Is H3K4me3 instructive for transcription activation?

Tri‐methylation of lysine 4 on histone H3 (H3K4me3) is a near‐universal chromatin modification at the transcription start site of active genes in eukaryotes from yeast to man and its levels reflect the amount of transcription. Because of this association, H3K4me3 is often described as an ‘activating...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:BioEssays Ročník 39; číslo 1; s. 1 - 12
Hlavní autoři: Howe, Françoise S., Fischl, Harry, Murray, Struan C., Mellor, Jane
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States Wiley Subscription Services, Inc 01.01.2017
Témata:
ISSN:0265-9247, 1521-1878, 1521-1878
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Tri‐methylation of lysine 4 on histone H3 (H3K4me3) is a near‐universal chromatin modification at the transcription start site of active genes in eukaryotes from yeast to man and its levels reflect the amount of transcription. Because of this association, H3K4me3 is often described as an ‘activating’ histone modification and assumed to have an instructive role in the transcription of genes, but the field is lacking a conserved mechanism to support this view. The overwhelming finding from genome‐wide studies is that actually very little transcription changes upon removal of most H3K4me3 under steady‐state or dynamically changing conditions, including at mammalian CpG island promoters. Instead, rather than a major role in instructing transcription, time‐resolved experiments provide more evidence supporting the deposition of H3K4me3 into chromatin as a result of transcription, influencing processes such as memory of previous states, transcriptional consistency between cells in a population and transcription termination. The so‐called activating histone modification H3K4me3 correlates strongly with transcription, yet, the transcription of only a minority of genes changes when H3K4me3 is reduced. Instead, at most genes H3K4me3 may be deposited as a result of transcription to regulate post‐transcriptional processes such as transcriptional memory and gene expression noise.
AbstractList Tri-methylation of lysine 4 on histone H3 (H3K4me3) is a near-universal chromatin modification at the transcription start site of active genes in eukaryotes from yeast to man and its levels reflect the amount of transcription. Because of this association, H3K4me3 is often described as an 'activating' histone modification and assumed to have an instructive role in the transcription of genes, but the field is lacking a conserved mechanism to support this view. The overwhelming finding from genome-wide studies is that actually very little transcription changes upon removal of most H3K4me3 under steady-state or dynamically changing conditions, including at mammalian CpG island promoters. Instead, rather than a major role in instructing transcription, time-resolved experiments provide more evidence supporting the deposition of H3K4me3 into chromatin as a result of transcription, influencing processes such as memory of previous states, transcriptional consistency between cells in a population and transcription termination.
Tri-methylation of lysine 4 on histone H3 (H3K4me3) is a near-universal chromatin modification at the transcription start site of active genes in eukaryotes from yeast to man and its levels reflect the amount of transcription. Because of this association, H3K4me3 is often described as an 'activating' histone modification and assumed to have an instructive role in the transcription of genes, but the field is lacking a conserved mechanism to support this view. The overwhelming finding from genome-wide studies is that actually very little transcription changes upon removal of most H3K4me3 under steady-state or dynamically changing conditions, including at mammalian CpG island promoters. Instead, rather than a major role in instructing transcription, time-resolved experiments provide more evidence supporting the deposition of H3K4me3 into chromatin as a result of transcription, influencing processes such as memory of previous states, transcriptional consistency between cells in a population and transcription termination.Tri-methylation of lysine 4 on histone H3 (H3K4me3) is a near-universal chromatin modification at the transcription start site of active genes in eukaryotes from yeast to man and its levels reflect the amount of transcription. Because of this association, H3K4me3 is often described as an 'activating' histone modification and assumed to have an instructive role in the transcription of genes, but the field is lacking a conserved mechanism to support this view. The overwhelming finding from genome-wide studies is that actually very little transcription changes upon removal of most H3K4me3 under steady-state or dynamically changing conditions, including at mammalian CpG island promoters. Instead, rather than a major role in instructing transcription, time-resolved experiments provide more evidence supporting the deposition of H3K4me3 into chromatin as a result of transcription, influencing processes such as memory of previous states, transcriptional consistency between cells in a population and transcription termination.
Tri‐methylation of lysine 4 on histone H3 (H3K4me3) is a near‐universal chromatin modification at the transcription start site of active genes in eukaryotes from yeast to man and its levels reflect the amount of transcription. Because of this association, H3K4me3 is often described as an ‘activating’ histone modification and assumed to have an instructive role in the transcription of genes, but the field is lacking a conserved mechanism to support this view. The overwhelming finding from genome‐wide studies is that actually very little transcription changes upon removal of most H3K4me3 under steady‐state or dynamically changing conditions, including at mammalian CpG island promoters. Instead, rather than a major role in instructing transcription, time‐resolved experiments provide more evidence supporting the deposition of H3K4me3 into chromatin as a result of transcription, influencing processes such as memory of previous states, transcriptional consistency between cells in a population and transcription termination. The so‐called activating histone modification H3K4me3 correlates strongly with transcription, yet, the transcription of only a minority of genes changes when H3K4me3 is reduced. Instead, at most genes H3K4me3 may be deposited as a result of transcription to regulate post‐transcriptional processes such as transcriptional memory and gene expression noise.
Author Mellor, Jane
Fischl, Harry
Howe, Françoise S.
Murray, Struan C.
Author_xml – sequence: 1
  givenname: Françoise S.
  surname: Howe
  fullname: Howe, Françoise S.
  organization: University of Oxford
– sequence: 2
  givenname: Harry
  surname: Fischl
  fullname: Fischl, Harry
  organization: University of Oxford
– sequence: 3
  givenname: Struan C.
  surname: Murray
  fullname: Murray, Struan C.
  organization: University of Oxford
– sequence: 4
  givenname: Jane
  surname: Mellor
  fullname: Mellor, Jane
  email: jane.mellor@bioch.ox.ac.uk
  organization: University of Oxford
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28004446$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1LAzEQxYNU7IdePcqCFy9bk-wkuzmJlmqLBQ_qOaS7WUjZj5rsKv3vzdpaoaCeMpDfmzczb4h6VV1phM4JHhOM6fXSaDemmHCMsWBHaEAYJSFJ4qSHBphyFgoKcR8NnVt1CKdwgvo0wRgA-ADB3AWz6BFKHQWmco1t08a86yCvbdBYVbnUmnVj6ipQ3YfqyptTdJyrwumz3TtCr_fTl8ksXDw9zCe3izAFHrOQCppz0JGOCYiMCc05RIwpDjlnia9oxP2IkaaZoIxlJFNqSRUVSSxiSHk0Qlfbvmtbv7XaNbI0LtVFoSpdt06ShBEumN_do5cH6KpubeWnk0RgzL2hIH9SvheGGLPO9mJHtctSZ3JtTansRn5fzQPjLZDa2jmr8z1CsOxikV0sch-LF8CBIDXN1y39jU3xu0xsZR-m0Jt_TOTdfPr8o_0EvRacxg
CODEN BIOEEJ
CitedBy_id crossref_primary_10_1158_2326_6066_CIR_22_0088
crossref_primary_10_1038_s41389_019_0131_5
crossref_primary_10_3390_ijms21072606
crossref_primary_10_1093_bib_bbab254
crossref_primary_10_3390_ijms252010979
crossref_primary_10_1186_s13072_018_0230_0
crossref_primary_10_3389_fimmu_2022_906311
crossref_primary_10_15252_msb_20178007
crossref_primary_10_1038_s41598_024_72163_y
crossref_primary_10_1152_ajpcell_00257_2024
crossref_primary_10_3390_cells8091034
crossref_primary_10_1261_rna_072116_119
crossref_primary_10_1007_s13237_021_00357_0
crossref_primary_10_1016_j_bbagrm_2020_194545
crossref_primary_10_1038_s41467_018_05930_x
crossref_primary_10_1038_s41467_018_04426_y
crossref_primary_10_1038_s41594_023_01087_4
crossref_primary_10_1016_j_gde_2021_01_008
crossref_primary_10_1016_j_jmb_2018_07_013
crossref_primary_10_1016_j_gde_2024_102153
crossref_primary_10_1093_gigascience_giaf077
crossref_primary_10_1093_nar_gkz101
crossref_primary_10_1242_jcs_257717
crossref_primary_10_1002_bies_202200239
crossref_primary_10_1016_j_molcel_2019_01_012
crossref_primary_10_3390_biom11050668
crossref_primary_10_3389_fgene_2018_00609
crossref_primary_10_7554_eLife_34081
crossref_primary_10_1631_jzus_B2200195
crossref_primary_10_1038_s41598_021_95398_5
crossref_primary_10_1093_treephys_tpae072
crossref_primary_10_3389_fimmu_2024_1489378
crossref_primary_10_1038_d41586_019_00823_5
crossref_primary_10_1016_j_bbagrm_2020_194567
crossref_primary_10_1111_cpr_13314
crossref_primary_10_1073_pnas_2001928117
crossref_primary_10_3390_ijms24010603
crossref_primary_10_1042_BCJ20240543
crossref_primary_10_1038_s41467_025_59711_4
crossref_primary_10_1007_s00425_020_03520_0
crossref_primary_10_1016_j_aquatox_2021_105849
crossref_primary_10_3390_cells11132033
crossref_primary_10_1101_gad_352181_124
crossref_primary_10_1101_gad_322222_118
crossref_primary_10_3390_epigenomes5020014
crossref_primary_10_1038_s41467_022_29739_x
crossref_primary_10_1038_s41598_022_25881_0
crossref_primary_10_3390_pathogens13121080
crossref_primary_10_1016_j_biomaterials_2021_120980
crossref_primary_10_1371_journal_pgen_1010001
crossref_primary_10_3390_genes15020241
crossref_primary_10_3390_ijms26157169
crossref_primary_10_1016_j_scitotenv_2020_143055
crossref_primary_10_1038_s41592_021_01129_z
crossref_primary_10_1038_s41388_019_1051_8
crossref_primary_10_1016_j_cryobiol_2024_105191
crossref_primary_10_1038_s41588_024_01706_w
crossref_primary_10_1007_s00204_017_2096_5
crossref_primary_10_1038_s41586_023_05780_8
crossref_primary_10_1038_s41598_023_39979_6
crossref_primary_10_1038_s41467_023_38373_0
crossref_primary_10_3389_fcell_2022_909557
crossref_primary_10_1016_j_csbj_2021_12_027
crossref_primary_10_1007_s12015_021_10234_7
crossref_primary_10_1186_s13007_020_00664_8
crossref_primary_10_1080_21541264_2024_2316965
crossref_primary_10_3390_ijms26010328
crossref_primary_10_26508_lsa_202302494
crossref_primary_10_1080_02648725_2018_1551594
crossref_primary_10_1038_nrg_2017_57
crossref_primary_10_1016_j_tig_2022_04_010
crossref_primary_10_1186_s12886_025_03939_7
crossref_primary_10_1016_j_molcel_2021_03_038
crossref_primary_10_1093_nar_gkac051
crossref_primary_10_1146_annurev_genet_112618_043733
crossref_primary_10_1242_bio_029090
crossref_primary_10_3389_fcell_2023_1209928
crossref_primary_10_3390_catal15060521
crossref_primary_10_1101_gad_349803_122
crossref_primary_10_1186_s12864_020_6771_1
crossref_primary_10_1073_pnas_1722125115
crossref_primary_10_1080_15384101_2018_1464847
crossref_primary_10_1186_s40478_021_01234_2
crossref_primary_10_1016_j_aquatox_2020_105580
crossref_primary_10_1038_s41598_020_72155_8
crossref_primary_10_1093_nargab_lqad071
crossref_primary_10_1186_s12870_025_06832_z
crossref_primary_10_1093_genetics_iyaf055
crossref_primary_10_1007_s00418_022_02151_8
crossref_primary_10_1261_rna_063446_117
crossref_primary_10_3390_jcm13010274
crossref_primary_10_1016_j_cossms_2020_100892
crossref_primary_10_1186_s12950_024_00389_8
crossref_primary_10_3390_ijms21228861
crossref_primary_10_1007_s00438_024_02191_w
crossref_primary_10_1093_advances_nmab038
crossref_primary_10_1111_nph_18393
crossref_primary_10_1016_j_neo_2020_09_004
crossref_primary_10_1002_ggn2_10026
crossref_primary_10_1101_gr_266338_120
crossref_primary_10_3390_ijms232112918
crossref_primary_10_1038_s41580_022_00518_2
crossref_primary_10_1186_s13072_018_0222_0
crossref_primary_10_1371_journal_pone_0323242
crossref_primary_10_3390_ijms222010969
crossref_primary_10_1016_j_molcel_2021_12_004
crossref_primary_10_1371_journal_pone_0194420
crossref_primary_10_1038_s41467_020_14595_4
crossref_primary_10_3389_freae_2023_1195690
crossref_primary_10_1016_j_ebiom_2024_105156
crossref_primary_10_3389_fgene_2018_00578
crossref_primary_10_1002_wsbm_1465
crossref_primary_10_1074_jbc_M117_786863
crossref_primary_10_1038_s41421_020_00203_8
crossref_primary_10_3390_cells9092049
crossref_primary_10_1016_j_phrs_2023_106940
crossref_primary_10_1007_s12015_020_10055_0
crossref_primary_10_26508_lsa_202201388
crossref_primary_10_1038_s41467_020_20543_z
crossref_primary_10_1016_j_molcel_2021_12_037
crossref_primary_10_1016_j_mad_2020_111309
crossref_primary_10_3390_genes11010003
crossref_primary_10_1016_j_plaphy_2019_06_012
crossref_primary_10_3390_ijms222011134
crossref_primary_10_1007_s11427_024_2784_3
crossref_primary_10_1016_j_molcel_2017_02_026
crossref_primary_10_1002_advs_202204885
crossref_primary_10_1016_j_pnpbp_2020_110068
crossref_primary_10_1371_journal_pbio_3002354
crossref_primary_10_1186_s12864_022_08933_7
crossref_primary_10_1038_s41467_025_61029_0
crossref_primary_10_1109_TCBB_2021_3139634
crossref_primary_10_1016_j_molmet_2020_101083
crossref_primary_10_1038_s44318_024_00329_5
crossref_primary_10_1534_genetics_119_302254
crossref_primary_10_1093_nar_gkac468
crossref_primary_10_1186_s13072_018_0251_8
crossref_primary_10_1136_jitc_2022_005693
crossref_primary_10_15252_embj_2023113798
crossref_primary_10_1007_s11104_025_07819_3
crossref_primary_10_3390_agronomy13020519
crossref_primary_10_1080_21541264_2023_2246868
crossref_primary_10_1186_s13148_022_01331_6
crossref_primary_10_1016_j_cnd_2024_07_002
crossref_primary_10_1038_s41420_021_00750_3
crossref_primary_10_1186_s13045_020_01027_5
crossref_primary_10_1111_febs_14833
crossref_primary_10_3390_cells13161393
crossref_primary_10_1186_s13046_021_01987_7
crossref_primary_10_1016_j_bbrc_2024_150715
crossref_primary_10_1038_s41598_021_95165_6
crossref_primary_10_1093_nar_gkaa051
crossref_primary_10_1016_j_tcb_2024_06_001
crossref_primary_10_1093_humupd_dmy021
crossref_primary_10_1128_MCB_00352_17
crossref_primary_10_3390_epigenomes2040019
crossref_primary_10_1093_biolre_ioac047
crossref_primary_10_1038_s41467_022_32165_8
crossref_primary_10_3389_fgene_2022_920641
crossref_primary_10_3389_fcell_2024_1475912
crossref_primary_10_1038_s41437_022_00533_1
crossref_primary_10_1186_s12915_024_01903_3
crossref_primary_10_1038_s12276_021_00711_x
crossref_primary_10_1101_gad_322776_118
crossref_primary_10_1038_s41598_021_98935_4
crossref_primary_10_3389_fgene_2019_01207
crossref_primary_10_1111_febs_16204
crossref_primary_10_1101_gad_300475_117
crossref_primary_10_3390_cells8040339
crossref_primary_10_1080_15384101_2021_1986317
crossref_primary_10_1038_s41467_022_28471_w
crossref_primary_10_1007_s00018_019_03143_z
crossref_primary_10_1093_nar_gkaf632
crossref_primary_10_3390_ijms241512158
crossref_primary_10_1016_j_bbagrm_2020_194578
crossref_primary_10_1186_s12864_019_5729_7
crossref_primary_10_1186_s13148_021_01126_1
crossref_primary_10_1186_s12870_024_05900_0
crossref_primary_10_1101_gr_275736_121
crossref_primary_10_1101_gad_349748_122
crossref_primary_10_1038_s41417_022_00503_z
crossref_primary_10_1111_mmi_14320
crossref_primary_10_1101_gr_276042_121
crossref_primary_10_1111_nph_14933
crossref_primary_10_3390_ijms231911804
crossref_primary_10_1038_s41467_025_63291_8
crossref_primary_10_1371_journal_ppat_1007066
crossref_primary_10_1038_s41598_019_56341_x
crossref_primary_10_4103_JCRP_JCRP_5_20
crossref_primary_10_1039_D2SC05944D
crossref_primary_10_1093_jxb_erae205
crossref_primary_10_3389_fvets_2022_822367
crossref_primary_10_3390_cancers13102407
crossref_primary_10_1523_JNEUROSCI_0558_22_2022
crossref_primary_10_1038_s41598_024_53519_w
crossref_primary_10_1093_nar_gkaa715
crossref_primary_10_1007_s00018_022_04352_9
crossref_primary_10_1111_febs_15219
crossref_primary_10_1186_s12915_022_01426_9
crossref_primary_10_1093_nar_gkz880
crossref_primary_10_1016_j_tox_2019_152340
crossref_primary_10_7554_eLife_83135
crossref_primary_10_3389_fcell_2020_597498
crossref_primary_10_1038_s42003_023_05601_8
Cites_doi 10.1038/nature04785
10.1186/gb-2009-10-6-r62
10.1128/MCB.21.15.5109-5121.2001
10.1128/MCB.06092-11
10.1016/S1097-2765(03)00092-3
10.1371/journal.pgen.1001354
10.1371/journal.pgen.1005794
10.1007/s11103-007-9135-1
10.1074/jbc.C500395200
10.1146/annurev-biochem-060614-034242
10.1038/nrm3943
10.1038/ncomms1732
10.1038/nature00883
10.1016/j.molcel.2012.11.008
10.1016/j.molcel.2013.01.034
10.1038/nature09652
10.1038/nature04802
10.1038/nsmb.2653
10.1016/S1097-2765(03)00438-6
10.1038/nrc3929
10.1371/journal.pbio.1001369
10.1371/journal.pgen.1003111
10.1128/MCB.05017-11
10.1016/j.molcel.2003.08.001
10.1016/j.cell.2015.10.051
10.1016/j.molcel.2012.10.026
10.1038/378505a0
10.1128/MCB.01520-09
10.1016/j.cell.2006.04.029
10.1073/pnas.0503630102
10.1016/j.molcel.2015.02.002
10.1016/j.cell.2005.06.021
10.1038/nature04290
10.1016/j.molcel.2006.10.026
10.1186/1471-2229-10-238
10.1038/nature08924
10.1016/j.cell.2010.05.016
10.1016/j.cell.2015.03.027
10.1016/j.jmb.2008.04.061
10.1074/jbc.C200348200
10.1016/j.molcel.2007.11.010
10.1128/MCB.05590-11
10.1016/j.cell.2011.09.057
10.1128/MCB.21.22.7601-7606.2001
10.1242/dev.102681
10.1038/ng.3385
10.1016/j.cell.2005.01.001
10.1016/S1097-2765(03)00091-1
10.1371/journal.pgen.1004095
10.1101/gad.2037511
10.1038/nature06160
10.1128/MCB.00924-09
10.1074/jbc.M806936200
10.1074/jbc.M609900200
10.1016/j.cell.2007.08.016
10.1128/MCB.01050-08
10.7554/eLife.03635
10.1128/MCB.00801-07
10.1186/s12864-015-1485-5
10.1038/nsmb1128
10.1038/nature01080
10.7554/eLife.10607
10.1038/ncb1088
10.1038/38444
10.1016/j.molcel.2005.07.024
10.1038/nsmb.1778
10.1128/MCB.20.6.2108-2121.2000
10.1016/j.molcel.2011.03.026
10.1242/dev.02302
10.1128/MCB.25.12.4881-4891.2005
10.1038/nsmb1200
10.1002/j.1460-2075.1992.tb05408.x
10.1128/MCB.00573-06
10.1016/j.celrep.2012.05.019
10.1146/annurev-biochem-051710-134100
10.1038/nsmb.2598
10.1016/j.cell.2014.06.027
10.1371/journal.pbio.1001442
10.1038/ncomms12284
10.1074/jbc.M115.693085
10.1016/j.cell.2005.03.036
10.1038/onc.2008.443
10.1016/j.cell.2011.03.053
10.1128/MCB.01356-07
10.1016/j.stem.2016.02.004
10.1016/j.cell.2011.01.020
10.1371/journal.pgen.1000837
10.1371/journal.pgen.1006224
10.1371/journal.pgen.1001082
10.1093/nar/30.4.958
10.1074/jbc.M110.117333
10.1186/1471-2164-15-247
10.1126/science.1184208
10.1105/tpc.110.080150
10.1038/nature09195
10.1073/pnas.0810100105
10.1016/j.cell.2013.01.052
10.1038/emboj.2011.193
10.1038/nsmb1131
10.1016/j.cub.2010.01.017
10.1038/nrc3959
10.1038/emboj.2011.194
10.1016/j.cell.2007.05.042
10.1126/science.1225739
10.1038/ncomms11949
10.1038/emboj.2008.257
10.1186/gb-2014-15-6-r85
10.1371/journal.pgen.1002952
10.1016/j.cell.2007.05.009
10.1101/gr.204578.116
10.1371/journal.pone.0101538
10.1073/pnas.1320337111
10.1074/jbc.C600286200
10.1038/nature04835
10.1038/ncomms10148
10.1074/jbc.C109.097667
10.1038/nsmb.2881
10.1038/nature04815
10.1038/nature08866
10.1073/pnas.1109360108
10.1016/j.molcel.2005.05.009
10.1128/MCB.00976-08
10.1016/j.molcel.2014.07.004
10.1371/journal.pbio.0030328
10.1016/j.molcel.2006.12.014
10.1073/pnas.082249499
10.1128/MCB.01181-13
10.1016/j.cell.2010.08.020
10.1016/j.cell.2011.03.003
10.1038/nsmb1204
10.1038/sj.emboj.7600204
10.1016/j.cell.2005.04.031
10.1105/tpc.107.056879
10.1101/gad.194209.112
10.1093/bfgp/ell022
ContentType Journal Article
Copyright 2016 WILEY Periodicals, Inc.
2016 The Authors. BioEssays Published by WILEY Periodicals, Inc.
2017 WILEY Periodicals, Inc.
Copyright_xml – notice: 2016 WILEY Periodicals, Inc.
– notice: 2016 The Authors. BioEssays Published by WILEY Periodicals, Inc.
– notice: 2017 WILEY Periodicals, Inc.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7QO
7QP
7QR
7SS
7T7
7TK
7TM
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
DOI 10.1002/bies.201600095
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Bacteriology Abstracts (Microbiology B)
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Entomology Abstracts (Full archive)
Industrial and Applied Microbiology Abstracts (Microbiology A)
Neurosciences Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Technology Research Database
Nucleic Acids Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Biotechnology Research Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Engineering Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitleList Virology and AIDS Abstracts
Virology and AIDS Abstracts
MEDLINE - Academic
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1521-1878
EndPage 12
ExternalDocumentID 4284519451
28004446
10_1002_bies_201600095
BIES201600095
Genre reviewArticle
Journal Article
Review
GrantInformation_xml – fundername: EPA Cephalosporin Trust Fund
– fundername: The Wellcome Trust
  funderid: WT089156MA; 097302/Z/11/Z
– fundername: BBSRC
  funderid: BB/J001694/1
– fundername: Medical Research Fund, University of Oxford
GroupedDBID ---
-~X
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
23N
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
85S
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEFU
ABEML
ABIJN
ABJNI
ABLJU
ABPVW
ABTAH
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACKIV
ACKOT
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BQCPF
BROTX
BRXPI
BY8
C45
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KD1
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M56
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OVD
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RWI
RWR
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
UB1
UDS
V2E
W8V
W99
WBKPD
WH7
WIB
WIH
WIK
WJL
WNSPC
WOHZO
WQJ
WRC
WXSBR
WYB
WYISQ
XG1
XV2
Y6R
YYQ
YZZ
ZGI
ZUP
ZXP
ZY4
ZZTAW
~IA
~KM
~WT
AAMMB
AAYXX
AEFGJ
AETEA
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
AIQQE
CITATION
O8X
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7QO
7QP
7QR
7SS
7T7
7TK
7TM
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
ID FETCH-LOGICAL-c4675-292f64e3e7149d59e664355a64f6583552360263e2d9255d1daab2a2987974c63
IEDL.DBID DRFUL
ISICitedReferencesCount 237
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000396891900007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0265-9247
1521-1878
IngestDate Sun Nov 09 12:24:00 EST 2025
Fri Jul 25 19:39:19 EDT 2025
Fri Jul 25 10:35:05 EDT 2025
Thu Apr 03 07:07:18 EDT 2025
Sat Nov 29 05:24:41 EST 2025
Tue Nov 18 21:55:31 EST 2025
Wed Jan 22 17:10:38 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords CFP1/Spp1
transcription activation
transcription
H3K4me3
methylation
Set1
chromatin
Language English
License 2016 The Authors. BioEssays Published by WILEY Periodicals, Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4675-292f64e3e7149d59e664355a64f6583552360263e2d9255d1daab2a2987974c63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
PMID 28004446
PQID 1851047056
PQPubID 37030
PageCount 12
ParticipantIDs proquest_miscellaneous_1851695600
proquest_journals_1900665891
proquest_journals_1851047056
pubmed_primary_28004446
crossref_primary_10_1002_bies_201600095
crossref_citationtrail_10_1002_bies_201600095
wiley_primary_10_1002_bies_201600095_BIES201600095
PublicationCentury 2000
PublicationDate January 2017
PublicationDateYYYYMMDD 2017-01-01
PublicationDate_xml – month: 01
  year: 2017
  text: January 2017
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Cambridge
PublicationTitle BioEssays
PublicationTitleAlternate Bioessays
PublicationYear 2017
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2010; 10
2010; 17
2010; 466
2010; 464
2004; 23
2002; 99
2002; 277
2004; 6
1995; 378
2008; 105
2012; 13
2012; 10
2014; 21
1997; 389
2010; 20
2009; 10
2006; 24
2015; 84
2005; 102
2008; 28
2006; 26
2014; 15
2008; 20
2012; 26
2007; 64
2010; 30
2006; 442
2010; 6
2006; 441
2014; 10
2015; 58
2007; 449
2007; 282
2010; 327
2010; 285
2002; 418
2002; 419
2016; 18
2014; 158
2011; 7
2007; 14
2016; 12
2001; 21
2016; 5
2011; 147
2016; 7
2005; 19
2005; 120
2005; 121
2013; 339
2005; 122
2005; 3
2014; 141
2005; 18
2016; 26
2011; 145
2011; 144
2013; 29
2013; 20
2010; 141
2010; 142
1992; 11
1998; 42
2006; 133
2003; 11
2008; 380
2005; 25
2003; 12
2007; 28
2015; 47
2015; 290
2014; 3
2007; 130
2007; 131
2013; 152
2011; 23
2011; 25
2014; 9
2014; 163
2014; 55
2007; 25
2006; 125
2007; 27
2012; 81
2015; 15
2015; 161
2007; 129
2015; 6
2015; 16
2013; 49
2002; 30
2006; 13
2016; 9999
2000; 20
2011; 31
2011; 30
2005; 438
2006; 5
2014; 111
2008; 283
2009; 29
2009; 28
2005; 280
2012; 2
2011; 108
2012; 3
2011; 469
2013; 33
2011; 42
2001; 2
2012; 8
e_1_2_6_114_1
e_1_2_6_137_1
e_1_2_6_53_1
e_1_2_6_76_1
e_1_2_6_95_1
e_1_2_6_118_1
e_1_2_6_30_1
e_1_2_6_72_1
e_1_2_6_91_1
e_1_2_6_133_1
e_1_2_6_19_1
Ingham PW. (e_1_2_6_20_1) 1998; 42
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_57_1
e_1_2_6_99_1
e_1_2_6_125_1
e_1_2_6_64_1
e_1_2_6_87_1
e_1_2_6_106_1
e_1_2_6_129_1
e_1_2_6_41_1
e_1_2_6_60_1
e_1_2_6_83_1
Kooistra SM (e_1_2_6_124_1) 2012; 13
e_1_2_6_140_1
e_1_2_6_121_1
e_1_2_6_102_1
e_1_2_6_9_1
e_1_2_6_5_1
e_1_2_6_49_1
e_1_2_6_22_1
e_1_2_6_45_1
e_1_2_6_26_1
e_1_2_6_68_1
e_1_2_6_73_1
e_1_2_6_136_1
e_1_2_6_54_1
e_1_2_6_96_1
e_1_2_6_117_1
e_1_2_6_31_1
e_1_2_6_50_1
e_1_2_6_92_1
e_1_2_6_132_1
e_1_2_6_113_1
e_1_2_6_35_1
e_1_2_6_12_1
e_1_2_6_39_1
e_1_2_6_77_1
e_1_2_6_16_1
e_1_2_6_58_1
e_1_2_6_84_1
e_1_2_6_42_1
e_1_2_6_105_1
e_1_2_6_128_1
e_1_2_6_65_1
e_1_2_6_80_1
e_1_2_6_109_1
e_1_2_6_61_1
e_1_2_6_120_1
e_1_2_6_101_1
e_1_2_6_6_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_88_1
e_1_2_6_27_1
e_1_2_6_46_1
e_1_2_6_51_1
e_1_2_6_74_1
e_1_2_6_97_1
e_1_2_6_116_1
e_1_2_6_139_1
e_1_2_6_32_1
e_1_2_6_70_1
e_1_2_6_93_1
e_1_2_6_131_1
e_1_2_6_112_1
e_1_2_6_135_1
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_59_1
e_1_2_6_17_1
e_1_2_6_55_1
e_1_2_6_78_1
e_1_2_6_62_1
e_1_2_6_85_1
e_1_2_6_104_1
e_1_2_6_43_1
e_1_2_6_127_1
e_1_2_6_81_1
e_1_2_6_108_1
e_1_2_6_100_1
e_1_2_6_123_1
e_1_2_6_7_1
e_1_2_6_24_1
e_1_2_6_3_1
e_1_2_6_66_1
e_1_2_6_89_1
e_1_2_6_28_1
e_1_2_6_47_1
e_1_2_6_52_1
e_1_2_6_98_1
e_1_2_6_115_1
e_1_2_6_75_1
e_1_2_6_138_1
e_1_2_6_10_1
e_1_2_6_94_1
e_1_2_6_119_1
e_1_2_6_71_1
e_1_2_6_90_1
e_1_2_6_130_1
e_1_2_6_111_1
e_1_2_6_134_1
Khan DH (e_1_2_6_110_1) 2016; 9999
e_1_2_6_14_1
e_1_2_6_33_1
Clouaire T (e_1_2_6_69_1) 2014; 15
e_1_2_6_18_1
e_1_2_6_56_1
e_1_2_6_37_1
e_1_2_6_79_1
e_1_2_6_103_1
e_1_2_6_126_1
e_1_2_6_63_1
e_1_2_6_86_1
e_1_2_6_21_1
e_1_2_6_107_1
e_1_2_6_40_1
e_1_2_6_82_1
e_1_2_6_122_1
e_1_2_6_8_1
e_1_2_6_4_1
e_1_2_6_25_1
e_1_2_6_48_1
e_1_2_6_29_1
e_1_2_6_44_1
e_1_2_6_67_1
References_xml – volume: 21
  start-page: 854
  year: 2014
  end-page: 63
  article-title: High‐temporal‐resolution view of transcription and chromatin states across distinct metabolic states in budding yeast
  publication-title: Nat Struct Mol Biol
– volume: 14
  start-page: 240
  year: 2007
  end-page: 2
  article-title: Demethylation of trimethylated histone H3 Lys4 in vivo by JARID1 JmjC proteins
  publication-title: Nat Struct Mol Biol
– volume: 380
  start-page: 303
  year: 2008
  end-page: 12
  article-title: Histone H3K4me3 binding is required for the DNA repair and apoptotic activities of ING1 tumor suppressor
  publication-title: J Mol Biol
– volume: 29
  start-page: 6074
  year: 2009
  end-page: 85
  article-title: Global analysis of H3K4 methylation defines MLL family member targets and points to a role for MLL1‐mediated H3K4 methylation in the regulation of transcriptional initiation by RNA polymerase II
  publication-title: Mol Cell Biol
– volume: 20
  start-page: 397
  year: 2010
  end-page: 406
  article-title: Methylation of H3K4 is required for inheritance of active transcriptional states
  publication-title: Curr Biol
– volume: 121
  start-page: 859
  year: 2005
  end-page: 72
  article-title: WDR5 associates with histone H3 methylated at K4 and is essential for H3 K4 methylation and vertebrate development
  publication-title: Cell
– volume: 64
  start-page: 73
  year: 2007
  end-page: 87
  article-title: Yeast two‐hybrid map of Arabidopsis TFIID
  publication-title: Plant Mol Biol
– volume: 442
  start-page: 91
  year: 2006
  end-page: 5
  article-title: Molecular basis for site‐specific read‐out of histone H3K4me3 by the BPTF PHD finger of NURF
  publication-title: Nature
– volume: 15
  start-page: 451
  year: 2014
  article-title: Cfp1 is required for gene expression‐dependent H3K4 trimethylation and H3K9 acetylation in embryonic stem cells
  publication-title: Genome Biol
– volume: 42
  start-page: 536
  year: 2011
  end-page: 49
  article-title: The specificity and topology of chromatin interaction pathways in yeast
  publication-title: Mol Cell
– volume: 9999
  start-page: 1
  year: 2016
  end-page: 9
  article-title: Dynamic histone acetylation of H3K4me3 nucleosome regulates MCL1 pre‐mRNA splicing
  publication-title: J Cell Physiol
– volume: 18
  start-page: 723
  year: 2005
  end-page: 34
  article-title: Dynamic lysine methylation on histone H3 defines the regulatory phase of gene transcription
  publication-title: Mol Cell
– volume: 283
  start-page: 33808
  year: 2008
  end-page: 15
  article-title: Human ATAC is a GCN5/PCAF‐containing acetylase complex with a novel NC2‐like histone fold module that interacts with the TATA‐binding protein
  publication-title: J Biol Chem
– volume: 23
  start-page: 350
  year: 2011
  end-page: 63
  article-title: Two distinct roles of ARABIDOPSIS HOMOLOG OF TRITHORAX1 (ATX1) at promoters and within transcribed regions of ATX1‐regulated genes
  publication-title: Plant Cell
– volume: 27
  start-page: 7856
  year: 2007
  end-page: 64
  article-title: Histone H3 K4 demethylation during activation and attenuation of GAL1 transcription in
  publication-title: Mol Cell Biol
– volume: 2
  start-page: 62
  year: 2012
  end-page: 8
  article-title: First exon length controls active chromatin signatures and transcription
  publication-title: Cell Rep
– volume: 145
  start-page: 692
  year: 2011
  end-page: 706
  article-title: Recognition of a mononucleosomal histone modification pattern by BPTF via multivalent interactions
  publication-title: Cell
– volume: 29
  start-page: 2419
  year: 2009
  end-page: 30
  article-title: Nucleosome remodeling and transcriptional repression are distinct functions of Isw1 in
  publication-title: Mol Cell Biol
– volume: 10
  start-page: e1001442
  year: 2012
  article-title: Genome‐wide RNA polymerase II profiles and RNA accumulation reveal kinetics of transcription and associated epigenetic changes during diurnal cycles
  publication-title: PLoS Biol
– volume: 25
  start-page: 15
  year: 2007
  end-page: 30
  article-title: Methylation of lysine 4 on histone H3: intricacy of writing and reading a single epigenetic mark
  publication-title: Mol Cell
– volume: 3
  start-page: 740
  year: 2012
  article-title: Multiple exposures to drought “train” transcriptional responses in Arabidopsis
  publication-title: Nat Commun
– volume: 18
  start-page: 481
  year: 2016
  end-page: 94
  article-title: MLL1 inhibition reprograms epiblast stem cells to naive pluripotency
  publication-title: Cell Stem Cell
– volume: 25
  start-page: 4881
  year: 2005
  end-page: 91
  article-title: Reduced genomic cytosine methylation and defective cellular differentiation in embryonic stem cells lacking CpG binding protein
  publication-title: Mol Cell Biol
– volume: 55
  start-page: 733
  year: 2014
  end-page: 44
  article-title: Lysine acetylation controls local protein conformation by influencing proline isomerization
  publication-title: Mol Cell
– volume: 464
  start-page: 1082
  year: 2010
  end-page: 6
  article-title: CpG islands influence chromatin structure via the CpG‐binding protein Cfp1
  publication-title: Nature
– volume: 378
  start-page: 505
  year: 1995
  end-page: 8
  article-title: Altered Hox expression and segmental identity in Mll‐mutant mice
  publication-title: Nature
– volume: 438
  start-page: 1181
  year: 2005
  end-page: 5
  article-title: Double chromodomains cooperate to recognize the methylated histone H3 tail
  publication-title: Nature
– volume: 11
  start-page: 721
  year: 2003
  end-page: 9
  article-title: The Paf1 complex is required for histone H3 methylation by COMPASS and Dot1p: linking transcriptional elongation to histone methylation
  publication-title: Mol Cell
– volume: 442
  start-page: 96
  year: 2006
  end-page: 9
  article-title: ING2 PHD domain links histone H3 lysine 4 methylation to active gene repression
  publication-title: Nature
– volume: 25
  start-page: 1010
  year: 2011
  end-page: 22
  article-title: CpG islands and the regulation of transcription
  publication-title: Genes Dev
– volume: 12
  start-page: e1005794
  year: 2016
  article-title: PAF complex plays novel subunit‐specific roles in alternative cleavage and polyadenylation
  publication-title: PLOS Genet
– volume: 441
  start-page: 840
  year: 2006
  end-page: 6
  article-title: Single‐cell proteomic analysis of reveals the architecture of biological noise
  publication-title: Nature
– volume: 285
  start-page: 9322
  year: 2010
  end-page: 6
  article-title: Recognition of histone H3K4 trimethylation by the plant homeodomain of PHF2 modulates histone demethylation
  publication-title: J Biol Chem
– volume: 49
  start-page: 368
  year: 2013
  end-page: 78
  article-title: A map of general and specialized chromatin readers in mouse tissues generated by label‐free interaction proteomics
  publication-title: Mol Cell
– volume: 15
  start-page: 334
  year: 2015
  end-page: 46
  article-title: Hijacked in cancer: the KMT2 (MLL) family of methyltransferases
  publication-title: Nat Rev Cancer
– volume: 7
  start-page: 11949
  year: 2016
  article-title: Counteracting H3K4 methylation modulators Set1 and Jhd2 co‐regulate chromatin dynamics and gene transcription
  publication-title: Nat Commun
– volume: 29
  start-page: 1093
  year: 2013
  end-page: 7
  article-title: The Mll2 branch of the COMPASS family regulates bivalent promoters in mouse embryonic stem cells
  publication-title: Nat Struct Mol Biol
– volume: 26
  start-page: 7871
  year: 2006
  end-page: 9
  article-title: The Yng1p plant homeodomain finger is a methyl‐histone binding module that recognizes lysine 4‐methylated histone H3
  publication-title: Mol Cell Biol
– volume: 277
  start-page: 28368
  year: 2002
  end-page: 71
  article-title: Methylation of histone H3 by COMPASS requires ubiquitination of histone H2B by Rad6
  publication-title: J Biol Chem
– volume: 16
  start-page: 300
  year: 2015
  article-title: Different distribution of histone modifications in genes with unidirectional and bidirectional transcription and a role of CTCF and cohesin in directing transcription
  publication-title: BMC Genomics
– volume: 14
  start-page: 243
  year: 2007
  end-page: 5
  article-title: Yeast Jhd2p is a histone H3 Lys4 trimethyl demethylase
  publication-title: Nat Struct Mol Biol
– volume: 42
  start-page: 423
  year: 1998
  end-page: 9
  article-title: Trithorax and the regulation of homeotic gene expression in Drosophila: a historical perspective
  publication-title: Int J Dev Biol
– volume: 469
  start-page: 368
  year: 2011
  end-page: 73
  article-title: Nascent transcript sequencing visualizes transcription at nucleotide resolution
  publication-title: Nature
– volume: 10
  start-page: e1001369
  year: 2012
  article-title: Systematic dissection of roles for chromatin regulators in a yeast stress response
  publication-title: PLoS Biol
– volume: 15
  start-page: 247
  year: 2014
  article-title: Dynamic remodeling of histone modifications in response to osmotic stress in
  publication-title: BMC Genomics
– volume: 7
  start-page: 1
  year: 2016
  end-page: 11
  article-title: Writing of H3K4Me3 overcomes epigenetic silencing in a sustained, but context‐dependent manner
  publication-title: Nat Commun
– volume: 161
  start-page: 526
  year: 2015
  end-page: 40
  article-title: Mammalian NET‐seq reveals genome‐wide nascent transcription coupled to RNA processing
  publication-title: Cell
– volume: 21
  start-page: 7601
  year: 2001
  end-page: 6
  article-title: CpG binding protein is crucial for early embryonic development
  publication-title: Mol Cell Biol
– volume: 3
  start-page: 1
  year: 2014
  end-page: 21
  article-title: Transcription mediated insulation and interference direct gene cluster expression switches
  publication-title: Elife
– volume: 10
  start-page: R62
  year: 2009
  article-title: Genome‐wide analysis of mono‐, di‐ and trimethylation of histone H3 lysine 4 in
  publication-title: Genome Biol
– volume: 30
  start-page: 2829
  year: 2011
  end-page: 42
  article-title: Sgf29 binds histone H3K4me2/3 and is required for SAGA complex recruitment and histone H3 acetylation
  publication-title: EMBO J
– volume: 28
  start-page: 609
  year: 2008
  end-page: 18
  article-title: Wdr82 is a C‐terminal domain‐binding protein that recruits the Setd1A Histone H3‐Lys4 methyltransferase complex to transcription start sites of transcribed human genes
  publication-title: Mol Cell Biol
– volume: 99
  start-page: 8695
  year: 2002
  end-page: 700
  article-title: Methylation of histone H3 Lys 4 in coding regions of active genes
  publication-title: Proc Natl Acad Sci USA
– volume: 141
  start-page: 1183
  year: 2010
  end-page: 94
  article-title: Pro isomerization in MLL1 PHD3‐Bromo cassette connects H3K4me readout to CyP33 and HDAC‐mediated repression
  publication-title: Cell
– volume: 419
  start-page: 407
  year: 2002
  end-page: 11
  article-title: Active genes are tri‐methylated at K4 of histoneH3
  publication-title: Nature
– volume: 282
  start-page: 14262
  year: 2007
  end-page: 71
  article-title: Identification of histone demethylases in
  publication-title: J Biol Chem
– volume: 129
  start-page: 823
  year: 2007
  end-page: 37
  article-title: High‐resolution profiling of histone methylations in the human genome
  publication-title: Cell
– volume: 141
  start-page: 526
  year: 2014
  end-page: 37
  article-title: Mll2 is required for H3K4 trimethylation on bivalent promoters in embryonic stem cells, whereas Mll1 is redundant
  publication-title: Development
– volume: 130
  start-page: 77
  year: 2007
  end-page: 88
  article-title: A chromatin landmark and transcription initiation at most promoters in human cells
  publication-title: Cell
– volume: 49
  start-page: 1121
  year: 2013
  end-page: 33
  article-title: The n‐SET domain of Set1 regulates H2B ubiquitylation‐dependent H3K4 methylation
  publication-title: Mol Cell
– volume: 442
  start-page: 86
  year: 2006
  end-page: 90
  article-title: A PHD finger of NURF couples histone H3 lysine 4 trimethylation with chromatin remodelling
  publication-title: Nature
– volume: 12
  start-page: 1325
  year: 2003
  end-page: 32
  article-title: Methylation of histone H3 K4 mediates association of the Isw1p ATPase with chromatin
  publication-title: Mol Cell
– volume: 10
  start-page: e1004095
  year: 2014
  article-title: Loss of histone H3 methylation at lysine 4 triggers apoptosis in
  publication-title: PLoS Genet
– volume: 31
  start-page: 3171
  year: 2011
  end-page: 81
  article-title: Histone H3 lysine 4 hypermethylation prevents aberrant nucleosome remodeling at the PHO5 promoter
  publication-title: Mol Cell Biol
– volume: 31
  start-page: 4310
  year: 2011
  end-page: 8
  article-title: The COMPASS family of H3K4 methylases in drosophila
  publication-title: Mol Cell Biol
– volume: 47
  start-page: 1149
  year: 2015
  end-page: 57
  article-title: Broad H3K4me3 is associated with increased transcription elongation and enhancer activity at tumor‐suppressor genes
  publication-title: Nat Genet
– volume: 84
  start-page: 165
  year: 2015
  end-page: 98
  article-title: Regulation of alternative splicing through coupling with transcription and chromatin structure
  publication-title: Annu Rev Biochem
– volume: 449
  start-page: 928
  year: 2007
  end-page: 32
  article-title: Arginine methylation at histone H3R2 controls deposition of H3K4 trimethylation
  publication-title: Nature
– volume: 389
  start-page: 251
  year: 1997
  end-page: 60
  article-title: Crystal structure of the nucleosome core particle at 2.8 Å resolution
  publication-title: Nature
– volume: 15
  start-page: R85
  year: 2014
  article-title: Characteristic bimodal profiles of RNA polymerase II at thousands of active mammalian promoters
  publication-title: Genome Biol
– volume: 102
  start-page: 14765
  year: 2005
  end-page: 70
  article-title: MLL associates specifically with a subset of transcriptionally active target genes
  publication-title: Proc Natl Acad Sci USA
– volume: 19
  start-page: 849
  year: 2005
  end-page: 56
  article-title: Molecular regulation of histone H3 trimethylation by COMPASS and the regulation of gene expression
  publication-title: Mol Cell
– volume: 49
  start-page: 43
  year: 2013
  end-page: 54
  article-title: Spp1, a member of the Set1 Complex, promotes meiotic DSB formation in promoters by tethering histone H3K4 methylation sites to chromosome axes
  publication-title: Mol Cell
– volume: 12
  start-page: 525
  year: 2003
  end-page: 32
  article-title: A slow RNA polymerase II affects alternative splicing in vivo
  publication-title: Mol Cell
– volume: 31
  start-page: 3569
  year: 2011
  end-page: 83
  article-title: H3K4 trimethylation by Set1 promotes efficient termination by the Nrd1‐Nab3‐Sen1 pathway
  publication-title: Mol Cell Biol
– volume: 5
  start-page: e10607
  year: 2016
  article-title: PHF13 is a molecular reader and transcriptional co‐regulator of H3K4me2/3
  publication-title: Elife
– volume: 6
  start-page: e1001082
  year: 2010
  article-title: Methylated H3K4, a transcription‐associated histone modification, is involved in the DNA damage response pathway
  publication-title: PLoS Genet
– volume: 11
  start-page: 3297
  year: 1992
  end-page: 306
  article-title: Histone H3 N‐terminal mutations allow hyperactivation of the yeast GAL1 gene in vivo
  publication-title: EMBO J
– volume: 131
  start-page: 58
  year: 2007
  end-page: 69
  article-title: Selective anchoring of TFIID to nucleosomes by trimethylation of histone H3 lysine 4
  publication-title: Cell
– volume: 17
  start-page: 445
  year: 2010
  end-page: 50
  article-title: PHF8 activates transcription of rRNA genes through H3K4me3 binding and H3K9me1/2 demethylation
  publication-title: Nat Struct Mol Biol
– volume: 108
  start-page: 20526
  year: 2011
  end-page: 31
  article-title: Structural analysis of the core COMPASS family of histone H3K4 methylases from yeast to human
  publication-title: Proc Natl Acad Sci USA
– volume: 26
  start-page: 799
  year: 2016
  end-page: 811
  article-title: Divergence of a conserved elongation factor and transcription regulation in budding and fission yeast
  publication-title: Genome Res
– volume: 16
  start-page: 190
  year: 2015
  end-page: 202
  article-title: Transcription termination and the control of the transcriptome: why, where and how to stop
  publication-title: Nat Rev Mol Cell Biol
– volume: 105
  start-page: 19229
  year: 2008
  end-page: 34
  article-title: Targeted inactivation of MLL3 histone H3‐Lys‐4 methyltransferase activity in the mouse reveals vital roles for MLL3 in adipogenesis
  publication-title: Proc Natl Acad Sci USA
– volume: 2
  start-page: 5109
  year: 2001
  end-page: 21
  article-title: The TFIID components human TAFII 140 and Drosophila BIP2 (TAFII 155) are novel metazoan homologues of yeast TAFII 47 containing a histone fold and a PHD finger
  publication-title: Mol Cell Biol
– volume: 122
  start-page: 723
  year: 2005
  end-page: 34
  article-title: The Set1 methyltransferase opposes Ipl1 aurora kinase functions in chromosome segregation
  publication-title: Cell
– volume: 28
  start-page: 99
  year: 2009
  end-page: 111
  article-title: Histone H3 lysine 4 trimethylation marks meiotic recombination initiation sites
  publication-title: EMBO J
– volume: 133
  start-page: 1423
  year: 2006
  end-page: 32
  article-title: Multiple epigenetic maintenance factors implicated by the loss of Mll2 in mouse development
  publication-title: Development
– volume: 28
  start-page: 665
  year: 2007
  end-page: 76
  article-title: Recognition of trimethylated histone H3 lysine 4 facilitates the recruitment of transcription postinitiation factors and pre‐mRNA splicing
  publication-title: Mol Cell
– volume: 120
  start-page: 169
  year: 2005
  end-page: 81
  article-title: Genomic maps and comparative analysis of histone modifications in human and mouse
  publication-title: Cell
– volume: 20
  start-page: 2108
  year: 2000
  end-page: 21
  article-title: Cloning of a mammalian transcriptional activator that binds unmethylated CpG motifs and shares a CXXC domain with DNA methyltransferase, human trithorax, and methyl‐CpG binding domain protein 1
  publication-title: Mol Cell Biol
– volume: 464
  start-page: 922
  year: 2010
  end-page: 6
  article-title: Chromatin signature of embryonic pluripotency is established during genome activation
  publication-title: Nature
– volume: 8
  start-page: e1003111
  year: 2012
  article-title: ATX1‐generated H3K4me3 is required for efficient elongation of transcription, not initiation, at ATX1‐regulated genes
  publication-title: PLoS Genet
– volume: 8
  start-page: e1002952
  year: 2012
  article-title: Two distinct repressive mechanisms for histone 3 lysine 4 methylation through promoting 3′‐end antisense transcription
  publication-title: PLoS Genet
– volume: 58
  start-page: 371
  year: 2015
  end-page: 86
  article-title: High‐resolution chromatin dynamics during a yeast stress response
  publication-title: Mol Cell
– volume: 290
  start-page: 28760
  year: 2015
  end-page: 77
  article-title: Interaction of the Jhd2 histone H3 Lys‐4 demethylase with chromatin is controlled by histone H2A surfaces and restricted by H2B ubiquitination
  publication-title: J Biol Chem
– volume: 6
  start-page: e1000837
  year: 2010
  article-title: Replication and active demethylation represent partially overlapping mechanisms for erasure of H3K4me3 in budding yeast
  publication-title: PLoS Genet
– volume: 163
  start-page: 1281
  year: 2014
  end-page: 6
  article-title: H3K4me3 breadth is linked to cell identity and transcriptional consistency
  publication-title: Cell
– volume: 282
  start-page: 2450
  year: 2007
  end-page: 5
  article-title: Proteome‐wide analysis in identifies several PHD fingers as novel direct and selective binding modules of histone H3 methylated at either lysine 4 or lysine 36
  publication-title: J Biol Chem
– volume: 6
  start-page: 162
  year: 2004
  end-page: 7
  article-title: Modulation of heat shock gene expression by the TAC1 chromatin‐modifying complex
  publication-title: Nat Cell Biol
– volume: 327
  start-page: 996
  year: 2010
  end-page: 1000
  article-title: Regulation of alternative splicing by histone modifications
  publication-title: Science
– volume: 12
  start-page: e1006224
  year: 2016
  article-title: Downstream antisense transcription predicts genomic features that define the specific chromatin environment at mammalian promoters
  publication-title: PLOS Genet
– volume: 339
  start-page: 215
  year: 2013
  end-page: 8
  article-title: The COMPASS subunit Spp1 links histone methylation to initiation of meiotic recombination
  publication-title: Science
– volume: 147
  start-page: 1628
  year: 2011
  end-page: 39
  article-title: Combinatorial patterning of chromatin regulators uncovered by genome‐wide location analysis in human cells
  publication-title: Cell
– volume: 30
  start-page: 2817
  year: 2011
  end-page: 28
  article-title: Drosophila Set1 is the major histone H3 lysine 4 trimethyltransferase with role in transcription
  publication-title: EMBO J
– volume: 28
  start-page: 815
  year: 2009
  end-page: 23
  article-title: Alterations of the CxxC domain preclude oncogenic activation of mixed‐lineage leukemia 2
  publication-title: Oncogene
– volume: 9
  start-page: e01538
  year: 2014
  article-title: Divergence and selectivity of expression‐coupled histone modifications in budding yeasts
  publication-title: PLoS ONE
– volume: 142
  start-page: 967
  year: 2010
  end-page: 80
  article-title: Quantitative interaction proteomics and genome‐wide profiling of epigenetic histone marks and their readers
  publication-title: Cell
– volume: 33
  start-page: 4745
  year: 2013
  end-page: 54
  article-title: The MLL3/MLL4 branches of the COMPASS family function as major histone H3K4 monomethylases at enhancers
  publication-title: Mol Cell Biol
– volume: 152
  start-page: 1021
  year: 2013
  end-page: 36
  article-title: H3K4me3 interactions with TAF3 regulate preinitiation complex assembly and selective gene activation
  publication-title: Cell
– volume: 24
  start-page: 785
  year: 2006
  end-page: 96
  article-title: Yng1 PHD finger binding to H3 trimethylated at K4 promotes NuA3 HAT activity at K14 of H3 and transcription at a subset of targeted ORFs
  publication-title: Mol Cell
– volume: 20
  start-page: 851
  year: 2013
  end-page: 8
  article-title: Bimodal expression of PHO84 is modulated by early termination of antisense transcription
  publication-title: Nat Struct Mol Biol
– volume: 418
  start-page: 104
  year: 2002
  end-page: 8
  article-title: Ubiquitination of histone H2B regulates H3 methylation and gene silencing in yeast
  publication-title: Nature
– volume: 5
  start-page: 179
  year: 2006
  end-page: 89
  article-title: Regulation of histone H2A and H2B ubiquitylation
  publication-title: Briefings Funct Genomics Proteomics
– volume: 466
  start-page: 383
  year: 2010
  end-page: 7
  article-title: Members of the H3K4 trimethylation complex regulate lifespan in a germline‐dependent manner in
  publication-title: Nature
– volume: 3
  start-page: e328
  year: 2005
  article-title: Single‐nucleosome mapping of histone modifications in S. cerevisiae
  publication-title: PLoS Biol
– volume: 144
  start-page: 513
  year: 2011
  end-page: 25
  article-title: Role for Dpy‐30 in ES cell‐fate specification by regulation of H3K4 methylation within bivalent domains
  publication-title: Cell
– volume: 13
  start-page: 297
  year: 2012
  end-page: 311
  article-title: Molecular mechanisms and potential functions of histone demethylases
  publication-title: Nat Publ Gr
– volume: 26
  start-page: 1714
  year: 2012
  end-page: 28
  article-title: Cfp1 integrates both CpG content and gene activity for accurate H3K4me3 deposition in embryonic stem cells
  publication-title: Genes Dev
– volume: 15
  start-page: 499
  year: 2015
  end-page: 509
  article-title: Control of cancer formation by intrinsic genetic noise and microenvironmental cues
  publication-title: Nat Rev Cancer
– volume: 125
  start-page: 703
  year: 2006
  end-page: 17
  article-title: Histone H2B monoubiquitination functions cooperatively with FACT to regulate elongation by RNA polymerase II
  publication-title: Cell
– volume: 13
  start-page: 713
  year: 2006
  end-page: 9
  article-title: Regulation of MLL1 H3K4 methyltransferase activity by its core components
  publication-title: Nat Struct Mol Biol
– volume: 13
  start-page: 852
  year: 2006
  end-page: 4
  article-title: Molecular regulation of H3K4 trimethylation by ASH2L, a shared subunit of MLL complexes
  publication-title: Nat Struct Mol Biol
– volume: 280
  start-page: 41789
  year: 2005
  end-page: 92
  article-title: Human but not yeast CHD1 binds directly and selectively to histone H3 methylated at lysine 4 via its tandem chromodomains
  publication-title: J Biol Chem
– volume: 111
  start-page: 4850
  year: 2014
  end-page: 5
  article-title: Histone H3 lysine 4 trimethylation regulates cotranscriptional H2A variant exchange by Tip60 complexes to maximize gene expression
  publication-title: Proc Natl Acad Sci USA
– volume: 28
  start-page: 7337
  year: 2008
  end-page: 44
  article-title: Molecular regulation of H3K4 trimethylation by Wdr82, a component of human Set1/COMPASS
  publication-title: Mol Cell Biol
– volume: 10
  start-page: 238
  year: 2010
  article-title: Dynamic changes in genome‐wide histone H3 lysine 4 methylation patterns in response to dehydration stress in
  publication-title: BMC Plant Biol
– volume: 121
  start-page: 873
  year: 2005
  end-page: 85
  article-title: Physical association and coordinate function of the H3 K4 methyltransferase MLL1 and the H4 K16 acetyltransferase MOF
  publication-title: Cell
– volume: 30
  start-page: 958
  year: 2002
  end-page: 65
  article-title: The MT domain of the proto‐oncoprotein MLL binds to CpG‐containing DNA and discriminates against methylation
  publication-title: Nucleic Acids Res
– volume: 7
  start-page: e1001354
  year: 2011
  article-title: H3 lysine 4 is acetylated at active gene promoters and is regulated by H3 lysine 4 methylation
  publication-title: PLoS Genet
– volume: 11
  start-page: 709
  year: 2003
  end-page: 19
  article-title: Targeted recruitment of Set1 histone methylase by elongating Pol II provides a localized mark and memory of recent transcriptional activity
  publication-title: Mol Cell
– volume: 20
  start-page: 259
  year: 2008
  end-page: 76
  article-title: High‐resolution mapping of epigenetic modifications of the rice genome uncovers interplay between DNA methylation, histone methylation, and gene expression
  publication-title: Plant Cell
– volume: 23
  start-page: 1957
  year: 2004
  end-page: 67
  article-title: Set1 is required for meiotic S‐phase onset, double‐strand break formation and middle gene expression
  publication-title: EMBO J
– volume: 6
  start-page: 10148
  year: 2015
  article-title: Embryonic transcription is controlled by maternally defined chromatin state
  publication-title: Nat Commun
– volume: 285
  start-page: 24548
  year: 2010
  end-page: 61
  article-title: The JmjN domain of Jhd2 is important for its protein stability, and the plant homeodomain (PHD) finger mediates its chromatin association independent of H3K4 methylation
  publication-title: J Biol Chem
– volume: 158
  start-page: 673
  year: 2014
  end-page: 88
  article-title: H3K4me3 breadth is linked to cell identity and transcriptional consistency
  publication-title: Cell
– volume: 81
  start-page: 65
  year: 2012
  end-page: 95
  article-title: The COMPASS family of histone H3K4 methylases: mechanisms of regulation in development and disease pathogenesis
  publication-title: Annu Rev Biochem
– volume: 145
  start-page: 183
  year: 2011
  end-page: 7
  article-title: Wdr5 mediates self‐renewal and reprogramming via the embryonic stem cell core transcriptional network
  publication-title: Cell
– volume: 30
  start-page: 3286
  year: 2010
  end-page: 98
  article-title: PHF8 targets histone methylation and RNA polymerase II to activate transcription
  publication-title: Mol Cell Biol
– ident: e_1_2_6_123_1
  doi: 10.1038/nature04785
– ident: e_1_2_6_32_1
  doi: 10.1186/gb-2009-10-6-r62
– ident: e_1_2_6_88_1
  doi: 10.1128/MCB.21.15.5109-5121.2001
– ident: e_1_2_6_13_1
  doi: 10.1128/MCB.06092-11
– ident: e_1_2_6_117_1
  doi: 10.1016/S1097-2765(03)00092-3
– ident: e_1_2_6_34_1
  doi: 10.1371/journal.pgen.1001354
– volume: 42
  start-page: 423
  year: 1998
  ident: e_1_2_6_20_1
  article-title: Trithorax and the regulation of homeotic gene expression in Drosophila: a historical perspective
  publication-title: Int J Dev Biol
– ident: e_1_2_6_96_1
  doi: 10.1371/journal.pgen.1005794
– ident: e_1_2_6_89_1
  doi: 10.1007/s11103-007-9135-1
– ident: e_1_2_6_106_1
  doi: 10.1074/jbc.C500395200
– ident: e_1_2_6_109_1
  doi: 10.1146/annurev-biochem-060614-034242
– ident: e_1_2_6_113_1
  doi: 10.1038/nrm3943
– ident: e_1_2_6_120_1
  doi: 10.1038/ncomms1732
– ident: e_1_2_6_99_1
  doi: 10.1038/nature00883
– ident: e_1_2_6_41_1
  doi: 10.1016/j.molcel.2012.11.008
– ident: e_1_2_6_68_1
  doi: 10.1016/j.molcel.2013.01.034
– ident: e_1_2_6_71_1
  doi: 10.1038/nature09652
– ident: e_1_2_6_137_1
  doi: 10.1038/nature04802
– ident: e_1_2_6_64_1
  doi: 10.1038/nsmb.2653
– ident: e_1_2_6_83_1
  doi: 10.1016/S1097-2765(03)00438-6
– ident: e_1_2_6_18_1
  doi: 10.1038/nrc3929
– ident: e_1_2_6_79_1
  doi: 10.1371/journal.pbio.1001369
– ident: e_1_2_6_48_1
  doi: 10.1371/journal.pgen.1003111
– ident: e_1_2_6_114_1
  doi: 10.1128/MCB.05017-11
– ident: e_1_2_6_108_1
  doi: 10.1016/j.molcel.2003.08.001
– ident: e_1_2_6_46_1
  doi: 10.1016/j.cell.2015.10.051
– ident: e_1_2_6_59_1
  doi: 10.1016/j.molcel.2012.10.026
– ident: e_1_2_6_8_1
  doi: 10.1038/378505a0
– ident: e_1_2_6_133_1
  doi: 10.1128/MCB.01520-09
– ident: e_1_2_6_90_1
  doi: 10.1016/j.cell.2006.04.029
– ident: e_1_2_6_93_1
  doi: 10.1073/pnas.0503630102
– ident: e_1_2_6_80_1
  doi: 10.1016/j.molcel.2015.02.002
– ident: e_1_2_6_47_1
  doi: 10.1016/j.cell.2005.06.021
– ident: e_1_2_6_136_1
  doi: 10.1038/nature04290
– ident: e_1_2_6_116_1
  doi: 10.1016/j.molcel.2006.10.026
– ident: e_1_2_6_33_1
  doi: 10.1186/1471-2229-10-238
– ident: e_1_2_6_53_1
  doi: 10.1038/nature08924
– ident: e_1_2_6_62_1
  doi: 10.1016/j.cell.2010.05.016
– ident: e_1_2_6_140_1
  doi: 10.1016/j.cell.2015.03.027
– ident: e_1_2_6_37_1
  doi: 10.1016/j.jmb.2008.04.061
– ident: e_1_2_6_98_1
  doi: 10.1074/jbc.C200348200
– ident: e_1_2_6_84_1
  doi: 10.1016/j.molcel.2007.11.010
– ident: e_1_2_6_112_1
  doi: 10.1128/MCB.05590-11
– ident: e_1_2_6_35_1
  doi: 10.1016/j.cell.2011.09.057
– ident: e_1_2_6_55_1
  doi: 10.1128/MCB.21.22.7601-7606.2001
– ident: e_1_2_6_65_1
  doi: 10.1242/dev.102681
– ident: e_1_2_6_36_1
  doi: 10.1038/ng.3385
– ident: e_1_2_6_26_1
  doi: 10.1016/j.cell.2005.01.001
– ident: e_1_2_6_91_1
  doi: 10.1016/S1097-2765(03)00091-1
– ident: e_1_2_6_54_1
  doi: 10.1371/journal.pgen.1004095
– ident: e_1_2_6_57_1
  doi: 10.1101/gad.2037511
– ident: e_1_2_6_30_1
  doi: 10.1038/nature06160
– ident: e_1_2_6_16_1
  doi: 10.1128/MCB.00924-09
– ident: e_1_2_6_126_1
  doi: 10.1074/jbc.M806936200
– ident: e_1_2_6_76_1
  doi: 10.1074/jbc.M609900200
– ident: e_1_2_6_87_1
  doi: 10.1016/j.cell.2007.08.016
– ident: e_1_2_6_85_1
  doi: 10.1128/MCB.01050-08
– ident: e_1_2_6_72_1
  doi: 10.7554/eLife.03635
– ident: e_1_2_6_73_1
  doi: 10.1128/MCB.00801-07
– ident: e_1_2_6_43_1
  doi: 10.1186/s12864-015-1485-5
– ident: e_1_2_6_14_1
  doi: 10.1038/nsmb1128
– ident: e_1_2_6_2_1
  doi: 10.1038/nature01080
– ident: e_1_2_6_134_1
  doi: 10.7554/eLife.10607
– ident: e_1_2_6_92_1
  doi: 10.1038/ncb1088
– ident: e_1_2_6_3_1
  doi: 10.1038/38444
– ident: e_1_2_6_52_1
  doi: 10.1016/j.molcel.2005.07.024
– ident: e_1_2_6_132_1
  doi: 10.1038/nsmb.1778
– ident: e_1_2_6_58_1
  doi: 10.1128/MCB.20.6.2108-2121.2000
– ident: e_1_2_6_70_1
  doi: 10.1016/j.molcel.2011.03.026
– ident: e_1_2_6_9_1
  doi: 10.1242/dev.02302
– ident: e_1_2_6_56_1
  doi: 10.1128/MCB.25.12.4881-4891.2005
– ident: e_1_2_6_75_1
  doi: 10.1038/nsmb1200
– ident: e_1_2_6_49_1
  doi: 10.1002/j.1460-2075.1992.tb05408.x
– ident: e_1_2_6_115_1
  doi: 10.1128/MCB.00573-06
– ident: e_1_2_6_111_1
  doi: 10.1016/j.celrep.2012.05.019
– ident: e_1_2_6_7_1
  doi: 10.1146/annurev-biochem-051710-134100
– ident: e_1_2_6_127_1
  doi: 10.1038/nsmb.2598
– ident: e_1_2_6_5_1
  doi: 10.1016/j.cell.2014.06.027
– ident: e_1_2_6_103_1
  doi: 10.1371/journal.pbio.1001442
– ident: e_1_2_6_78_1
  doi: 10.1038/ncomms12284
– ident: e_1_2_6_100_1
  doi: 10.1074/jbc.M115.693085
– ident: e_1_2_6_21_1
  doi: 10.1016/j.cell.2005.03.036
– volume: 13
  start-page: 297
  year: 2012
  ident: e_1_2_6_124_1
  article-title: Molecular mechanisms and potential functions of histone demethylases
  publication-title: Nat Publ Gr
– ident: e_1_2_6_61_1
  doi: 10.1038/onc.2008.443
– volume: 15
  start-page: 451
  year: 2014
  ident: e_1_2_6_69_1
  article-title: Cfp1 is required for gene expression‐dependent H3K4 trimethylation and H3K9 acetylation in embryonic stem cells
  publication-title: Genome Biol
– ident: e_1_2_6_82_1
  doi: 10.1016/j.cell.2011.03.053
– ident: e_1_2_6_94_1
  doi: 10.1128/MCB.01356-07
– ident: e_1_2_6_24_1
  doi: 10.1016/j.stem.2016.02.004
– ident: e_1_2_6_23_1
  doi: 10.1016/j.cell.2011.01.020
– ident: e_1_2_6_119_1
  doi: 10.1371/journal.pgen.1000837
– ident: e_1_2_6_45_1
  doi: 10.1371/journal.pgen.1006224
– ident: e_1_2_6_38_1
  doi: 10.1371/journal.pgen.1001082
– ident: e_1_2_6_60_1
  doi: 10.1093/nar/30.4.958
– ident: e_1_2_6_77_1
  doi: 10.1074/jbc.M110.117333
– ident: e_1_2_6_118_1
  doi: 10.1186/1471-2164-15-247
– ident: e_1_2_6_107_1
  doi: 10.1126/science.1184208
– ident: e_1_2_6_95_1
  doi: 10.1105/tpc.110.080150
– ident: e_1_2_6_19_1
  doi: 10.1038/nature09195
– ident: e_1_2_6_10_1
  doi: 10.1073/pnas.0810100105
– ident: e_1_2_6_86_1
  doi: 10.1016/j.cell.2013.01.052
– ident: e_1_2_6_130_1
  doi: 10.1038/emboj.2011.193
– ident: e_1_2_6_15_1
  doi: 10.1038/nsmb1131
– ident: e_1_2_6_50_1
  doi: 10.1016/j.cub.2010.01.017
– ident: e_1_2_6_121_1
  doi: 10.1038/nrc3959
– ident: e_1_2_6_12_1
  doi: 10.1038/emboj.2011.194
– ident: e_1_2_6_29_1
  doi: 10.1016/j.cell.2007.05.042
– ident: e_1_2_6_40_1
  doi: 10.1126/science.1225739
– ident: e_1_2_6_6_1
  doi: 10.1038/ncomms11949
– ident: e_1_2_6_39_1
  doi: 10.1038/emboj.2008.257
– ident: e_1_2_6_42_1
  doi: 10.1186/gb-2014-15-6-r85
– ident: e_1_2_6_44_1
  doi: 10.1371/journal.pgen.1002952
– ident: e_1_2_6_28_1
  doi: 10.1016/j.cell.2007.05.009
– ident: e_1_2_6_128_1
  doi: 10.1101/gr.204578.116
– ident: e_1_2_6_122_1
  doi: 10.1371/journal.pone.0101538
– ident: e_1_2_6_139_1
  doi: 10.1073/pnas.1320337111
– ident: e_1_2_6_66_1
  doi: 10.1074/jbc.C600286200
– ident: e_1_2_6_135_1
  doi: 10.1038/nature04835
– ident: e_1_2_6_105_1
  doi: 10.1038/ncomms10148
– ident: e_1_2_6_131_1
  doi: 10.1074/jbc.C109.097667
– volume: 9999
  start-page: 1
  year: 2016
  ident: e_1_2_6_110_1
  article-title: Dynamic histone acetylation of H3K4me3 nucleosome regulates MCL1 pre‐mRNA splicing
  publication-title: J Cell Physiol
– ident: e_1_2_6_101_1
  doi: 10.1038/nsmb.2881
– ident: e_1_2_6_138_1
  doi: 10.1038/nature04815
– ident: e_1_2_6_104_1
  doi: 10.1038/nature08866
– ident: e_1_2_6_67_1
  doi: 10.1073/pnas.1109360108
– ident: e_1_2_6_51_1
  doi: 10.1016/j.molcel.2005.05.009
– ident: e_1_2_6_11_1
  doi: 10.1128/MCB.00976-08
– ident: e_1_2_6_4_1
  doi: 10.1016/j.molcel.2014.07.004
– ident: e_1_2_6_27_1
  doi: 10.1371/journal.pbio.0030328
– ident: e_1_2_6_81_1
  doi: 10.1016/j.molcel.2006.12.014
– ident: e_1_2_6_25_1
  doi: 10.1073/pnas.082249499
– ident: e_1_2_6_17_1
  doi: 10.1128/MCB.01181-13
– ident: e_1_2_6_129_1
  doi: 10.1016/j.cell.2010.08.020
– ident: e_1_2_6_22_1
  doi: 10.1016/j.cell.2011.03.003
– ident: e_1_2_6_74_1
  doi: 10.1038/nsmb1204
– ident: e_1_2_6_102_1
  doi: 10.1038/sj.emboj.7600204
– ident: e_1_2_6_125_1
  doi: 10.1016/j.cell.2005.04.031
– ident: e_1_2_6_31_1
  doi: 10.1105/tpc.107.056879
– ident: e_1_2_6_63_1
  doi: 10.1101/gad.194209.112
– ident: e_1_2_6_97_1
  doi: 10.1093/bfgp/ell022
SSID ssj0009624
Score 2.6145945
SecondaryResourceType review_article
Snippet Tri‐methylation of lysine 4 on histone H3 (H3K4me3) is a near‐universal chromatin modification at the transcription start site of active genes in eukaryotes...
Tri-methylation of lysine 4 on histone H3 (H3K4me3) is a near-universal chromatin modification at the transcription start site of active genes in eukaryotes...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1
SubjectTerms Animals
CFP1/Spp1
Chromatin
CpG islands
DNA methylation
Eukaryota - genetics
Eukaryota - metabolism
Eukaryotes
Genes
Genomes
H3K4me3
Histone H3
Histones
Histones - chemistry
Histones - metabolism
Humans
Lysine
Methylation
Promoters
Set1
transcription
Transcription activation
Transcription termination
Transcriptional Activation
Yeast
Yeasts
Title Is H3K4me3 instructive for transcription activation?
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fbies.201600095
https://www.ncbi.nlm.nih.gov/pubmed/28004446
https://www.proquest.com/docview/1851047056
https://www.proquest.com/docview/1900665891
https://www.proquest.com/docview/1851695600
Volume 39
WOSCitedRecordID wos000396891900007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1521-1878
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009624
  issn: 0265-9247
  databaseCode: DRFUL
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFD64TcEX75fqHBUEn8K69JY8ibcxcQwRJ3sraZrCQDuxc-C_96S3OVQEpQ9tSRpCTk7O9yX0OwAnfhxiYA4FwTsjyDccwn1XEsuJmXS1vnqWkuWx7w8GbDTid5_-4s_1IaoNN-0Z2XqtHVyEaXsuGhpqJkm1QJqGCTVoUJy8bh0aV_fdYX8uvOtliW2RargEuYZfCjdatL3YwmJg-oI2F8FrFn266__v9wasFcjTPM-nyiYsqWQLVvJclO_b4NykZs--dZ6VbY5LWdmZMhHUmlMd0MrlxdS_QuQbuWc7MOxeP1z2SJFSgUhcEV1COY09R9nKR2YUuVx5iEhcV3hOjFAEn6itc1LZikYcyUbUiYQIqaCc-Ug8pGfvQj2ZJGofTCsM_diTDItjR2A9K-ZOJCReGnZJA0g5noEs9MZ12ounIFdKpoEeiaAaCQNOq_ovudLGjzWbpXmCwuPSAHGHVp1APPd9Mc8OmRjvGHBcFaMr6fMRkajJW96Ep_miZcBebvWqJ5RlynrYOM2M-0sXgwsE89XbwV8-OoRVqiFEtt3ThDraXR3BspxNx-lrC2r-iLWKyf4B59D6GQ
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3rS8MwED90U_SL78d8VhD8FNal6SOfxNfY2Bwim-xbadMUBrqJmwP_e-_6GkNFEOmHtiQNIbnL_e7S_A7g3I1DNMxhwPDuMfQ3BJOurZgpYk_ZxK-epGR5arudjtfvy4fsb0I6C5PyQxQBN9KMZL0mBaeAdHXGGhqSK8mJIY1wwiKUBcoSCnn59rHea8-Yd50ksy36GjZDZ8PNmRtNXp1vYd4yfYGb8-g1MT_19X_o-AasZdjTuEqFZRMW9HALltNslB_bIJpjo2G1xIu2jEFOLDvVBsJaY0ImLV9gDDoMkYZyL3egV7_r3jRYllSBKVwTbcYljx2hLe2ibxTZUjuISWw7cESMYASfuEVZqSzNI4nuRlSLgiDkAZeei66HcqxdKA1HQ70PhhmGbuwoD4tjEWA9M5YiChReBLxUBVg-oL7KGMcp8cWzn3Ilc59Gwi9GogIXRf3XlGvjx5pH-fz4mc6NfUQexDuBiO77YplsM3myVoGzohiViXZIgqEevadNOOQxmhXYS6e96An3Em49bJwns_tLF_1rhPPF28FfPjqFlUb3vu23m53WIaxyAhRJ8OcISigD-hiW1HQyGL-dZDL_CREt_SE
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bS8MwFD7ovOCL90u9VhB8CqtpesmTqLM4NsYQlb2VNk1B0CpuDvz3ntPbGCqCSB_akjSEJCfn-5LmOwAnXhqjY44jhnefId8QTHqOYpZIfeWQvnoekuWh6_V6_mAg--XfhHQWptCHqBfcyDLy-ZoMXL8maXOiGhoTleSkkEY4YRbmBEWSacBc6za4706Ud908si1yDYch2fAq5UaLN6dLmPZMX-DmNHrN3U-w8g8VX4XlEnuaF8VgWYMZna3DQhGN8mMDRHto3tgd8axt87ESlh1rE2GtOSKXVk0wJh2GKJZyzzfhPri-u7phZVAFpnBOdBiXPHWFtrWH3ChxpHYRkzhO5IoUwQg-cZuiUtmaJxLpRnKWRFHMIy59D6mHcu0taGQvmd4B04pjL3WVj8mpiDCflUqRRAovAl7KAFY1aKhKxXEKfPEUFlrJPKSWCOuWMOC0zv9aaG38mHO_6p-wtLlhiMiDdCcQ0X2fLPNtJl-eGXBcJ6Mx0Q5JlOmX96IIlxijZcB20e11Tbifa-th4Tzv3V-qGF4inK_fdv_y0REs9ltB2G33OnuwxAlP5Gs_-9DAIaAPYF6NR4_Dt8NyyH8CnWb8nA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Is+H3K4me3+instructive+for+transcription+activation%3F&rft.jtitle=BioEssays&rft.au=Howe%2C+Fran%C3%A7oise+S&rft.au=Fischl%2C+Harry&rft.au=Murray%2C+Struan+C&rft.au=Mellor%2C+Jane&rft.date=2017-01-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0265-9247&rft.eissn=1521-1878&rft.volume=39&rft.issue=1&rft.spage=1&rft_id=info:doi/10.1002%2Fbies.201600095&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0265-9247&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0265-9247&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0265-9247&client=summon