The first step for neuroimaging data analysis: DICOM to NIfTI conversion

•Introduce conversion tools for different vendors.•Explain conversion basics.•Present methods to detect and correctproblems. Clinical imaging data are typically stored and transferred in the DICOM format, whereas the NIfTI format has been widely adopted by scientists in the neuroimaging community. T...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Journal of neuroscience methods Ročník 264; s. 47 - 56
Hlavní autori: Li, Xiangrui, Morgan, Paul S., Ashburner, John, Smith, Jolinda, Rorden, Christopher
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Netherlands Elsevier B.V 01.05.2016
Predmet:
ISSN:0165-0270, 1872-678X, 1872-678X
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract •Introduce conversion tools for different vendors.•Explain conversion basics.•Present methods to detect and correctproblems. Clinical imaging data are typically stored and transferred in the DICOM format, whereas the NIfTI format has been widely adopted by scientists in the neuroimaging community. Therefore, a vital initial step in processing the data is to convert images from the complicated DICOM format to the much simpler NIfTI format. While there are a number of tools that usually handle DICOM to NIfTI conversion seamlessly, some variations can disrupt this process. We provide some insight into the challenges faced with image conversion. First, different manufacturers implement the DICOM format differently which complicates the conversion. Second, different modalities and sub-modalities may need special treatment during conversion. Lastly, the image transferring and archiving can also impact the DICOM conversion. We present results in several error-prone domains, including the slice order for functional imaging, phase encoding direction for distortion correction, effect of diffusion gradient direction, and effect of gantry correction for some imaging modality. Conversion tools are often designed for a specific manufacturer or modality. The tools and insight we present here are aimed at different manufacturers or modalities. The imaging conversion is complicated by the variation of images. An understanding of the conversion basics can be helpful for identifying the source of the error. Here we provide users with simple methods for detecting and correcting problems. This also serves as an overview for developers who wish to either develop their own tools or adapt the open source tools created by the authors.
AbstractList •Introduce conversion tools for different vendors.•Explain conversion basics.•Present methods to detect and correctproblems. Clinical imaging data are typically stored and transferred in the DICOM format, whereas the NIfTI format has been widely adopted by scientists in the neuroimaging community. Therefore, a vital initial step in processing the data is to convert images from the complicated DICOM format to the much simpler NIfTI format. While there are a number of tools that usually handle DICOM to NIfTI conversion seamlessly, some variations can disrupt this process. We provide some insight into the challenges faced with image conversion. First, different manufacturers implement the DICOM format differently which complicates the conversion. Second, different modalities and sub-modalities may need special treatment during conversion. Lastly, the image transferring and archiving can also impact the DICOM conversion. We present results in several error-prone domains, including the slice order for functional imaging, phase encoding direction for distortion correction, effect of diffusion gradient direction, and effect of gantry correction for some imaging modality. Conversion tools are often designed for a specific manufacturer or modality. The tools and insight we present here are aimed at different manufacturers or modalities. The imaging conversion is complicated by the variation of images. An understanding of the conversion basics can be helpful for identifying the source of the error. Here we provide users with simple methods for detecting and correcting problems. This also serves as an overview for developers who wish to either develop their own tools or adapt the open source tools created by the authors.
Background: Clinical imaging data are typically stored and transferred in the DICOM format, whereas the NIfTI format has been widely adopted by scientists in the neuroimaging community. Therefore, a vital initial step in processing the data is to convert images from the complicated DICOM format to the much simpler NIfTI format. While there are a number of tools that usually handle DICOM to NIfTI conversion seamlessly, some variations can disrupt this process. New method: We provide some insight into the challenges faced with image conversion. First, different manufacturers implement the DICOM format differently which complicates the conversion. Second, different modalities and sub-modalities may need special treatment during conversion. Lastly, the image transferring and archiving can also impact the DICOM conversion. Results: We present results in several error-prone domains, including the slice order for functional imaging, phase encoding direction for distortion correction, effect of diffusion gradient direction, and effect of gantry correction for some imaging modality. Comparison with existing methods: Conversion tools are often designed for a specific manufacturer or modality. The tools and insight we present here are aimed at different manufacturers or modalities. Conclusions: The imaging conversion is complicated by the variation of images. An understanding of the conversion basics can be helpful for identifying the source of the error. Here we provide users with simple methods for detecting and correcting problems. This also serves as an overview for developers who wish to either develop their own tools or adapt the open source tools created by the authors.
Clinical imaging data are typically stored and transferred in the DICOM format, whereas the NIfTI format has been widely adopted by scientists in the neuroimaging community. Therefore, a vital initial step in processing the data is to convert images from the complicated DICOM format to the much simpler NIfTI format. While there are a number of tools that usually handle DICOM to NIfTI conversion seamlessly, some variations can disrupt this process. We provide some insight into the challenges faced with image conversion. First, different manufacturers implement the DICOM format differently which complicates the conversion. Second, different modalities and sub-modalities may need special treatment during conversion. Lastly, the image transferring and archiving can also impact the DICOM conversion. We present results in several error-prone domains, including the slice order for functional imaging, phase encoding direction for distortion correction, effect of diffusion gradient direction, and effect of gantry correction for some imaging modality. Conversion tools are often designed for a specific manufacturer or modality. The tools and insight we present here are aimed at different manufacturers or modalities. The imaging conversion is complicated by the variation of images. An understanding of the conversion basics can be helpful for identifying the source of the error. Here we provide users with simple methods for detecting and correcting problems. This also serves as an overview for developers who wish to either develop their own tools or adapt the open source tools created by the authors.
Clinical imaging data are typically stored and transferred in the DICOM format, whereas the NIfTI format has been widely adopted by scientists in the neuroimaging community. Therefore, a vital initial step in processing the data is to convert images from the complicated DICOM format to the much simpler NIfTI format. While there are a number of tools that usually handle DICOM to NIfTI conversion seamlessly, some variations can disrupt this process.BACKGROUNDClinical imaging data are typically stored and transferred in the DICOM format, whereas the NIfTI format has been widely adopted by scientists in the neuroimaging community. Therefore, a vital initial step in processing the data is to convert images from the complicated DICOM format to the much simpler NIfTI format. While there are a number of tools that usually handle DICOM to NIfTI conversion seamlessly, some variations can disrupt this process.We provide some insight into the challenges faced with image conversion. First, different manufacturers implement the DICOM format differently which complicates the conversion. Second, different modalities and sub-modalities may need special treatment during conversion. Lastly, the image transferring and archiving can also impact the DICOM conversion.NEW METHODWe provide some insight into the challenges faced with image conversion. First, different manufacturers implement the DICOM format differently which complicates the conversion. Second, different modalities and sub-modalities may need special treatment during conversion. Lastly, the image transferring and archiving can also impact the DICOM conversion.We present results in several error-prone domains, including the slice order for functional imaging, phase encoding direction for distortion correction, effect of diffusion gradient direction, and effect of gantry correction for some imaging modality.RESULTSWe present results in several error-prone domains, including the slice order for functional imaging, phase encoding direction for distortion correction, effect of diffusion gradient direction, and effect of gantry correction for some imaging modality.Conversion tools are often designed for a specific manufacturer or modality. The tools and insight we present here are aimed at different manufacturers or modalities.COMPARISON WITH EXISTING METHODSConversion tools are often designed for a specific manufacturer or modality. The tools and insight we present here are aimed at different manufacturers or modalities.The imaging conversion is complicated by the variation of images. An understanding of the conversion basics can be helpful for identifying the source of the error. Here we provide users with simple methods for detecting and correcting problems. This also serves as an overview for developers who wish to either develop their own tools or adapt the open source tools created by the authors.CONCLUSIONSThe imaging conversion is complicated by the variation of images. An understanding of the conversion basics can be helpful for identifying the source of the error. Here we provide users with simple methods for detecting and correcting problems. This also serves as an overview for developers who wish to either develop their own tools or adapt the open source tools created by the authors.
Author Smith, Jolinda
Rorden, Christopher
Li, Xiangrui
Ashburner, John
Morgan, Paul S.
Author_xml – sequence: 1
  givenname: Xiangrui
  surname: Li
  fullname: Li, Xiangrui
  organization: Center for Cognitive and Behavioral Brain Imaging, The Ohio State University, Columbus, OH 43210, USA
– sequence: 2
  givenname: Paul S.
  surname: Morgan
  fullname: Morgan, Paul S.
  organization: Medical Physics & Clinical Engineering, Nottingham University Hospitals, Nottingham, UK
– sequence: 3
  givenname: John
  surname: Ashburner
  fullname: Ashburner, John
  organization: Wellcome Trust Centre for Neuroimaging, University College London, London, UK
– sequence: 4
  givenname: Jolinda
  surname: Smith
  fullname: Smith, Jolinda
  organization: Lewis Center for Neuroimaging, University of Oregon, Eugene, OR 97403, USA
– sequence: 5
  givenname: Christopher
  surname: Rorden
  fullname: Rorden, Christopher
  email: rorden@sc.edu
  organization: McCausland Center for Brain Imaging, University of South Carolina, Columbia, SC 29208, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26945974$$D View this record in MEDLINE/PubMed
BookMark eNqNkc1uGyEUhVGVqHHSvELEspuZwgwwQ9VFK6dtLOVn40rZoWvmToI1BhdwpLx9iRxvuklWCPGdwz33nJIjHzwScsFZzRlXX9b12uNug_mxbsq9Zm3NGP9AZrzvmkp1_f0RmZUHWbGmYyfkNKU1Y0xopj6Sk0ZpIXUnZuRq-Yh0dDFlmjJu6RgiLcYxuA08OP9AB8hAwcP0nFz6Si8X87sbmgO9XYzLBbXBP2FMLvhP5HiEKeH563lG_vz6uZxfVdd3vxfzH9eVFarLVQsNaC3aFlSvsAwIvORhmveSr6SQig_cMikAVhJAo5adlgP0jbY96-2qPSOf977bGP7uMGWzccniNIHHsEuGd5qVZFz070B7LluhRVfQi1d0t9rgYLax5I_P5rCoAnzbAzaGlCKOxroMuQTPEdxkODMvvZi1OfRiXnoxrDWllyJX_8kPP7wp_L4XYtnpk8NoknXoLQ4uos1mCO4ti39Ag6kf
CitedBy_id crossref_primary_10_1016_j_bpsgos_2025_100489
crossref_primary_10_1016_j_rico_2025_100515
crossref_primary_10_1177_19714009241260791
crossref_primary_10_1148_ryai_240076
crossref_primary_10_1007_s00276_019_02273_0
crossref_primary_10_1002_mrm_30267
crossref_primary_10_1016_j_nicl_2019_101961
crossref_primary_10_1523_JNEUROSCI_1673_23_2024
crossref_primary_10_1016_j_ebiom_2021_103407
crossref_primary_10_1093_gigascience_giaf092
crossref_primary_10_1016_j_neuroimage_2021_118835
crossref_primary_10_3390_electronics14183631
crossref_primary_10_1016_j_neuroimage_2021_118830
crossref_primary_10_1016_j_nicl_2021_102790
crossref_primary_10_1016_j_wneu_2017_04_043
crossref_primary_10_1038_s41597_025_04863_7
crossref_primary_10_3390_jcm11092293
crossref_primary_10_1007_s00234_021_02768_x
crossref_primary_10_1186_s41747_023_00415_z
crossref_primary_10_1016_j_neuroimage_2017_10_014
crossref_primary_10_1159_000515707
crossref_primary_10_1007_s10278_024_01279_4
crossref_primary_10_1016_j_neuroimage_2023_120120
crossref_primary_10_1080_13803395_2023_2173149
crossref_primary_10_1007_s12021_020_09469_5
crossref_primary_10_1111_bdi_70012
crossref_primary_10_1016_j_ebiom_2021_103757
crossref_primary_10_3389_fninf_2023_1191200
crossref_primary_10_1162_IMAG_a_42
crossref_primary_10_3389_fneur_2022_939318
crossref_primary_10_1016_j_ejrad_2020_109278
crossref_primary_10_1002_ima_22768
crossref_primary_10_1016_j_ejca_2023_04_021
crossref_primary_10_1007_s10278_021_00422_9
crossref_primary_10_1016_j_neurom_2022_01_003
crossref_primary_10_1016_j_softx_2024_102010
crossref_primary_10_1002_hbm_25778
crossref_primary_10_1002_hbm_26625
crossref_primary_10_1016_j_neuroimage_2024_120858
crossref_primary_10_1016_j_neuroimage_2024_120859
crossref_primary_10_1016_j_neuroimage_2024_120732
crossref_primary_10_1007_s00330_023_09784_w
crossref_primary_10_1109_TAFFC_2024_3507192
crossref_primary_10_3389_fnins_2023_1196087
crossref_primary_10_1016_j_compbiomed_2024_108684
crossref_primary_10_1038_s41598_021_84906_2
crossref_primary_10_1016_j_nicl_2024_103580
crossref_primary_10_1113_JP279453
crossref_primary_10_1089_brain_2019_0724
crossref_primary_10_1002_mp_17028
crossref_primary_10_1093_biostatistics_kxx068
crossref_primary_10_1016_j_jcomdis_2021_106163
crossref_primary_10_1016_j_neuroimage_2023_120491
crossref_primary_10_1038_s41596_022_00776_6
crossref_primary_10_1016_j_clineuro_2017_05_023
crossref_primary_10_1038_s41598_024_54820_4
crossref_primary_10_1002_jmri_27092
crossref_primary_10_1016_j_jscai_2025_103716
crossref_primary_10_3389_fnhum_2018_00339
crossref_primary_10_1038_s41598_025_04511_5
crossref_primary_10_7554_eLife_84135
crossref_primary_10_1007_s10278_022_00683_y
crossref_primary_10_1007_s00330_024_10585_y
crossref_primary_10_3390_neurosci6020031
crossref_primary_10_1186_s13244_025_01980_0
crossref_primary_10_7554_eLife_96997_3
crossref_primary_10_3390_life15040606
crossref_primary_10_3389_fnagi_2021_720636
crossref_primary_10_1093_sleep_zsz001
crossref_primary_10_3389_fvets_2022_886333
crossref_primary_10_1038_s41398_022_02155_x
crossref_primary_10_1016_j_nicl_2021_102780
crossref_primary_10_1016_j_dib_2023_109617
crossref_primary_10_3390_brainsci14100957
crossref_primary_10_1073_pnas_2009576117
crossref_primary_10_1038_s41531_025_00911_6
crossref_primary_10_3174_ajnr_A8551
crossref_primary_10_3174_ajnr_A8552
crossref_primary_10_1259_bjr_20220976
crossref_primary_10_1016_j_media_2021_102219
crossref_primary_10_1016_j_ejmp_2021_02_007
crossref_primary_10_1038_s41592_023_02145_x
crossref_primary_10_1016_j_neuroimage_2021_117818
crossref_primary_10_1038_s42003_024_07019_2
crossref_primary_10_1002_mp_17326
crossref_primary_10_1016_j_dib_2022_108086
crossref_primary_10_1016_j_nicl_2020_102195
crossref_primary_10_1016_j_acra_2023_12_015
crossref_primary_10_1007_s00259_024_06796_6
crossref_primary_10_1002_hbm_70312
crossref_primary_10_1038_s42003_024_06665_w
crossref_primary_10_3390_brainsci11081041
crossref_primary_10_3390_nu12010174
crossref_primary_10_1038_s41597_022_01677_9
crossref_primary_10_3390_bioengineering11030219
crossref_primary_10_1016_j_media_2023_102903
crossref_primary_10_1038_s41597_023_02386_7
crossref_primary_10_1002_mp_17794
crossref_primary_10_3389_fnins_2020_00125
crossref_primary_10_1016_j_brainresbull_2023_110766
crossref_primary_10_1002_nbm_3959
crossref_primary_10_12688_f1000research_24544_1
crossref_primary_10_1038_s41537_022_00269_1
crossref_primary_10_3389_fninf_2019_00061
crossref_primary_10_1007_s10029_025_03337_4
crossref_primary_10_1016_j_neuroimage_2020_117654
crossref_primary_10_1109_JBHI_2021_3120178
crossref_primary_10_1038_s41598_021_99701_2
crossref_primary_10_1007_s00247_020_04875_y
crossref_primary_10_3389_fneur_2020_00235
crossref_primary_10_1016_j_neuroimage_2024_120530
crossref_primary_10_1371_journal_pone_0273704
crossref_primary_10_1002_brb3_3554
crossref_primary_10_1038_s41467_022_29886_1
crossref_primary_10_1002_ca_23564
crossref_primary_10_3390_cells11091558
crossref_primary_10_1016_j_neuroimage_2021_117914
crossref_primary_10_1016_j_ijrobp_2023_11_014
crossref_primary_10_1177_25424823251328340
crossref_primary_10_3390_app12073512
crossref_primary_10_1038_s41598_024_68828_3
crossref_primary_10_1016_j_neuroimage_2022_119295
crossref_primary_10_3389_fonc_2022_1005805
crossref_primary_10_1016_j_neuroimage_2019_05_049
crossref_primary_10_1111_cns_14874
crossref_primary_10_1007_s00256_023_04449_7
crossref_primary_10_1038_s41597_025_04779_2
crossref_primary_10_1016_j_nicl_2025_103830
crossref_primary_10_1097_AJP_0000000000001237
crossref_primary_10_1161_STROKEAHA_125_051026
crossref_primary_10_1007_s10278_024_01134_6
crossref_primary_10_1007_s11548_022_02736_7
crossref_primary_10_1523_JNEUROSCI_1552_21_2021
crossref_primary_10_3389_fnins_2020_00585
crossref_primary_10_1002_aur_70076
crossref_primary_10_1007_s00701_022_05446_w
crossref_primary_10_1080_17588928_2022_2060200
crossref_primary_10_1073_pnas_1614038114
crossref_primary_10_3390_jimaging10040096
crossref_primary_10_1038_s41467_020_18692_2
crossref_primary_10_3389_fncom_2019_00072
crossref_primary_10_1002_brb3_3611
crossref_primary_10_1038_s41390_025_03966_6
crossref_primary_10_1002_brb3_70427
crossref_primary_10_3389_fpsyt_2022_771950
crossref_primary_10_1177_08465371251351810
crossref_primary_10_1002_hbm_25829
crossref_primary_10_1016_j_cortex_2022_07_001
crossref_primary_10_1088_1361_6560_ac9449
crossref_primary_10_1038_s41467_021_26976_4
crossref_primary_10_1038_s41597_025_05245_9
crossref_primary_10_3389_fnsys_2021_724805
crossref_primary_10_3389_fpsyt_2021_617997
crossref_primary_10_1371_journal_pone_0266349
crossref_primary_10_1007_s00259_025_07382_0
crossref_primary_10_3389_fnhum_2025_1554091
crossref_primary_10_1140_epjs_s11734_024_01345_6
crossref_primary_10_1007_s10278_024_01313_5
crossref_primary_10_3389_fonc_2021_755271
crossref_primary_10_1007_s12021_024_09687_1
crossref_primary_10_1016_j_acra_2025_03_007
crossref_primary_10_1016_j_jstrokecerebrovasdis_2019_03_031
crossref_primary_10_1016_j_neuroimage_2022_118938
crossref_primary_10_3390_biomedicines12051133
crossref_primary_10_1016_j_jbi_2022_104181
crossref_primary_10_1093_nsr_nwae473
crossref_primary_10_1016_j_nicl_2025_103806
crossref_primary_10_3389_fpsyg_2020_528079
crossref_primary_10_1093_cercor_bhae407
crossref_primary_10_3389_fnins_2021_764796
crossref_primary_10_1172_JCI97696
crossref_primary_10_1186_s41747_023_00408_y
crossref_primary_10_1093_cercor_bhaa168
crossref_primary_10_1159_000508794
crossref_primary_10_1007_s00406_022_01411_x
crossref_primary_10_1038_s41598_022_06651_4
crossref_primary_10_3390_app13063873
crossref_primary_10_1016_j_neuroimage_2022_119702
crossref_primary_10_1093_cercor_bhz132
crossref_primary_10_1523_JNEUROSCI_0854_21_2021
crossref_primary_10_1093_neuonc_noae098
crossref_primary_10_7759_cureus_23279
crossref_primary_10_1007_s10334_024_01208_0
crossref_primary_10_1016_j_neuroimage_2021_118775
crossref_primary_10_1002_hbm_24514
crossref_primary_10_1002_alz_70227
crossref_primary_10_1007_s43657_023_00141_x
crossref_primary_10_1038_s41598_020_58212_2
crossref_primary_10_1038_s41597_023_02864_y
crossref_primary_10_1371_journal_pone_0303278
crossref_primary_10_1016_j_nicl_2017_08_018
crossref_primary_10_1007_s12311_021_01337_5
crossref_primary_10_1016_j_media_2025_103617
crossref_primary_10_1016_j_jocs_2025_102533
crossref_primary_10_1038_s41597_024_03242_y
crossref_primary_10_1523_JNEUROSCI_2595_18_2018
crossref_primary_10_1007_s12020_023_03529_x
crossref_primary_10_3390_brainsci13050809
crossref_primary_10_3390_app13158646
crossref_primary_10_1016_j_neuroimage_2021_118306
crossref_primary_10_1038_s42003_022_03949_x
crossref_primary_10_1016_j_neuroimage_2020_117031
crossref_primary_10_1038_s41597_025_04895_z
crossref_primary_10_1016_j_medp_2024_100007
crossref_primary_10_1016_j_xpro_2025_103827
crossref_primary_10_3389_fnins_2025_1488397
crossref_primary_10_1093_cercor_bhac489
crossref_primary_10_1007_s12975_023_01160_6
crossref_primary_10_1523_JNEUROSCI_1096_21_2021
crossref_primary_10_1016_j_dadm_2019_03_002
crossref_primary_10_1093_braincomms_fcaf110
crossref_primary_10_3389_fcogn_2024_1323438
crossref_primary_10_1016_j_neuroimage_2019_03_023
crossref_primary_10_1186_s12883_020_01874_2
crossref_primary_10_1038_s41597_023_02062_w
crossref_primary_10_3390_diagnostics12081938
crossref_primary_10_3390_brainsci11050650
crossref_primary_10_1007_s11548_024_03240_w
crossref_primary_10_1088_1361_6560_ad4844
crossref_primary_10_1093_cercor_bhab328
crossref_primary_10_3390_app11114999
crossref_primary_10_1038_s41598_025_07084_5
crossref_primary_10_1002_mrm_29479
crossref_primary_10_3389_fninf_2021_597708
crossref_primary_10_1016_j_neuroimage_2019_01_018
crossref_primary_10_1038_s41597_022_01587_w
crossref_primary_10_3389_fnins_2023_1151525
crossref_primary_10_3389_fpubh_2023_1196596
crossref_primary_10_1088_1361_6560_ad2790
crossref_primary_10_1097_WNR_0000000000001135
crossref_primary_10_1002_mp_14322
crossref_primary_10_1016_j_nicl_2024_103710
crossref_primary_10_3389_fnins_2022_971010
crossref_primary_10_3389_fninf_2021_622951
crossref_primary_10_1016_j_ynirp_2022_100135
crossref_primary_10_1152_jn_00413_2020
crossref_primary_10_1210_clinem_dgz004
crossref_primary_10_1523_JNEUROSCI_1235_23_2023
crossref_primary_10_1016_j_neuroimage_2019_04_070
crossref_primary_10_1038_s41467_021_25431_8
crossref_primary_10_1523_JNEUROSCI_1237_22_2022
crossref_primary_10_1016_j_neuropsychologia_2021_108071
crossref_primary_10_3389_fnins_2023_1285396
crossref_primary_10_1002_mrm_30006
crossref_primary_10_1016_j_jneumeth_2017_05_013
crossref_primary_10_3389_fneur_2020_595463
crossref_primary_10_1002_hipo_23299
crossref_primary_10_1038_s41586_025_08888_1
crossref_primary_10_3389_fnagi_2025_1651596
crossref_primary_10_52294_001c_94384
crossref_primary_10_1007_s12975_024_01316_y
crossref_primary_10_1016_j_cortex_2021_04_009
crossref_primary_10_1038_s41467_022_33407_5
crossref_primary_10_1212_WNL_0000000000209583
crossref_primary_10_1002_hbm_25806
crossref_primary_10_1148_rycan_240446
crossref_primary_10_12968_opti_2016_11_148575
crossref_primary_10_3390_brainsci11091141
crossref_primary_10_1038_s41467_025_63423_0
crossref_primary_10_1016_j_bpsc_2022_02_013
crossref_primary_10_1002_alz_70545
crossref_primary_10_1016_j_neurobiolaging_2025_08_003
crossref_primary_10_1093_braincomms_fcaf211
crossref_primary_10_1007_s12070_022_03239_2
crossref_primary_10_1007_s10278_024_00977_3
crossref_primary_10_1038_s41597_024_04218_8
crossref_primary_10_1016_j_jocmr_2025_101958
crossref_primary_10_3390_jimaging11030068
crossref_primary_10_1016_j_neures_2019_01_009
crossref_primary_10_1002_alz_14303
crossref_primary_10_1162_jocn_a_01995
crossref_primary_10_1093_brain_awx169
crossref_primary_10_1002_alz_12241
crossref_primary_10_1016_j_jocn_2020_05_029
crossref_primary_10_1038_s41597_021_00845_7
crossref_primary_10_3171_2021_10_JNS211651
crossref_primary_10_1007_s00415_019_09505_8
crossref_primary_10_1016_j_media_2020_101688
crossref_primary_10_1227_neu_0000000000003716
crossref_primary_10_3389_fninf_2021_770608
crossref_primary_10_1093_cercor_bhad380
crossref_primary_10_1007_s00429_024_02884_3
crossref_primary_10_1093_cercor_bhac172
crossref_primary_10_1093_cercor_bhad140
crossref_primary_10_3389_fnana_2020_599701
crossref_primary_10_1016_j_neures_2020_05_006
crossref_primary_10_3389_fninf_2023_1251023
crossref_primary_10_3390_diagnostics15151927
crossref_primary_10_1002_hbm_26081
crossref_primary_10_1016_j_nicl_2019_102015
crossref_primary_10_1117_1_JMI_9_3_034002
crossref_primary_10_1371_journal_pone_0286485
crossref_primary_10_1111_ejn_13575
crossref_primary_10_1212_NXI_0000000000000496
crossref_primary_10_3389_fnins_2023_1069639
crossref_primary_10_1007_s11682_024_00892_9
crossref_primary_10_1016_j_jacr_2020_06_033
crossref_primary_10_1038_s42003_023_04942_8
crossref_primary_10_1016_j_nicl_2022_103000
crossref_primary_10_3390_diagnostics13243604
crossref_primary_10_1016_j_diii_2019_02_007
crossref_primary_10_1007_s12021_024_09657_7
crossref_primary_10_1016_j_neuroimage_2018_08_042
crossref_primary_10_3389_fnhum_2023_1271046
crossref_primary_10_1073_pnas_2401317121
crossref_primary_10_3389_fneur_2024_1467307
crossref_primary_10_3389_fphys_2023_1070233
crossref_primary_10_1016_j_neuroimage_2018_01_066
crossref_primary_10_1016_j_nicl_2019_102026
crossref_primary_10_1016_j_nicl_2022_103106
crossref_primary_10_1016_j_nicl_2022_103228
crossref_primary_10_1016_j_neuroimage_2019_03_072
crossref_primary_10_1016_j_nicl_2023_103412
crossref_primary_10_3389_fneur_2022_1089193
crossref_primary_10_1007_s00330_021_07856_3
crossref_primary_10_1002_mus_26827
crossref_primary_10_1016_j_crad_2020_01_012
crossref_primary_10_1016_j_zemedi_2020_04_001
crossref_primary_10_1038_s41598_024_70316_7
crossref_primary_10_1016_j_neuroimage_2019_116241
crossref_primary_10_1038_s41593_023_01512_3
crossref_primary_10_1007_s00234_025_03742_7
crossref_primary_10_1007_s10278_019_00232_0
crossref_primary_10_1002_nbm_4675
crossref_primary_10_1007_s10278_021_00460_3
crossref_primary_10_1016_j_jad_2025_119574
crossref_primary_10_1038_s41597_025_04803_5
crossref_primary_10_1038_s41531_023_00586_x
crossref_primary_10_7554_eLife_65012
crossref_primary_10_1038_s41598_021_83432_5
crossref_primary_10_1007_s10278_025_01653_w
crossref_primary_10_1093_brain_awad305
crossref_primary_10_1016_j_jneumeth_2021_109107
crossref_primary_10_1038_s41597_022_01615_9
crossref_primary_10_1093_cercor_bhac087
crossref_primary_10_1016_j_neuroimage_2019_116147
crossref_primary_10_1155_2022_3463358
crossref_primary_10_1038_s41597_022_01251_3
crossref_primary_10_1016_j_nbd_2024_106439
crossref_primary_10_1038_s41598_022_15587_8
crossref_primary_10_1371_journal_pone_0308565
crossref_primary_10_3389_fnins_2023_1263693
crossref_primary_10_1371_journal_pone_0278987
crossref_primary_10_3390_diagnostics13172774
crossref_primary_10_1002_mp_14424
crossref_primary_10_1016_j_amjoto_2024_104357
crossref_primary_10_1162_imag_a_00196
crossref_primary_10_7554_eLife_67304
crossref_primary_10_1038_s41372_020_00865_y
crossref_primary_10_1111_adb_13399
crossref_primary_10_1016_j_nicl_2022_103252
crossref_primary_10_1088_2057_1976_ad7597
crossref_primary_10_3390_jcm9041213
crossref_primary_10_3389_fnagi_2020_00238
crossref_primary_10_1016_j_psycr_2022_100014
crossref_primary_10_1162_imag_a_00077
crossref_primary_10_3390_cancers17091575
crossref_primary_10_1016_j_neuroimage_2025_121369
crossref_primary_10_5765_jkacap_240039
crossref_primary_10_3389_fneur_2025_1630427
crossref_primary_10_1038_s41597_025_05503_w
crossref_primary_10_1371_journal_pone_0222977
crossref_primary_10_1016_j_neuroimage_2019_116438
crossref_primary_10_1016_j_neuropsychologia_2025_109067
crossref_primary_10_1016_j_neuroimage_2022_118871
crossref_primary_10_1093_cercor_bhac492
crossref_primary_10_1016_j_jneuroling_2020_100937
crossref_primary_10_1111_jon_13167
crossref_primary_10_1002_mp_13880
crossref_primary_10_1016_j_neuroimage_2022_119723
crossref_primary_10_3389_fneur_2025_1629434
crossref_primary_10_1016_j_neuroscience_2022_08_008
crossref_primary_10_1016_j_bspc_2024_107467
crossref_primary_10_1162_imag_a_00042
crossref_primary_10_1038_s41597_024_02931_y
crossref_primary_10_1109_TCBB_2021_3102584
crossref_primary_10_1016_j_media_2024_103301
crossref_primary_10_1038_s41597_021_00904_z
crossref_primary_10_1007_s00234_024_03354_7
crossref_primary_10_1038_s44172_025_00489_0
crossref_primary_10_1117_1_JMI_10_6_064001
crossref_primary_10_1007_s12021_024_09659_5
crossref_primary_10_1007_s12021_020_09475_7
crossref_primary_10_1162_imag_a_00044
crossref_primary_10_1007_s13311_020_00846_1
crossref_primary_10_1002_mrm_29983
crossref_primary_10_3390_geriatrics9060165
crossref_primary_10_1002_hbm_25182
crossref_primary_10_1038_s41597_025_05154_x
crossref_primary_10_3390_jcm11092301
crossref_primary_10_1002_mrm_28418
crossref_primary_10_3390_pathophysiology32010011
crossref_primary_10_1038_s41598_021_87598_w
crossref_primary_10_1002_jnr_70034
crossref_primary_10_1016_j_semradonc_2022_06_009
crossref_primary_10_3389_fneur_2023_1216916
crossref_primary_10_1097_CCE_0000000000001306
crossref_primary_10_1016_j_neuroimage_2021_118365
crossref_primary_10_1038_s41467_023_38709_w
crossref_primary_10_1155_2022_3861161
crossref_primary_10_1038_s41598_025_00014_5
crossref_primary_10_1016_j_heliyon_2023_e23605
crossref_primary_10_1002_brb3_70689
crossref_primary_10_1186_s41747_023_00346_9
crossref_primary_10_1016_j_dib_2024_110668
crossref_primary_10_1002_jmri_29638
crossref_primary_10_1016_j_cortex_2023_05_015
crossref_primary_10_1002_mrm_28206
crossref_primary_10_3390_jcm10214987
crossref_primary_10_1016_j_ejrad_2023_110964
crossref_primary_10_3389_fmed_2023_1241570
crossref_primary_10_1038_s41597_022_01560_7
crossref_primary_10_1016_j_neurad_2021_03_001
crossref_primary_10_1038_s42003_023_05119_z
crossref_primary_10_12998_wjcc_v10_i24_8450
crossref_primary_10_1016_j_neuroimage_2018_08_068
crossref_primary_10_7554_eLife_74813
crossref_primary_10_3389_fneur_2020_606478
crossref_primary_10_3390_app10217823
crossref_primary_10_1016_j_neuroimage_2022_119730
crossref_primary_10_1523_JNEUROSCI_0735_23_2023
crossref_primary_10_1109_ACCESS_2025_3555585
crossref_primary_10_1002_mrm_29881
crossref_primary_10_3389_fnagi_2021_758298
crossref_primary_10_1007_s00330_023_09613_0
crossref_primary_10_1038_s41598_024_64603_6
crossref_primary_10_1002_nbm_4222
crossref_primary_10_1093_brain_awz071
crossref_primary_10_1016_j_dib_2023_109261
crossref_primary_10_1177_13524585241310764
crossref_primary_10_1002_mrm_29528
crossref_primary_10_1016_j_neuroimage_2023_119909
crossref_primary_10_1002_mrm_28678
crossref_primary_10_1038_s41597_022_01682_y
crossref_primary_10_3389_fnagi_2024_1398015
crossref_primary_10_1007_s11547_024_01893_w
crossref_primary_10_1177_13524585221102921
crossref_primary_10_1016_j_dcn_2022_101178
crossref_primary_10_1038_s41514_025_00260_x
crossref_primary_10_1038_s41597_022_01571_4
crossref_primary_10_1007_s12021_024_09700_7
crossref_primary_10_1093_cercor_bhac289
crossref_primary_10_1093_brain_awac366
crossref_primary_10_1093_cercor_bhad016
crossref_primary_10_1371_journal_pone_0311805
crossref_primary_10_1016_j_neuroimage_2022_119486
crossref_primary_10_1111_bdi_13055
crossref_primary_10_1016_j_neuroimage_2022_119488
crossref_primary_10_3389_fninf_2024_1508161
crossref_primary_10_1016_j_nicl_2019_101685
crossref_primary_10_1016_j_dib_2021_107191
crossref_primary_10_3390_brainsci13020260
crossref_primary_10_1111_ene_14443
crossref_primary_10_1007_s10278_024_01121_x
crossref_primary_10_1016_j_jmir_2024_101745
crossref_primary_10_1038_s41597_025_05173_8
crossref_primary_10_1016_j_mri_2021_08_004
crossref_primary_10_3390_jcm13123585
crossref_primary_10_3233_JPD_223349
crossref_primary_10_1038_s41597_024_03337_6
crossref_primary_10_1016_j_rx_2025_501723
crossref_primary_10_1038_s41597_024_02959_0
crossref_primary_10_1186_s13075_021_02634_4
crossref_primary_10_3389_fnagi_2022_873376
crossref_primary_10_1002_hbm_70192
crossref_primary_10_1093_cercor_bhaf059
crossref_primary_10_1016_j_media_2020_101834
crossref_primary_10_1002_hbm_25026
crossref_primary_10_1007_s12021_021_09555_2
crossref_primary_10_3389_fnagi_2021_667854
crossref_primary_10_1152_jn_00480_2020
crossref_primary_10_1007_s11042_023_16009_1
crossref_primary_10_1016_j_neuroimage_2020_117611
crossref_primary_10_1038_s41597_024_03819_7
crossref_primary_10_1093_neuonc_noab294
crossref_primary_10_1186_s12916_019_1488_1
crossref_primary_10_3390_cancers14102530
crossref_primary_10_1038_s41598_024_71273_x
crossref_primary_10_1148_rg_230180
crossref_primary_10_1007_s00429_023_02692_1
crossref_primary_10_3390_healthcare11172377
crossref_primary_10_3389_fnins_2024_1427947
crossref_primary_10_3390_diagnostics11091599
crossref_primary_10_1002_hbm_25172
crossref_primary_10_1016_j_resuscitation_2025_110652
crossref_primary_10_1016_j_media_2022_102391
crossref_primary_10_1002_nbm_70065
crossref_primary_10_1038_s41592_025_02763_7
crossref_primary_10_1038_s41597_025_04822_2
crossref_primary_10_1080_23279095_2021_1962881
crossref_primary_10_1162_imag_a_00103
crossref_primary_10_1002_hbm_26018
crossref_primary_10_1038_s43856_025_01117_w
crossref_primary_10_1002_alz_14054
crossref_primary_10_1016_j_ejmp_2024_103210
crossref_primary_10_3389_fneur_2018_00687
crossref_primary_10_3389_fnins_2023_1092125
crossref_primary_10_5498_wjp_v14_i6_804
crossref_primary_10_1088_1741_2552_ace07e
crossref_primary_10_1111_jon_12940
crossref_primary_10_1002_oby_23799
crossref_primary_10_7554_eLife_96997
crossref_primary_10_1002_hbm_26009
crossref_primary_10_1162_imag_a_00477
crossref_primary_10_1038_s41597_020_00699_5
crossref_primary_10_1038_s41597_023_02583_4
crossref_primary_10_1002_hbm_70042
crossref_primary_10_3389_fneur_2018_00575
crossref_primary_10_1002_jum_15659
crossref_primary_10_1038_s41597_021_01033_3
crossref_primary_10_3390_bioengineering12090978
crossref_primary_10_1002_jmri_28125
crossref_primary_10_1038_s41467_021_22848_z
crossref_primary_10_1371_journal_pone_0230754
crossref_primary_10_1038_s41598_021_87069_2
crossref_primary_10_1016_j_ynirp_2025_100249
crossref_primary_10_1007_s00261_025_05041_4
crossref_primary_10_3390_brainsci14030247
crossref_primary_10_1007_s10278_025_01635_y
crossref_primary_10_1016_j_ejpn_2024_06_009
crossref_primary_10_1097_CM9_0000000000002297
crossref_primary_10_1111_cns_14320
crossref_primary_10_3390_brainsci11020202
crossref_primary_10_1038_s41597_022_01164_1
crossref_primary_10_1186_s12881_019_0813_z
crossref_primary_10_3389_fmed_2021_738425
crossref_primary_10_1038_s41597_021_00870_6
crossref_primary_10_1007_s12021_022_09567_6
crossref_primary_10_1002_ana_26893
crossref_primary_10_1007_s00261_021_03136_2
crossref_primary_10_1038_s41597_024_03919_4
crossref_primary_10_1109_JTEHM_2020_2969152
crossref_primary_10_3389_fnins_2022_847074
crossref_primary_10_1016_j_ynirp_2025_100233
crossref_primary_10_1523_JNEUROSCI_1159_24_2024
crossref_primary_10_1016_j_wneu_2023_10_085
crossref_primary_10_1177_0271678X18802119
crossref_primary_10_3390_ijms25147649
crossref_primary_10_1016_j_imu_2024_101592
crossref_primary_10_3390_bioengineering12030258
crossref_primary_10_1002_hbm_25458
crossref_primary_10_1038_s41597_022_01623_9
crossref_primary_10_1016_j_ejmp_2025_104895
crossref_primary_10_1016_j_neuroimage_2021_118087
crossref_primary_10_1162_imag_a_00571
crossref_primary_10_1002_brb3_3395
crossref_primary_10_1007_s10278_018_0117_4
crossref_primary_10_3389_fnins_2022_910025
crossref_primary_10_1002_hbm_25137
crossref_primary_10_1007_s11571_021_09772_0
crossref_primary_10_1016_j_cortex_2020_07_016
crossref_primary_10_1097_RLI_0000000000000542
crossref_primary_10_1016_j_neuroimage_2023_119985
crossref_primary_10_1016_j_neuroimage_2025_121064
crossref_primary_10_3390_brainsci14030219
crossref_primary_10_1016_j_neuroimage_2018_11_005
crossref_primary_10_3233_JAD_200299
crossref_primary_10_1007_s00330_024_11042_6
crossref_primary_10_1007_s00406_021_01345_w
crossref_primary_10_1016_j_neuropsychologia_2020_107573
crossref_primary_10_1016_j_neuroimage_2017_10_034
crossref_primary_10_3389_fneur_2023_1203241
crossref_primary_10_1089_brain_2020_0767
crossref_primary_10_1002_hbm_26458
crossref_primary_10_1007_s12021_020_09493_5
crossref_primary_10_1177_26884844251379409
crossref_primary_10_1038_s41467_024_53365_4
crossref_primary_10_1038_s41597_024_03667_5
crossref_primary_10_1523_JNEUROSCI_2043_22_2023
crossref_primary_10_3389_fnagi_2022_979741
crossref_primary_10_1016_j_ynirp_2024_100196
crossref_primary_10_1016_j_neuroimage_2022_119215
crossref_primary_10_3390_cancers15072135
crossref_primary_10_3390_jcm13206252
crossref_primary_10_1016_j_cortex_2025_06_008
crossref_primary_10_1162_jocn_a_02283
crossref_primary_10_1007_s13218_023_00811_y
crossref_primary_10_1523_JNEUROSCI_1984_20_2020
crossref_primary_10_1038_s41467_021_21970_2
crossref_primary_10_1038_s41597_019_0073_y
crossref_primary_10_1016_j_mri_2024_03_037
crossref_primary_10_1126_science_adp6325
crossref_primary_10_2147_NDT_S481875
crossref_primary_10_1007_s00276_021_02713_w
crossref_primary_10_1007_s10489_021_02782_9
crossref_primary_10_1073_pnas_2003181117
crossref_primary_10_1523_JNEUROSCI_1786_19_2019
crossref_primary_10_17816_DD635589
Cites_doi 10.1016/j.neuroimage.2006.09.032
10.1016/j.neuroimage.2012.03.020
10.1016/j.neuroimage.2011.10.018
10.1016/j.cmpb.2007.02.006
10.1016/j.neuroimage.2010.02.069
10.1016/j.neuroimage.2011.06.078
10.1006/nimg.2002.1132
10.1016/S1053-8119(03)00336-7
10.1016/j.neuroimage.2004.10.035
10.1007/s12021-014-9230-9
10.1016/j.neuroimage.2004.07.051
10.3389/fninf.2011.00023
ContentType Journal Article
Copyright 2016 Elsevier B.V.
Copyright © 2016 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2016 Elsevier B.V.
– notice: Copyright © 2016 Elsevier B.V. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7QO
7TK
8FD
FR3
P64
DOI 10.1016/j.jneumeth.2016.03.001
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Biotechnology Research Abstracts
Neurosciences Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
DatabaseTitleList
Engineering Research Database
MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
EISSN 1872-678X
EndPage 56
ExternalDocumentID 26945974
10_1016_j_jneumeth_2016_03_001
S0165027016300073
Genre Journal Article
GrantInformation_xml – fundername: Wellcome Trust
  grantid: 091593
GroupedDBID ---
--K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5RE
7-5
71M
8P~
9JM
AABNK
AACTN
AADPK
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAXLA
AAXUO
ABCQJ
ABFNM
ABFRF
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFO
ACGFS
ACIUM
ACRLP
ADBBV
ADEZE
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGUBO
AGWIK
AGYEJ
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
K-O
KOM
L7B
M2V
M41
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SPCBC
SSN
SSZ
T5K
~G-
.55
.GJ
29L
53G
5VS
9DU
AAQFI
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACLOT
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGHFR
AGQPQ
AHHHB
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
FEDTE
FGOYB
G-2
HMQ
HVGLF
HZ~
R2-
SEW
SNS
WUQ
X7M
ZGI
~HD
AGCQF
AGRNS
CGR
CUY
CVF
ECM
EIF
NPM
SSH
7X8
7QO
7TK
8FD
FR3
P64
ID FETCH-LOGICAL-c467t-3a2a99433a686e016a1101091851b54561d1c054aab5aa9e95795da829c808cb3
ISICitedReferencesCount 667
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000375164400007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0165-0270
1872-678X
IngestDate Tue Oct 07 09:59:28 EDT 2025
Thu Oct 02 10:59:57 EDT 2025
Mon Jul 21 05:45:07 EDT 2025
Sat Nov 29 07:24:22 EST 2025
Tue Nov 18 22:18:24 EST 2025
Fri Feb 23 02:33:09 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Neuroimaging
DICOM
NIfTI
Language English
License Copyright © 2016 Elsevier B.V. All rights reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c467t-3a2a99433a686e016a1101091851b54561d1c054aab5aa9e95795da829c808cb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 26945974
PQID 1781534947
PQPubID 23479
PageCount 10
ParticipantIDs proquest_miscellaneous_1790974148
proquest_miscellaneous_1781534947
pubmed_primary_26945974
crossref_citationtrail_10_1016_j_jneumeth_2016_03_001
crossref_primary_10_1016_j_jneumeth_2016_03_001
elsevier_sciencedirect_doi_10_1016_j_jneumeth_2016_03_001
PublicationCentury 2000
PublicationDate 2016-05-01
2016-05-00
2016-May-01
20160501
PublicationDateYYYYMMDD 2016-05-01
PublicationDate_xml – month: 05
  year: 2016
  text: 2016-05-01
  day: 01
PublicationDecade 2010
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Journal of neuroscience methods
PublicationTitleAlternate J Neurosci Methods
PublicationYear 2016
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Neu, Valentino, Toga (bib0030) 2005; 24
Clunie (bib0010) 2000
Rorden, Bonilha, Fridriksson, Bender, Karnath (bib0050) 2012; 61
Andersson, Skare, Ashburner (bib0005) 2003; 20
Power, Barnes, Snyder, Schlaggar, Petersen (bib0045) 2012; 59
Toussaint, Souplet, Fillard (bib0075) 2007
Jenkinson, Bannister, Brady, Smith (bib0020) 2002; 17
Nolf (bib0035) 2003; 30
Solomon, Raymont, Braun, Butman, Grafman (bib0065) 2007; 86
Yendiki, Panneck, Srinivasan, Stevens, Zöllei, Augustinack, Wang, Salat, Ehrlich, Behrens, Jbabdi, Gollub, Fischl (bib0080) 2011; 5
Smith, Jenkinson, Woolrich, Beckmann, Behrens, Johansen-Berg, Bannister, De Luca, Drobnjak, Flitney, Niazy, Saunders, Vickers, Zhang, De Stefano, Brady, Matthews (bib0060) 2004; 23
Yvernault, Theobald, Smith, Villalta, Zald, Landman (bib0085) 2014; 12
Sladky, Friston, Tröstl, Cunnington, Moser, Windischberger (bib0055) 2011; 58
Murphy, Bodurka, Bandettini (bib0025) 2007; 34
Patel, Dinov, Van Horn, Thompson, Toga (bib0040) 2010; 51
Jenkinson (10.1016/j.jneumeth.2016.03.001_bib0020) 2002; 17
Clunie (10.1016/j.jneumeth.2016.03.001_bib0010) 2000
Yendiki (10.1016/j.jneumeth.2016.03.001_bib0080) 2011; 5
Neu (10.1016/j.jneumeth.2016.03.001_bib0030) 2005; 24
Andersson (10.1016/j.jneumeth.2016.03.001_bib0005) 2003; 20
Power (10.1016/j.jneumeth.2016.03.001_bib0045) 2012; 59
Yvernault (10.1016/j.jneumeth.2016.03.001_bib0085) 2014; 12
Nolf (10.1016/j.jneumeth.2016.03.001_bib0035) 2003; 30
Murphy (10.1016/j.jneumeth.2016.03.001_bib0025) 2007; 34
Smith (10.1016/j.jneumeth.2016.03.001_bib0060) 2004; 23
Solomon (10.1016/j.jneumeth.2016.03.001_bib0065) 2007; 86
Toussaint (10.1016/j.jneumeth.2016.03.001_bib0075) 2007
Sladky (10.1016/j.jneumeth.2016.03.001_bib0055) 2011; 58
Rorden (10.1016/j.jneumeth.2016.03.001_bib0050) 2012; 61
Patel (10.1016/j.jneumeth.2016.03.001_bib0040) 2010; 51
References_xml – year: 2007
  ident: bib0075
  article-title: MedINRIA: Medical Image Navigation and Research Tool by INRIA
  publication-title: Proc. of MICCAI '07 Workshop on Interaction in Medical Image Analysis and Visualization
– volume: 12
  start-page: 615
  year: 2014
  end-page: 617
  ident: bib0085
  article-title: Validating DICOM Transcoding with an Open Multi-Format Resource
  publication-title: Neuroinformatics
– volume: 20
  start-page: 870
  year: 2003
  end-page: 888
  ident: bib0005
  article-title: How to correct susceptibility distortions in spin-echo echo-planar images: application to diffusion tensor imaging
  publication-title: NeuroImage
– year: 2000
  ident: bib0010
  article-title: Lossless compression of grayscale medical images: effectiveness of traditional and state-of-the-art approaches
  publication-title: Proc. SPIE 3980, Medical Imaging 2000: PACS Design and Evaluation: Engineering and Clinical Issues
– volume: 61
  start-page: 957
  year: 2012
  end-page: 965
  ident: bib0050
  article-title: Age-specific CT and MRI templates for spatial normalization
  publication-title: NeuroImage
– volume: 34
  start-page: 565
  year: 2007
  end-page: 574
  ident: bib0025
  article-title: How long to scan? The relationship between fMRI temporal signal to noise ratio and necessary scan duration
  publication-title: NeuroImage
– volume: 17
  start-page: 825
  year: 2002
  end-page: 841
  ident: bib0020
  article-title: Improved optimisation for the robust and accurate linear registration and motion correction of brain images
  publication-title: NeuroImage
– volume: 23
  start-page: 208
  year: 2004
  end-page: 219
  ident: bib0060
  article-title: Advances in functional and structural MR image analysis and implementation as FSL
  publication-title: NeuroImage
– volume: 51
  start-page: 665
  year: 2010
  end-page: 676
  ident: bib0040
  article-title: LONI MiND: metadata in NIfTI for DWI
  publication-title: NeuroImage
– volume: 86
  start-page: 245
  year: 2007
  end-page: 254
  ident: bib0065
  article-title: User friendly software for the analysis of brain lesions (ABLe)
  publication-title: Comput. Methods Programs Biomed.
– volume: 58
  start-page: 588
  year: 2011
  end-page: 594
  ident: bib0055
  article-title: Slice-timing effects and their correction in functional MRI
  publication-title: NeuroImage
– volume: 5
  start-page: 23
  year: 2011
  ident: bib0080
  article-title: Automated probabilistic reconstruction of white-matter pathways in health and disease using an atlas of the underlying anatomy
  publication-title: Front. Neuroinform
– volume: 59
  start-page: 2142
  year: 2012
  end-page: 2154
  ident: bib0045
  article-title: Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion
  publication-title: NeuroImage
– volume: 24
  start-page: 1170
  year: 2005
  end-page: 1179
  ident: bib0030
  article-title: The LONI Debabeler: a mediator for neuroimaging software
  publication-title: NeuroImage
– volume: 30
  start-page: S246
  year: 2003
  ident: bib0035
  article-title: XMedCon—an open-source medical image conversion toolkit
  publication-title: Eur. J. Nucl. Med. Mol. Imaging
– volume: 34
  start-page: 565
  issue: 2
  year: 2007
  ident: 10.1016/j.jneumeth.2016.03.001_bib0025
  article-title: How long to scan? The relationship between fMRI temporal signal to noise ratio and necessary scan duration
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2006.09.032
– volume: 61
  start-page: 957
  issue: 4
  year: 2012
  ident: 10.1016/j.jneumeth.2016.03.001_bib0050
  article-title: Age-specific CT and MRI templates for spatial normalization
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2012.03.020
– volume: 59
  start-page: 2142
  issue: 3
  year: 2012
  ident: 10.1016/j.jneumeth.2016.03.001_bib0045
  article-title: Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2011.10.018
– volume: 86
  start-page: 245
  year: 2007
  ident: 10.1016/j.jneumeth.2016.03.001_bib0065
  article-title: User friendly software for the analysis of brain lesions (ABLe)
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2007.02.006
– year: 2000
  ident: 10.1016/j.jneumeth.2016.03.001_bib0010
  article-title: Lossless compression of grayscale medical images: effectiveness of traditional and state-of-the-art approaches
– volume: 51
  start-page: 665
  issue: 2
  year: 2010
  ident: 10.1016/j.jneumeth.2016.03.001_bib0040
  article-title: LONI MiND: metadata in NIfTI for DWI
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2010.02.069
– volume: 58
  start-page: 588
  issue: 2
  year: 2011
  ident: 10.1016/j.jneumeth.2016.03.001_bib0055
  article-title: Slice-timing effects and their correction in functional MRI
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2011.06.078
– volume: 17
  start-page: 825
  issue: 2
  year: 2002
  ident: 10.1016/j.jneumeth.2016.03.001_bib0020
  article-title: Improved optimisation for the robust and accurate linear registration and motion correction of brain images
  publication-title: NeuroImage
  doi: 10.1006/nimg.2002.1132
– year: 2007
  ident: 10.1016/j.jneumeth.2016.03.001_bib0075
  article-title: MedINRIA: Medical Image Navigation and Research Tool by INRIA
– volume: 20
  start-page: 870
  issue: 2
  year: 2003
  ident: 10.1016/j.jneumeth.2016.03.001_bib0005
  article-title: How to correct susceptibility distortions in spin-echo echo-planar images: application to diffusion tensor imaging
  publication-title: NeuroImage
  doi: 10.1016/S1053-8119(03)00336-7
– volume: 24
  start-page: 1170
  issue: 4
  year: 2005
  ident: 10.1016/j.jneumeth.2016.03.001_bib0030
  article-title: The LONI Debabeler: a mediator for neuroimaging software
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2004.10.035
– volume: 30
  start-page: S246
  issue: S2
  year: 2003
  ident: 10.1016/j.jneumeth.2016.03.001_bib0035
  article-title: XMedCon—an open-source medical image conversion toolkit
  publication-title: Eur. J. Nucl. Med. Mol. Imaging
– volume: 12
  start-page: 615
  issue: 4
  year: 2014
  ident: 10.1016/j.jneumeth.2016.03.001_bib0085
  article-title: Validating DICOM Transcoding with an Open Multi-Format Resource
  publication-title: Neuroinformatics
  doi: 10.1007/s12021-014-9230-9
– volume: 23
  start-page: 208
  issue: S1
  year: 2004
  ident: 10.1016/j.jneumeth.2016.03.001_bib0060
  article-title: Advances in functional and structural MR image analysis and implementation as FSL
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2004.07.051
– volume: 5
  start-page: 23
  year: 2011
  ident: 10.1016/j.jneumeth.2016.03.001_bib0080
  article-title: Automated probabilistic reconstruction of white-matter pathways in health and disease using an atlas of the underlying anatomy
  publication-title: Front. Neuroinform
  doi: 10.3389/fninf.2011.00023
SSID ssj0004906
Score 2.6570823
Snippet •Introduce conversion tools for different vendors.•Explain conversion basics.•Present methods to detect and correctproblems. Clinical imaging data are...
Clinical imaging data are typically stored and transferred in the DICOM format, whereas the NIfTI format has been widely adopted by scientists in the...
Background: Clinical imaging data are typically stored and transferred in the DICOM format, whereas the NIfTI format has been widely adopted by scientists in...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 47
SubjectTerms DICOM
Functional Neuroimaging - methods
Functional Neuroimaging - standards
Humans
Image Processing, Computer-Assisted - methods
Image Processing, Computer-Assisted - standards
Neuroimaging
Neuroimaging - methods
Neuroimaging - standards
NIfTI
Title The first step for neuroimaging data analysis: DICOM to NIfTI conversion
URI https://dx.doi.org/10.1016/j.jneumeth.2016.03.001
https://www.ncbi.nlm.nih.gov/pubmed/26945974
https://www.proquest.com/docview/1781534947
https://www.proquest.com/docview/1790974148
Volume 264
WOSCitedRecordID wos000375164400007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-678X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004906
  issn: 0165-0270
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Pb9MwFLbYhhAXBBs_OmAyEtplCiTOL5tbNTqtU9dx6KTcLCdNoBVLuzZF47_nPdtJKljZOHCJoihOYr8v9ufnz-8R8h5mEZE_joWTA_11gsJLHaV85sBMLPSilBXKNckm4uGQJ4n4Yp05S51OIC5LfnMj5v_V1HANjI1bZ__B3M1D4QKcg9HhCGaH470NX0yA1B2BAedaRqiDVk6uTEIi1IQeKRuLBB0Cn_vHF-fIQYf9YtQ3OnTtRNtAXNdCYOY2A3VDzAdaHJAA5r4uVpPGmjp3VC1EbL2t3eW3FH2qi99FwY2_5wxzClmngfVNeFGrBLTdKY-ZA8NhYkabW67ZPphFwVovamJw_tG5Gz_D9MMU6om1Q2FeZELUeu1wVi_hDy_kyeVgIEe9ZHQ4v3Yw0RguyNusK1tkh8WhgI5wp9vvJWftZlqhE7I2n7m2rfz2V29iNJtmLJq5jJ6SJ9ZytGug8ow8yMtdstctVTW7-kkPqRYB69WVXfLo3Got9sgpAIlqIFEEEgUg0XUgUQQSrYH0iWoY0WpGNYxoC6Pn5PKkNzo-dWzeDSeDYbNyfMWUEIHvq4hHOVRUAUfEALLAzlPNuMdeBlRfqTRUSuS40huOFWci4y7PUv8F2S5nZf6KUD8UrPAED_M0COKMcbgNzlThZiErQrdDwrrtZGaD0mNulO-yVh9OZd3mEttcuj7KMDvkY1NubsKy3FlC1KaR9hcxpFECvO4s-662pYTeF5fUVJnPVkvpxRwoQyCC-G_3CBdm7V7AO-SlAULzzbiPHKf0-_d4w2vyuP3H3pDtarHK35KH2Y9qslwckK044QcWzL8AbQm6iQ
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+first+step+for+neuroimaging+data+analysis%3A+DICOM+to+NIfTI+conversion&rft.jtitle=Journal+of+neuroscience+methods&rft.au=Li%2C+Xiangrui&rft.au=Morgan%2C+Paul+S&rft.au=Ashburner%2C+John&rft.au=Smith%2C+Jolinda&rft.date=2016-05-01&rft.issn=1872-678X&rft.eissn=1872-678X&rft.volume=264&rft.spage=47&rft_id=info:doi/10.1016%2Fj.jneumeth.2016.03.001&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0165-0270&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0165-0270&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0165-0270&client=summon