Path-independent digital image correlation with high accuracy, speed and robustness
The initial guess transferring mechanism is widely used in iterative DIC algorithms and leads to path-dependence. Using the known deformation at a processed point to estimate the initial guess at its neighboring points could save considerable computation time, and a cogitatively-selected processing...
Uloženo v:
| Vydáno v: | Optics and lasers in engineering Ročník 65; s. 93 - 102 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier Ltd
01.02.2015
|
| Témata: | |
| ISSN: | 0143-8166, 1873-0302 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | The initial guess transferring mechanism is widely used in iterative DIC algorithms and leads to path-dependence. Using the known deformation at a processed point to estimate the initial guess at its neighboring points could save considerable computation time, and a cogitatively-selected processing path contributes to the improved robustness. In this work, our experimental study demonstrates that a path-independent DIC method is capable to achieve high accuracy, efficiency and robustness in full-field measurement of deformation, by combining an inverse compositional Gauss–Newton (IC-GN) algorithm for sub-pixel registration with a fast Fourier transform-based cross correlation (FFT-CC) algorithm to estimate the initial guess. In the proposed DIC method, the determination of initial guess accelerated by well developed software library can be a negligible burden of computation. The path-independence also endows the DIC method with the ability to handle the images containing large discontinuity of deformation without manual intervention. Furthermore, the possible performance of the proposed path-independent DIC method on parallel computing device is estimated, which shows the feasibility of the development of real-time DIC with high-accuracy.
•This paper proposes a path-independent DIC method.•The proposed DIC method reaches high measurement accuracy at sub-pixel level.•The proposed DIC method shows excellent robustness for deformation discontinuity.•This work demonstrates the feasibility of real-time DIC with high accuracy. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ISSN: | 0143-8166 1873-0302 |
| DOI: | 10.1016/j.optlaseng.2014.06.011 |