDGONFIwoIYqKHFUuhpQi9H_DUGL2TTCHJph9E8yhCcWiHlmczzb7sI_sh_8b_wBKWrn4
CitedBy_id crossref_primary_10_1016_j_neuroimage_2017_12_064
crossref_primary_10_3389_fneur_2018_00439
crossref_primary_10_1016_j_neuroimage_2022_119553
crossref_primary_10_3389_fnsys_2020_00042
Cites_doi 10.1016/j.neurobiolaging.2013.03.028
10.1093/cercor/bhu326
10.1016/j.neuroimage.2013.03.053
10.1016/j.neuroimage.2012.06.002
10.1016/j.neuroimage.2013.03.024
10.1016/j.neuroimage.2012.06.081
10.1016/j.neuroimage.2009.12.027
10.1523/JNEUROSCI.0493-16.2016
10.1016/j.neuroimage.2009.10.003
10.1192/bjp.bp.113.137380
10.1371/journal.pcbi.1000395
10.1523/JNEUROSCI.1929-08.2008
10.1089/brain.2012.0137
10.1109/TMI.2008.2004424
10.1152/jn.00338.2011
10.1371/journal.pone.0013701
10.1016/j.jneumeth.2011.09.021
10.1016/j.neuroimage.2010.01.019
10.1177/070674371405900602
10.1073/pnas.0811168106
10.1016/j.neuroimage.2016.09.053.
10.1016/j.neuroimage.2006.09.018
10.1016/j.neuroimage.2012.03.071
10.1016/j.pneurobio.2013.06.003
10.1038/nn.4361
10.1002/1531-8249(199902)45:2<265::AID-ANA21>3.0.CO;2-3
10.1523/JNEUROSCI.2419-07.2007
10.7551/mitpress/9266.001.0001
10.1016/j.neuroimage.2010.09.006
10.1073/pnas.1405672111
10.3389/fninf.2014.00046
10.1016/j.neuroimage.2011.01.032
10.1089/brain.2011.0011
10.1016/j.neuroimage.2008.12.049
10.1016/S1474-4422(08)70163-7
10.1007/s00429-009-0208-6
10.1038/nn.4134
10.1016/j.neuron.2005.02.014
10.1002/hbm.21333
10.1093/acprof:oso/9780199206650.001.0001
10.1371/journal.pcbi.0010042
10.1016/j.neuroimage.2012.12.066
10.1016/j.neuroimage.2008.08.010
10.1038/nmeth.2485
10.1523/JNEUROSCI.2177-05.2005
10.1038/nature18933
10.1016/j.neuroimage.2016.06.035.
10.1016/j.euroneuro.2014.02.011
10.1145/1411509.1411513
10.1093/cercor/bhn059
10.1002/1097-0193(200007)10:3120::AID-HBM303.0.CO;2-8
10.3389/fnins.2014.00167
10.1006/nimg.2001.0978
10.1002/mrm.21789
10.1002/mrm.22159
10.1002/(SICI)1097-0193(1997)5:4<228::AID-HBM4>3.0.CO;2-5
10.1002/mrm.25045
10.1089/brain.2011.0033
10.1016/S1361-8415(01)00036-6
10.1371/journal.pone.0000597
10.1016/j.neuroimage.2013.05.041
10.1176/jnp.9.3.471
10.1016/j.biopsych.2008.07.026
10.1093/cercor/bhn102
10.1098/rstb.2005.1631
10.1016/j.neuroimage.2004.01.015
10.1002/jmri.10350
10.1002/hbm.22828
10.1002/hbm.21332
10.1002/mrm.10609
10.1371/journal.pbio.0060159
10.1016/j.neuroimage.2008.06.012
10.1073/pnas.1418198112
10.1016/j.neuron.2011.09.006
ContentType Journal Article
Copyright 2016. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright © 2016 Shadi, Bakhshi, Gutman, Mayberg and Dovrolis. 2016 Shadi, Bakhshi, Gutman, Mayberg and Dovrolis
Copyright_xml – notice: 2016. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Copyright © 2016 Shadi, Bakhshi, Gutman, Mayberg and Dovrolis. 2016 Shadi, Bakhshi, Gutman, Mayberg and Dovrolis
DBID AAYXX
CITATION
3V.
7XB
88I
8FE
8FH
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
LK8
M2P
M7P
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.3389/fninf.2016.00046
DatabaseName CrossRef
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Biological Science Collection
Science Database (ProQuest)
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Biological Science Database
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic


Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: ProQuest Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1662-5196
ExternalDocumentID oai_doaj_org_article_6e97517148c24286912380bf630c747b
PMC5096263
10_3389_fninf_2016_00046
GeographicLocations Atlanta Georgia
United States--US
GeographicLocations_xml – name: Atlanta Georgia
– name: United States--US
GroupedDBID ---
29H
2WC
53G
5GY
5VS
88I
8FE
8FH
9T4
AAFWJ
AAKPC
AAYXX
ABUWG
ACGFO
ACGFS
ADBBV
ADRAZ
AEGXH
AENEX
AFFHD
AFKRA
AFPKN
AIAGR
ALMA_UNASSIGNED_HOLDINGS
AOIJS
ARCSS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
CCPQU
CITATION
CS3
DIK
DWQXO
E3Z
F5P
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HYE
KQ8
LK8
M2P
M48
M7P
M~E
O5R
O5S
OK1
OVT
PGMZT
PHGZM
PHGZT
PIMPY
PQGLB
PQQKQ
PROAC
RNS
RPM
TR2
3V.
7XB
8FK
ACXDI
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
ID FETCH-LOGICAL-c467t-5800a1e5b4be0eece3772bd756bd88a7c44836ce77f3e6f5234a779e4ce278fc3
IEDL.DBID M2P
ISICitedReferencesCount 5
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000386959300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1662-5196
IngestDate Tue Oct 14 19:03:54 EDT 2025
Tue Nov 04 02:02:46 EST 2025
Sun Nov 09 13:03:57 EST 2025
Fri Jul 25 11:37:09 EDT 2025
Sat Nov 29 02:31:28 EST 2025
Tue Nov 18 20:44:43 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c467t-5800a1e5b4be0eece3772bd756bd88a7c44836ce77f3e6f5234a779e4ce278fc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Present Address: Saideh Bakhshi, HCI Research Group, Yahoo Labs, San Francisco, CA, USA
Reviewed by: Jeffrey Thomas Duda, University of Pennsylvania, USA; Arnaud Messé, Universitätsklinikum Hamburg-Eppendorf, Germany
Edited by: Arjen Van Ooyen, VU University Amsterdam, Netherlands
OpenAccessLink https://www.proquest.com/docview/2295420644?pq-origsite=%requestingapplication%
PMID 27867354
PQID 2295420644
PQPubID 4424404
ParticipantIDs doaj_primary_oai_doaj_org_article_6e97517148c24286912380bf630c747b
pubmedcentral_primary_oai_pubmedcentral_nih_gov_5096263
proquest_miscellaneous_1842547390
proquest_journals_2295420644
crossref_primary_10_3389_fninf_2016_00046
crossref_citationtrail_10_3389_fninf_2016_00046
PublicationCentury 2000
PublicationDate 2016-11-04
PublicationDateYYYYMMDD 2016-11-04
PublicationDate_xml – month: 11
  year: 2016
  text: 2016-11-04
  day: 04
PublicationDecade 2010
PublicationPlace Lausanne
PublicationPlace_xml – name: Lausanne
PublicationTitle Frontiers in neuroinformatics
PublicationYear 2016
Publisher Frontiers Research Foundation
Frontiers Media S.A
Publisher_xml – name: Frontiers Research Foundation
– name: Frontiers Media S.A
References Zalesky (B77) 2010; 50
Sporns (B64) 2013; 10
Zalesky (B76) 2016
Duda (B22) 2014; 8
Fillard (B24) 2011; 56
Daianu (B16) 2013; 3
de Reus (B19) 2013b; 80
Mayberg (B43) 2005; 45
Cheng (B12) 2012; 203
Peterson (B51) 2014; 59
Damoiseaux (B17) 2009; 213
Tzourio-Mazoyer (B70) 2002; 15
Jenkinson (B36) 2001; 5
Bassett (B3) 2011; 54
Yeo (B75) 2011; 106
Elman (B23) 2013; 109
Donahue (B21) 2016; 36
Schalekamp (B61) 2009
Ailon (B1) 2008; 55
Behrens (B6) 2007; 34
Glasser (B26) 2016a; 536
Poupon (B54) 2010
Chen (B11) 2013; 34
Azadbakht (B2) 2015; 25
Craddock (B15) 2012; 33
Van Essen (B73) 2013; 80
McIntosh (B44) 2008; 64
Blumensath (B9) 2013; 76
Thirion (B67) 2014; 8
Neher (B48) 2014; 72
van den Heuvel (B72) 2008; 43
Honey (B32) 2009; 106
Jbabdi (B35) 2015; 18
James (B33) 2009; 45
Petrides (B52) 2005; 360
Bastiani (B5) 2012; 62
Jones (B37) 2013; 73
Parker (B50) 2003; 18
Descoteaux (B20) 2009; 28
Ciccarelli (B13) 2008; 7
Fornito (B25) 2015; 25
Seminowicz (B62) 2004; 22
Bassett (B4) 2008; 28
Gong (B28) 2009; 19
de Reus (B18) 2013a; 70
Rubinov (B60) 2010; 52
Mori (B46) 1999; 45
Thomas (B68) 2014; 111
Li (B40) 2012b; 33
van den Heuvel (B71) 2015; 36
Roberts (B58) 2016
Glasser (B27) 2016b; 19
Buckner (B10) 2005; 25
Petrides (B53) 2007; 27
Newman (B49) 2010
Taljan (B66) 2011; 1
Beucke (B8) 2014; 205
Lancaster (B38) 2000; 10
Morris (B47) 2008; 42
Craddock (B14) 2009; 62
Power (B56) 2011; 72
Robinson (B59) 2010; 50
Sporns (B63) 2012
Sporns (B65) 2005; 1
Hagmann (B31) 2007; 2
Li (B41) 2009; 5
McKeown (B45) 1997
Van Wijk (B74) 2010; 5
Mayberg (B42) 1997; 9
Behrens (B7) 2003; 50
Poupon (B55) 2008; 60
Li (B39) 2012a; 61
Greicius (B29) 2009; 19
Reveley (B57) 2015; 112
Jbabdi (B34) 2011; 1
Tzourio (B69) 1997; 5
Hagmann (B30) 2008; 6
References_xml – volume: 34
  start-page: 2248
  year: 2013
  ident: B11
  article-title: Brain aging in humans, chimpanzees (Pan troglodytes), and rhesus macaques (Macaca mulatta): magnetic resonance imaging studies of macro-and microstructural changes
  publication-title: Neurobiol. Aging
  doi: 10.1016/j.neurobiolaging.2013.03.028
– volume: 25
  start-page: 4299
  year: 2015
  ident: B2
  article-title: Validation of high-resolution tractography against in vivo tracing in the macaque visual cortex
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/bhu326
– volume: 80
  start-page: 397
  year: 2013b
  ident: B19
  article-title: The parcellation-based connectome: limitations and extensions
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.03.053
– volume: 62
  start-page: 1732
  year: 2012
  ident: B5
  article-title: Human cortical connectome reconstruction from diffusion weighted MRI: the effect of tractography algorithm
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2012.06.002
– volume: 76
  start-page: 313
  year: 2013
  ident: B9
  article-title: Spatially constrained hierarchical parcellation of the brain with resting-state fMRI
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.03.024
– volume: 73
  start-page: 239
  year: 2013
  ident: B37
  article-title: White matter integrity, fiber count, and other fallacies: the do's and don'ts of diffusion MRI
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2012.06.081
– volume: 50
  start-page: 970
  year: 2010
  ident: B77
  article-title: Whole-brain anatomical networks: does the choice of nodes matter?
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2009.12.027
– volume: 36
  start-page: 6758
  year: 2016
  ident: B21
  article-title: Using diffusion tractography to predict cortical connection strength and distance: a quantitative comparison with tracers in the monkey
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.0493-16.2016
– volume: 52
  start-page: 1059
  year: 2010
  ident: B60
  article-title: Complex network measures of brain connectivity: uses and interpretations
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2009.10.003
– volume: 205
  start-page: 376
  year: 2014
  ident: B8
  article-title: Default mode network subsystem alterations in obsessive-compulsive disorder
  publication-title: Br. J. Psychiatry
  doi: 10.1192/bjp.bp.113.137380
– volume: 5
  start-page: e1000395
  year: 2009
  ident: B41
  article-title: Brain anatomical network and intelligence
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.1000395
– volume: 28
  start-page: 9239
  year: 2008
  ident: B4
  article-title: Hierarchical organization of human cortical networks in health and schizophrenia
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.1929-08.2008
– volume: 3
  start-page: 407
  year: 2013
  ident: B16
  article-title: Breakdown of brain connectivity between normal aging and Alzheimer's disease: a structural k-core network analysis
  publication-title: Brain Connect.
  doi: 10.1089/brain.2012.0137
– volume: 28
  start-page: 269
  year: 2009
  ident: B20
  article-title: Deterministic and probabilistic tractography based on complex fibre orientation distributions
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2008.2004424
– volume: 106
  start-page: 1125
  year: 2011
  ident: B75
  article-title: The organization of the human cerebral cortex estimated by intrinsic functional connectivity
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.00338.2011
– volume: 5
  start-page: e13701
  year: 2010
  ident: B74
  article-title: Comparing brain networks of different size and connectivity density using graph theory
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0013701
– volume: 203
  start-page: 264
  year: 2012
  ident: B12
  article-title: Optimization of seed density in DTI tractography for structural networks
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2011.09.021
– volume: 50
  start-page: 910
  year: 2010
  ident: B59
  article-title: Identifying population differences in whole-brain structural networks: a machine learning approach
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2010.01.019
– volume: 59
  start-page: 294
  year: 2014
  ident: B51
  article-title: Resting-state neuroimaging studies: a new way of identifying differences and similarities among the anxiety disorders?
  publication-title: Can. J. Psychiatry
  doi: 10.1177/070674371405900602
– volume: 106
  start-page: 2035
  year: 2009
  ident: B32
  article-title: Predicting human resting-state functional connectivity from structural connectivity
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.0811168106
– year: 2016
  ident: B58
  article-title: Consistency-based thresholding of the human connectome
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2016.09.053.
– volume: 34
  start-page: 144
  year: 2007
  ident: B6
  article-title: Probabilistic diffusion tractography with multiple fibre orientations: what can we gain?
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2006.09.018
– volume: 61
  start-page: 1017
  year: 2012a
  ident: B39
  article-title: Quantitative assessment of a framework for creating anatomical brain networks via global tractography
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2012.03.071
– volume: 109
  start-page: 1
  year: 2013
  ident: B23
  article-title: Pain and suicidality: insights from reward and addiction neuroscience
  publication-title: Prog. Neurobiol.
  doi: 10.1016/j.pneurobio.2013.06.003
– volume-title: Proceedings of the International Society for Magnetic Resonance in Medicine
  year: 2010
  ident: B54
  article-title: A diffusion hardware phantom looking like a coronal brain slice
– volume: 19
  start-page: 1175
  year: 2016b
  ident: B27
  article-title: The Human Connectome Project's neuroimaging approach
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn.4361
– volume: 45
  start-page: 265
  year: 1999
  ident: B46
  article-title: Three-dimensional tracking of axonal projections in the brain by magnetic resonance imaging
  publication-title: Ann. Neurol.
  doi: 10.1002/1531-8249(199902)45:2<265::AID-ANA21>3.0.CO;2-3
– volume: 27
  start-page: 11573
  year: 2007
  ident: B53
  article-title: Efferent association pathways from the rostral prefrontal cortex in the macaque monkey
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.2419-07.2007
– volume-title: Discovering the Human Connectome
  year: 2012
  ident: B63
  doi: 10.7551/mitpress/9266.001.0001
– volume: 54
  start-page: 1262
  year: 2011
  ident: B3
  article-title: Conserved and variable architecture of human white matter connectivity
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2010.09.006
– volume: 111
  start-page: 16574
  year: 2014
  ident: B68
  article-title: Anatomical accuracy of brain connections derived from diffusion MRI tractography is inherently limited
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1405672111
– volume: 8
  start-page: 46
  year: 2014
  ident: B22
  article-title: Reproducibility of graph metrics of human brain structural networks
  publication-title: Front. Neuroinform.
  doi: 10.3389/fninf.2014.00046
– volume: 56
  start-page: 220
  year: 2011
  ident: B24
  article-title: Quantitative evaluation of 10 tractography algorithms on a realistic diffusion MR phantom
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2011.01.032
– volume: 1
  start-page: 111
  year: 2011
  ident: B66
  article-title: Anatomical connectivity between subcortical structures
  publication-title: Brain Connect.
  doi: 10.1089/brain.2011.0011
– volume: 45
  start-page: 778
  year: 2009
  ident: B33
  article-title: Exploratory structural equation modeling of resting-state fMRI: applicability of group models to individual subjects
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2008.12.049
– volume: 7
  start-page: 715
  year: 2008
  ident: B13
  article-title: Diffusion-based tractography in neurological disorders: concepts, applications, and future developments
  publication-title: Lancet Neurol.
  doi: 10.1016/S1474-4422(08)70163-7
– volume-title: Analysis of fMRI Data by Blind Separation into Independent Spatial Components.
  year: 1997
  ident: B45
– volume: 213
  start-page: 525
  year: 2009
  ident: B17
  article-title: Greater than the sum of its parts: a review of studies combining structural connectivity and resting-state functional connectivity
  publication-title: Brain Struct. Funct.
  doi: 10.1007/s00429-009-0208-6
– start-page: 38
  volume-title: ALENEX
  year: 2009
  ident: B61
  article-title: Rank aggregation: together we're strong
– volume: 18
  start-page: 1546
  year: 2015
  ident: B35
  article-title: Measuring macroscopic brain connections in vivo
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn.4134
– volume: 45
  start-page: 651
  year: 2005
  ident: B43
  article-title: Deep brain stimulation for treatment-resistant depression
  publication-title: Neuron
  doi: 10.1016/j.neuron.2005.02.014
– volume: 33
  start-page: 1914
  year: 2012
  ident: B15
  article-title: A whole brain fMRI atlas generated via spatially constrained spectral clustering
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.21333
– volume-title: Networks: An Introduction
  year: 2010
  ident: B49
  doi: 10.1093/acprof:oso/9780199206650.001.0001
– volume: 1
  start-page: e42
  year: 2005
  ident: B65
  article-title: The human connectome: a structural description of the human brain
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.0010042
– volume: 70
  start-page: 402
  year: 2013a
  ident: B18
  article-title: Estimating false positives and negatives in brain networks
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2012.12.066
– volume: 43
  start-page: 528
  year: 2008
  ident: B72
  article-title: Small-world and scale-free organization of voxel-based resting-state functional connectivity in the human brain
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2008.08.010
– volume: 10
  start-page: 491
  year: 2013
  ident: B64
  article-title: Making sense of brain network data
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.2485
– volume: 25
  start-page: 7709
  year: 2005
  ident: B10
  article-title: Molecular, structural, and functional characterization of Alzheimer's disease: evidence for a relationship between default activity, amyloid, and memory
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.2177-05.2005
– volume: 536
  start-page: 171
  year: 2016a
  ident: B26
  article-title: A multi-modal parcellation of human cerebral cortex
  publication-title: Nature
  doi: 10.1038/nature18933
– year: 2016
  ident: B76
  article-title: Connectome sensitivity or specificity: which is more important?
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2016.06.035.
– volume: 25
  start-page: 733
  year: 2015
  ident: B25
  article-title: Connectomics: a new paradigm for understanding brain disease
  publication-title: Eur. Neuropsychopharmacol.
  doi: 10.1016/j.euroneuro.2014.02.011
– volume: 55
  start-page: 23
  year: 2008
  ident: B1
  article-title: Aggregating inconsistent information: ranking and clustering
  publication-title: J. ACM
  doi: 10.1145/1411509.1411513
– volume: 19
  start-page: 72
  year: 2009
  ident: B29
  article-title: Resting-state functional connectivity reflects structural connectivity in the default mode network
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/bhn059
– volume: 10
  start-page: 120
  year: 2000
  ident: B38
  article-title: Automated Talairach atlas labels for functional brain mapping
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/1097-0193(200007)10:3120::AID-HBM303.0.CO;2-8
– volume: 8
  start-page: 167
  year: 2014
  ident: B67
  article-title: Which fMRI clustering gives good brain parcellations?
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2014.00167
– volume: 15
  start-page: 273
  year: 2002
  ident: B70
  article-title: Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain
  publication-title: Neuroimage
  doi: 10.1006/nimg.2001.0978
– volume: 60
  start-page: 1276
  year: 2008
  ident: B55
  article-title: New diffusion phantoms dedicated to the study and validation of high-angular-resolution diffusion imaging (HARDI) models
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.21789
– volume: 62
  start-page: 1619
  year: 2009
  ident: B14
  article-title: Disease state prediction from resting state functional connectivity
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.22159
– volume: 5
  start-page: 228
  year: 1997
  ident: B69
  article-title: Use of anatomical parcellation to catalog and study structure-function relationships in the human brain
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/(SICI)1097-0193(1997)5:4<228::AID-HBM4>3.0.CO;2-5
– volume: 72
  start-page: 1460
  year: 2014
  ident: B48
  article-title: Fiberfox: facilitating the creation of realistic white matter software phantoms
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.25045
– volume: 1
  start-page: 169
  year: 2011
  ident: B34
  article-title: Tractography: where do we go from here?
  publication-title: Brain Connect.
  doi: 10.1089/brain.2011.0033
– volume: 5
  start-page: 143
  year: 2001
  ident: B36
  article-title: A global optimisation method for robust affine registration of brain images
  publication-title: Med. Image Anal.
  doi: 10.1016/S1361-8415(01)00036-6
– volume: 2
  start-page: e597
  year: 2007
  ident: B31
  article-title: Mapping human whole-brain structural networks with diffusion MRI
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0000597
– volume: 80
  start-page: 62
  year: 2013
  ident: B73
  article-title: The WU-Minn human connectome project: an overview
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.05.041
– volume: 9
  start-page: 471
  year: 1997
  ident: B42
  article-title: Limbic-cortical dysregulation: a proposed model of depression
  publication-title: J. Neuropsychiatry Clin. Neurosci.
  doi: 10.1176/jnp.9.3.471
– volume: 64
  start-page: 1088
  year: 2008
  ident: B44
  article-title: White matter tractography in bipolar disorder and schizophrenia
  publication-title: Biol. Psychiatry
  doi: 10.1016/j.biopsych.2008.07.026
– volume: 19
  start-page: 524
  year: 2009
  ident: B28
  article-title: Mapping anatomical connectivity patterns of human cerebral cortex using in vivo diffusion tensor imaging tractography
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/bhn102
– volume: 360
  start-page: 781
  year: 2005
  ident: B52
  article-title: Lateral prefrontal cortex: architectonic and functional organization
  publication-title: Philos. Trans. R. Soc. B Biol. Sci.
  doi: 10.1098/rstb.2005.1631
– volume: 22
  start-page: 409
  year: 2004
  ident: B62
  article-title: Limbic-frontal circuitry in major depression: a path modeling metanalysis
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2004.01.015
– volume: 18
  start-page: 242
  year: 2003
  ident: B50
  article-title: A framework for a streamline-based probabilistic index of connectivity (PICo) using a structural interpretation of MRI diffusion measurements
  publication-title: J. Magn. Reson. Imaging
  doi: 10.1002/jmri.10350
– volume: 36
  start-page: 3064
  year: 2015
  ident: B71
  article-title: Comparison of diffusion tractography and tract-tracing measures of connectivity strength in rhesus macaque connectome
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.22828
– volume: 33
  start-page: 1894
  year: 2012b
  ident: B40
  article-title: The effects of connection reconstruction method on the interregional connectivity of brain networks via diffusion tractography
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.21332
– volume: 50
  start-page: 1077
  year: 2003
  ident: B7
  article-title: Characterization and propagation of uncertainty in diffusion-weighted MR imaging
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.10609
– volume: 6
  start-page: e159
  year: 2008
  ident: B30
  article-title: Mapping the structural core of human cerebral cortex
  publication-title: PLoS Biol.
  doi: 10.1371/journal.pbio.0060159
– volume: 42
  start-page: 1329
  year: 2008
  ident: B47
  article-title: Probabilistic fibre tracking: differentiation of connections from chance events
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2008.06.012
– volume: 112
  start-page: E2820
  year: 2015
  ident: B57
  article-title: Superficial white matter fiber systems impede detection of long-range cortical connections in diffusion MR tractography
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1418198112
– volume: 72
  start-page: 665
  year: 2011
  ident: B56
  article-title: Functional network organization of the human brain
  publication-title: Neuron
  doi: 10.1016/j.neuron.2011.09.006
SSID ssj0062657
Score 2.1027746
Snippet Recent progress in diffusion MRI and tractography algorithms as well as the launch of the Human Connectome Project (HCP) have provided brain research with an...
Recent progress in diffusion MRI and tractography algorithms as well as the launch of the Human Connectome Project (HCP)1 have provided brain research with an...
SourceID doaj
pubmedcentral
proquest
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 46
SubjectTerms Addictions
Affective disorders
Algorithms
Anxiety
Asymmetry
Brain
connectome
diffusion MRI
Magnetic resonance imaging
Methods
Network analysis
Neural networks
Neuroscience
Polarity
Structural network
Substantia alba
tractography
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Pi9QwFH7I4sGLqKtYXSWCCB7KdJpfzXF2cfG0eFDYW0jTV1xwOjKtwvz3vpd0hu1FL16bFNKXl5fvNS_fB_C-Dxj6SodSSSbVNo7ioNKyRNMhOuxqg1USm7A3N83trftyT-qLa8IyPXA23Mqgs5pVuptIu0ljHIXapmp7I6tIULjl6FtZd0ymcgwmlK5tPpSkFMyt-oGmi-u4TGLnNItNKHH1LwDmsjzy3n5z_QQez0BRbPIAn8IDHJ7B-WagJHl7EB9EKt1M_8TPwW_EeNhucdofSt6WOpGFocW0E1xttReZJpYpNkTLohBiyOXfo-D7JYJlZRLVLrM2i4lvTs1U1oJLSJ_Dt-tPX68-l7NyQhkp8E2lJhgY1qhb1WKFGFESiG47q03bNU2wkZIyaSJa20s0PSWjKljrUEWsbdNH-QLOht2AL0HoGCVXpIU6SqV7HZyWei2NCwQcWtMUsDqa0seZVpzVLX54Si_Y-D4Z37PxfTJ-AR9Pb_zMlBp_6XvJs3Pqx2TY6QG5iJ9dxP_LRQq4OM6tn1fo6FnGXNUEyFQB707NtLb4wCQMuPs1-jWfUSorXVWAXfjEYkDLluHue2LpZl6d2shX_-MLXsMjtkm6A6ku4Ix8Bt_Aw_h7uhv3b5Pr_wFLRQp1
  priority: 102
  providerName: Directory of Open Access Journals
Title A Symmetry-Based Method to Infer Structural Brain Networks from Probabilistic Tractography Data
URI https://www.proquest.com/docview/2295420644
https://www.proquest.com/docview/1842547390
https://pubmed.ncbi.nlm.nih.gov/PMC5096263
https://doaj.org/article/6e97517148c24286912380bf630c747b
Volume 10
WOSCitedRecordID wos000386959300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1662-5196
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0062657
  issn: 1662-5196
  databaseCode: DOA
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources (ISSN International Center)
  customDbUrl:
  eissn: 1662-5196
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0062657
  issn: 1662-5196
  databaseCode: M~E
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 1662-5196
  dateEnd: 20211231
  omitProxy: false
  ssIdentifier: ssj0062657
  issn: 1662-5196
  databaseCode: M7P
  dateStart: 20071102
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1662-5196
  dateEnd: 20211231
  omitProxy: false
  ssIdentifier: ssj0062657
  issn: 1662-5196
  databaseCode: BENPR
  dateStart: 20071102
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Publicly Available Content Database
  customDbUrl:
  eissn: 1662-5196
  dateEnd: 20211231
  omitProxy: false
  ssIdentifier: ssj0062657
  issn: 1662-5196
  databaseCode: PIMPY
  dateStart: 20071102
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 1662-5196
  dateEnd: 20211231
  omitProxy: false
  ssIdentifier: ssj0062657
  issn: 1662-5196
  databaseCode: M2P
  dateStart: 20071102
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Pb9MwFLbYxoELvwYiMCojISQOUdM4tpMTaqETO7SK2JDKyXKcF5hEk9EEpF7423nPTQu57MIlh9hREn32-2E_fx9jrysLtoqkDRNBpNoqQzuYSBGCKgEyKGMFkReb0Mtlulpleb_g1vZllXub6A112ThaIx-T7HQSowNN3t38CEk1inZXewmNI3aCkc2ESroWcb63xBirS73bmsRELBtXNYJG1VzKc3SqgSvyjP2DMHNYJPmP1zl_8L_f-5Dd7-NNPt0NkEfsDtSP2em0xlx7veVvuK8A9Uvrp8xM-eV2vYZusw1n6N1KvvD60rxr-AUdDOSXnm2WmDr4jLQl-HJXRd5yOqbC8w1aB6q2JfJnfkUHsHpGbP7BdvYJ-3w-v3r_MewFGEKH9rMLJUaTdgKySAqIABwIjMWLUktVlGlqtcPcTigHWlcCVIU5bWK1ziBxEOu0cuIpO66bGp4xLp0TVNhmYycSWUmbSSEnQmUW449CpQEb77EwrmcnJ5GM7wazFELPePQMoWc8egF7e3jiZsfMcUvfGcF76Eec2v5Gs_lq-ilqFGRakh586jBuSVWGTj2NikqJyGHSVQTsbI-06Sd6a_7CHLBXh2acorTvYmtofrZmQludiRZZFDA9GFSDDxq21NffPNk30fPESjy__eUv2D36W39IMjljxzga4CW763511-1mxI70Kh2xk9l8mX8a-WWHkZ8pdNX--nuO7fnFIv_yB1vrIJU
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9NAEF2VggSX8lEqUgosEiBxsOJ4vbv2AaGEUjVqG0VqkHpb1usxVCJ2SQwof4rfyMzGDvjSWw9cY8eO4-e3M56Z9xh7VViwRShtEAsS1VYp8mAsRQAqB0ghjxSE3mxCTybJxUU63WK_21kYaqtsOdETdV45ekfeJ9vpOMIFNH5_9T0g1yiqrrYWGmtYnMDqF6Zsy3fjQ7y_r6Po6OPsw3HQuAoEDkmhDiSGSHYAMoszCAEcCAwws1xLleVJYrXDhEUoB1oXAlSBiVpstU4hdhDppHACj3uL3Y5JWYxaBaNpy_yYG0i9LoVi4pf2ixJBQt1jymuCqs7S5x0COmFttynzn1Xu6P7_9v88YDtNPM2H6wfgIduC8hHbHZa2ruYr_ob7DldfOthlZsjPV_M51ItVMMLVO-dn3j-b1xUf0-AjP_dquqREwkfkncEn6y75JacxHD5dIPtRNzGJW_MZDZg1it_80Nb2Mft0I5e6x7bLqoQnjEvnBDXu2ciJWBbSplLIgVCpxfgqU0mP9dt7b1yjvk4mIN8MZmGEFuPRYggtxqOlx95uvnG1Vh65Zt8RwWmzH2mG-w-qxRfTUJBRkGpJfveJw7gsUSkGLUmYFUqEDpPKrMcOWmSZhsiW5i-seuzlZjNSENWVbAnVj6UZUCk31iINe0x3QNz5Qd0t5eVXL2ZO8kOREvvXn_wFu3s8Ozs1p-PJyVN2j67cD4TGB2wbkQHP2B33s75cLp77J5KzzzcN8T8UAHda
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEF6VFCEuvAoiUGCRAImDFcfr3bUPCCWEiqg0itQildN2vR5DJWKXxIDy1_h1zGzsgC-99cDV78fneXhmvo-xF4UFW4TSBrEgUm2Voh2MpQhA5QAp5JGC0ItN6NksOT1N5zvsdzsLQ22VrU30hjqvHP0jH5DsdByhA40HRdMWMZ8cvL34HpCCFFVaWzmNDUQOYf0L07fVm-kE3_XLKDp4f_LuQ9AoDAQODUQdSAyX7BBkFmcQAjgQGGxmuZYqy5PEaofJi1AOtC4EqAKTtthqnULsINJJ4QQe9xrbxZA8jnpsdz49mn9u_QBmClJvCqOYBqaDokTIUC-Z8gyhquMIvV5AJ8jttmj-4_MObv_PT-sOu9VE2ny0-TTush0o77G9UWnrarHmr7jvffVFhT1mRvx4vVhAvVwHY_TrOT_yytq8rviURiL5sefZJY4SPiZVDT7b9M-vOA3o8PkS7SL1GRPtNT-h0bOGC5xPbG3vs09XcqsPWK-sSnjIuHROUEufjZyIZSFtKoUcCpVajLwylfTZoMWBcQ0vO8mDfDOYnxFyjEeOIeQYj5w-e73d42LDSXLJtmOC1nY7YhP3C6rlF9MYJ6Mg1XKoMTN2GLElKsVwJgmzQonQIbazPttvUWYaE7cyfyHWZ8-3q9E4UcXJllD9WJkhFXljLdKwz3QH0J0L6q4pz796mnMiJoqUeHT5yZ-xG4hs83E6O3zMbtKN-0nReJ_1EBjwhF13P-vz1fJp83lydnbVGP8DSQyBow
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Symmetry-Based+Method+to+Infer+Structural+Brain+Networks+from+Probabilistic+Tractography+Data&rft.jtitle=Frontiers+in+neuroinformatics&rft.au=Shadi%2C+Kamal&rft.au=Bakhshi%2C+Saideh&rft.au=Gutman%2C+David+A&rft.au=Mayberg%2C+Helen+S&rft.date=2016-11-04&rft.pub=Frontiers+Research+Foundation&rft.eissn=1662-5196&rft_id=info:doi/10.3389%2Ffninf.2016.00046&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1662-5196&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1662-5196&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1662-5196&client=summon