Is H3K4me3 instructive for transcription activation?
Tri‐methylation of lysine 4 on histone H3 (H3K4me3) is a near‐universal chromatin modification at the transcription start site of active genes in eukaryotes from yeast to man and its levels reflect the amount of transcription. Because of this association, H3K4me3 is often described as an ‘activating...
Uloženo v:
| Vydáno v: | BioEssays Ročník 39; číslo 1; s. 1 - 12 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
United States
Wiley Subscription Services, Inc
01.01.2017
|
| Témata: | |
| ISSN: | 0265-9247, 1521-1878, 1521-1878 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Tri‐methylation of lysine 4 on histone H3 (H3K4me3) is a near‐universal chromatin modification at the transcription start site of active genes in eukaryotes from yeast to man and its levels reflect the amount of transcription. Because of this association, H3K4me3 is often described as an ‘activating’ histone modification and assumed to have an instructive role in the transcription of genes, but the field is lacking a conserved mechanism to support this view. The overwhelming finding from genome‐wide studies is that actually very little transcription changes upon removal of most H3K4me3 under steady‐state or dynamically changing conditions, including at mammalian CpG island promoters. Instead, rather than a major role in instructing transcription, time‐resolved experiments provide more evidence supporting the deposition of H3K4me3 into chromatin as a result of transcription, influencing processes such as memory of previous states, transcriptional consistency between cells in a population and transcription termination.
The so‐called activating histone modification H3K4me3 correlates strongly with transcription, yet, the transcription of only a minority of genes changes when H3K4me3 is reduced. Instead, at most genes H3K4me3 may be deposited as a result of transcription to regulate post‐transcriptional processes such as transcriptional memory and gene expression noise. |
|---|---|
| AbstractList | Tri-methylation of lysine 4 on histone H3 (H3K4me3) is a near-universal chromatin modification at the transcription start site of active genes in eukaryotes from yeast to man and its levels reflect the amount of transcription. Because of this association, H3K4me3 is often described as an 'activating' histone modification and assumed to have an instructive role in the transcription of genes, but the field is lacking a conserved mechanism to support this view. The overwhelming finding from genome-wide studies is that actually very little transcription changes upon removal of most H3K4me3 under steady-state or dynamically changing conditions, including at mammalian CpG island promoters. Instead, rather than a major role in instructing transcription, time-resolved experiments provide more evidence supporting the deposition of H3K4me3 into chromatin as a result of transcription, influencing processes such as memory of previous states, transcriptional consistency between cells in a population and transcription termination. Tri-methylation of lysine 4 on histone H3 (H3K4me3) is a near-universal chromatin modification at the transcription start site of active genes in eukaryotes from yeast to man and its levels reflect the amount of transcription. Because of this association, H3K4me3 is often described as an 'activating' histone modification and assumed to have an instructive role in the transcription of genes, but the field is lacking a conserved mechanism to support this view. The overwhelming finding from genome-wide studies is that actually very little transcription changes upon removal of most H3K4me3 under steady-state or dynamically changing conditions, including at mammalian CpG island promoters. Instead, rather than a major role in instructing transcription, time-resolved experiments provide more evidence supporting the deposition of H3K4me3 into chromatin as a result of transcription, influencing processes such as memory of previous states, transcriptional consistency between cells in a population and transcription termination.Tri-methylation of lysine 4 on histone H3 (H3K4me3) is a near-universal chromatin modification at the transcription start site of active genes in eukaryotes from yeast to man and its levels reflect the amount of transcription. Because of this association, H3K4me3 is often described as an 'activating' histone modification and assumed to have an instructive role in the transcription of genes, but the field is lacking a conserved mechanism to support this view. The overwhelming finding from genome-wide studies is that actually very little transcription changes upon removal of most H3K4me3 under steady-state or dynamically changing conditions, including at mammalian CpG island promoters. Instead, rather than a major role in instructing transcription, time-resolved experiments provide more evidence supporting the deposition of H3K4me3 into chromatin as a result of transcription, influencing processes such as memory of previous states, transcriptional consistency between cells in a population and transcription termination. Tri‐methylation of lysine 4 on histone H3 (H3K4me3) is a near‐universal chromatin modification at the transcription start site of active genes in eukaryotes from yeast to man and its levels reflect the amount of transcription. Because of this association, H3K4me3 is often described as an ‘activating’ histone modification and assumed to have an instructive role in the transcription of genes, but the field is lacking a conserved mechanism to support this view. The overwhelming finding from genome‐wide studies is that actually very little transcription changes upon removal of most H3K4me3 under steady‐state or dynamically changing conditions, including at mammalian CpG island promoters. Instead, rather than a major role in instructing transcription, time‐resolved experiments provide more evidence supporting the deposition of H3K4me3 into chromatin as a result of transcription, influencing processes such as memory of previous states, transcriptional consistency between cells in a population and transcription termination. The so‐called activating histone modification H3K4me3 correlates strongly with transcription, yet, the transcription of only a minority of genes changes when H3K4me3 is reduced. Instead, at most genes H3K4me3 may be deposited as a result of transcription to regulate post‐transcriptional processes such as transcriptional memory and gene expression noise. |
| Author | Mellor, Jane Fischl, Harry Howe, Françoise S. Murray, Struan C. |
| Author_xml | – sequence: 1 givenname: Françoise S. surname: Howe fullname: Howe, Françoise S. organization: University of Oxford – sequence: 2 givenname: Harry surname: Fischl fullname: Fischl, Harry organization: University of Oxford – sequence: 3 givenname: Struan C. surname: Murray fullname: Murray, Struan C. organization: University of Oxford – sequence: 4 givenname: Jane surname: Mellor fullname: Mellor, Jane email: jane.mellor@bioch.ox.ac.uk organization: University of Oxford |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28004446$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkc1LAzEQxYNU7IdePcqCFy9bk-wkuzmJlmqLBQ_qOaS7WUjZj5rsKv3vzdpaoaCeMpDfmzczb4h6VV1phM4JHhOM6fXSaDemmHCMsWBHaEAYJSFJ4qSHBphyFgoKcR8NnVt1CKdwgvo0wRgA-ADB3AWz6BFKHQWmco1t08a86yCvbdBYVbnUmnVj6ipQ3YfqyptTdJyrwumz3TtCr_fTl8ksXDw9zCe3izAFHrOQCppz0JGOCYiMCc05RIwpDjlnia9oxP2IkaaZoIxlJFNqSRUVSSxiSHk0Qlfbvmtbv7XaNbI0LtVFoSpdt06ShBEumN_do5cH6KpubeWnk0RgzL2hIH9SvheGGLPO9mJHtctSZ3JtTansRn5fzQPjLZDa2jmr8z1CsOxikV0sch-LF8CBIDXN1y39jU3xu0xsZR-m0Jt_TOTdfPr8o_0EvRacxg |
| CODEN | BIOEEJ |
| CitedBy_id | crossref_primary_10_1158_2326_6066_CIR_22_0088 crossref_primary_10_1038_s41389_019_0131_5 crossref_primary_10_3390_ijms21072606 crossref_primary_10_1093_bib_bbab254 crossref_primary_10_3390_ijms252010979 crossref_primary_10_1186_s13072_018_0230_0 crossref_primary_10_3389_fimmu_2022_906311 crossref_primary_10_15252_msb_20178007 crossref_primary_10_1038_s41598_024_72163_y crossref_primary_10_1152_ajpcell_00257_2024 crossref_primary_10_3390_cells8091034 crossref_primary_10_1261_rna_072116_119 crossref_primary_10_1007_s13237_021_00357_0 crossref_primary_10_1016_j_bbagrm_2020_194545 crossref_primary_10_1038_s41467_018_05930_x crossref_primary_10_1038_s41467_018_04426_y crossref_primary_10_1038_s41594_023_01087_4 crossref_primary_10_1016_j_gde_2021_01_008 crossref_primary_10_1016_j_jmb_2018_07_013 crossref_primary_10_1016_j_gde_2024_102153 crossref_primary_10_1093_gigascience_giaf077 crossref_primary_10_1093_nar_gkz101 crossref_primary_10_1242_jcs_257717 crossref_primary_10_1002_bies_202200239 crossref_primary_10_1016_j_molcel_2019_01_012 crossref_primary_10_3390_biom11050668 crossref_primary_10_3389_fgene_2018_00609 crossref_primary_10_7554_eLife_34081 crossref_primary_10_1631_jzus_B2200195 crossref_primary_10_1038_s41598_021_95398_5 crossref_primary_10_1093_treephys_tpae072 crossref_primary_10_3389_fimmu_2024_1489378 crossref_primary_10_1038_d41586_019_00823_5 crossref_primary_10_1016_j_bbagrm_2020_194567 crossref_primary_10_1111_cpr_13314 crossref_primary_10_1073_pnas_2001928117 crossref_primary_10_3390_ijms24010603 crossref_primary_10_1042_BCJ20240543 crossref_primary_10_1038_s41467_025_59711_4 crossref_primary_10_1007_s00425_020_03520_0 crossref_primary_10_1016_j_aquatox_2021_105849 crossref_primary_10_3390_cells11132033 crossref_primary_10_1101_gad_352181_124 crossref_primary_10_1101_gad_322222_118 crossref_primary_10_3390_epigenomes5020014 crossref_primary_10_1038_s41467_022_29739_x crossref_primary_10_1038_s41598_022_25881_0 crossref_primary_10_3390_pathogens13121080 crossref_primary_10_1016_j_biomaterials_2021_120980 crossref_primary_10_1371_journal_pgen_1010001 crossref_primary_10_3390_genes15020241 crossref_primary_10_3390_ijms26157169 crossref_primary_10_1016_j_scitotenv_2020_143055 crossref_primary_10_1038_s41592_021_01129_z crossref_primary_10_1038_s41388_019_1051_8 crossref_primary_10_1016_j_cryobiol_2024_105191 crossref_primary_10_1038_s41588_024_01706_w crossref_primary_10_1007_s00204_017_2096_5 crossref_primary_10_1038_s41586_023_05780_8 crossref_primary_10_1038_s41598_023_39979_6 crossref_primary_10_1038_s41467_023_38373_0 crossref_primary_10_3389_fcell_2022_909557 crossref_primary_10_1016_j_csbj_2021_12_027 crossref_primary_10_1007_s12015_021_10234_7 crossref_primary_10_1186_s13007_020_00664_8 crossref_primary_10_1080_21541264_2024_2316965 crossref_primary_10_3390_ijms26010328 crossref_primary_10_26508_lsa_202302494 crossref_primary_10_1080_02648725_2018_1551594 crossref_primary_10_1038_nrg_2017_57 crossref_primary_10_1016_j_tig_2022_04_010 crossref_primary_10_1186_s12886_025_03939_7 crossref_primary_10_1016_j_molcel_2021_03_038 crossref_primary_10_1093_nar_gkac051 crossref_primary_10_1146_annurev_genet_112618_043733 crossref_primary_10_1242_bio_029090 crossref_primary_10_3389_fcell_2023_1209928 crossref_primary_10_3390_catal15060521 crossref_primary_10_1101_gad_349803_122 crossref_primary_10_1186_s12864_020_6771_1 crossref_primary_10_1073_pnas_1722125115 crossref_primary_10_1080_15384101_2018_1464847 crossref_primary_10_1186_s40478_021_01234_2 crossref_primary_10_1016_j_aquatox_2020_105580 crossref_primary_10_1038_s41598_020_72155_8 crossref_primary_10_1093_nargab_lqad071 crossref_primary_10_1186_s12870_025_06832_z crossref_primary_10_1093_genetics_iyaf055 crossref_primary_10_1007_s00418_022_02151_8 crossref_primary_10_1261_rna_063446_117 crossref_primary_10_3390_jcm13010274 crossref_primary_10_1016_j_cossms_2020_100892 crossref_primary_10_1186_s12950_024_00389_8 crossref_primary_10_3390_ijms21228861 crossref_primary_10_1007_s00438_024_02191_w crossref_primary_10_1093_advances_nmab038 crossref_primary_10_1111_nph_18393 crossref_primary_10_1016_j_neo_2020_09_004 crossref_primary_10_1002_ggn2_10026 crossref_primary_10_1101_gr_266338_120 crossref_primary_10_3390_ijms232112918 crossref_primary_10_1038_s41580_022_00518_2 crossref_primary_10_1186_s13072_018_0222_0 crossref_primary_10_1371_journal_pone_0323242 crossref_primary_10_3390_ijms222010969 crossref_primary_10_1016_j_molcel_2021_12_004 crossref_primary_10_1371_journal_pone_0194420 crossref_primary_10_1038_s41467_020_14595_4 crossref_primary_10_3389_freae_2023_1195690 crossref_primary_10_1016_j_ebiom_2024_105156 crossref_primary_10_3389_fgene_2018_00578 crossref_primary_10_1002_wsbm_1465 crossref_primary_10_1074_jbc_M117_786863 crossref_primary_10_1038_s41421_020_00203_8 crossref_primary_10_3390_cells9092049 crossref_primary_10_1016_j_phrs_2023_106940 crossref_primary_10_1007_s12015_020_10055_0 crossref_primary_10_26508_lsa_202201388 crossref_primary_10_1038_s41467_020_20543_z crossref_primary_10_1016_j_molcel_2021_12_037 crossref_primary_10_1016_j_mad_2020_111309 crossref_primary_10_3390_genes11010003 crossref_primary_10_1016_j_plaphy_2019_06_012 crossref_primary_10_3390_ijms222011134 crossref_primary_10_1007_s11427_024_2784_3 crossref_primary_10_1016_j_molcel_2017_02_026 crossref_primary_10_1002_advs_202204885 crossref_primary_10_1016_j_pnpbp_2020_110068 crossref_primary_10_1371_journal_pbio_3002354 crossref_primary_10_1186_s12864_022_08933_7 crossref_primary_10_1038_s41467_025_61029_0 crossref_primary_10_1109_TCBB_2021_3139634 crossref_primary_10_1016_j_molmet_2020_101083 crossref_primary_10_1038_s44318_024_00329_5 crossref_primary_10_1534_genetics_119_302254 crossref_primary_10_1093_nar_gkac468 crossref_primary_10_1186_s13072_018_0251_8 crossref_primary_10_1136_jitc_2022_005693 crossref_primary_10_15252_embj_2023113798 crossref_primary_10_1007_s11104_025_07819_3 crossref_primary_10_3390_agronomy13020519 crossref_primary_10_1080_21541264_2023_2246868 crossref_primary_10_1186_s13148_022_01331_6 crossref_primary_10_1016_j_cnd_2024_07_002 crossref_primary_10_1038_s41420_021_00750_3 crossref_primary_10_1186_s13045_020_01027_5 crossref_primary_10_1111_febs_14833 crossref_primary_10_3390_cells13161393 crossref_primary_10_1186_s13046_021_01987_7 crossref_primary_10_1016_j_bbrc_2024_150715 crossref_primary_10_1038_s41598_021_95165_6 crossref_primary_10_1093_nar_gkaa051 crossref_primary_10_1016_j_tcb_2024_06_001 crossref_primary_10_1093_humupd_dmy021 crossref_primary_10_1128_MCB_00352_17 crossref_primary_10_3390_epigenomes2040019 crossref_primary_10_1093_biolre_ioac047 crossref_primary_10_1038_s41467_022_32165_8 crossref_primary_10_3389_fgene_2022_920641 crossref_primary_10_3389_fcell_2024_1475912 crossref_primary_10_1038_s41437_022_00533_1 crossref_primary_10_1186_s12915_024_01903_3 crossref_primary_10_1038_s12276_021_00711_x crossref_primary_10_1101_gad_322776_118 crossref_primary_10_1038_s41598_021_98935_4 crossref_primary_10_3389_fgene_2019_01207 crossref_primary_10_1111_febs_16204 crossref_primary_10_1101_gad_300475_117 crossref_primary_10_3390_cells8040339 crossref_primary_10_1080_15384101_2021_1986317 crossref_primary_10_1038_s41467_022_28471_w crossref_primary_10_1007_s00018_019_03143_z crossref_primary_10_1093_nar_gkaf632 crossref_primary_10_3390_ijms241512158 crossref_primary_10_1016_j_bbagrm_2020_194578 crossref_primary_10_1186_s12864_019_5729_7 crossref_primary_10_1186_s13148_021_01126_1 crossref_primary_10_1186_s12870_024_05900_0 crossref_primary_10_1101_gr_275736_121 crossref_primary_10_1101_gad_349748_122 crossref_primary_10_1038_s41417_022_00503_z crossref_primary_10_1111_mmi_14320 crossref_primary_10_1101_gr_276042_121 crossref_primary_10_1111_nph_14933 crossref_primary_10_3390_ijms231911804 crossref_primary_10_1038_s41467_025_63291_8 crossref_primary_10_1371_journal_ppat_1007066 crossref_primary_10_1038_s41598_019_56341_x crossref_primary_10_4103_JCRP_JCRP_5_20 crossref_primary_10_1039_D2SC05944D crossref_primary_10_1093_jxb_erae205 crossref_primary_10_3389_fvets_2022_822367 crossref_primary_10_3390_cancers13102407 crossref_primary_10_1523_JNEUROSCI_0558_22_2022 crossref_primary_10_1038_s41598_024_53519_w crossref_primary_10_1093_nar_gkaa715 crossref_primary_10_1007_s00018_022_04352_9 crossref_primary_10_1111_febs_15219 crossref_primary_10_1186_s12915_022_01426_9 crossref_primary_10_1093_nar_gkz880 crossref_primary_10_1016_j_tox_2019_152340 crossref_primary_10_7554_eLife_83135 crossref_primary_10_3389_fcell_2020_597498 crossref_primary_10_1038_s42003_023_05601_8 |
| Cites_doi | 10.1038/nature04785 10.1186/gb-2009-10-6-r62 10.1128/MCB.21.15.5109-5121.2001 10.1128/MCB.06092-11 10.1016/S1097-2765(03)00092-3 10.1371/journal.pgen.1001354 10.1371/journal.pgen.1005794 10.1007/s11103-007-9135-1 10.1074/jbc.C500395200 10.1146/annurev-biochem-060614-034242 10.1038/nrm3943 10.1038/ncomms1732 10.1038/nature00883 10.1016/j.molcel.2012.11.008 10.1016/j.molcel.2013.01.034 10.1038/nature09652 10.1038/nature04802 10.1038/nsmb.2653 10.1016/S1097-2765(03)00438-6 10.1038/nrc3929 10.1371/journal.pbio.1001369 10.1371/journal.pgen.1003111 10.1128/MCB.05017-11 10.1016/j.molcel.2003.08.001 10.1016/j.cell.2015.10.051 10.1016/j.molcel.2012.10.026 10.1038/378505a0 10.1128/MCB.01520-09 10.1016/j.cell.2006.04.029 10.1073/pnas.0503630102 10.1016/j.molcel.2015.02.002 10.1016/j.cell.2005.06.021 10.1038/nature04290 10.1016/j.molcel.2006.10.026 10.1186/1471-2229-10-238 10.1038/nature08924 10.1016/j.cell.2010.05.016 10.1016/j.cell.2015.03.027 10.1016/j.jmb.2008.04.061 10.1074/jbc.C200348200 10.1016/j.molcel.2007.11.010 10.1128/MCB.05590-11 10.1016/j.cell.2011.09.057 10.1128/MCB.21.22.7601-7606.2001 10.1242/dev.102681 10.1038/ng.3385 10.1016/j.cell.2005.01.001 10.1016/S1097-2765(03)00091-1 10.1371/journal.pgen.1004095 10.1101/gad.2037511 10.1038/nature06160 10.1128/MCB.00924-09 10.1074/jbc.M806936200 10.1074/jbc.M609900200 10.1016/j.cell.2007.08.016 10.1128/MCB.01050-08 10.7554/eLife.03635 10.1128/MCB.00801-07 10.1186/s12864-015-1485-5 10.1038/nsmb1128 10.1038/nature01080 10.7554/eLife.10607 10.1038/ncb1088 10.1038/38444 10.1016/j.molcel.2005.07.024 10.1038/nsmb.1778 10.1128/MCB.20.6.2108-2121.2000 10.1016/j.molcel.2011.03.026 10.1242/dev.02302 10.1128/MCB.25.12.4881-4891.2005 10.1038/nsmb1200 10.1002/j.1460-2075.1992.tb05408.x 10.1128/MCB.00573-06 10.1016/j.celrep.2012.05.019 10.1146/annurev-biochem-051710-134100 10.1038/nsmb.2598 10.1016/j.cell.2014.06.027 10.1371/journal.pbio.1001442 10.1038/ncomms12284 10.1074/jbc.M115.693085 10.1016/j.cell.2005.03.036 10.1038/onc.2008.443 10.1016/j.cell.2011.03.053 10.1128/MCB.01356-07 10.1016/j.stem.2016.02.004 10.1016/j.cell.2011.01.020 10.1371/journal.pgen.1000837 10.1371/journal.pgen.1006224 10.1371/journal.pgen.1001082 10.1093/nar/30.4.958 10.1074/jbc.M110.117333 10.1186/1471-2164-15-247 10.1126/science.1184208 10.1105/tpc.110.080150 10.1038/nature09195 10.1073/pnas.0810100105 10.1016/j.cell.2013.01.052 10.1038/emboj.2011.193 10.1038/nsmb1131 10.1016/j.cub.2010.01.017 10.1038/nrc3959 10.1038/emboj.2011.194 10.1016/j.cell.2007.05.042 10.1126/science.1225739 10.1038/ncomms11949 10.1038/emboj.2008.257 10.1186/gb-2014-15-6-r85 10.1371/journal.pgen.1002952 10.1016/j.cell.2007.05.009 10.1101/gr.204578.116 10.1371/journal.pone.0101538 10.1073/pnas.1320337111 10.1074/jbc.C600286200 10.1038/nature04835 10.1038/ncomms10148 10.1074/jbc.C109.097667 10.1038/nsmb.2881 10.1038/nature04815 10.1038/nature08866 10.1073/pnas.1109360108 10.1016/j.molcel.2005.05.009 10.1128/MCB.00976-08 10.1016/j.molcel.2014.07.004 10.1371/journal.pbio.0030328 10.1016/j.molcel.2006.12.014 10.1073/pnas.082249499 10.1128/MCB.01181-13 10.1016/j.cell.2010.08.020 10.1016/j.cell.2011.03.003 10.1038/nsmb1204 10.1038/sj.emboj.7600204 10.1016/j.cell.2005.04.031 10.1105/tpc.107.056879 10.1101/gad.194209.112 10.1093/bfgp/ell022 |
| ContentType | Journal Article |
| Copyright | 2016 WILEY Periodicals, Inc. 2016 The Authors. BioEssays Published by WILEY Periodicals, Inc. 2017 WILEY Periodicals, Inc. |
| Copyright_xml | – notice: 2016 WILEY Periodicals, Inc. – notice: 2016 The Authors. BioEssays Published by WILEY Periodicals, Inc. – notice: 2017 WILEY Periodicals, Inc. |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QL 7QO 7QP 7QR 7SS 7T7 7TK 7TM 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 |
| DOI | 10.1002/bies.201600095 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Bacteriology Abstracts (Microbiology B) Biotechnology Research Abstracts Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Entomology Abstracts (Full archive) Industrial and Applied Microbiology Abstracts (Microbiology A) Neurosciences Abstracts Nucleic Acids Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Technology Research Database Nucleic Acids Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Biotechnology Research Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Engineering Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) Calcium & Calcified Tissue Abstracts MEDLINE - Academic |
| DatabaseTitleList | Virology and AIDS Abstracts Virology and AIDS Abstracts MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 1521-1878 |
| EndPage | 12 |
| ExternalDocumentID | 4284519451 28004446 10_1002_bies_201600095 BIES201600095 |
| Genre | reviewArticle Journal Article Review |
| GrantInformation_xml | – fundername: EPA Cephalosporin Trust Fund – fundername: The Wellcome Trust funderid: WT089156MA; 097302/Z/11/Z – fundername: BBSRC funderid: BB/J001694/1 – fundername: Medical Research Fund, University of Oxford |
| GroupedDBID | --- -~X .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23N 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 85S 8UM 930 A03 AAESR AAEVG AAHBH AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEFU ABEML ABIJN ABJNI ABLJU ABPVW ABTAH ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFS ACIWK ACKIV ACKOT ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BQCPF BROTX BRXPI BY8 C45 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KD1 KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M56 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OVD P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RWI RWR RX1 RYL SAMSI SUPJJ SV3 TEORI UB1 UDS V2E W8V W99 WBKPD WH7 WIB WIH WIK WJL WNSPC WOHZO WQJ WRC WXSBR WYB WYISQ XG1 XV2 Y6R YYQ YZZ ZGI ZUP ZXP ZY4 ZZTAW ~IA ~KM ~WT AAMMB AAYXX AEFGJ AETEA AEYWJ AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY AIQQE CITATION O8X CGR CUY CVF ECM EIF NPM 7QL 7QO 7QP 7QR 7SS 7T7 7TK 7TM 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 |
| ID | FETCH-LOGICAL-c4675-292f64e3e7149d59e664355a64f6583552360263e2d9255d1daab2a2987974c63 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 237 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000396891900007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0265-9247 1521-1878 |
| IngestDate | Sun Nov 09 12:24:00 EST 2025 Fri Jul 25 19:39:19 EDT 2025 Fri Jul 25 10:35:05 EDT 2025 Thu Apr 03 07:07:18 EDT 2025 Sat Nov 29 05:24:41 EST 2025 Tue Nov 18 21:55:31 EST 2025 Wed Jan 22 17:10:38 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | CFP1/Spp1 transcription activation transcription H3K4me3 methylation Set1 chromatin |
| Language | English |
| License | 2016 The Authors. BioEssays Published by WILEY Periodicals, Inc. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4675-292f64e3e7149d59e664355a64f6583552360263e2d9255d1daab2a2987974c63 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
| PMID | 28004446 |
| PQID | 1851047056 |
| PQPubID | 37030 |
| PageCount | 12 |
| ParticipantIDs | proquest_miscellaneous_1851695600 proquest_journals_1900665891 proquest_journals_1851047056 pubmed_primary_28004446 crossref_primary_10_1002_bies_201600095 crossref_citationtrail_10_1002_bies_201600095 wiley_primary_10_1002_bies_201600095_BIES201600095 |
| PublicationCentury | 2000 |
| PublicationDate | January 2017 |
| PublicationDateYYYYMMDD | 2017-01-01 |
| PublicationDate_xml | – month: 01 year: 2017 text: January 2017 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: Cambridge |
| PublicationTitle | BioEssays |
| PublicationTitleAlternate | Bioessays |
| PublicationYear | 2017 |
| Publisher | Wiley Subscription Services, Inc |
| Publisher_xml | – name: Wiley Subscription Services, Inc |
| References | 2010; 10 2010; 17 2010; 466 2010; 464 2004; 23 2002; 99 2002; 277 2004; 6 1995; 378 2008; 105 2012; 13 2012; 10 2014; 21 1997; 389 2010; 20 2009; 10 2006; 24 2015; 84 2005; 102 2008; 28 2006; 26 2014; 15 2008; 20 2012; 26 2007; 64 2010; 30 2006; 442 2010; 6 2006; 441 2014; 10 2015; 58 2007; 449 2007; 282 2010; 327 2010; 285 2002; 418 2002; 419 2016; 18 2014; 158 2011; 7 2007; 14 2016; 12 2001; 21 2016; 5 2011; 147 2016; 7 2005; 19 2005; 120 2005; 121 2013; 339 2005; 122 2005; 3 2014; 141 2005; 18 2016; 26 2011; 145 2011; 144 2013; 29 2013; 20 2010; 141 2010; 142 1992; 11 1998; 42 2006; 133 2003; 11 2008; 380 2005; 25 2003; 12 2007; 28 2015; 47 2015; 290 2014; 3 2007; 130 2007; 131 2013; 152 2011; 23 2011; 25 2014; 9 2014; 163 2014; 55 2007; 25 2006; 125 2007; 27 2012; 81 2015; 15 2015; 161 2007; 129 2015; 6 2015; 16 2013; 49 2002; 30 2006; 13 2016; 9999 2000; 20 2011; 31 2011; 30 2005; 438 2006; 5 2014; 111 2008; 283 2009; 29 2009; 28 2005; 280 2012; 2 2011; 108 2012; 3 2011; 469 2013; 33 2011; 42 2001; 2 2012; 8 e_1_2_6_114_1 e_1_2_6_137_1 e_1_2_6_53_1 e_1_2_6_76_1 e_1_2_6_95_1 e_1_2_6_118_1 e_1_2_6_30_1 e_1_2_6_72_1 e_1_2_6_91_1 e_1_2_6_133_1 e_1_2_6_19_1 Ingham PW. (e_1_2_6_20_1) 1998; 42 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_15_1 e_1_2_6_38_1 e_1_2_6_57_1 e_1_2_6_99_1 e_1_2_6_125_1 e_1_2_6_64_1 e_1_2_6_87_1 e_1_2_6_106_1 e_1_2_6_129_1 e_1_2_6_41_1 e_1_2_6_60_1 e_1_2_6_83_1 Kooistra SM (e_1_2_6_124_1) 2012; 13 e_1_2_6_140_1 e_1_2_6_121_1 e_1_2_6_102_1 e_1_2_6_9_1 e_1_2_6_5_1 e_1_2_6_49_1 e_1_2_6_22_1 e_1_2_6_45_1 e_1_2_6_26_1 e_1_2_6_68_1 e_1_2_6_73_1 e_1_2_6_136_1 e_1_2_6_54_1 e_1_2_6_96_1 e_1_2_6_117_1 e_1_2_6_31_1 e_1_2_6_50_1 e_1_2_6_92_1 e_1_2_6_132_1 e_1_2_6_113_1 e_1_2_6_35_1 e_1_2_6_12_1 e_1_2_6_39_1 e_1_2_6_77_1 e_1_2_6_16_1 e_1_2_6_58_1 e_1_2_6_84_1 e_1_2_6_42_1 e_1_2_6_105_1 e_1_2_6_128_1 e_1_2_6_65_1 e_1_2_6_80_1 e_1_2_6_109_1 e_1_2_6_61_1 e_1_2_6_120_1 e_1_2_6_101_1 e_1_2_6_6_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_88_1 e_1_2_6_27_1 e_1_2_6_46_1 e_1_2_6_51_1 e_1_2_6_74_1 e_1_2_6_97_1 e_1_2_6_116_1 e_1_2_6_139_1 e_1_2_6_32_1 e_1_2_6_70_1 e_1_2_6_93_1 e_1_2_6_131_1 e_1_2_6_112_1 e_1_2_6_135_1 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_59_1 e_1_2_6_17_1 e_1_2_6_55_1 e_1_2_6_78_1 e_1_2_6_62_1 e_1_2_6_85_1 e_1_2_6_104_1 e_1_2_6_43_1 e_1_2_6_127_1 e_1_2_6_81_1 e_1_2_6_108_1 e_1_2_6_100_1 e_1_2_6_123_1 e_1_2_6_7_1 e_1_2_6_24_1 e_1_2_6_3_1 e_1_2_6_66_1 e_1_2_6_89_1 e_1_2_6_28_1 e_1_2_6_47_1 e_1_2_6_52_1 e_1_2_6_98_1 e_1_2_6_115_1 e_1_2_6_75_1 e_1_2_6_138_1 e_1_2_6_10_1 e_1_2_6_94_1 e_1_2_6_119_1 e_1_2_6_71_1 e_1_2_6_90_1 e_1_2_6_130_1 e_1_2_6_111_1 e_1_2_6_134_1 Khan DH (e_1_2_6_110_1) 2016; 9999 e_1_2_6_14_1 e_1_2_6_33_1 Clouaire T (e_1_2_6_69_1) 2014; 15 e_1_2_6_18_1 e_1_2_6_56_1 e_1_2_6_37_1 e_1_2_6_79_1 e_1_2_6_103_1 e_1_2_6_126_1 e_1_2_6_63_1 e_1_2_6_86_1 e_1_2_6_21_1 e_1_2_6_107_1 e_1_2_6_40_1 e_1_2_6_82_1 e_1_2_6_122_1 e_1_2_6_8_1 e_1_2_6_4_1 e_1_2_6_25_1 e_1_2_6_48_1 e_1_2_6_29_1 e_1_2_6_44_1 e_1_2_6_67_1 |
| References_xml | – volume: 21 start-page: 854 year: 2014 end-page: 63 article-title: High‐temporal‐resolution view of transcription and chromatin states across distinct metabolic states in budding yeast publication-title: Nat Struct Mol Biol – volume: 14 start-page: 240 year: 2007 end-page: 2 article-title: Demethylation of trimethylated histone H3 Lys4 in vivo by JARID1 JmjC proteins publication-title: Nat Struct Mol Biol – volume: 380 start-page: 303 year: 2008 end-page: 12 article-title: Histone H3K4me3 binding is required for the DNA repair and apoptotic activities of ING1 tumor suppressor publication-title: J Mol Biol – volume: 29 start-page: 6074 year: 2009 end-page: 85 article-title: Global analysis of H3K4 methylation defines MLL family member targets and points to a role for MLL1‐mediated H3K4 methylation in the regulation of transcriptional initiation by RNA polymerase II publication-title: Mol Cell Biol – volume: 20 start-page: 397 year: 2010 end-page: 406 article-title: Methylation of H3K4 is required for inheritance of active transcriptional states publication-title: Curr Biol – volume: 121 start-page: 859 year: 2005 end-page: 72 article-title: WDR5 associates with histone H3 methylated at K4 and is essential for H3 K4 methylation and vertebrate development publication-title: Cell – volume: 64 start-page: 73 year: 2007 end-page: 87 article-title: Yeast two‐hybrid map of Arabidopsis TFIID publication-title: Plant Mol Biol – volume: 442 start-page: 91 year: 2006 end-page: 5 article-title: Molecular basis for site‐specific read‐out of histone H3K4me3 by the BPTF PHD finger of NURF publication-title: Nature – volume: 15 start-page: 451 year: 2014 article-title: Cfp1 is required for gene expression‐dependent H3K4 trimethylation and H3K9 acetylation in embryonic stem cells publication-title: Genome Biol – volume: 42 start-page: 536 year: 2011 end-page: 49 article-title: The specificity and topology of chromatin interaction pathways in yeast publication-title: Mol Cell – volume: 9999 start-page: 1 year: 2016 end-page: 9 article-title: Dynamic histone acetylation of H3K4me3 nucleosome regulates MCL1 pre‐mRNA splicing publication-title: J Cell Physiol – volume: 18 start-page: 723 year: 2005 end-page: 34 article-title: Dynamic lysine methylation on histone H3 defines the regulatory phase of gene transcription publication-title: Mol Cell – volume: 283 start-page: 33808 year: 2008 end-page: 15 article-title: Human ATAC is a GCN5/PCAF‐containing acetylase complex with a novel NC2‐like histone fold module that interacts with the TATA‐binding protein publication-title: J Biol Chem – volume: 23 start-page: 350 year: 2011 end-page: 63 article-title: Two distinct roles of ARABIDOPSIS HOMOLOG OF TRITHORAX1 (ATX1) at promoters and within transcribed regions of ATX1‐regulated genes publication-title: Plant Cell – volume: 27 start-page: 7856 year: 2007 end-page: 64 article-title: Histone H3 K4 demethylation during activation and attenuation of GAL1 transcription in publication-title: Mol Cell Biol – volume: 2 start-page: 62 year: 2012 end-page: 8 article-title: First exon length controls active chromatin signatures and transcription publication-title: Cell Rep – volume: 145 start-page: 692 year: 2011 end-page: 706 article-title: Recognition of a mononucleosomal histone modification pattern by BPTF via multivalent interactions publication-title: Cell – volume: 29 start-page: 2419 year: 2009 end-page: 30 article-title: Nucleosome remodeling and transcriptional repression are distinct functions of Isw1 in publication-title: Mol Cell Biol – volume: 10 start-page: e1001442 year: 2012 article-title: Genome‐wide RNA polymerase II profiles and RNA accumulation reveal kinetics of transcription and associated epigenetic changes during diurnal cycles publication-title: PLoS Biol – volume: 25 start-page: 15 year: 2007 end-page: 30 article-title: Methylation of lysine 4 on histone H3: intricacy of writing and reading a single epigenetic mark publication-title: Mol Cell – volume: 3 start-page: 740 year: 2012 article-title: Multiple exposures to drought “train” transcriptional responses in Arabidopsis publication-title: Nat Commun – volume: 18 start-page: 481 year: 2016 end-page: 94 article-title: MLL1 inhibition reprograms epiblast stem cells to naive pluripotency publication-title: Cell Stem Cell – volume: 25 start-page: 4881 year: 2005 end-page: 91 article-title: Reduced genomic cytosine methylation and defective cellular differentiation in embryonic stem cells lacking CpG binding protein publication-title: Mol Cell Biol – volume: 55 start-page: 733 year: 2014 end-page: 44 article-title: Lysine acetylation controls local protein conformation by influencing proline isomerization publication-title: Mol Cell – volume: 464 start-page: 1082 year: 2010 end-page: 6 article-title: CpG islands influence chromatin structure via the CpG‐binding protein Cfp1 publication-title: Nature – volume: 378 start-page: 505 year: 1995 end-page: 8 article-title: Altered Hox expression and segmental identity in Mll‐mutant mice publication-title: Nature – volume: 438 start-page: 1181 year: 2005 end-page: 5 article-title: Double chromodomains cooperate to recognize the methylated histone H3 tail publication-title: Nature – volume: 11 start-page: 721 year: 2003 end-page: 9 article-title: The Paf1 complex is required for histone H3 methylation by COMPASS and Dot1p: linking transcriptional elongation to histone methylation publication-title: Mol Cell – volume: 442 start-page: 96 year: 2006 end-page: 9 article-title: ING2 PHD domain links histone H3 lysine 4 methylation to active gene repression publication-title: Nature – volume: 25 start-page: 1010 year: 2011 end-page: 22 article-title: CpG islands and the regulation of transcription publication-title: Genes Dev – volume: 12 start-page: e1005794 year: 2016 article-title: PAF complex plays novel subunit‐specific roles in alternative cleavage and polyadenylation publication-title: PLOS Genet – volume: 441 start-page: 840 year: 2006 end-page: 6 article-title: Single‐cell proteomic analysis of reveals the architecture of biological noise publication-title: Nature – volume: 285 start-page: 9322 year: 2010 end-page: 6 article-title: Recognition of histone H3K4 trimethylation by the plant homeodomain of PHF2 modulates histone demethylation publication-title: J Biol Chem – volume: 49 start-page: 368 year: 2013 end-page: 78 article-title: A map of general and specialized chromatin readers in mouse tissues generated by label‐free interaction proteomics publication-title: Mol Cell – volume: 15 start-page: 334 year: 2015 end-page: 46 article-title: Hijacked in cancer: the KMT2 (MLL) family of methyltransferases publication-title: Nat Rev Cancer – volume: 7 start-page: 11949 year: 2016 article-title: Counteracting H3K4 methylation modulators Set1 and Jhd2 co‐regulate chromatin dynamics and gene transcription publication-title: Nat Commun – volume: 29 start-page: 1093 year: 2013 end-page: 7 article-title: The Mll2 branch of the COMPASS family regulates bivalent promoters in mouse embryonic stem cells publication-title: Nat Struct Mol Biol – volume: 26 start-page: 7871 year: 2006 end-page: 9 article-title: The Yng1p plant homeodomain finger is a methyl‐histone binding module that recognizes lysine 4‐methylated histone H3 publication-title: Mol Cell Biol – volume: 277 start-page: 28368 year: 2002 end-page: 71 article-title: Methylation of histone H3 by COMPASS requires ubiquitination of histone H2B by Rad6 publication-title: J Biol Chem – volume: 16 start-page: 300 year: 2015 article-title: Different distribution of histone modifications in genes with unidirectional and bidirectional transcription and a role of CTCF and cohesin in directing transcription publication-title: BMC Genomics – volume: 14 start-page: 243 year: 2007 end-page: 5 article-title: Yeast Jhd2p is a histone H3 Lys4 trimethyl demethylase publication-title: Nat Struct Mol Biol – volume: 42 start-page: 423 year: 1998 end-page: 9 article-title: Trithorax and the regulation of homeotic gene expression in Drosophila: a historical perspective publication-title: Int J Dev Biol – volume: 469 start-page: 368 year: 2011 end-page: 73 article-title: Nascent transcript sequencing visualizes transcription at nucleotide resolution publication-title: Nature – volume: 10 start-page: e1001369 year: 2012 article-title: Systematic dissection of roles for chromatin regulators in a yeast stress response publication-title: PLoS Biol – volume: 15 start-page: 247 year: 2014 article-title: Dynamic remodeling of histone modifications in response to osmotic stress in publication-title: BMC Genomics – volume: 7 start-page: 1 year: 2016 end-page: 11 article-title: Writing of H3K4Me3 overcomes epigenetic silencing in a sustained, but context‐dependent manner publication-title: Nat Commun – volume: 161 start-page: 526 year: 2015 end-page: 40 article-title: Mammalian NET‐seq reveals genome‐wide nascent transcription coupled to RNA processing publication-title: Cell – volume: 21 start-page: 7601 year: 2001 end-page: 6 article-title: CpG binding protein is crucial for early embryonic development publication-title: Mol Cell Biol – volume: 3 start-page: 1 year: 2014 end-page: 21 article-title: Transcription mediated insulation and interference direct gene cluster expression switches publication-title: Elife – volume: 10 start-page: R62 year: 2009 article-title: Genome‐wide analysis of mono‐, di‐ and trimethylation of histone H3 lysine 4 in publication-title: Genome Biol – volume: 30 start-page: 2829 year: 2011 end-page: 42 article-title: Sgf29 binds histone H3K4me2/3 and is required for SAGA complex recruitment and histone H3 acetylation publication-title: EMBO J – volume: 28 start-page: 609 year: 2008 end-page: 18 article-title: Wdr82 is a C‐terminal domain‐binding protein that recruits the Setd1A Histone H3‐Lys4 methyltransferase complex to transcription start sites of transcribed human genes publication-title: Mol Cell Biol – volume: 99 start-page: 8695 year: 2002 end-page: 700 article-title: Methylation of histone H3 Lys 4 in coding regions of active genes publication-title: Proc Natl Acad Sci USA – volume: 141 start-page: 1183 year: 2010 end-page: 94 article-title: Pro isomerization in MLL1 PHD3‐Bromo cassette connects H3K4me readout to CyP33 and HDAC‐mediated repression publication-title: Cell – volume: 419 start-page: 407 year: 2002 end-page: 11 article-title: Active genes are tri‐methylated at K4 of histoneH3 publication-title: Nature – volume: 282 start-page: 14262 year: 2007 end-page: 71 article-title: Identification of histone demethylases in publication-title: J Biol Chem – volume: 129 start-page: 823 year: 2007 end-page: 37 article-title: High‐resolution profiling of histone methylations in the human genome publication-title: Cell – volume: 141 start-page: 526 year: 2014 end-page: 37 article-title: Mll2 is required for H3K4 trimethylation on bivalent promoters in embryonic stem cells, whereas Mll1 is redundant publication-title: Development – volume: 130 start-page: 77 year: 2007 end-page: 88 article-title: A chromatin landmark and transcription initiation at most promoters in human cells publication-title: Cell – volume: 49 start-page: 1121 year: 2013 end-page: 33 article-title: The n‐SET domain of Set1 regulates H2B ubiquitylation‐dependent H3K4 methylation publication-title: Mol Cell – volume: 442 start-page: 86 year: 2006 end-page: 90 article-title: A PHD finger of NURF couples histone H3 lysine 4 trimethylation with chromatin remodelling publication-title: Nature – volume: 12 start-page: 1325 year: 2003 end-page: 32 article-title: Methylation of histone H3 K4 mediates association of the Isw1p ATPase with chromatin publication-title: Mol Cell – volume: 10 start-page: e1004095 year: 2014 article-title: Loss of histone H3 methylation at lysine 4 triggers apoptosis in publication-title: PLoS Genet – volume: 31 start-page: 3171 year: 2011 end-page: 81 article-title: Histone H3 lysine 4 hypermethylation prevents aberrant nucleosome remodeling at the PHO5 promoter publication-title: Mol Cell Biol – volume: 31 start-page: 4310 year: 2011 end-page: 8 article-title: The COMPASS family of H3K4 methylases in drosophila publication-title: Mol Cell Biol – volume: 47 start-page: 1149 year: 2015 end-page: 57 article-title: Broad H3K4me3 is associated with increased transcription elongation and enhancer activity at tumor‐suppressor genes publication-title: Nat Genet – volume: 84 start-page: 165 year: 2015 end-page: 98 article-title: Regulation of alternative splicing through coupling with transcription and chromatin structure publication-title: Annu Rev Biochem – volume: 449 start-page: 928 year: 2007 end-page: 32 article-title: Arginine methylation at histone H3R2 controls deposition of H3K4 trimethylation publication-title: Nature – volume: 389 start-page: 251 year: 1997 end-page: 60 article-title: Crystal structure of the nucleosome core particle at 2.8 Å resolution publication-title: Nature – volume: 15 start-page: R85 year: 2014 article-title: Characteristic bimodal profiles of RNA polymerase II at thousands of active mammalian promoters publication-title: Genome Biol – volume: 102 start-page: 14765 year: 2005 end-page: 70 article-title: MLL associates specifically with a subset of transcriptionally active target genes publication-title: Proc Natl Acad Sci USA – volume: 19 start-page: 849 year: 2005 end-page: 56 article-title: Molecular regulation of histone H3 trimethylation by COMPASS and the regulation of gene expression publication-title: Mol Cell – volume: 49 start-page: 43 year: 2013 end-page: 54 article-title: Spp1, a member of the Set1 Complex, promotes meiotic DSB formation in promoters by tethering histone H3K4 methylation sites to chromosome axes publication-title: Mol Cell – volume: 12 start-page: 525 year: 2003 end-page: 32 article-title: A slow RNA polymerase II affects alternative splicing in vivo publication-title: Mol Cell – volume: 31 start-page: 3569 year: 2011 end-page: 83 article-title: H3K4 trimethylation by Set1 promotes efficient termination by the Nrd1‐Nab3‐Sen1 pathway publication-title: Mol Cell Biol – volume: 5 start-page: e10607 year: 2016 article-title: PHF13 is a molecular reader and transcriptional co‐regulator of H3K4me2/3 publication-title: Elife – volume: 6 start-page: e1001082 year: 2010 article-title: Methylated H3K4, a transcription‐associated histone modification, is involved in the DNA damage response pathway publication-title: PLoS Genet – volume: 11 start-page: 3297 year: 1992 end-page: 306 article-title: Histone H3 N‐terminal mutations allow hyperactivation of the yeast GAL1 gene in vivo publication-title: EMBO J – volume: 131 start-page: 58 year: 2007 end-page: 69 article-title: Selective anchoring of TFIID to nucleosomes by trimethylation of histone H3 lysine 4 publication-title: Cell – volume: 17 start-page: 445 year: 2010 end-page: 50 article-title: PHF8 activates transcription of rRNA genes through H3K4me3 binding and H3K9me1/2 demethylation publication-title: Nat Struct Mol Biol – volume: 108 start-page: 20526 year: 2011 end-page: 31 article-title: Structural analysis of the core COMPASS family of histone H3K4 methylases from yeast to human publication-title: Proc Natl Acad Sci USA – volume: 26 start-page: 799 year: 2016 end-page: 811 article-title: Divergence of a conserved elongation factor and transcription regulation in budding and fission yeast publication-title: Genome Res – volume: 16 start-page: 190 year: 2015 end-page: 202 article-title: Transcription termination and the control of the transcriptome: why, where and how to stop publication-title: Nat Rev Mol Cell Biol – volume: 105 start-page: 19229 year: 2008 end-page: 34 article-title: Targeted inactivation of MLL3 histone H3‐Lys‐4 methyltransferase activity in the mouse reveals vital roles for MLL3 in adipogenesis publication-title: Proc Natl Acad Sci USA – volume: 2 start-page: 5109 year: 2001 end-page: 21 article-title: The TFIID components human TAFII 140 and Drosophila BIP2 (TAFII 155) are novel metazoan homologues of yeast TAFII 47 containing a histone fold and a PHD finger publication-title: Mol Cell Biol – volume: 122 start-page: 723 year: 2005 end-page: 34 article-title: The Set1 methyltransferase opposes Ipl1 aurora kinase functions in chromosome segregation publication-title: Cell – volume: 28 start-page: 99 year: 2009 end-page: 111 article-title: Histone H3 lysine 4 trimethylation marks meiotic recombination initiation sites publication-title: EMBO J – volume: 133 start-page: 1423 year: 2006 end-page: 32 article-title: Multiple epigenetic maintenance factors implicated by the loss of Mll2 in mouse development publication-title: Development – volume: 28 start-page: 665 year: 2007 end-page: 76 article-title: Recognition of trimethylated histone H3 lysine 4 facilitates the recruitment of transcription postinitiation factors and pre‐mRNA splicing publication-title: Mol Cell – volume: 120 start-page: 169 year: 2005 end-page: 81 article-title: Genomic maps and comparative analysis of histone modifications in human and mouse publication-title: Cell – volume: 20 start-page: 2108 year: 2000 end-page: 21 article-title: Cloning of a mammalian transcriptional activator that binds unmethylated CpG motifs and shares a CXXC domain with DNA methyltransferase, human trithorax, and methyl‐CpG binding domain protein 1 publication-title: Mol Cell Biol – volume: 464 start-page: 922 year: 2010 end-page: 6 article-title: Chromatin signature of embryonic pluripotency is established during genome activation publication-title: Nature – volume: 8 start-page: e1003111 year: 2012 article-title: ATX1‐generated H3K4me3 is required for efficient elongation of transcription, not initiation, at ATX1‐regulated genes publication-title: PLoS Genet – volume: 8 start-page: e1002952 year: 2012 article-title: Two distinct repressive mechanisms for histone 3 lysine 4 methylation through promoting 3′‐end antisense transcription publication-title: PLoS Genet – volume: 58 start-page: 371 year: 2015 end-page: 86 article-title: High‐resolution chromatin dynamics during a yeast stress response publication-title: Mol Cell – volume: 290 start-page: 28760 year: 2015 end-page: 77 article-title: Interaction of the Jhd2 histone H3 Lys‐4 demethylase with chromatin is controlled by histone H2A surfaces and restricted by H2B ubiquitination publication-title: J Biol Chem – volume: 6 start-page: e1000837 year: 2010 article-title: Replication and active demethylation represent partially overlapping mechanisms for erasure of H3K4me3 in budding yeast publication-title: PLoS Genet – volume: 163 start-page: 1281 year: 2014 end-page: 6 article-title: H3K4me3 breadth is linked to cell identity and transcriptional consistency publication-title: Cell – volume: 282 start-page: 2450 year: 2007 end-page: 5 article-title: Proteome‐wide analysis in identifies several PHD fingers as novel direct and selective binding modules of histone H3 methylated at either lysine 4 or lysine 36 publication-title: J Biol Chem – volume: 6 start-page: 162 year: 2004 end-page: 7 article-title: Modulation of heat shock gene expression by the TAC1 chromatin‐modifying complex publication-title: Nat Cell Biol – volume: 327 start-page: 996 year: 2010 end-page: 1000 article-title: Regulation of alternative splicing by histone modifications publication-title: Science – volume: 12 start-page: e1006224 year: 2016 article-title: Downstream antisense transcription predicts genomic features that define the specific chromatin environment at mammalian promoters publication-title: PLOS Genet – volume: 339 start-page: 215 year: 2013 end-page: 8 article-title: The COMPASS subunit Spp1 links histone methylation to initiation of meiotic recombination publication-title: Science – volume: 147 start-page: 1628 year: 2011 end-page: 39 article-title: Combinatorial patterning of chromatin regulators uncovered by genome‐wide location analysis in human cells publication-title: Cell – volume: 30 start-page: 2817 year: 2011 end-page: 28 article-title: Drosophila Set1 is the major histone H3 lysine 4 trimethyltransferase with role in transcription publication-title: EMBO J – volume: 28 start-page: 815 year: 2009 end-page: 23 article-title: Alterations of the CxxC domain preclude oncogenic activation of mixed‐lineage leukemia 2 publication-title: Oncogene – volume: 9 start-page: e01538 year: 2014 article-title: Divergence and selectivity of expression‐coupled histone modifications in budding yeasts publication-title: PLoS ONE – volume: 142 start-page: 967 year: 2010 end-page: 80 article-title: Quantitative interaction proteomics and genome‐wide profiling of epigenetic histone marks and their readers publication-title: Cell – volume: 33 start-page: 4745 year: 2013 end-page: 54 article-title: The MLL3/MLL4 branches of the COMPASS family function as major histone H3K4 monomethylases at enhancers publication-title: Mol Cell Biol – volume: 152 start-page: 1021 year: 2013 end-page: 36 article-title: H3K4me3 interactions with TAF3 regulate preinitiation complex assembly and selective gene activation publication-title: Cell – volume: 24 start-page: 785 year: 2006 end-page: 96 article-title: Yng1 PHD finger binding to H3 trimethylated at K4 promotes NuA3 HAT activity at K14 of H3 and transcription at a subset of targeted ORFs publication-title: Mol Cell – volume: 20 start-page: 851 year: 2013 end-page: 8 article-title: Bimodal expression of PHO84 is modulated by early termination of antisense transcription publication-title: Nat Struct Mol Biol – volume: 418 start-page: 104 year: 2002 end-page: 8 article-title: Ubiquitination of histone H2B regulates H3 methylation and gene silencing in yeast publication-title: Nature – volume: 5 start-page: 179 year: 2006 end-page: 89 article-title: Regulation of histone H2A and H2B ubiquitylation publication-title: Briefings Funct Genomics Proteomics – volume: 466 start-page: 383 year: 2010 end-page: 7 article-title: Members of the H3K4 trimethylation complex regulate lifespan in a germline‐dependent manner in publication-title: Nature – volume: 3 start-page: e328 year: 2005 article-title: Single‐nucleosome mapping of histone modifications in S. cerevisiae publication-title: PLoS Biol – volume: 144 start-page: 513 year: 2011 end-page: 25 article-title: Role for Dpy‐30 in ES cell‐fate specification by regulation of H3K4 methylation within bivalent domains publication-title: Cell – volume: 13 start-page: 297 year: 2012 end-page: 311 article-title: Molecular mechanisms and potential functions of histone demethylases publication-title: Nat Publ Gr – volume: 26 start-page: 1714 year: 2012 end-page: 28 article-title: Cfp1 integrates both CpG content and gene activity for accurate H3K4me3 deposition in embryonic stem cells publication-title: Genes Dev – volume: 15 start-page: 499 year: 2015 end-page: 509 article-title: Control of cancer formation by intrinsic genetic noise and microenvironmental cues publication-title: Nat Rev Cancer – volume: 125 start-page: 703 year: 2006 end-page: 17 article-title: Histone H2B monoubiquitination functions cooperatively with FACT to regulate elongation by RNA polymerase II publication-title: Cell – volume: 13 start-page: 713 year: 2006 end-page: 9 article-title: Regulation of MLL1 H3K4 methyltransferase activity by its core components publication-title: Nat Struct Mol Biol – volume: 13 start-page: 852 year: 2006 end-page: 4 article-title: Molecular regulation of H3K4 trimethylation by ASH2L, a shared subunit of MLL complexes publication-title: Nat Struct Mol Biol – volume: 280 start-page: 41789 year: 2005 end-page: 92 article-title: Human but not yeast CHD1 binds directly and selectively to histone H3 methylated at lysine 4 via its tandem chromodomains publication-title: J Biol Chem – volume: 111 start-page: 4850 year: 2014 end-page: 5 article-title: Histone H3 lysine 4 trimethylation regulates cotranscriptional H2A variant exchange by Tip60 complexes to maximize gene expression publication-title: Proc Natl Acad Sci USA – volume: 28 start-page: 7337 year: 2008 end-page: 44 article-title: Molecular regulation of H3K4 trimethylation by Wdr82, a component of human Set1/COMPASS publication-title: Mol Cell Biol – volume: 10 start-page: 238 year: 2010 article-title: Dynamic changes in genome‐wide histone H3 lysine 4 methylation patterns in response to dehydration stress in publication-title: BMC Plant Biol – volume: 121 start-page: 873 year: 2005 end-page: 85 article-title: Physical association and coordinate function of the H3 K4 methyltransferase MLL1 and the H4 K16 acetyltransferase MOF publication-title: Cell – volume: 30 start-page: 958 year: 2002 end-page: 65 article-title: The MT domain of the proto‐oncoprotein MLL binds to CpG‐containing DNA and discriminates against methylation publication-title: Nucleic Acids Res – volume: 7 start-page: e1001354 year: 2011 article-title: H3 lysine 4 is acetylated at active gene promoters and is regulated by H3 lysine 4 methylation publication-title: PLoS Genet – volume: 11 start-page: 709 year: 2003 end-page: 19 article-title: Targeted recruitment of Set1 histone methylase by elongating Pol II provides a localized mark and memory of recent transcriptional activity publication-title: Mol Cell – volume: 20 start-page: 259 year: 2008 end-page: 76 article-title: High‐resolution mapping of epigenetic modifications of the rice genome uncovers interplay between DNA methylation, histone methylation, and gene expression publication-title: Plant Cell – volume: 23 start-page: 1957 year: 2004 end-page: 67 article-title: Set1 is required for meiotic S‐phase onset, double‐strand break formation and middle gene expression publication-title: EMBO J – volume: 6 start-page: 10148 year: 2015 article-title: Embryonic transcription is controlled by maternally defined chromatin state publication-title: Nat Commun – volume: 285 start-page: 24548 year: 2010 end-page: 61 article-title: The JmjN domain of Jhd2 is important for its protein stability, and the plant homeodomain (PHD) finger mediates its chromatin association independent of H3K4 methylation publication-title: J Biol Chem – volume: 158 start-page: 673 year: 2014 end-page: 88 article-title: H3K4me3 breadth is linked to cell identity and transcriptional consistency publication-title: Cell – volume: 81 start-page: 65 year: 2012 end-page: 95 article-title: The COMPASS family of histone H3K4 methylases: mechanisms of regulation in development and disease pathogenesis publication-title: Annu Rev Biochem – volume: 145 start-page: 183 year: 2011 end-page: 7 article-title: Wdr5 mediates self‐renewal and reprogramming via the embryonic stem cell core transcriptional network publication-title: Cell – volume: 30 start-page: 3286 year: 2010 end-page: 98 article-title: PHF8 targets histone methylation and RNA polymerase II to activate transcription publication-title: Mol Cell Biol – ident: e_1_2_6_123_1 doi: 10.1038/nature04785 – ident: e_1_2_6_32_1 doi: 10.1186/gb-2009-10-6-r62 – ident: e_1_2_6_88_1 doi: 10.1128/MCB.21.15.5109-5121.2001 – ident: e_1_2_6_13_1 doi: 10.1128/MCB.06092-11 – ident: e_1_2_6_117_1 doi: 10.1016/S1097-2765(03)00092-3 – ident: e_1_2_6_34_1 doi: 10.1371/journal.pgen.1001354 – volume: 42 start-page: 423 year: 1998 ident: e_1_2_6_20_1 article-title: Trithorax and the regulation of homeotic gene expression in Drosophila: a historical perspective publication-title: Int J Dev Biol – ident: e_1_2_6_96_1 doi: 10.1371/journal.pgen.1005794 – ident: e_1_2_6_89_1 doi: 10.1007/s11103-007-9135-1 – ident: e_1_2_6_106_1 doi: 10.1074/jbc.C500395200 – ident: e_1_2_6_109_1 doi: 10.1146/annurev-biochem-060614-034242 – ident: e_1_2_6_113_1 doi: 10.1038/nrm3943 – ident: e_1_2_6_120_1 doi: 10.1038/ncomms1732 – ident: e_1_2_6_99_1 doi: 10.1038/nature00883 – ident: e_1_2_6_41_1 doi: 10.1016/j.molcel.2012.11.008 – ident: e_1_2_6_68_1 doi: 10.1016/j.molcel.2013.01.034 – ident: e_1_2_6_71_1 doi: 10.1038/nature09652 – ident: e_1_2_6_137_1 doi: 10.1038/nature04802 – ident: e_1_2_6_64_1 doi: 10.1038/nsmb.2653 – ident: e_1_2_6_83_1 doi: 10.1016/S1097-2765(03)00438-6 – ident: e_1_2_6_18_1 doi: 10.1038/nrc3929 – ident: e_1_2_6_79_1 doi: 10.1371/journal.pbio.1001369 – ident: e_1_2_6_48_1 doi: 10.1371/journal.pgen.1003111 – ident: e_1_2_6_114_1 doi: 10.1128/MCB.05017-11 – ident: e_1_2_6_108_1 doi: 10.1016/j.molcel.2003.08.001 – ident: e_1_2_6_46_1 doi: 10.1016/j.cell.2015.10.051 – ident: e_1_2_6_59_1 doi: 10.1016/j.molcel.2012.10.026 – ident: e_1_2_6_8_1 doi: 10.1038/378505a0 – ident: e_1_2_6_133_1 doi: 10.1128/MCB.01520-09 – ident: e_1_2_6_90_1 doi: 10.1016/j.cell.2006.04.029 – ident: e_1_2_6_93_1 doi: 10.1073/pnas.0503630102 – ident: e_1_2_6_80_1 doi: 10.1016/j.molcel.2015.02.002 – ident: e_1_2_6_47_1 doi: 10.1016/j.cell.2005.06.021 – ident: e_1_2_6_136_1 doi: 10.1038/nature04290 – ident: e_1_2_6_116_1 doi: 10.1016/j.molcel.2006.10.026 – ident: e_1_2_6_33_1 doi: 10.1186/1471-2229-10-238 – ident: e_1_2_6_53_1 doi: 10.1038/nature08924 – ident: e_1_2_6_62_1 doi: 10.1016/j.cell.2010.05.016 – ident: e_1_2_6_140_1 doi: 10.1016/j.cell.2015.03.027 – ident: e_1_2_6_37_1 doi: 10.1016/j.jmb.2008.04.061 – ident: e_1_2_6_98_1 doi: 10.1074/jbc.C200348200 – ident: e_1_2_6_84_1 doi: 10.1016/j.molcel.2007.11.010 – ident: e_1_2_6_112_1 doi: 10.1128/MCB.05590-11 – ident: e_1_2_6_35_1 doi: 10.1016/j.cell.2011.09.057 – ident: e_1_2_6_55_1 doi: 10.1128/MCB.21.22.7601-7606.2001 – ident: e_1_2_6_65_1 doi: 10.1242/dev.102681 – ident: e_1_2_6_36_1 doi: 10.1038/ng.3385 – ident: e_1_2_6_26_1 doi: 10.1016/j.cell.2005.01.001 – ident: e_1_2_6_91_1 doi: 10.1016/S1097-2765(03)00091-1 – ident: e_1_2_6_54_1 doi: 10.1371/journal.pgen.1004095 – ident: e_1_2_6_57_1 doi: 10.1101/gad.2037511 – ident: e_1_2_6_30_1 doi: 10.1038/nature06160 – ident: e_1_2_6_16_1 doi: 10.1128/MCB.00924-09 – ident: e_1_2_6_126_1 doi: 10.1074/jbc.M806936200 – ident: e_1_2_6_76_1 doi: 10.1074/jbc.M609900200 – ident: e_1_2_6_87_1 doi: 10.1016/j.cell.2007.08.016 – ident: e_1_2_6_85_1 doi: 10.1128/MCB.01050-08 – ident: e_1_2_6_72_1 doi: 10.7554/eLife.03635 – ident: e_1_2_6_73_1 doi: 10.1128/MCB.00801-07 – ident: e_1_2_6_43_1 doi: 10.1186/s12864-015-1485-5 – ident: e_1_2_6_14_1 doi: 10.1038/nsmb1128 – ident: e_1_2_6_2_1 doi: 10.1038/nature01080 – ident: e_1_2_6_134_1 doi: 10.7554/eLife.10607 – ident: e_1_2_6_92_1 doi: 10.1038/ncb1088 – ident: e_1_2_6_3_1 doi: 10.1038/38444 – ident: e_1_2_6_52_1 doi: 10.1016/j.molcel.2005.07.024 – ident: e_1_2_6_132_1 doi: 10.1038/nsmb.1778 – ident: e_1_2_6_58_1 doi: 10.1128/MCB.20.6.2108-2121.2000 – ident: e_1_2_6_70_1 doi: 10.1016/j.molcel.2011.03.026 – ident: e_1_2_6_9_1 doi: 10.1242/dev.02302 – ident: e_1_2_6_56_1 doi: 10.1128/MCB.25.12.4881-4891.2005 – ident: e_1_2_6_75_1 doi: 10.1038/nsmb1200 – ident: e_1_2_6_49_1 doi: 10.1002/j.1460-2075.1992.tb05408.x – ident: e_1_2_6_115_1 doi: 10.1128/MCB.00573-06 – ident: e_1_2_6_111_1 doi: 10.1016/j.celrep.2012.05.019 – ident: e_1_2_6_7_1 doi: 10.1146/annurev-biochem-051710-134100 – ident: e_1_2_6_127_1 doi: 10.1038/nsmb.2598 – ident: e_1_2_6_5_1 doi: 10.1016/j.cell.2014.06.027 – ident: e_1_2_6_103_1 doi: 10.1371/journal.pbio.1001442 – ident: e_1_2_6_78_1 doi: 10.1038/ncomms12284 – ident: e_1_2_6_100_1 doi: 10.1074/jbc.M115.693085 – ident: e_1_2_6_21_1 doi: 10.1016/j.cell.2005.03.036 – volume: 13 start-page: 297 year: 2012 ident: e_1_2_6_124_1 article-title: Molecular mechanisms and potential functions of histone demethylases publication-title: Nat Publ Gr – ident: e_1_2_6_61_1 doi: 10.1038/onc.2008.443 – volume: 15 start-page: 451 year: 2014 ident: e_1_2_6_69_1 article-title: Cfp1 is required for gene expression‐dependent H3K4 trimethylation and H3K9 acetylation in embryonic stem cells publication-title: Genome Biol – ident: e_1_2_6_82_1 doi: 10.1016/j.cell.2011.03.053 – ident: e_1_2_6_94_1 doi: 10.1128/MCB.01356-07 – ident: e_1_2_6_24_1 doi: 10.1016/j.stem.2016.02.004 – ident: e_1_2_6_23_1 doi: 10.1016/j.cell.2011.01.020 – ident: e_1_2_6_119_1 doi: 10.1371/journal.pgen.1000837 – ident: e_1_2_6_45_1 doi: 10.1371/journal.pgen.1006224 – ident: e_1_2_6_38_1 doi: 10.1371/journal.pgen.1001082 – ident: e_1_2_6_60_1 doi: 10.1093/nar/30.4.958 – ident: e_1_2_6_77_1 doi: 10.1074/jbc.M110.117333 – ident: e_1_2_6_118_1 doi: 10.1186/1471-2164-15-247 – ident: e_1_2_6_107_1 doi: 10.1126/science.1184208 – ident: e_1_2_6_95_1 doi: 10.1105/tpc.110.080150 – ident: e_1_2_6_19_1 doi: 10.1038/nature09195 – ident: e_1_2_6_10_1 doi: 10.1073/pnas.0810100105 – ident: e_1_2_6_86_1 doi: 10.1016/j.cell.2013.01.052 – ident: e_1_2_6_130_1 doi: 10.1038/emboj.2011.193 – ident: e_1_2_6_15_1 doi: 10.1038/nsmb1131 – ident: e_1_2_6_50_1 doi: 10.1016/j.cub.2010.01.017 – ident: e_1_2_6_121_1 doi: 10.1038/nrc3959 – ident: e_1_2_6_12_1 doi: 10.1038/emboj.2011.194 – ident: e_1_2_6_29_1 doi: 10.1016/j.cell.2007.05.042 – ident: e_1_2_6_40_1 doi: 10.1126/science.1225739 – ident: e_1_2_6_6_1 doi: 10.1038/ncomms11949 – ident: e_1_2_6_39_1 doi: 10.1038/emboj.2008.257 – ident: e_1_2_6_42_1 doi: 10.1186/gb-2014-15-6-r85 – ident: e_1_2_6_44_1 doi: 10.1371/journal.pgen.1002952 – ident: e_1_2_6_28_1 doi: 10.1016/j.cell.2007.05.009 – ident: e_1_2_6_128_1 doi: 10.1101/gr.204578.116 – ident: e_1_2_6_122_1 doi: 10.1371/journal.pone.0101538 – ident: e_1_2_6_139_1 doi: 10.1073/pnas.1320337111 – ident: e_1_2_6_66_1 doi: 10.1074/jbc.C600286200 – ident: e_1_2_6_135_1 doi: 10.1038/nature04835 – ident: e_1_2_6_105_1 doi: 10.1038/ncomms10148 – ident: e_1_2_6_131_1 doi: 10.1074/jbc.C109.097667 – volume: 9999 start-page: 1 year: 2016 ident: e_1_2_6_110_1 article-title: Dynamic histone acetylation of H3K4me3 nucleosome regulates MCL1 pre‐mRNA splicing publication-title: J Cell Physiol – ident: e_1_2_6_101_1 doi: 10.1038/nsmb.2881 – ident: e_1_2_6_138_1 doi: 10.1038/nature04815 – ident: e_1_2_6_104_1 doi: 10.1038/nature08866 – ident: e_1_2_6_67_1 doi: 10.1073/pnas.1109360108 – ident: e_1_2_6_51_1 doi: 10.1016/j.molcel.2005.05.009 – ident: e_1_2_6_11_1 doi: 10.1128/MCB.00976-08 – ident: e_1_2_6_4_1 doi: 10.1016/j.molcel.2014.07.004 – ident: e_1_2_6_27_1 doi: 10.1371/journal.pbio.0030328 – ident: e_1_2_6_81_1 doi: 10.1016/j.molcel.2006.12.014 – ident: e_1_2_6_25_1 doi: 10.1073/pnas.082249499 – ident: e_1_2_6_17_1 doi: 10.1128/MCB.01181-13 – ident: e_1_2_6_129_1 doi: 10.1016/j.cell.2010.08.020 – ident: e_1_2_6_22_1 doi: 10.1016/j.cell.2011.03.003 – ident: e_1_2_6_74_1 doi: 10.1038/nsmb1204 – ident: e_1_2_6_102_1 doi: 10.1038/sj.emboj.7600204 – ident: e_1_2_6_125_1 doi: 10.1016/j.cell.2005.04.031 – ident: e_1_2_6_31_1 doi: 10.1105/tpc.107.056879 – ident: e_1_2_6_63_1 doi: 10.1101/gad.194209.112 – ident: e_1_2_6_97_1 doi: 10.1093/bfgp/ell022 |
| SSID | ssj0009624 |
| Score | 2.6145945 |
| SecondaryResourceType | review_article |
| Snippet | Tri‐methylation of lysine 4 on histone H3 (H3K4me3) is a near‐universal chromatin modification at the transcription start site of active genes in eukaryotes... Tri-methylation of lysine 4 on histone H3 (H3K4me3) is a near-universal chromatin modification at the transcription start site of active genes in eukaryotes... |
| SourceID | proquest pubmed crossref wiley |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 1 |
| SubjectTerms | Animals CFP1/Spp1 Chromatin CpG islands DNA methylation Eukaryota - genetics Eukaryota - metabolism Eukaryotes Genes Genomes H3K4me3 Histone H3 Histones Histones - chemistry Histones - metabolism Humans Lysine Methylation Promoters Set1 transcription Transcription activation Transcription termination Transcriptional Activation Yeast Yeasts |
| Title | Is H3K4me3 instructive for transcription activation? |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fbies.201600095 https://www.ncbi.nlm.nih.gov/pubmed/28004446 https://www.proquest.com/docview/1851047056 https://www.proquest.com/docview/1900665891 https://www.proquest.com/docview/1851695600 |
| Volume | 39 |
| WOSCitedRecordID | wos000396891900007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1521-1878 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009624 issn: 0265-9247 databaseCode: DRFUL dateStart: 19980101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFD64TcEX75fqHBUEn8K69JY8ibcxcQwRJ3sraZrCQDuxc-C_96S3OVQEpQ9tSRpCTk7O9yX0OwAnfhxiYA4FwTsjyDccwn1XEsuJmXS1vnqWkuWx7w8GbDTid5_-4s_1IaoNN-0Z2XqtHVyEaXsuGhpqJkm1QJqGCTVoUJy8bh0aV_fdYX8uvOtliW2RargEuYZfCjdatL3YwmJg-oI2F8FrFn266__v9wasFcjTPM-nyiYsqWQLVvJclO_b4NykZs--dZ6VbY5LWdmZMhHUmlMd0MrlxdS_QuQbuWc7MOxeP1z2SJFSgUhcEV1COY09R9nKR2YUuVx5iEhcV3hOjFAEn6itc1LZikYcyUbUiYQIqaCc-Ug8pGfvQj2ZJGofTCsM_diTDItjR2A9K-ZOJCReGnZJA0g5noEs9MZ12ounIFdKpoEeiaAaCQNOq_ovudLGjzWbpXmCwuPSAHGHVp1APPd9Mc8OmRjvGHBcFaMr6fMRkajJW96Ep_miZcBebvWqJ5RlynrYOM2M-0sXgwsE89XbwV8-OoRVqiFEtt3ThDraXR3BspxNx-lrC2r-iLWKyf4B59D6GQ |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3rS8MwED90U_SL78d8VhD8FNal6SOfxNfY2Bwim-xbadMUBrqJmwP_e-_6GkNFEOmHtiQNIbnL_e7S_A7g3I1DNMxhwPDuMfQ3BJOurZgpYk_ZxK-epGR5arudjtfvy4fsb0I6C5PyQxQBN9KMZL0mBaeAdHXGGhqSK8mJIY1wwiKUBcoSCnn59rHea8-Yd50ksy36GjZDZ8PNmRtNXp1vYd4yfYGb8-g1MT_19X_o-AasZdjTuEqFZRMW9HALltNslB_bIJpjo2G1xIu2jEFOLDvVBsJaY0ImLV9gDDoMkYZyL3egV7_r3jRYllSBKVwTbcYljx2hLe2ibxTZUjuISWw7cESMYASfuEVZqSzNI4nuRlSLgiDkAZeei66HcqxdKA1HQ70PhhmGbuwoD4tjEWA9M5YiChReBLxUBVg-oL7KGMcp8cWzn3Ilc59Gwi9GogIXRf3XlGvjx5pH-fz4mc6NfUQexDuBiO77YplsM3myVoGzohiViXZIgqEevadNOOQxmhXYS6e96An3Em49bJwns_tLF_1rhPPF28FfPjqFlUb3vu23m53WIaxyAhRJ8OcISigD-hiW1HQyGL-dZDL_CREt_SE |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bS8MwFD7ovOCL90u9VhB8CqtpesmTqLM4NsYQlb2VNk1B0CpuDvz3ntPbGCqCSB_akjSEJCfn-5LmOwAnXhqjY44jhnefId8QTHqOYpZIfeWQvnoekuWh6_V6_mAg--XfhHQWptCHqBfcyDLy-ZoMXL8maXOiGhoTleSkkEY4YRbmBEWSacBc6za4706Ud908si1yDYch2fAq5UaLN6dLmPZMX-DmNHrN3U-w8g8VX4XlEnuaF8VgWYMZna3DQhGN8mMDRHto3tgd8axt87ESlh1rE2GtOSKXVk0wJh2GKJZyzzfhPri-u7phZVAFpnBOdBiXPHWFtrWH3ChxpHYRkzhO5IoUwQg-cZuiUtmaJxLpRnKWRFHMIy59D6mHcu0taGQvmd4B04pjL3WVj8mpiDCflUqRRAovAl7KAFY1aKhKxXEKfPEUFlrJPKSWCOuWMOC0zv9aaG38mHO_6p-wtLlhiMiDdCcQ0X2fLPNtJl-eGXBcJ6Mx0Q5JlOmX96IIlxijZcB20e11Tbifa-th4Tzv3V-qGF4inK_fdv_y0REs9ltB2G33OnuwxAlP5Gs_-9DAIaAPYF6NR4_Dt8NyyH8CnWb8nA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Is+H3K4me3+instructive+for+transcription+activation%3F&rft.jtitle=BioEssays&rft.au=Howe%2C+Fran%C3%A7oise+S&rft.au=Fischl%2C+Harry&rft.au=Murray%2C+Struan+C&rft.au=Mellor%2C+Jane&rft.date=2017-01-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0265-9247&rft.eissn=1521-1878&rft.volume=39&rft.issue=1&rft.spage=1&rft_id=info:doi/10.1002%2Fbies.201600095&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0265-9247&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0265-9247&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0265-9247&client=summon |