Path-independent digital image correlation with high accuracy, speed and robustness

The initial guess transferring mechanism is widely used in iterative DIC algorithms and leads to path-dependence. Using the known deformation at a processed point to estimate the initial guess at its neighboring points could save considerable computation time, and a cogitatively-selected processing...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Optics and lasers in engineering Jg. 65; S. 93 - 102
Hauptverfasser: Jiang, Zhenyu, Kemao, Qian, Miao, Hong, Yang, Jinglei, Tang, Liqun
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier Ltd 01.02.2015
Schlagworte:
ISSN:0143-8166, 1873-0302
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract The initial guess transferring mechanism is widely used in iterative DIC algorithms and leads to path-dependence. Using the known deformation at a processed point to estimate the initial guess at its neighboring points could save considerable computation time, and a cogitatively-selected processing path contributes to the improved robustness. In this work, our experimental study demonstrates that a path-independent DIC method is capable to achieve high accuracy, efficiency and robustness in full-field measurement of deformation, by combining an inverse compositional Gauss–Newton (IC-GN) algorithm for sub-pixel registration with a fast Fourier transform-based cross correlation (FFT-CC) algorithm to estimate the initial guess. In the proposed DIC method, the determination of initial guess accelerated by well developed software library can be a negligible burden of computation. The path-independence also endows the DIC method with the ability to handle the images containing large discontinuity of deformation without manual intervention. Furthermore, the possible performance of the proposed path-independent DIC method on parallel computing device is estimated, which shows the feasibility of the development of real-time DIC with high-accuracy. •This paper proposes a path-independent DIC method.•The proposed DIC method reaches high measurement accuracy at sub-pixel level.•The proposed DIC method shows excellent robustness for deformation discontinuity.•This work demonstrates the feasibility of real-time DIC with high accuracy.
AbstractList The initial guess transferring mechanism is widely used in iterative DIC algorithms and leads to path-dependence. Using the known deformation at a processed point to estimate the initial guess at its neighboring points could save considerable computation time, and a cogitatively-selected processing path contributes to the improved robustness. In this work, our experimental study demonstrates that a path-independent DIC method is capable to achieve high accuracy, efficiency and robustness in full-field measurement of deformation, by combining an inverse compositional Gauss-Newton (IC-GN) algorithm for sub-pixel registration with a fast Fourier transform-based cross correlation (FFT-CC) algorithm to estimate the initial guess. In the proposed DIC method, the determination of initial guess accelerated by well developed software library can be a negligible burden of computation. The path-independence also endows the DIC method with the ability to handle the images containing large discontinuity of deformation without manual intervention. Furthermore, the possible performance of the proposed path-independent DIC method on parallel computing device is estimated, which shows the feasibility of the development of real-time DIC with high-accuracy.
The initial guess transferring mechanism is widely used in iterative DIC algorithms and leads to path-dependence. Using the known deformation at a processed point to estimate the initial guess at its neighboring points could save considerable computation time, and a cogitatively-selected processing path contributes to the improved robustness. In this work, our experimental study demonstrates that a path-independent DIC method is capable to achieve high accuracy, efficiency and robustness in full-field measurement of deformation, by combining an inverse compositional Gauss–Newton (IC-GN) algorithm for sub-pixel registration with a fast Fourier transform-based cross correlation (FFT-CC) algorithm to estimate the initial guess. In the proposed DIC method, the determination of initial guess accelerated by well developed software library can be a negligible burden of computation. The path-independence also endows the DIC method with the ability to handle the images containing large discontinuity of deformation without manual intervention. Furthermore, the possible performance of the proposed path-independent DIC method on parallel computing device is estimated, which shows the feasibility of the development of real-time DIC with high-accuracy. •This paper proposes a path-independent DIC method.•The proposed DIC method reaches high measurement accuracy at sub-pixel level.•The proposed DIC method shows excellent robustness for deformation discontinuity.•This work demonstrates the feasibility of real-time DIC with high accuracy.
Author Kemao, Qian
Yang, Jinglei
Jiang, Zhenyu
Miao, Hong
Tang, Liqun
Author_xml – sequence: 1
  givenname: Zhenyu
  surname: Jiang
  fullname: Jiang, Zhenyu
  email: zhenyujiang@scut.edu.cn
  organization: School of Civil Engineering and Transportation, South China University of Technology, Guangzhou 510640, China
– sequence: 2
  givenname: Qian
  surname: Kemao
  fullname: Kemao, Qian
  email: mkmqian@ntu.edu.sg
  organization: School of Computer Engineering, Nanyang Technological, University, Singapore 639798, Singapore
– sequence: 3
  givenname: Hong
  surname: Miao
  fullname: Miao, Hong
  organization: Department of Modern Mechanics, University of Science and Technology of China, Hefei 230027, China
– sequence: 4
  givenname: Jinglei
  surname: Yang
  fullname: Yang, Jinglei
  organization: School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798, Singapore
– sequence: 5
  givenname: Liqun
  surname: Tang
  fullname: Tang, Liqun
  organization: School of Civil Engineering and Transportation, South China University of Technology, Guangzhou 510640, China
BookMark eNqNkD1PHDEQhi0EEgfkN8QlBbuM98P2FSkQgoCEFCSgtrz27J1Pi73YPiL-fXw6RJEmaWaKeZ-R3ueEHPrgkZDvDGoGjF9u6jDnSSf0q7oB1tXAa2DsgCyYFG0FLTSHZFEObSUZ58fkJKUNFLJjbEGeHnVeV85bnLEMn6l1K5f1RN2rXiE1IUacdHbB098ur-nardZUG7ON2nxc0DQjWqq9pTEM25Q9pnRGjkY9Jfz2uU_Jy-3N8_Vd9fDr5_311UNlOi5y1aJuYCkQehQgOwuSmaW0chAjb7m2Yzv2BqRZ8qEZRG_BCslHKXgzQt8P0J6S8_3fOYa3LaasXl0yOE3aY9gmxXhfWjdL0ZXoj33UxJBSxFGZUnLXKkftJsVA7WSqjfqSqXYyFXBVZBZe_MXPsQiKH_9BXu1JLCbeHUaVjENv0LqIJisb3D9__AEQKJdn
CitedBy_id crossref_primary_10_1111_str_12315
crossref_primary_10_1007_s12204_023_2613_z
crossref_primary_10_1016_j_conbuildmat_2016_06_059
crossref_primary_10_1088_2053_1591_adaac2
crossref_primary_10_1364_AO_405551
crossref_primary_10_1088_0957_0233_27_3_035206
crossref_primary_10_3390_s24061754
crossref_primary_10_1007_s11042_019_7242_z
crossref_primary_10_3390_photonics9030167
crossref_primary_10_1016_j_optlaseng_2022_107234
crossref_primary_10_1016_j_optlaseng_2024_108568
crossref_primary_10_1007_s11340_017_0294_y
crossref_primary_10_1016_j_optlaseng_2017_06_002
crossref_primary_10_1016_j_optlaseng_2023_107879
crossref_primary_10_1007_s11340_024_01070_0
crossref_primary_10_1007_s11340_016_0180_z
crossref_primary_10_1016_j_optlaseng_2021_106541
crossref_primary_10_1016_j_optlaseng_2017_08_006
crossref_primary_10_3390_s24165397
crossref_primary_10_1007_s12046_022_02065_0
crossref_primary_10_1364_AO_451341
crossref_primary_10_1016_j_optlaseng_2019_04_016
crossref_primary_10_1088_1361_6501_aa70f8
crossref_primary_10_1016_j_oceaneng_2021_109239
crossref_primary_10_1109_TIM_2018_2853378
crossref_primary_10_1016_j_optlaseng_2021_106812
crossref_primary_10_1007_s10409_024_24216_x
crossref_primary_10_1016_j_optlaseng_2020_106432
crossref_primary_10_1007_s11340_016_0133_6
crossref_primary_10_1088_0957_0233_27_12_125010
crossref_primary_10_1155_2019_4620858
crossref_primary_10_1016_j_optlaseng_2016_01_007
crossref_primary_10_1016_j_ast_2024_109375
crossref_primary_10_1016_j_optcom_2021_127507
crossref_primary_10_1126_science_aan3891
crossref_primary_10_1063_5_0068365
crossref_primary_10_1016_j_optlaseng_2016_01_002
crossref_primary_10_3390_ma11050751
crossref_primary_10_1007_s11340_022_00934_7
crossref_primary_10_1007_s11431_017_9168_0
crossref_primary_10_1016_j_optlaseng_2024_108070
crossref_primary_10_1016_j_engfracmech_2020_107166
crossref_primary_10_1016_j_optlaseng_2018_05_010
crossref_primary_10_1016_j_ymssp_2022_109273
crossref_primary_10_1016_j_ijpvp_2024_105136
crossref_primary_10_1016_j_optlaseng_2015_04_004
crossref_primary_10_1007_s11340_015_0054_9
crossref_primary_10_1016_j_optlaseng_2018_03_021
crossref_primary_10_1007_s11340_021_00714_9
crossref_primary_10_1016_j_optlaseng_2019_105964
crossref_primary_10_1364_AO_55_000696
crossref_primary_10_1088_1361_6501_ad5dd9
crossref_primary_10_1109_ACCESS_2024_3398786
crossref_primary_10_1016_j_optlastec_2018_04_024
crossref_primary_10_3390_s22093524
crossref_primary_10_1016_j_optlaseng_2018_07_013
crossref_primary_10_1016_j_measurement_2022_111554
crossref_primary_10_1063_1_5050187
crossref_primary_10_1007_s11340_015_0091_4
crossref_primary_10_1364_AO_387678
crossref_primary_10_1007_s10409_023_22430_x
crossref_primary_10_1364_AO_529326
crossref_primary_10_1016_j_measurement_2025_117783
crossref_primary_10_1016_j_optlaseng_2021_106743
crossref_primary_10_1088_1361_6501_aac5b7
crossref_primary_10_1364_AO_481625
crossref_primary_10_1016_j_compgeo_2023_106027
crossref_primary_10_1007_s11431_022_2122_y
crossref_primary_10_1155_2021_7101873
crossref_primary_10_1016_j_optlaseng_2017_05_010
crossref_primary_10_1016_j_measurement_2024_115908
crossref_primary_10_2478_msr_2020_0025
crossref_primary_10_1016_j_ijsolstr_2022_111476
crossref_primary_10_1016_j_optlaseng_2022_107164
crossref_primary_10_1016_j_optlastec_2024_112177
crossref_primary_10_1016_j_engstruct_2020_110551
crossref_primary_10_1016_j_optlaseng_2024_108770
crossref_primary_10_1016_j_optlaseng_2015_03_010
crossref_primary_10_1016_j_engstruct_2024_117752
crossref_primary_10_1117_1_OE_63_2_024105
crossref_primary_10_1007_s11340_017_0265_3
crossref_primary_10_1016_j_optlaseng_2023_107732
crossref_primary_10_1007_s10409_024_23464_x
crossref_primary_10_1088_1361_6501_aac55b
crossref_primary_10_1016_j_cja_2024_02_003
crossref_primary_10_1111_str_12342
crossref_primary_10_3389_fbuil_2019_00085
crossref_primary_10_1016_j_optlaseng_2024_108264
crossref_primary_10_1109_TIM_2021_3065436
crossref_primary_10_1016_j_optlaseng_2025_108981
crossref_primary_10_1111_str_12349
crossref_primary_10_1016_j_optlaseng_2015_03_001
crossref_primary_10_1016_j_taml_2016_04_003
crossref_primary_10_3390_s23063317
crossref_primary_10_1016_j_engstruct_2022_113998
crossref_primary_10_1007_s40799_018_00301_z
crossref_primary_10_1016_j_optlaseng_2023_107566
crossref_primary_10_1109_JSEN_2020_2977370
crossref_primary_10_1016_j_optlaseng_2017_09_013
crossref_primary_10_1016_j_optlaseng_2015_01_012
crossref_primary_10_1088_1361_6501_aa7a6e
crossref_primary_10_1016_j_optlaseng_2024_108434
crossref_primary_10_1016_j_optlaseng_2016_05_019
crossref_primary_10_1016_j_optlaseng_2015_03_005
crossref_primary_10_1016_j_optlaseng_2021_106674
Cites_doi 10.1016/j.optlaseng.2006.04.012
10.1111/j.1475-1305.2010.00765.x
10.1007/s11340-013-9717-6
10.1007/BF02327571
10.1111/str.12066
10.1111/j.1475-1305.2005.00227.x
10.2478/v10248-012-0019-x
10.1016/j.measurement.2006.03.008
10.1016/j.optlaseng.2007.01.012
10.1007/BF00384623
10.1080/713820454
10.1109/CVPR.2001.990652
10.1023/B:VISI.0000011205.11775.fd
10.1364/AO.49.005501
10.1109/JPROC.2004.840301
10.1364/AO.48.001535
10.1364/OE.18.001011
10.1364/OE.16.007037
10.1117/1.1387992
10.1007/BF00190388
10.1016/S0030-3992(03)00069-0
10.1364/AO.32.001839
10.1088/0957-0233/17/6/045
10.1143/JJAP.19.L133
10.1016/j.optlaseng.2009.08.010
10.1117/1.1314593
10.1088/0957-0233/20/6/062001
10.1117/12.7972925
10.1007/BF02323101
10.1007/BF02321405
10.1016/j.optlaseng.2011.02.023
10.1007/BF02321649
ContentType Journal Article
Copyright 2014 Elsevier Ltd
Copyright_xml – notice: 2014 Elsevier Ltd
DBID AAYXX
CITATION
7SP
7TB
7U5
8FD
FR3
H8D
L7M
DOI 10.1016/j.optlaseng.2014.06.011
DatabaseName CrossRef
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Engineering Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
DatabaseTitleList Aerospace Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1873-0302
EndPage 102
ExternalDocumentID 10_1016_j_optlaseng_2014_06_011
S0143816614001560
GroupedDBID --K
--M
.~1
0R~
123
1B1
1RT
1~.
1~5
29N
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABJNI
ABMAC
ABNEU
ABXDB
ABXRA
ABYKQ
ACDAQ
ACFVG
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BBWZM
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
HMV
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M38
M41
MAGPM
MO0
N9A
NDZJH
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SPD
SPG
SSM
SSQ
SST
SSZ
T5K
VOH
WUQ
XPP
ZMT
~02
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7SP
7TB
7U5
8FD
FR3
H8D
L7M
ID FETCH-LOGICAL-c467t-3ea2097e05e7084d081c98d8b7f636adf3f5c08c96b2b75d0d786f8762f055b03
ISICitedReferencesCount 128
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000345492500013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0143-8166
IngestDate Sat Sep 27 21:23:59 EDT 2025
Sat Nov 29 07:58:56 EST 2025
Tue Nov 18 21:39:46 EST 2025
Fri Feb 23 02:22:50 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Gauss–Newton method
Inverse compositional algorithm
Digital image correlation
Path-independence
Fast Fourier transform
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c467t-3ea2097e05e7084d081c98d8b7f636adf3f5c08c96b2b75d0d786f8762f055b03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0143816614001560
PQID 1651432974
PQPubID 23500
PageCount 10
ParticipantIDs proquest_miscellaneous_1651432974
crossref_citationtrail_10_1016_j_optlaseng_2014_06_011
crossref_primary_10_1016_j_optlaseng_2014_06_011
elsevier_sciencedirect_doi_10_1016_j_optlaseng_2014_06_011
PublicationCentury 2000
PublicationDate 2015-02-01
PublicationDateYYYYMMDD 2015-02-01
PublicationDate_xml – month: 02
  year: 2015
  text: 2015-02-01
  day: 01
PublicationDecade 2010
PublicationTitle Optics and lasers in engineering
PublicationYear 2015
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Baker, Matthews (bib13) 2004; 56
Meng, Jin, Yao (bib37) 2007; 45
Yoneyama (bib38) 2011; 47
Yamaguchi (bib27) 1980; 19
Singh, Omkar (bib23) 2013; 1
Marciniak, Marciniak, Lutowski, Bujnowski (bib25) 2013; 17
Pan, Lu, Xie (bib35) 2010; 48
Leclerc, Périé, Roux, Hild (bib24) 2009; 5496
Chen, Chiang, Tan, Don (bib5) 1993; 32
Wattrisse, Chrysochoos, Muracciole, Némoz-Gaillard (bib6) 2001; 41
bib33
Pan (bib15) 2014; 50
Sun, Pang (bib16) 2007; 45
Peters, Ranson (bib1) 1982; 21
Yamaguchi (bib28) 1981; 28
Willert, Gharib (bib29) 1991; 10
Pan (bib20) 2009; 48
Schreier, Braasch, Sutton (bib32) 1999; 39
Zhou (bib7) 2001; 40
Pan, Xie, Wang (bib19) 2010; 49
Zhang, Kang, Wang, Qin, Qiu, Li (bib4) 2006; 39
Pan, Li, Tong (bib14) 2013; 53
bib40
Frigo, Johnson (bib34) 2005; 93
Vendroux, Knauss (bib10) 1998; 38
bib26
Baker S., Matthews I. Equivalence and efficiency of image alignment algorithms. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, vol. 56; 2001. p. 1090–97.
Bastiaans (bib31) 2000
Pan, Yuan, Xia (bib39) 2014
Keane, Adrian (bib30) 1992; 49
Sutton, Orteu, Schreier (bib2) 2009
Bruck, McNeill, Sutton, Peters (bib9) 1989; 29
Pan, Xie, Xu, Dai (bib11) 2006; 17
Tong (bib18) 2005; 41
Pan, Qian, Xie, Asundi (bib3) 2009; 20
Pan, Li (bib22) 2011; 49
Zhang, Jin, Ma, Meng (bib8) 2003; 35
Sutton, Turner, Bruck, Chae (bib36) 1991; 31
Pan, Xie, Wang, Qian, Wang (bib17) 2008; 16
Pan, Wang, Lu (bib21) 2010; 18
Pan (10.1016/j.optlaseng.2014.06.011_bib22) 2011; 49
Peters (10.1016/j.optlaseng.2014.06.011_bib1) 1982; 21
Vendroux (10.1016/j.optlaseng.2014.06.011_bib10) 1998; 38
Willert (10.1016/j.optlaseng.2014.06.011_bib29) 1991; 10
Chen (10.1016/j.optlaseng.2014.06.011_bib5) 1993; 32
Pan (10.1016/j.optlaseng.2014.06.011_bib14) 2013; 53
Frigo (10.1016/j.optlaseng.2014.06.011_bib34) 2005; 93
Leclerc (10.1016/j.optlaseng.2014.06.011_bib24) 2009; 5496
Sutton (10.1016/j.optlaseng.2014.06.011_bib36) 1991; 31
Pan (10.1016/j.optlaseng.2014.06.011_bib35) 2010; 48
Meng (10.1016/j.optlaseng.2014.06.011_bib37) 2007; 45
Marciniak (10.1016/j.optlaseng.2014.06.011_bib25) 2013; 17
Sutton (10.1016/j.optlaseng.2014.06.011_bib2) 2009
Wattrisse (10.1016/j.optlaseng.2014.06.011_bib6) 2001; 41
Schreier (10.1016/j.optlaseng.2014.06.011_bib32) 1999; 39
Zhang (10.1016/j.optlaseng.2014.06.011_bib4) 2006; 39
Keane (10.1016/j.optlaseng.2014.06.011_bib30) 1992; 49
Yamaguchi (10.1016/j.optlaseng.2014.06.011_bib28) 1981; 28
Singh (10.1016/j.optlaseng.2014.06.011_bib23) 2013; 1
Baker (10.1016/j.optlaseng.2014.06.011_bib13) 2004; 56
Bastiaans (10.1016/j.optlaseng.2014.06.011_bib31) 2000
Pan (10.1016/j.optlaseng.2014.06.011_bib19) 2010; 49
Yoneyama (10.1016/j.optlaseng.2014.06.011_bib38) 2011; 47
Pan (10.1016/j.optlaseng.2014.06.011_bib39) 2014
10.1016/j.optlaseng.2014.06.011_bib12
Pan (10.1016/j.optlaseng.2014.06.011_bib3) 2009; 20
Pan (10.1016/j.optlaseng.2014.06.011_bib21) 2010; 18
Yamaguchi (10.1016/j.optlaseng.2014.06.011_bib27) 1980; 19
Sun (10.1016/j.optlaseng.2014.06.011_bib16) 2007; 45
Pan (10.1016/j.optlaseng.2014.06.011_bib20) 2009; 48
Bruck (10.1016/j.optlaseng.2014.06.011_bib9) 1989; 29
Tong (10.1016/j.optlaseng.2014.06.011_bib18) 2005; 41
Zhou (10.1016/j.optlaseng.2014.06.011_bib7) 2001; 40
Pan (10.1016/j.optlaseng.2014.06.011_bib15) 2014; 50
Pan (10.1016/j.optlaseng.2014.06.011_bib11) 2006; 17
Pan (10.1016/j.optlaseng.2014.06.011_bib17) 2008; 16
Zhang (10.1016/j.optlaseng.2014.06.011_bib8) 2003; 35
References_xml – year: 2014
  ident: bib39
  article-title: Strain field denoising for digital image correlation using a regularized cost-function
  publication-title: Opt Lasers Eng
– ident: bib40
– volume: 21
  start-page: 427
  year: 1982
  end-page: 431
  ident: bib1
  article-title: Digital imaging techniques in experimental stress analysis
  publication-title: Opt Eng
– volume: 38
  start-page: 86
  year: 1998
  end-page: 92
  ident: bib10
  article-title: Submicron deformation field measurements: Part 2. Improved digital image correlation
  publication-title: Exp Mech
– volume: 18
  start-page: 1011
  year: 2010
  end-page: 1023
  ident: bib21
  article-title: Genuine full-field deformation measurement of an object with complex shape using reliability-guided digital image correlation
  publication-title: Opt Express
– volume: 17
  start-page: 21
  year: 2013
  end-page: 28
  ident: bib25
  article-title: Usage of digital image correlation in analysis of cracking processes
  publication-title: Image Process Commun
– volume: 39
  start-page: 710
  year: 2006
  end-page: 718
  ident: bib4
  article-title: A novel coarse-fine search scheme for digital image correlation method
  publication-title: Measurement
– volume: 31
  start-page: 168
  year: 1991
  end-page: 177
  ident: bib36
  article-title: Full-field representation of discretely sampled surface deformation for displacement and strain analysis
  publication-title: Exp Mech
– volume: 20
  start-page: 062001
  year: 2009
  ident: bib3
  article-title: Two-dimensional digital image correlation for in-plane displacement and strain measurement: a review
  publication-title: Meas Sci Technol
– volume: 29
  start-page: 261
  year: 1989
  end-page: 267
  ident: bib9
  article-title: Digital image correlation using Newton–Raphson method of partial differential correction
  publication-title: Exp Mech
– volume: 49
  start-page: 841
  year: 2011
  end-page: 847
  ident: bib22
  article-title: A fast digital image correlation method for deformation measurement
  publication-title: Opt Lasers Eng
– volume: 49
  start-page: 191
  year: 1992
  end-page: 215
  ident: bib30
  article-title: Theory of cross-correlation analysis of PIV images
  publication-title: Appl Sci Res
– year: 2000
  ident: bib31
  article-title: Cross-correlation PIV; theory, implementation and accuracy
– reference: Baker S., Matthews I. Equivalence and efficiency of image alignment algorithms. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, vol. 56; 2001. p. 1090–97.
– volume: 56
  start-page: 221
  year: 2004
  end-page: 255
  ident: bib13
  article-title: Lucas-Kanade 20 years On: a unifying framework
  publication-title: Int J Comput Vis
– ident: bib26
– volume: 28
  start-page: 1359
  year: 1981
  end-page: 1376
  ident: bib28
  article-title: Speckle displacement and decorrelation in the diffraction and image fields for small object deformation
  publication-title: Opt Acta: Int J Opt
– volume: 16
  start-page: 7037
  year: 2008
  end-page: 7048
  ident: bib17
  article-title: Study on subset size selection in digital image correlation for speckle patterns
  publication-title: Opt Express
– volume: 35
  start-page: 533
  year: 2003
  end-page: 542
  ident: bib8
  article-title: Application of an improved subpixel registration algorithm on digital speckle correlation measurement
  publication-title: Opt Laser Technol
– volume: 10
  start-page: 181
  year: 1991
  end-page: 193
  ident: bib29
  article-title: Digital particle image velocimetry
  publication-title: Exp Fluids
– volume: 48
  start-page: 1535
  year: 2009
  end-page: 1542
  ident: bib20
  article-title: Reliability-guided digital image correlation for image deformation measurement
  publication-title: Appl Opt
– volume: 45
  start-page: 57
  year: 2007
  end-page: 63
  ident: bib37
  article-title: Application of iteration and finite element smoothing technique for displacement and strain measurement of digital speckle correlation
  publication-title: Opt Lasers Eng
– volume: 93
  start-page: 216
  year: 2005
  end-page: 231
  ident: bib34
  article-title: The Design and Implementation of FFTW3
  publication-title: Proc IEEE
– volume: 45
  start-page: 967
  year: 2007
  end-page: 974
  ident: bib16
  article-title: Study of optimal subset size in digital image correlation of speckle pattern images
  publication-title: Opt Lasers Eng
– volume: 32
  start-page: 1839
  year: 1993
  end-page: 1849
  ident: bib5
  article-title: Digital speckle-displacement measurement using a complex spectrum method
  publication-title: Appl Opt
– volume: 41
  start-page: 29
  year: 2001
  end-page: 39
  ident: bib6
  article-title: Analysis of strain localization during tensile tests by digital image correlation
  publication-title: Exp Mech
– volume: 17
  start-page: 1615
  year: 2006
  end-page: 1621
  ident: bib11
  article-title: Performance of sub-pixel registration algorithms in digital image correlation
  publication-title: Meas Sci Technol
– volume: 5496
  start-page: 161
  year: 2009
  end-page: 171
  ident: bib24
  article-title: Integrated digital image correlation for the identification of mechanical properties
  publication-title: Comput Vis/Comput Gr Collab Tech
– ident: bib33
– volume: 48
  start-page: 469
  year: 2010
  end-page: 477
  ident: bib35
  article-title: Mean intensity gradient: an effective global parameter for quality assessment of the speckle patterns used in digital image correlation
  publication-title: Opt Lasers Eng
– volume: 41
  start-page: 167
  year: 2005
  end-page: 175
  ident: bib18
  article-title: An evaluation of digital Image correlation criteria for strain mapping applications
  publication-title: Strain
– volume: 40
  start-page: 1613
  year: 2001
  end-page: 1620
  ident: bib7
  article-title: Subpixel displacement and deformation gradient measurement using digital image/speckle correlation (DISC)
  publication-title: Opt Eng
– volume: 49
  start-page: 5501
  year: 2010
  end-page: 5509
  ident: bib19
  article-title: Equivalence of digital image correlation criteria for pattern matching
  publication-title: Appl Opt
– volume: 19
  start-page: L133
  year: 1980
  end-page: L136
  ident: bib27
  article-title: Real-time measurement of in-plane translation and tilt by electronic speckle correlation
  publication-title: Jpn J Appl Phys
– volume: 47
  start-page: 258
  year: 2011
  end-page: 266
  ident: bib38
  article-title: Smoothing measured displacements and computing strains utilising finite element method
  publication-title: Strain
– volume: 53
  start-page: 1277
  year: 2013
  end-page: 1289
  ident: bib14
  article-title: Fast, robust and accurate digital image correlation calculation without redundant computations
  publication-title: Exp Mech
– volume: 39
  start-page: 2915
  year: 1999
  end-page: 2921
  ident: bib32
  article-title: Systematic errors in digital image correlation caused by intensity interpolation
  publication-title: Opt Eng
– year: 2009
  ident: bib2
  article-title: Image correlation for shape, motion and deformation measurements: basic concepts,theory and applications
– volume: 1
  start-page: 1
  year: 2013
  end-page: 10
  ident: bib23
  article-title: Digital image correlation using GPU computing applied to biomechanics
  publication-title: Biomed Sci Eng
– volume: 50
  start-page: 48
  year: 2014
  end-page: 56
  ident: bib15
  article-title: An evaluation of convergence criteria for digital image correlation using inverse compositional Gauss–Newton algorithm
  publication-title: Strain
– volume: 45
  start-page: 57
  year: 2007
  ident: 10.1016/j.optlaseng.2014.06.011_bib37
  article-title: Application of iteration and finite element smoothing technique for displacement and strain measurement of digital speckle correlation
  publication-title: Opt Lasers Eng
  doi: 10.1016/j.optlaseng.2006.04.012
– volume: 47
  start-page: 258
  year: 2011
  ident: 10.1016/j.optlaseng.2014.06.011_bib38
  article-title: Smoothing measured displacements and computing strains utilising finite element method
  publication-title: Strain
  doi: 10.1111/j.1475-1305.2010.00765.x
– volume: 53
  start-page: 1277
  year: 2013
  ident: 10.1016/j.optlaseng.2014.06.011_bib14
  article-title: Fast, robust and accurate digital image correlation calculation without redundant computations
  publication-title: Exp Mech
  doi: 10.1007/s11340-013-9717-6
– year: 2014
  ident: 10.1016/j.optlaseng.2014.06.011_bib39
  article-title: Strain field denoising for digital image correlation using a regularized cost-function
  publication-title: Opt Lasers Eng
– volume: 5496
  start-page: 161
  year: 2009
  ident: 10.1016/j.optlaseng.2014.06.011_bib24
  article-title: Integrated digital image correlation for the identification of mechanical properties
  publication-title: Comput Vis/Comput Gr Collab Tech
– volume: 31
  start-page: 168
  year: 1991
  ident: 10.1016/j.optlaseng.2014.06.011_bib36
  article-title: Full-field representation of discretely sampled surface deformation for displacement and strain analysis
  publication-title: Exp Mech
  doi: 10.1007/BF02327571
– volume: 50
  start-page: 48
  year: 2014
  ident: 10.1016/j.optlaseng.2014.06.011_bib15
  article-title: An evaluation of convergence criteria for digital image correlation using inverse compositional Gauss–Newton algorithm
  publication-title: Strain
  doi: 10.1111/str.12066
– volume: 41
  start-page: 167
  year: 2005
  ident: 10.1016/j.optlaseng.2014.06.011_bib18
  article-title: An evaluation of digital Image correlation criteria for strain mapping applications
  publication-title: Strain
  doi: 10.1111/j.1475-1305.2005.00227.x
– volume: 17
  start-page: 21
  year: 2013
  ident: 10.1016/j.optlaseng.2014.06.011_bib25
  article-title: Usage of digital image correlation in analysis of cracking processes
  publication-title: Image Process Commun
  doi: 10.2478/v10248-012-0019-x
– volume: 39
  start-page: 710
  year: 2006
  ident: 10.1016/j.optlaseng.2014.06.011_bib4
  article-title: A novel coarse-fine search scheme for digital image correlation method
  publication-title: Measurement
  doi: 10.1016/j.measurement.2006.03.008
– volume: 45
  start-page: 967
  year: 2007
  ident: 10.1016/j.optlaseng.2014.06.011_bib16
  article-title: Study of optimal subset size in digital image correlation of speckle pattern images
  publication-title: Opt Lasers Eng
  doi: 10.1016/j.optlaseng.2007.01.012
– volume: 49
  start-page: 191
  year: 1992
  ident: 10.1016/j.optlaseng.2014.06.011_bib30
  article-title: Theory of cross-correlation analysis of PIV images
  publication-title: Appl Sci Res
  doi: 10.1007/BF00384623
– volume: 1
  start-page: 1
  year: 2013
  ident: 10.1016/j.optlaseng.2014.06.011_bib23
  article-title: Digital image correlation using GPU computing applied to biomechanics
  publication-title: Biomed Sci Eng
– volume: 28
  start-page: 1359
  year: 1981
  ident: 10.1016/j.optlaseng.2014.06.011_bib28
  article-title: Speckle displacement and decorrelation in the diffraction and image fields for small object deformation
  publication-title: Opt Acta: Int J Opt
  doi: 10.1080/713820454
– ident: 10.1016/j.optlaseng.2014.06.011_bib12
  doi: 10.1109/CVPR.2001.990652
– year: 2000
  ident: 10.1016/j.optlaseng.2014.06.011_bib31
– volume: 56
  start-page: 221
  year: 2004
  ident: 10.1016/j.optlaseng.2014.06.011_bib13
  article-title: Lucas-Kanade 20 years On: a unifying framework
  publication-title: Int J Comput Vis
  doi: 10.1023/B:VISI.0000011205.11775.fd
– volume: 49
  start-page: 5501
  year: 2010
  ident: 10.1016/j.optlaseng.2014.06.011_bib19
  article-title: Equivalence of digital image correlation criteria for pattern matching
  publication-title: Appl Opt
  doi: 10.1364/AO.49.005501
– volume: 93
  start-page: 216
  year: 2005
  ident: 10.1016/j.optlaseng.2014.06.011_bib34
  article-title: The Design and Implementation of FFTW3
  publication-title: Proc IEEE
  doi: 10.1109/JPROC.2004.840301
– volume: 48
  start-page: 1535
  year: 2009
  ident: 10.1016/j.optlaseng.2014.06.011_bib20
  article-title: Reliability-guided digital image correlation for image deformation measurement
  publication-title: Appl Opt
  doi: 10.1364/AO.48.001535
– volume: 18
  start-page: 1011
  year: 2010
  ident: 10.1016/j.optlaseng.2014.06.011_bib21
  article-title: Genuine full-field deformation measurement of an object with complex shape using reliability-guided digital image correlation
  publication-title: Opt Express
  doi: 10.1364/OE.18.001011
– volume: 16
  start-page: 7037
  year: 2008
  ident: 10.1016/j.optlaseng.2014.06.011_bib17
  article-title: Study on subset size selection in digital image correlation for speckle patterns
  publication-title: Opt Express
  doi: 10.1364/OE.16.007037
– volume: 40
  start-page: 1613
  year: 2001
  ident: 10.1016/j.optlaseng.2014.06.011_bib7
  article-title: Subpixel displacement and deformation gradient measurement using digital image/speckle correlation (DISC)
  publication-title: Opt Eng
  doi: 10.1117/1.1387992
– volume: 10
  start-page: 181
  year: 1991
  ident: 10.1016/j.optlaseng.2014.06.011_bib29
  article-title: Digital particle image velocimetry
  publication-title: Exp Fluids
  doi: 10.1007/BF00190388
– volume: 35
  start-page: 533
  year: 2003
  ident: 10.1016/j.optlaseng.2014.06.011_bib8
  article-title: Application of an improved subpixel registration algorithm on digital speckle correlation measurement
  publication-title: Opt Laser Technol
  doi: 10.1016/S0030-3992(03)00069-0
– volume: 32
  start-page: 1839
  year: 1993
  ident: 10.1016/j.optlaseng.2014.06.011_bib5
  article-title: Digital speckle-displacement measurement using a complex spectrum method
  publication-title: Appl Opt
  doi: 10.1364/AO.32.001839
– volume: 17
  start-page: 1615
  year: 2006
  ident: 10.1016/j.optlaseng.2014.06.011_bib11
  article-title: Performance of sub-pixel registration algorithms in digital image correlation
  publication-title: Meas Sci Technol
  doi: 10.1088/0957-0233/17/6/045
– volume: 19
  start-page: L133
  year: 1980
  ident: 10.1016/j.optlaseng.2014.06.011_bib27
  article-title: Real-time measurement of in-plane translation and tilt by electronic speckle correlation
  publication-title: Jpn J Appl Phys
  doi: 10.1143/JJAP.19.L133
– volume: 48
  start-page: 469
  year: 2010
  ident: 10.1016/j.optlaseng.2014.06.011_bib35
  article-title: Mean intensity gradient: an effective global parameter for quality assessment of the speckle patterns used in digital image correlation
  publication-title: Opt Lasers Eng
  doi: 10.1016/j.optlaseng.2009.08.010
– volume: 39
  start-page: 2915
  year: 1999
  ident: 10.1016/j.optlaseng.2014.06.011_bib32
  article-title: Systematic errors in digital image correlation caused by intensity interpolation
  publication-title: Opt Eng
  doi: 10.1117/1.1314593
– volume: 20
  start-page: 062001
  year: 2009
  ident: 10.1016/j.optlaseng.2014.06.011_bib3
  article-title: Two-dimensional digital image correlation for in-plane displacement and strain measurement: a review
  publication-title: Meas Sci Technol
  doi: 10.1088/0957-0233/20/6/062001
– volume: 21
  start-page: 427
  year: 1982
  ident: 10.1016/j.optlaseng.2014.06.011_bib1
  article-title: Digital imaging techniques in experimental stress analysis
  publication-title: Opt Eng
  doi: 10.1117/12.7972925
– year: 2009
  ident: 10.1016/j.optlaseng.2014.06.011_bib2
– volume: 41
  start-page: 29
  year: 2001
  ident: 10.1016/j.optlaseng.2014.06.011_bib6
  article-title: Analysis of strain localization during tensile tests by digital image correlation
  publication-title: Exp Mech
  doi: 10.1007/BF02323101
– volume: 29
  start-page: 261
  year: 1989
  ident: 10.1016/j.optlaseng.2014.06.011_bib9
  article-title: Digital image correlation using Newton–Raphson method of partial differential correction
  publication-title: Exp Mech
  doi: 10.1007/BF02321405
– volume: 49
  start-page: 841
  year: 2011
  ident: 10.1016/j.optlaseng.2014.06.011_bib22
  article-title: A fast digital image correlation method for deformation measurement
  publication-title: Opt Lasers Eng
  doi: 10.1016/j.optlaseng.2011.02.023
– volume: 38
  start-page: 86
  year: 1998
  ident: 10.1016/j.optlaseng.2014.06.011_bib10
  article-title: Submicron deformation field measurements: Part 2. Improved digital image correlation
  publication-title: Exp Mech
  doi: 10.1007/BF02321649
SSID ssj0016411
Score 2.4669285
Snippet The initial guess transferring mechanism is widely used in iterative DIC algorithms and leads to path-dependence. Using the known deformation at a processed...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 93
SubjectTerms Accuracy
Algorithms
Computation
Deformation
Devices
Digital image correlation
Estimates
Fast Fourier transform
Gauss–Newton method
Inverse compositional algorithm
Path-independence
Robustness
Title Path-independent digital image correlation with high accuracy, speed and robustness
URI https://dx.doi.org/10.1016/j.optlaseng.2014.06.011
https://www.proquest.com/docview/1651432974
Volume 65
WOSCitedRecordID wos000345492500013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-0302
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016411
  issn: 0143-8166
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaWFiQ4IChUlJeMxG0JytN2uFWoqFSiFFGkhUsUO05JtU2iTVKV38CfZhzbSbaACkJcosjaSVaeLzPj8ecZhJ5LGjIOgYFDGPWd0Pe4w6nLHUBHzEkA8ZzL-2YT9PCQLRbx0Wz23Z6FOV_SsmQXF3H9X1UNY6BsdXT2L9Q9PBQG4B6UDldQO1z_SPFHENM5xdDdtp1nxYnqDDIvzhQ_R6h2HJoAp5OwqmDxPBWiW6Win_GmBo-meecV75q2tCQNE8O-r4fSzhB6qwPAquzIWNdwIOUUJhf95assv3WjaT9L-_zshwky3xV6bL8a5T8b8QN45lIW0_yEF1lKs02a2YMzI0tJ5zEDR21ZajekbS-jgQM2Z804k2hiXXUvReOnPf3Dn1yAzkacvqzqVk1CeaL4e2FfpNWY9fX62ore1u-ewlKzP1d-DW36NIrBRG7uvt1bHAybUiT0dHtL89_X6IK_fN3vgp1Lbr-PZY7voNtmEYJ3NXjuopkst9CtSWnKLXSjpwaL5h76eBlQ2AAK94DCE0BhBSisAIUtoF7gHk4Y0IJHON1Hn97sHb_ed0wrDkeAJ22dQKa-G1PpRpK6LMwgkBQxyxinOQlImuVBHgmXiZhwn9MoczPKSK48be5GEXeDbbRRVqV8gHBM8kDCusPjnghFDiJCCs5i0H4gspjtIGLnLBGmTr1ql7JMLCHxNBkmO1GTnShqpuftIHcQrHWplqtFXlmlJCbi1JFkAmi6WviZVWMCNllttKWlrLom8YhahviwVH_4Ly94hG6OH9RjtNGuOvkEXRfnbdGsnhp0_gA0eLdW
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Path-independent+digital+image+correlation+with+high+accuracy%2C+speed+and+robustness&rft.jtitle=Optics+and+lasers+in+engineering&rft.au=Jiang%2C+Zhenyu&rft.au=Kemao%2C+Qian&rft.au=Miao%2C+Hong&rft.au=Yang%2C+Jinglei&rft.date=2015-02-01&rft.pub=Elsevier+Ltd&rft.issn=0143-8166&rft.eissn=1873-0302&rft.volume=65&rft.spage=93&rft.epage=102&rft_id=info:doi/10.1016%2Fj.optlaseng.2014.06.011&rft.externalDocID=S0143816614001560
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0143-8166&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0143-8166&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0143-8166&client=summon