Evidence of counter-gradient growth in western pond turtles (Actinemys marmorata) across thermal gradients

Summary Counter‐gradient growth, where growth per unit temperature increases as temperature decreases, can reduce the variation in ectothermic growth rates across environmental gradients. Understanding how ectothermic species respond to changing temperatures is essential to their conservation and ma...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Freshwater biology Ročník 60; číslo 9; s. 1944 - 1963
Hlavní autoři: Snover, Melissa L., Adams, Michael J., Ashton, Donald T., Bettaso, Jamie B., Welsh Jr, Hartwell H.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Oxford Blackwell Publishing Ltd 01.09.2015
Wiley Subscription Services, Inc
Témata:
ISSN:0046-5070, 1365-2427
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Summary Counter‐gradient growth, where growth per unit temperature increases as temperature decreases, can reduce the variation in ectothermic growth rates across environmental gradients. Understanding how ectothermic species respond to changing temperatures is essential to their conservation and management due to human‐altered habitats and changing climates. Here, we use two contrasting populations of western pond turtles (Actinemys marmorata) to model the effect of artificial and variable temperature regimes on growth and age at reproductive maturity. The two populations occur on forks of the Trinity River in northern California, U.S.A. The South Fork Trinity River (South Fork) is unregulated, while the main stem of the Trinity River (Main Stem) is dammed and has peak seasonal temperatures that are approximately 10 °C colder than the South Fork. Consistent with other studies, we found reduced annual growth rates for turtles in the colder Main Stem compared to the warmer South Fork. The South Fork population matured approximately 9 year earlier, on average, and at a larger body size than the Main Stem population. When we normalised growth rates for the thermal opportunity for growth using water‐growing degree‐days (GDD), we found the reverse for growth rates and age at reproductive maturity. Main Stem turtles grew approximately twice as fast as South Fork turtles per GDD. Main Stem turtles also required approximately 50% fewer GDD to reach their smaller size at reproductive maturity compared to the larger South Fork turtles. We found we could accurately hindcast growth rates based on water temperatures estimated from the total volume of discharge from the dam into the Main Stem, providing a management tool for predicting the impacts of the dam on turtle growth rates. Given the importance of size and age at reproductive maturity to population dynamics, this information on counter‐gradient growth will improve our ability to understand and predict the consequences of dam operations for downstream turtle populations.
AbstractList 1. Counter-gradient growth, where growth per unit temperature increases as temperature decreases, can reduce the variation in ectothermic growth rates across environmental gradients. Understanding how ectothermic species respond to changing temperatures is essential to their conservation and management due to human-altered habitats and changing climates. 2. Here, we use two contrasting populations of western pond turtles (Actinemys marmorata) to model the effect of artificial and variable temperature regimes on growth and age at reproductive maturity. The two populations occur on forks of the Trinity River in northern California, U.S.A. The South Fork Trinity River (South Fork) is unregulated, while the main stem of the Trinity River (Main Stem) is dammed and has peak seasonal temperatures that are approximately 10 degree C colder than the South Fork. 3. Consistent with other studies, we found reduced annual growth rates for turtles in the colder Main Stem compared to the warmer South Fork. The South Fork population matured approximately 9 year earlier, on average, and at a larger body size than the Main Stem population. 4. When we normalised growth rates for the thermal opportunity for growth using water-growing degree-days (GDD), we found the reverse for growth rates and age at reproductive maturity. Main Stem turtles grew approximately twice as fast as South Fork turtles per GDD. Main Stem turtles also required approximately 50% fewer GDD to reach their smaller size at reproductive maturity compared to the larger South Fork turtles. 5. We found we could accurately hindcast growth rates based on water temperatures estimated from the total volume of discharge from the dam into the Main Stem, providing a management tool for predicting the impacts of the dam on turtle growth rates. 6. Given the importance of size and age at reproductive maturity to population dynamics, this information on counter-gradient growth will improve our ability to understand and predict the consequences of dam operations for downstream turtle populations.
Counter‐gradient growth, where growth per unit temperature increases as temperature decreases, can reduce the variation in ectothermic growth rates across environmental gradients. Understanding how ectothermic species respond to changing temperatures is essential to their conservation and management due to human‐altered habitats and changing climates. Here, we use two contrasting populations of western pond turtles ( Actinemys marmorata ) to model the effect of artificial and variable temperature regimes on growth and age at reproductive maturity. The two populations occur on forks of the Trinity River in northern California, U.S.A. The South Fork Trinity River (South Fork) is unregulated, while the main stem of the Trinity River (Main Stem) is dammed and has peak seasonal temperatures that are approximately 10 °C colder than the South Fork. Consistent with other studies, we found reduced annual growth rates for turtles in the colder Main Stem compared to the warmer South Fork. The South Fork population matured approximately 9 year earlier, on average, and at a larger body size than the Main Stem population. When we normalised growth rates for the thermal opportunity for growth using water‐growing degree‐days ( GDD ), we found the reverse for growth rates and age at reproductive maturity. Main Stem turtles grew approximately twice as fast as South Fork turtles per GDD . Main Stem turtles also required approximately 50% fewer GDD to reach their smaller size at reproductive maturity compared to the larger South Fork turtles. We found we could accurately hindcast growth rates based on water temperatures estimated from the total volume of discharge from the dam into the Main Stem, providing a management tool for predicting the impacts of the dam on turtle growth rates. Given the importance of size and age at reproductive maturity to population dynamics, this information on counter‐gradient growth will improve our ability to understand and predict the consequences of dam operations for downstream turtle populations.
Summary Counter‐gradient growth, where growth per unit temperature increases as temperature decreases, can reduce the variation in ectothermic growth rates across environmental gradients. Understanding how ectothermic species respond to changing temperatures is essential to their conservation and management due to human‐altered habitats and changing climates. Here, we use two contrasting populations of western pond turtles (Actinemys marmorata) to model the effect of artificial and variable temperature regimes on growth and age at reproductive maturity. The two populations occur on forks of the Trinity River in northern California, U.S.A. The South Fork Trinity River (South Fork) is unregulated, while the main stem of the Trinity River (Main Stem) is dammed and has peak seasonal temperatures that are approximately 10 °C colder than the South Fork. Consistent with other studies, we found reduced annual growth rates for turtles in the colder Main Stem compared to the warmer South Fork. The South Fork population matured approximately 9 year earlier, on average, and at a larger body size than the Main Stem population. When we normalised growth rates for the thermal opportunity for growth using water‐growing degree‐days (GDD), we found the reverse for growth rates and age at reproductive maturity. Main Stem turtles grew approximately twice as fast as South Fork turtles per GDD. Main Stem turtles also required approximately 50% fewer GDD to reach their smaller size at reproductive maturity compared to the larger South Fork turtles. We found we could accurately hindcast growth rates based on water temperatures estimated from the total volume of discharge from the dam into the Main Stem, providing a management tool for predicting the impacts of the dam on turtle growth rates. Given the importance of size and age at reproductive maturity to population dynamics, this information on counter‐gradient growth will improve our ability to understand and predict the consequences of dam operations for downstream turtle populations.
Counter‐gradient growth, where growth per unit temperature increases as temperature decreases, can reduce the variation in ectothermic growth rates across environmental gradients. Understanding how ectothermic species respond to changing temperatures is essential to their conservation and management due to human‐altered habitats and changing climates. Here, we use two contrasting populations of western pond turtles (Actinemys marmorata) to model the effect of artificial and variable temperature regimes on growth and age at reproductive maturity. The two populations occur on forks of the Trinity River in northern California, U.S.A. The South Fork Trinity River (South Fork) is unregulated, while the main stem of the Trinity River (Main Stem) is dammed and has peak seasonal temperatures that are approximately 10 °C colder than the South Fork. Consistent with other studies, we found reduced annual growth rates for turtles in the colder Main Stem compared to the warmer South Fork. The South Fork population matured approximately 9 year earlier, on average, and at a larger body size than the Main Stem population. When we normalised growth rates for the thermal opportunity for growth using water‐growing degree‐days (GDD), we found the reverse for growth rates and age at reproductive maturity. Main Stem turtles grew approximately twice as fast as South Fork turtles per GDD. Main Stem turtles also required approximately 50% fewer GDD to reach their smaller size at reproductive maturity compared to the larger South Fork turtles. We found we could accurately hindcast growth rates based on water temperatures estimated from the total volume of discharge from the dam into the Main Stem, providing a management tool for predicting the impacts of the dam on turtle growth rates. Given the importance of size and age at reproductive maturity to population dynamics, this information on counter‐gradient growth will improve our ability to understand and predict the consequences of dam operations for downstream turtle populations.
Summary Counter-gradient growth, where growth per unit temperature increases as temperature decreases, can reduce the variation in ectothermic growth rates across environmental gradients. Understanding how ectothermic species respond to changing temperatures is essential to their conservation and management due to human-altered habitats and changing climates. Here, we use two contrasting populations of western pond turtles (Actinemys marmorata) to model the effect of artificial and variable temperature regimes on growth and age at reproductive maturity. The two populations occur on forks of the Trinity River in northern California, U.S.A. The South Fork Trinity River (South Fork) is unregulated, while the main stem of the Trinity River (Main Stem) is dammed and has peak seasonal temperatures that are approximately 10 °C colder than the South Fork. Consistent with other studies, we found reduced annual growth rates for turtles in the colder Main Stem compared to the warmer South Fork. The South Fork population matured approximately 9 year earlier, on average, and at a larger body size than the Main Stem population. When we normalised growth rates for the thermal opportunity for growth using water-growing degree-days (GDD), we found the reverse for growth rates and age at reproductive maturity. Main Stem turtles grew approximately twice as fast as South Fork turtles per GDD. Main Stem turtles also required approximately 50% fewer GDD to reach their smaller size at reproductive maturity compared to the larger South Fork turtles. We found we could accurately hindcast growth rates based on water temperatures estimated from the total volume of discharge from the dam into the Main Stem, providing a management tool for predicting the impacts of the dam on turtle growth rates. Given the importance of size and age at reproductive maturity to population dynamics, this information on counter-gradient growth will improve our ability to understand and predict the consequences of dam operations for downstream turtle populations.
Author Adams, Michael J.
Ashton, Donald T.
Welsh Jr, Hartwell H.
Bettaso, Jamie B.
Snover, Melissa L.
Author_xml – sequence: 1
  givenname: Melissa L.
  surname: Snover
  fullname: Snover, Melissa L.
  email: Correspondence: Melissa L. Snover, USGS, Forest and Rangeland Ecosystem Science Center, 3200 SW Jefferson Way, Corvallis, OR 97331, U.S.A., melissa.snover@gmail.com
  organization: U.S. Geological Survey, Forest and Rangeland Ecosystem Science Center, OR, Corvallis, U.S.A
– sequence: 2
  givenname: Michael J.
  surname: Adams
  fullname: Adams, Michael J.
  organization: U.S. Geological Survey, Forest and Rangeland Ecosystem Science Center, OR, Corvallis, U.S.A
– sequence: 3
  givenname: Donald T.
  surname: Ashton
  fullname: Ashton, Donald T.
  organization: U.S. Geological Survey, Forest and Rangeland Ecosystem Science Center, Corvallis, OR, U.S.A
– sequence: 4
  givenname: Jamie B.
  surname: Bettaso
  fullname: Bettaso, Jamie B.
  organization: U.S. Fish and Wildlife Service, East Lansing Field Office, MI, East Lansing, U.S.A
– sequence: 5
  givenname: Hartwell H.
  surname: Welsh Jr
  fullname: Welsh Jr, Hartwell H.
  organization: U.S. Department of Agriculture Forest Service, Pacific Southwest Research Station, CA, Arcata, U.S.A
BookMark eNqFkUtvEzEUhS1UJNLCgn9giU27mNYeZ_xYlqotjxSQqOjScpzr1mHGTm0PIf8ep6EsKgF348X9ztH1OftoL8QACL2m5JjWOXHr-TFtecueoQllvGvaaSv20ISQKW86IsgLtJ_zkhAiO9FO0PL8h19AsICjwzaOoUBqbpNZeAgF36a4LnfYB7yGXDcBr2JY4DKm0kPGh6e2-ADDJuPBpCEmU8wRNjbFnHG5gzSYHj-a5ZfouTN9hle_3wN0fXF-ffaumX2-fH92OmvslAvWzB1nrelYC6JTUljrGHOSMeqEskRy0iqpqFCLzlliOkvYHKRldgpmDsKwA3S4s12leD_Ws_Xgs4W-NwHimDWVhBHFq8P_UUEU5fUqUtE3T9BlHFOo_9hSTCrJ6dbwaEc9RJDA6VXyNZqNpkRv-9G1H_3QT2VPnrDWF1N8DCUZ3_9LsfY9bP5urS9u3j4qmp3C1_Z-_lGY9F3XqEWnbz5d6g-zq6tvH79-0Yr9AnFFsw0
CitedBy_id crossref_primary_10_1016_j_scitotenv_2024_172077
crossref_primary_10_1002_hyp_14749
crossref_primary_10_1002_wlb3_01355
crossref_primary_10_1656_045_031_s1237
crossref_primary_10_1007_s00227_015_2705_x
crossref_primary_10_5358_hsj_39_87
crossref_primary_10_1177_19400829221103709
crossref_primary_10_1111_jeb_13223
crossref_primary_10_1670_17_149
crossref_primary_10_1093_conphys_coae058
crossref_primary_10_1139_cjfas_2018_0051
crossref_primary_10_2744_CCB_1240_1
crossref_primary_10_1656_045_031_s1229
crossref_primary_10_2744_CCB_1298_1
crossref_primary_10_1111_fwb_12942
crossref_primary_10_1016_j_ecolmodel_2021_109454
crossref_primary_10_1111_mec_13727
crossref_primary_10_3354_meps13507
crossref_primary_10_3354_meps13544
crossref_primary_10_3389_fphys_2020_00547
crossref_primary_10_1007_s00267_020_01326_0
crossref_primary_10_1051_kmae_2017008
crossref_primary_10_1670_20_146
crossref_primary_10_1093_biolinnean_bly095
crossref_primary_10_2744_CCB_1466_1
Cites_doi 10.2307/1565204
10.1655/HERPETOLOGICA-D-11-00050.1
10.2307/3546119
10.2307/3545787
10.1643/0045-8511(2000)000[0402:TEOHRD]2.0.CO;2
10.1214/ss/1177011136
10.1111/j.1365-2486.2012.02673.x
10.1086/285538
10.1643/CH-08-096
10.1577/1548-8659(1997)126<0549:LVILSS>2.3.CO;2
10.1201/b13895-6
10.1016/S0169-5347(00)89081-3
10.1111/j.1558-5646.1986.tb00560.x
10.1111/mec.12736
10.1201/b10201-2
10.1894/GC-196.1
10.2307/1564248
10.2744/CCB-0705.1
10.2307/2426130
10.4027/rgsfcc.2008.06
10.2307/1311135
10.1007/s00300-005-0716-7
10.2307/3802535
10.1139/F09-189
10.1086/501029
10.1017/S0952836902000584
10.1670/07-1881.1
10.1139/cjfas-2013-0295
10.1670/08-033R2.1
10.1111/eff.12166
10.1086/338989
10.1643/cp‐15‐253
10.2307/1941948
10.1139/f05-058
10.1016/j.biocon.2010.04.034
10.1111/j.0014-3820.2001.tb00835.x
10.1111/j.1558-5646.1979.tb04714.x
10.1111/j.0014-3820.2001.tb00836.x
10.1674/0003-0031-165.2.372
10.2307/1445975
10.1007/BF00317554
10.1111/j.1600-0633.2012.00570.x
10.1007/s10584-011-0326-z
10.1016/j.ecolmodel.2012.10.022
10.1007/s00227-011-1759-7
10.1139/F10-041
10.1139/f2012-069
10.1139/f07-003
10.1111/j.0014-3820.2000.tb00016.x
10.1016/j.fishres.2008.09.035
10.1674/0003-0031-169.1.111
10.1007/s10750-009-0043-z
10.1111/j.1600-0706.2013.00530.x
10.1017/S0952836901001108
10.1890/03-9000
10.1111/j.1365-2435.2011.01915.x
10.1111/j.1365-2427.2009.02179.x
ContentType Journal Article
Copyright Published 2015. This article is a U.S. Government work and is in the public domain in the USA.
Copyright © 2015 John Wiley & Sons Ltd
Copyright_xml – notice: Published 2015. This article is a U.S. Government work and is in the public domain in the USA.
– notice: Copyright © 2015 John Wiley & Sons Ltd
DBID BSCLL
AAYXX
CITATION
7QH
7SN
7SS
7UA
C1K
F1W
H95
L.G
M7N
7ST
SOI
7S9
L.6
DOI 10.1111/fwb.12623
DatabaseName Istex
CrossRef
Aqualine
Ecology Abstracts
Entomology Abstracts (Full archive)
Water Resources Abstracts
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Algology Mycology and Protozoology Abstracts (Microbiology C)
Environment Abstracts
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Entomology Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Algology Mycology and Protozoology Abstracts (Microbiology C)
ASFA: Aquatic Sciences and Fisheries Abstracts
Ecology Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Aqualine
Water Resources Abstracts
Environmental Sciences and Pollution Management
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Aquatic Science & Fisheries Abstracts (ASFA) Professional
CrossRef

AGRICOLA
Entomology Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Ecology
Oceanography
EISSN 1365-2427
EndPage 1963
ExternalDocumentID 3777294891
10_1111_fwb_12623
FWB12623
ark_67375_WNG_JLMMVKSP_9
Genre article
GeographicLocations USA, California, Trinity R
INE, USA, California
California
GeographicLocations_xml – name: INE, USA, California
– name: USA, California, Trinity R
– name: California
GrantInformation_xml – fundername: Trinity River Restoration Program
GroupedDBID -~X
..I
.3N
.GA
.Y3
05W
0R~
10A
1OB
1OC
29H
31~
33P
3SF
4.4
41~
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCZN
ACGFS
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADXHL
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFEBI
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AHEFC
AI.
AIDQK
AIDYY
AIQQE
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BIYOS
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CAG
COF
D-E
D-F
DC6
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
ECGQY
EJD
F00
F01
F04
F5P
FEDTE
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
IHE
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QZG
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TWZ
UB1
VH1
W8V
W99
WBKPD
WH7
WIH
WIK
WNSPC
WOHZO
WQJ
WXSBR
WYISQ
XG1
YZZ
ZCG
ZY4
ZZTAW
~02
~IA
~KM
~WT
AAHHS
ABTAH
ACCFJ
ADZOD
AEEZP
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
ESX
WRC
XJT
AAYXX
CITATION
O8X
7QH
7SN
7SS
7UA
C1K
F1W
H95
L.G
M7N
7ST
SOI
7S9
L.6
ID FETCH-LOGICAL-c4673-bf632a532e75987ccf33f8331f79c08602989179d5fc0a5c03be8c3c4eabe7a3
IEDL.DBID DRFUL
ISICitedReferencesCount 27
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000359779000017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0046-5070
IngestDate Fri Jul 11 18:38:56 EDT 2025
Tue Oct 07 09:44:54 EDT 2025
Mon Nov 10 02:52:28 EST 2025
Tue Nov 18 22:33:16 EST 2025
Sat Nov 29 06:13:57 EST 2025
Wed Jan 22 16:59:31 EST 2025
Tue Nov 11 03:30:06 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4673-bf632a532e75987ccf33f8331f79c08602989179d5fc0a5c03be8c3c4eabe7a3
Notes Trinity River Restoration Program
ArticleID:FWB12623
istex:BCD75F73ECFC975CAA601DCB63DB578310CD078A
ark:/67375/WNG-JLMMVKSP-9
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PQID 1703898619
PQPubID 36547
PageCount 20
ParticipantIDs proquest_miscellaneous_1803096179
proquest_miscellaneous_1709164670
proquest_journals_1703898619
crossref_primary_10_1111_fwb_12623
crossref_citationtrail_10_1111_fwb_12623
wiley_primary_10_1111_fwb_12623_FWB12623
istex_primary_ark_67375_WNG_JLMMVKSP_9
PublicationCentury 2000
PublicationDate September 2015
PublicationDateYYYYMMDD 2015-09-01
PublicationDate_xml – month: 09
  year: 2015
  text: September 2015
PublicationDecade 2010
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Freshwater biology
PublicationTitleAlternate Freshw Biol
PublicationYear 2015
Publisher Blackwell Publishing Ltd
Wiley Subscription Services, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley Subscription Services, Inc
References Armstrong D.P. & Brooks R.J. (2013) Application of hierarchical biphasic growth models to long-term data for snapping turtles. Ecological Modelling, 250, 119-125.
Reese D.A. & Welsh H.H. Jr (1998a) Comparative demography of Clemmys marmorata populations in the Trinity River of California in the context of dam-induced alterations. Journal of Herpetology, 32, 505-515.
Conover D.O. & Present T.M.C. (1990) Countergradient variation in growth rate: compensation for length of the growing season among Atlantic silversides from different latitudes. Oecologia, 83, 316-324.
Gelman A. & Rubin D.B. (1992) Inference from iterative simulation using multiple sequences. Statistical Sciences, 7, 457-511.
Rypel A.L. (2012a) Concordant estimates of countergradient growth variation in striped bass (Morone saxatilis) using comparative life-history data. Canadian Journal of Fisheries and Aquatic Sciences, 69, 1261-1265.
Rypel A.L. (2012b) Meta-analysis of growth rates for a circumpolar fish, the northern pike (Esox lucius), with emphasis on effects of continent, climate and latitude. Ecology of Freshwater Fish, 21, 521-532.
Germano D.J. & Bury R.B. (1998) Age determination in turtles: evidence of annual deposition of scute rings. Chelonian Conservation and Biology, 3, 123-132.
Pilliod D.S., Welty J.L. & Stafford R. (2013) Terrestrial movement patterns of western pond turtles (Actinemys marmorata) in central California. Herpetological Conservation and Biology, 8, 207-221.
Ashton D.T., Bettaso J.B. & Welsh H.H. Jr (2015) Changes across a decade in growth, size, and body condition of western pond turtles (Actinemys [Emys] marmorata) on free-flowing and regulated forks of the Trinity River in northwest California. Copeia, doi: 10.1643/cp-15-253, in press.
Gelman A., Carlin J.B., Stern H.S. & Rubin D.B. (2004) Bayesian Data Analysis, 2nd edn. Chapman and Hall/CRC, Boca Raton.
Piovano S., Clusa M., Carreras C., Giacoma C., Pascual M. & Cardona L. (2011) Different growth rates between loggerhead sea turtles (Caretta caretta) of Mediterranean and Atlantic origin in the Mediterranean Sea. Marine Biology, 158, 2577-2587.
Scott R., Marsh R. & Hays G.C. (2012) Life in the really slow lane: loggerhead sea turtles mature late relative to other reptiles. Functional Ecology, 26, 227-235.
Spinks P.Q., Thomson R.C. & Shaffer H.B. (2014) The advantages of going large: genome-wide SNPs clarify the complex population history and systematics of the threatened western pond turtle. Molecular Ecology, 23, 2228-2241.
Neuheimer A.B. & Taggart C.T. (2007) The growing degree-day and fish size-at-age: the overlooked metric. Canadian Journal of Fisheries and Aquatic Sciences, 64, 375-385.
Spencer R.-J. & Janzen F.J. (2010) Demographic consequences of adaptive growth and the ramifications for conservation of long-lived organisms. Biological Conservation, 143, 1951-1959.
Ben-Ezra E., Bulté G. & Blouin-Demers G. (2008) Are locomotor performances coadapted to preferred basking temperature in the northern map turtle (Graptemys geographica)? Journal of Herpetology, 42, 322-331.
Rypel A.L. (2013) Do invasive freshwater fish species grow better when they are invasive? Oikos, 123, 279-289.
Reese D.A. & Welsh H.H. Jr (1998b) Habitat use by western pond turtles in the Trinity River, California. The Journal of Wildlife Management, 62, 842-853.
Shine R. & Iverson J.B. (1995) Patterns of survival, growth and maturation in turtles. Oikos, 72, 343-348.
Germano D.J. & Rathbun G.B. (2008) Growth, population structure, and reproduction of western pond turtles (Actinemys marmorata) on the central coast of California. Chelonian Conservation and Biology, 7, 188-194.
Sinnatamby R.N., Dempson J.B., Reist J.D. & Power M. (2015) Latitudinal variation in growth and otolith-inferred field metabolic rates of Canadian young-of-the-year Arctic charr. Ecology of Freshwater Fish, 24, 478-488, doi:10.1111/eff.12166.
Bury R.B. (1986) Feeding ecology of the turtle, Clemmys marmorata. Journal of Herpetology, 20, 515-521.
Willemsen R.E. & Hailey A. (2001) Variation in adult survival rate of the tortoise Testudo hermanni in Greece: implications for evolution of body size. Journal of Zoology (London), 255, 43-53.
Neuheimer A.B. & Grønkjær P. (2012) Climate effects on size-at-age: growth in warming waters compensates for earlier maturity in an exploited marine fish. Global Change Biology, 18, 1812-1822.
Power M. & McKinley R.S. (1997) Latitudinal variation in lake sturgeon size as related to the thermal opportunity for growth. Transactions of the American Fisheries Society, 126, 549-558.
Chezik K.A., Lester N.P. & Venturelli P.A. (2014) Fish growth and degree-days I: selecting a base temperature for a within-population study. Canadian Journal of Fisheries and Aquatic Sciences, 71, 47-55.
Clarkson R.W. & Childs M.R. (2000) Temperature effects of hypolimnial-release dams on early life stages of Colorado River basin big-river fishes. Copeia, 2000, 402-412.
Congdon J.D. & Gibbons J.W. (1983) Relationships of reproductive characteristics to body size in Pseudemys scripta. Herpetologica, 39, 147-151.
Bury R.B. & Germano D.J. (1998) Annual deposition of scute rings in the western pond turtle, Clemmys marmorata. Chelonian Conservation and Biology, 3, 108-109.
Heilmayer O., Honnen C., Jacob U., Chiantore M., Cattaneo-Vietti R. & Brey T. (2005) Temperature effects on summer growth rates in the Antarctic scallop, Adamussium colbecki. Polar Biology, 28, 523-527.
Bury R.B., Germano D.J. & Bury G.W. (2010) Population structure and growth of the turtle Actinemys marmorata from the Klamath-Siskiyou Ecoregion: age, not size, matters. Copeia, 2010, 443-451.
Stearns S.C. (1989) The evolutionary significance of phenotypic plasticity. BioScience, 39, 436-445.
Berrigan D. & Charnov E.L. (1994) Reaction norms for age and size at maturity in response to temperature: a puzzle for life historians. Oikos, 70, 474-478.
Isaak D.J., Wollrab S., Horan D. & Chandler G. (2012) Climate change effects on stream and river temperatures across the northwest U.S. from 1980-2009 and implications for salmonid fishes. Climatic Change, 113, 499-524.
Olden J.D. & Naiman R.J. (2010) Incorporating thermal regimes into environmental flows assessments: modifying dam operations to restore freshwater ecosystem integrity. Freshwater Biology, 55, 86-107.
Fabens A.J. (1965) Properties and fitting of the von Bertalanffy growth curve. Growth, 29, 265-289.
Germano D.J. & Bury R.B. (2009) Variation in body size, growth, and population structure of Actinemys marmorata from lentic and lotic habitats in southern Oregon. Journal of Herpetology, 43, 510-520.
Rosenberg D.K. & Swift R. (2013) Post-emergence behavior of hatchling western pond turtles (Actinemys marmorata) in western Oregon. American Midland Naturalist, 169, 111-121.
Conover D.O. & Schultz E.T. (1995) Phenotypic similarity and the evolutionary significance of countergradient variation. Trends in Ecology and Evolution, 10, 248-252.
Galbraith D.A., Brooks R.J. & Obbard M.E. (1989) The influence of growth rate on age and body size at maturity in female snapping turtles (Chelydra serpentina). Copeia, 1989, 896-904.
Zani P.A. & Rollyson M.E. (2011) The effects of climate models on growing-season length and timing of reproduction in the Pacific Northwest as revealed by biophysical modeling of lizards. The American Midland Naturalist, 165, 372-388.
Jessop B.M. (2010) Geographic effects on American eel (Anguilla rostrata) life history characteristics and strategies. Canadian Journal of Fisheries and Aquatic Sciences, 67, 326-346.
Stearns S.C. & Koella J.C. (1986) The evolution of phenotypic plasticity in life-history traits: predictions of reaction norms for age and size at maturity. Evolution, 40, 893-913.
Adolph S.C. & Porter W.P. (1993) Temperature, activity, and lizard life histories. The American Naturalist, 142, 273-295.
Trussell G.C. (2000) Phenotypic clines, plasticity, and morphological trade-offs in an intertidal snail. Evolution, 54, 151-166.
Snover M.L., Watters G.M. & Mangel M. (2005) Interacting effects of behavior and oceanography on growth in salmonids with examples for coho salmon (Oncorhynchus kisutch). Canadian Journal of Fisheries and Aquatic Sciences, 62, 1219-1230.
Chavarie L., Dempson J.B., Schwarz C.J., Reist J.D., Power G. & Power M. (2010) Latitudinal variation in growth among arctic charr in eastern North America: evidence for countergradient variation? Hydrobiologia, 650, 161-177.
Lovich J. & Meyer K. (2002) The western pond turtle (Clemmys marmorata) in the Mojave River, California, USA: highly adapted survivor or tenuous relict? Journal of Zoology (London), 256, 537-545.
Lankford T.E. Jr, Billerbeck J.M. & Conover D.O. (2001) Evolution of intrinsic growth and energy acquisition rates. II. Trade-offs with vulnerability to predation in Menida menida. Evolution, 55, 1873-1881.
Venturelli P.A., Lester N.P., Marshall T.R. & Shuter B.J. (2010) Consistent patterns of maturity and density-dependent growth among populations of walleye (Sander vitreus): application of the growing degree-day metric. Canadian Journal of Fisheries and Aquatic Sciences, 67, 1057-1067.
Billerbeck J.M., Lankford T.E. Jr & Conover D.O. (2001) Evolution of intrinsic growth and energy acquisition rates. I. Trade-offs with swimming performance in Menida menida. Evolution, 55, 1863-1872.
Scott N.J., Rathbun G.B., Murphey T.G. & Harker M.B. (2008) Reproduction of Pacific pond turtles (Actinemys marmorata) in coastal streams of central California. Herpetological Conservation and Biology, 3, 143-148.
Frazer N.B., Greene J.L. & Gibbons J.W. (1993) Temporal variation in growth rate and age at maturity of male painted turtles, Chrysemys picta. American Midland Naturalist, 130, 314-324.
Walters R.J. & Hassall M. (2006) The temperature-size rule in ectotherms: may a general explanation exist after all? The American Naturalist, 167, 510-523.
Zhang Z., Lessard J. & Campbell A. (2009) Use of Bayesian hierarchical models to estimate northern abalone, Haliotis kamtschatkana, growt
2010; 55
2011; 158
1995; 72
2009; 43
1989; 1989
2013; 123
2005; 62
2010; 143
2002; 159
2008; 7
2013; 169
2012; 18
2008; 3
2013; 8
1979; 33
2005; 28
2014; 23
1979
2009; 1168
2010; 67
1992; 7
2001; 255
2009; 95
1986; 40
2000
2000; 54
1993; 130
1998b; 62
2012b
2012a
2012; 26
1994; 70
2001; 55
2007; 64
2012; 68
1965; 29
2006; 167
1989; 39
2011; 165
2012a; 69
2004; 85
2010; 2010
2012
2002; 256
1995; 10
2009
2008
1997
2007
2004
2003
1983; 39
2000; 2000
1993; 142
2012b; 21
1990; 83
1998a; 32
1999
2015; 24
1997; 126
2012; 113
1986; 20
2010; 650
1998; 3
2013; 250
2015
2013
2008; 42
2014; 71
1994; 4
e_1_2_6_51_1
e_1_2_6_74_1
Ashton D.T. (e_1_2_6_4_1) 2012
e_1_2_6_53_1
e_1_2_6_76_1
Scott N.J. (e_1_2_6_59_1) 2008; 3
Fabens A.J. (e_1_2_6_29_1) 1965; 29
e_1_2_6_70_1
e_1_2_6_30_1
e_1_2_6_72_1
Snover M.L. (e_1_2_6_63_1) 2007
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_55_1
e_1_2_6_38_1
e_1_2_6_57_1
Bury R.B. (e_1_2_6_17_1) 2012
e_1_2_6_62_1
e_1_2_6_64_1
e_1_2_6_43_1
e_1_2_6_20_1
e_1_2_6_41_1
e_1_2_6_60_1
Pilliod D.S. (e_1_2_6_49_1) 2013; 8
Bury R.B. (e_1_2_6_14_1) 2012
e_1_2_6_9_1
e_1_2_6_5_1
e_1_2_6_7_1
e_1_2_6_24_1
e_1_2_6_3_1
e_1_2_6_66_1
e_1_2_6_28_1
e_1_2_6_45_1
e_1_2_6_26_1
e_1_2_6_47_1
e_1_2_6_68_1
e_1_2_6_73_1
e_1_2_6_54_1
e_1_2_6_75_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_50_1
e_1_2_6_71_1
Gelman A. (e_1_2_6_32_1) 2004
Conover D.O. (e_1_2_6_22_1) 2009; 1168
Germano D.J. (e_1_2_6_35_1) 1998; 3
Bury R.B. (e_1_2_6_15_1) 1998; 3
Reese D.A. (e_1_2_6_52_1) 1997
Congdon J.D. (e_1_2_6_21_1) 1983; 39
Heppell S.S. (e_1_2_6_39_1) 2008
e_1_2_6_33_1
e_1_2_6_18_1
e_1_2_6_56_1
e_1_2_6_16_1
e_1_2_6_37_1
e_1_2_6_58_1
e_1_2_6_42_1
Bury R.B. (e_1_2_6_12_1) 1979
e_1_2_6_65_1
e_1_2_6_61_1
Heppell S.S. (e_1_2_6_40_1) 2003
e_1_2_6_8_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_48_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_44_1
e_1_2_6_67_1
e_1_2_6_27_1
e_1_2_6_46_1
e_1_2_6_69_1
References_xml – reference: Pilliod D.S., Welty J.L. & Stafford R. (2013) Terrestrial movement patterns of western pond turtles (Actinemys marmorata) in central California. Herpetological Conservation and Biology, 8, 207-221.
– reference: Berven K.A., Gill D.E. & Smith-Gill S.J. (1979) Countergradient selection in the green frog, Rana clamitans. Evolution, 33, 609-623.
– reference: Gelman A., Carlin J.B., Stern H.S. & Rubin D.B. (2004) Bayesian Data Analysis, 2nd edn. Chapman and Hall/CRC, Boca Raton.
– reference: Germano D.J. & Bury R.B. (1998) Age determination in turtles: evidence of annual deposition of scute rings. Chelonian Conservation and Biology, 3, 123-132.
– reference: Willemsen R.E. & Hailey A. (2001) Variation in adult survival rate of the tortoise Testudo hermanni in Greece: implications for evolution of body size. Journal of Zoology (London), 255, 43-53.
– reference: Armstrong D.P. & Brooks R.J. (2013) Application of hierarchical biphasic growth models to long-term data for snapping turtles. Ecological Modelling, 250, 119-125.
– reference: Neuheimer A.B. & Taggart C.T. (2007) The growing degree-day and fish size-at-age: the overlooked metric. Canadian Journal of Fisheries and Aquatic Sciences, 64, 375-385.
– reference: Piovano S., Clusa M., Carreras C., Giacoma C., Pascual M. & Cardona L. (2011) Different growth rates between loggerhead sea turtles (Caretta caretta) of Mediterranean and Atlantic origin in the Mediterranean Sea. Marine Biology, 158, 2577-2587.
– reference: Berrigan D. & Charnov E.L. (1994) Reaction norms for age and size at maturity in response to temperature: a puzzle for life historians. Oikos, 70, 474-478.
– reference: Bury R.B. & Germano D.J. (1998) Annual deposition of scute rings in the western pond turtle, Clemmys marmorata. Chelonian Conservation and Biology, 3, 108-109.
– reference: Germano D.J. & Rathbun G.B. (2008) Growth, population structure, and reproduction of western pond turtles (Actinemys marmorata) on the central coast of California. Chelonian Conservation and Biology, 7, 188-194.
– reference: Trussell G.C. (2000) Phenotypic clines, plasticity, and morphological trade-offs in an intertidal snail. Evolution, 54, 151-166.
– reference: Ashton D.T., Bettaso J.B. & Welsh H.H. Jr (2015) Changes across a decade in growth, size, and body condition of western pond turtles (Actinemys [Emys] marmorata) on free-flowing and regulated forks of the Trinity River in northwest California. Copeia, doi: 10.1643/cp-15-253, in press.
– reference: Stearns S.C. & Koella J.C. (1986) The evolution of phenotypic plasticity in life-history traits: predictions of reaction norms for age and size at maturity. Evolution, 40, 893-913.
– reference: Conover D.O. & Present T.M.C. (1990) Countergradient variation in growth rate: compensation for length of the growing season among Atlantic silversides from different latitudes. Oecologia, 83, 316-324.
– reference: Sinnatamby R.N., Dempson J.B., Reist J.D. & Power M. (2015) Latitudinal variation in growth and otolith-inferred field metabolic rates of Canadian young-of-the-year Arctic charr. Ecology of Freshwater Fish, 24, 478-488, doi:10.1111/eff.12166.
– reference: Crowder L.B., Crouse D.T., Heppell S.S. & Martin T.H. (1994) Predicting the impact of turtle excluder devices on loggerhead sea turtle populations. Ecological Applications, 4, 437-445.
– reference: Rypel A.L. (2013) Do invasive freshwater fish species grow better when they are invasive? Oikos, 123, 279-289.
– reference: Scott N.J., Rathbun G.B., Murphey T.G. & Harker M.B. (2008) Reproduction of Pacific pond turtles (Actinemys marmorata) in coastal streams of central California. Herpetological Conservation and Biology, 3, 143-148.
– reference: Lankford T.E. Jr, Billerbeck J.M. & Conover D.O. (2001) Evolution of intrinsic growth and energy acquisition rates. II. Trade-offs with vulnerability to predation in Menida menida. Evolution, 55, 1873-1881.
– reference: Bury R.B. (1986) Feeding ecology of the turtle, Clemmys marmorata. Journal of Herpetology, 20, 515-521.
– reference: Billerbeck J.M., Lankford T.E. Jr & Conover D.O. (2001) Evolution of intrinsic growth and energy acquisition rates. I. Trade-offs with swimming performance in Menida menida. Evolution, 55, 1863-1872.
– reference: Lovich J. & Meyer K. (2002) The western pond turtle (Clemmys marmorata) in the Mojave River, California, USA: highly adapted survivor or tenuous relict? Journal of Zoology (London), 256, 537-545.
– reference: Heilmayer O., Honnen C., Jacob U., Chiantore M., Cattaneo-Vietti R. & Brey T. (2005) Temperature effects on summer growth rates in the Antarctic scallop, Adamussium colbecki. Polar Biology, 28, 523-527.
– reference: Power M. & McKinley R.S. (1997) Latitudinal variation in lake sturgeon size as related to the thermal opportunity for growth. Transactions of the American Fisheries Society, 126, 549-558.
– reference: Fabens A.J. (1965) Properties and fitting of the von Bertalanffy growth curve. Growth, 29, 265-289.
– reference: Bury R.B., Germano D.J. & Bury G.W. (2010) Population structure and growth of the turtle Actinemys marmorata from the Klamath-Siskiyou Ecoregion: age, not size, matters. Copeia, 2010, 443-451.
– reference: Spinks P.Q., Thomson R.C. & Shaffer H.B. (2014) The advantages of going large: genome-wide SNPs clarify the complex population history and systematics of the threatened western pond turtle. Molecular Ecology, 23, 2228-2241.
– reference: Chezik K.A., Lester N.P. & Venturelli P.A. (2014) Fish growth and degree-days I: selecting a base temperature for a within-population study. Canadian Journal of Fisheries and Aquatic Sciences, 71, 47-55.
– reference: Conover D.O. & Schultz E.T. (1995) Phenotypic similarity and the evolutionary significance of countergradient variation. Trends in Ecology and Evolution, 10, 248-252.
– reference: Reese D.A. & Welsh H.H. Jr (1998a) Comparative demography of Clemmys marmorata populations in the Trinity River of California in the context of dam-induced alterations. Journal of Herpetology, 32, 505-515.
– reference: Stearns S.C. (1989) The evolutionary significance of phenotypic plasticity. BioScience, 39, 436-445.
– reference: Rypel A.L. (2012b) Meta-analysis of growth rates for a circumpolar fish, the northern pike (Esox lucius), with emphasis on effects of continent, climate and latitude. Ecology of Freshwater Fish, 21, 521-532.
– reference: Rypel A.L. (2012a) Concordant estimates of countergradient growth variation in striped bass (Morone saxatilis) using comparative life-history data. Canadian Journal of Fisheries and Aquatic Sciences, 69, 1261-1265.
– reference: Spencer R.-J. & Janzen F.J. (2010) Demographic consequences of adaptive growth and the ramifications for conservation of long-lived organisms. Biological Conservation, 143, 1951-1959.
– reference: Chavarie L., Dempson J.B., Schwarz C.J., Reist J.D., Power G. & Power M. (2010) Latitudinal variation in growth among arctic charr in eastern North America: evidence for countergradient variation? Hydrobiologia, 650, 161-177.
– reference: Eguchi T., Seminoff J.A., LeRoux R.A., Prosperi D., Dutton D.L. & Dutton P.H. (2012) Morphology and growth rates of the green sea turtle (Chelonia mydas) in a northern-most temperature foraging ground. Herpetologica, 68, 76-87.
– reference: Rosenberg D.K. & Swift R. (2013) Post-emergence behavior of hatchling western pond turtles (Actinemys marmorata) in western Oregon. American Midland Naturalist, 169, 111-121.
– reference: Adolph S.C. & Porter W.P. (1993) Temperature, activity, and lizard life histories. The American Naturalist, 142, 273-295.
– reference: Congdon J.D. & Gibbons J.W. (1983) Relationships of reproductive characteristics to body size in Pseudemys scripta. Herpetologica, 39, 147-151.
– reference: Zani P.A. & Rollyson M.E. (2011) The effects of climate models on growing-season length and timing of reproduction in the Pacific Northwest as revealed by biophysical modeling of lizards. The American Midland Naturalist, 165, 372-388.
– reference: Isaak D.J., Wollrab S., Horan D. & Chandler G. (2012) Climate change effects on stream and river temperatures across the northwest U.S. from 1980-2009 and implications for salmonid fishes. Climatic Change, 113, 499-524.
– reference: Venturelli P.A., Lester N.P., Marshall T.R. & Shuter B.J. (2010) Consistent patterns of maturity and density-dependent growth among populations of walleye (Sander vitreus): application of the growing degree-day metric. Canadian Journal of Fisheries and Aquatic Sciences, 67, 1057-1067.
– reference: Scott R., Marsh R. & Hays G.C. (2012) Life in the really slow lane: loggerhead sea turtles mature late relative to other reptiles. Functional Ecology, 26, 227-235.
– reference: Shine R. & Iverson J.B. (1995) Patterns of survival, growth and maturation in turtles. Oikos, 72, 343-348.
– reference: Galbraith D.A., Brooks R.J. & Obbard M.E. (1989) The influence of growth rate on age and body size at maturity in female snapping turtles (Chelydra serpentina). Copeia, 1989, 896-904.
– reference: Clarkson R.W. & Childs M.R. (2000) Temperature effects of hypolimnial-release dams on early life stages of Colorado River basin big-river fishes. Copeia, 2000, 402-412.
– reference: Neuheimer A.B. & Grønkjær P. (2012) Climate effects on size-at-age: growth in warming waters compensates for earlier maturity in an exploited marine fish. Global Change Biology, 18, 1812-1822.
– reference: Reese D.A. & Welsh H.H. Jr (1998b) Habitat use by western pond turtles in the Trinity River, California. The Journal of Wildlife Management, 62, 842-853.
– reference: Ben-Ezra E., Bulté G. & Blouin-Demers G. (2008) Are locomotor performances coadapted to preferred basking temperature in the northern map turtle (Graptemys geographica)? Journal of Herpetology, 42, 322-331.
– reference: Conover D.O., Duffy T.A. & Hice L.A. (2009) The covariance between genetic and environmental influences across ecological gradients. The Year in Evolutionary Biology 2009: Annals of the New York Academy of Science, 1168, 100-129.
– reference: Jessop B.M. (2010) Geographic effects on American eel (Anguilla rostrata) life history characteristics and strategies. Canadian Journal of Fisheries and Aquatic Sciences, 67, 326-346.
– reference: Frazer N.B., Greene J.L. & Gibbons J.W. (1993) Temporal variation in growth rate and age at maturity of male painted turtles, Chrysemys picta. American Midland Naturalist, 130, 314-324.
– reference: Gelman A. & Rubin D.B. (1992) Inference from iterative simulation using multiple sequences. Statistical Sciences, 7, 457-511.
– reference: Day T. & Rowe L. (2002) Development thresholds and the evolution of reaction norms for age and size at life-history transitions. The American Naturalist, 159, 338-350.
– reference: Germano D.J. (2010) Ecology of western pond turtles (Actinemys marmorata) at sewage-treatment facilities in the San Joaquin Valley, California. The Southwestern Naturalist, 55, 89-97.
– reference: Olden J.D. & Naiman R.J. (2010) Incorporating thermal regimes into environmental flows assessments: modifying dam operations to restore freshwater ecosystem integrity. Freshwater Biology, 55, 86-107.
– reference: Brown J.H., Gillooly J.F., Allen A.P., Savage V.M. & West G.B. (2004) Toward a metabolic theory of ecology. Ecology, 85, 1771-1789.
– reference: Germano D.J. & Bury R.B. (2009) Variation in body size, growth, and population structure of Actinemys marmorata from lentic and lotic habitats in southern Oregon. Journal of Herpetology, 43, 510-520.
– reference: Zhang Z., Lessard J. & Campbell A. (2009) Use of Bayesian hierarchical models to estimate northern abalone, Haliotis kamtschatkana, growth parameters from tag-recapture data. Fisheries Research, 95, 289-295.
– reference: Snover M.L., Watters G.M. & Mangel M. (2005) Interacting effects of behavior and oceanography on growth in salmonids with examples for coho salmon (Oncorhynchus kisutch). Canadian Journal of Fisheries and Aquatic Sciences, 62, 1219-1230.
– reference: Walters R.J. & Hassall M. (2006) The temperature-size rule in ectotherms: may a general explanation exist after all? The American Naturalist, 167, 510-523.
– volume: 71
  start-page: 47
  year: 2014
  end-page: 55
  article-title: Fish growth and degree‐days I: selecting a base temperature for a within‐population study
  publication-title: Canadian Journal of Fisheries and Aquatic Sciences
– volume: 8
  start-page: 207
  year: 2013
  end-page: 221
  article-title: Terrestrial movement patterns of western pond turtles ( ) in central California
  publication-title: Herpetological Conservation and Biology
– volume: 68
  start-page: 76
  year: 2012
  end-page: 87
  article-title: Morphology and growth rates of the green sea turtle ( ) in a northern‐most temperature foraging ground
  publication-title: Herpetologica
– volume: 64
  start-page: 375
  year: 2007
  end-page: 385
  article-title: The growing degree‐day and fish size‐at‐age: the overlooked metric
  publication-title: Canadian Journal of Fisheries and Aquatic Sciences
– volume: 39
  start-page: 436
  year: 1989
  end-page: 445
  article-title: The evolutionary significance of phenotypic plasticity
  publication-title: BioScience
– volume: 7
  start-page: 188
  year: 2008
  end-page: 194
  article-title: Growth, population structure, and reproduction of western pond turtles ( ) on the central coast of California
  publication-title: Chelonian Conservation and Biology
– volume: 29
  start-page: 265
  year: 1965
  end-page: 289
  article-title: Properties and fitting of the von Bertalanffy growth curve
  publication-title: Growth
– start-page: 352
  year: 1997
  end-page: 357
– volume: 55
  start-page: 86
  year: 2010
  end-page: 107
  article-title: Incorporating thermal regimes into environmental flows assessments: modifying dam operations to restore freshwater ecosystem integrity
  publication-title: Freshwater Biology
– volume: 95
  start-page: 289
  year: 2009
  end-page: 295
  article-title: Use of Bayesian hierarchical models to estimate northern abalone, , growth parameters from tag‐recapture data
  publication-title: Fisheries Research
– volume: 10
  start-page: 248
  year: 1995
  end-page: 252
  article-title: Phenotypic similarity and the evolutionary significance of countergradient variation
  publication-title: Trends in Ecology and Evolution
– volume: 62
  start-page: 1219
  year: 2005
  end-page: 1230
  article-title: Interacting effects of behavior and oceanography on growth in salmonids with examples for coho salmon ( )
  publication-title: Canadian Journal of Fisheries and Aquatic Sciences
– volume: 1989
  start-page: 896
  year: 1989
  end-page: 904
  article-title: The influence of growth rate on age and body size at maturity in female snapping turtles ( )
  publication-title: Copeia
– volume: 69
  start-page: 1261
  year: 2012a
  end-page: 1265
  article-title: Concordant estimates of countergradient growth variation in striped bass ( ) using comparative life‐history data
  publication-title: Canadian Journal of Fisheries and Aquatic Sciences
– volume: 83
  start-page: 316
  year: 1990
  end-page: 324
  article-title: Countergradient variation in growth rate: compensation for length of the growing season among Atlantic silversides from different latitudes
  publication-title: Oecologia
– volume: 55
  start-page: 89
  year: 2010
  end-page: 97
  article-title: Ecology of western pond turtles ( ) at sewage‐treatment facilities in the San Joaquin Valley, California
  publication-title: The Southwestern Naturalist
– start-page: 255
  year: 2008
  end-page: 273
– volume: 54
  start-page: 151
  year: 2000
  end-page: 166
  article-title: Phenotypic clines, plasticity, and morphological trade‐offs in an intertidal snail
  publication-title: Evolution
– volume: 67
  start-page: 326
  year: 2010
  end-page: 346
  article-title: Geographic effects on American eel ( ) life history characteristics and strategies
  publication-title: Canadian Journal of Fisheries and Aquatic Sciences
– volume: 85
  start-page: 1771
  year: 2004
  end-page: 1789
  article-title: Toward a metabolic theory of ecology
  publication-title: Ecology
– volume: 159
  start-page: 338
  year: 2002
  end-page: 350
  article-title: Development thresholds and the evolution of reaction norms for age and size at life‐history transitions
  publication-title: The American Naturalist
– volume: 167
  start-page: 510
  year: 2006
  end-page: 523
  article-title: The temperature‐size rule in ectotherms: may a general explanation exist after all?
  publication-title: The American Naturalist
– volume: 2000
  start-page: 402
  year: 2000
  end-page: 412
  article-title: Temperature effects of hypolimnial‐release dams on early life stages of Colorado River basin big‐river fishes
  publication-title: Copeia
– volume: 67
  start-page: 1057
  year: 2010
  end-page: 1067
  article-title: Consistent patterns of maturity and density‐dependent growth among populations of walleye ( ): application of the growing degree‐day metric
  publication-title: Canadian Journal of Fisheries and Aquatic Sciences
– volume: 4
  start-page: 437
  year: 1994
  end-page: 445
  article-title: Predicting the impact of turtle excluder devices on loggerhead sea turtle populations
  publication-title: Ecological Applications
– volume: 70
  start-page: 474
  year: 1994
  end-page: 478
  article-title: Reaction norms for age and size at maturity in response to temperature: a puzzle for life historians
  publication-title: Oikos
– volume: 24
  start-page: 478
  year: 2015
  end-page: 488
  article-title: Latitudinal variation in growth and otolith‐inferred field metabolic rates of Canadian young‐of‐the‐year Arctic charr
  publication-title: Ecology of Freshwater Fish
– volume: 113
  start-page: 499
  year: 2012
  end-page: 524
  article-title: Climate change effects on stream and river temperatures across the northwest U.S. from 1980–2009 and implications for salmonid fishes
  publication-title: Climatic Change
– volume: 256
  start-page: 537
  year: 2002
  end-page: 545
  article-title: The western pond turtle ( ) in the Mojave River, California, USA: highly adapted survivor or tenuous relict?
  publication-title: Journal of Zoology (London)
– start-page: 97
  year: 2013
  end-page: 133
– year: 2004
– volume: 55
  start-page: 1863
  year: 2001
  end-page: 1872
  article-title: Evolution of intrinsic growth and energy acquisition rates. I. Trade‐offs with swimming performance in
  publication-title: Evolution
– start-page: 571
  year: 1979
  end-page: 602
– volume: 126
  start-page: 549
  year: 1997
  end-page: 558
  article-title: Latitudinal variation in lake sturgeon size as related to the thermal opportunity for growth
  publication-title: Transactions of the American Fisheries Society
– volume: 3
  start-page: 143
  year: 2008
  end-page: 148
  article-title: Reproduction of Pacific pond turtles ( ) in coastal streams of central California
  publication-title: Herpetological Conservation and Biology
– start-page: 1
  year: 2012b
  end-page: 7
– volume: 18
  start-page: 1812
  year: 2012
  end-page: 1822
  article-title: Climate effects on size‐at‐age: growth in warming waters compensates for earlier maturity in an exploited marine fish
  publication-title: Global Change Biology
– volume: 158
  start-page: 2577
  year: 2011
  end-page: 2587
  article-title: Different growth rates between loggerhead sea turtles ( ) of Mediterranean and Atlantic origin in the Mediterranean Sea
  publication-title: Marine Biology
– volume: 33
  start-page: 609
  year: 1979
  end-page: 623
  article-title: Countergradient selection in the green frog,
  publication-title: Evolution
– volume: 130
  start-page: 314
  year: 1993
  end-page: 324
  article-title: Temporal variation in growth rate and age at maturity of male painted turtles,
  publication-title: American Midland Naturalist
– volume: 21
  start-page: 521
  year: 2012b
  end-page: 532
  article-title: Meta‐analysis of growth rates for a circumpolar fish, the northern pike ( ), with emphasis on effects of continent, climate and latitude
  publication-title: Ecology of Freshwater Fish
– volume: 650
  start-page: 161
  year: 2010
  end-page: 177
  article-title: Latitudinal variation in growth among arctic charr in eastern North America: evidence for countergradient variation?
  publication-title: Hydrobiologia
– start-page: 1
  year: 2009
  end-page: 63
– volume: 39
  start-page: 147
  year: 1983
  end-page: 151
  article-title: Relationships of reproductive characteristics to body size in
  publication-title: Herpetologica
– volume: 28
  start-page: 523
  year: 2005
  end-page: 527
  article-title: Temperature effects on summer growth rates in the Antarctic scallop,
  publication-title: Polar Biology
– volume: 55
  start-page: 1873
  year: 2001
  end-page: 1881
  article-title: Evolution of intrinsic growth and energy acquisition rates. II. Trade‐offs with vulnerability to predation in
  publication-title: Evolution
– volume: 26
  start-page: 227
  year: 2012
  end-page: 235
  article-title: Life in the really slow lane: loggerhead sea turtles mature late relative to other reptiles
  publication-title: Functional Ecology
– volume: 3
  start-page: 108
  year: 1998
  end-page: 109
  article-title: Annual deposition of scute rings in the western pond turtle,
  publication-title: Chelonian Conservation and Biology
– volume: 40
  start-page: 893
  year: 1986
  end-page: 913
  article-title: The evolution of phenotypic plasticity in life‐history traits: predictions of reaction norms for age and size at maturity
  publication-title: Evolution
– volume: 169
  start-page: 111
  year: 2013
  end-page: 121
  article-title: Post‐emergence behavior of hatchling western pond turtles ( ) in western Oregon
  publication-title: American Midland Naturalist
– volume: 32
  start-page: 505
  year: 1998a
  end-page: 515
  article-title: Comparative demography of populations in the Trinity River of California in the context of dam‐induced alterations
  publication-title: Journal of Herpetology
– volume: 23
  start-page: 2228
  year: 2014
  end-page: 2241
  article-title: The advantages of going large: genome‐wide SNPs clarify the complex population history and systematics of the threatened western pond turtle
  publication-title: Molecular Ecology
– year: 2000
– volume: 123
  start-page: 279
  year: 2013
  end-page: 289
  article-title: Do invasive freshwater fish species grow better when they are invasive?
  publication-title: Oikos
– volume: 142
  start-page: 273
  year: 1993
  end-page: 295
  article-title: Temperature, activity, and lizard life histories
  publication-title: The American Naturalist
– start-page: 17
  year: 2007
  end-page: 43
– volume: 143
  start-page: 1951
  year: 2010
  end-page: 1959
  article-title: Demographic consequences of adaptive growth and the ramifications for conservation of long‐lived organisms
  publication-title: Biological Conservation
– volume: 72
  start-page: 343
  year: 1995
  end-page: 348
  article-title: Patterns of survival, growth and maturation in turtles
  publication-title: Oikos
– year: 2015
  article-title: Changes across a decade in growth, size, and body condition of western pond turtles ( [ ] ) on free‐flowing and regulated forks of the Trinity River in northwest California
  publication-title: Copeia
– volume: 43
  start-page: 510
  year: 2009
  end-page: 520
  article-title: Variation in body size, growth, and population structure of from lentic and lotic habitats in southern Oregon
  publication-title: Journal of Herpetology
– volume: 2010
  start-page: 443
  year: 2010
  end-page: 451
  article-title: Population structure and growth of the turtle from the Klamath‐Siskiyou Ecoregion: age, not size, matters
  publication-title: Copeia
– start-page: 275
  year: 2003
  end-page: 306
– volume: 42
  start-page: 322
  year: 2008
  end-page: 331
  article-title: Are locomotor performances coadapted to preferred basking temperature in the northern map turtle ( )?
  publication-title: Journal of Herpetology
– start-page: 111
  year: 2008
  end-page: 124
– volume: 62
  start-page: 842
  year: 1998b
  end-page: 853
  article-title: Habitat use by western pond turtles in the Trinity River, California
  publication-title: The Journal of Wildlife Management
– volume: 20
  start-page: 515
  year: 1986
  end-page: 521
  article-title: Feeding ecology of the turtle,
  publication-title: Journal of Herpetology
– volume: 255
  start-page: 43
  year: 2001
  end-page: 53
  article-title: Variation in adult survival rate of the tortoise in Greece: implications for evolution of body size
  publication-title: Journal of Zoology (London)
– volume: 165
  start-page: 372
  year: 2011
  end-page: 388
  article-title: The effects of climate models on growing‐season length and timing of reproduction in the Pacific Northwest as revealed by biophysical modeling of lizards
  publication-title: The American Midland Naturalist
– volume: 1168
  start-page: 100
  year: 2009
  end-page: 129
  article-title: The covariance between genetic and environmental influences across ecological gradients
  publication-title: The Year in Evolutionary Biology 2009: Annals of the New York Academy of Science
– start-page: 9
  year: 2012a
  end-page: 19
– volume: 3
  start-page: 123
  year: 1998
  end-page: 132
  article-title: Age determination in turtles: evidence of annual deposition of scute rings
  publication-title: Chelonian Conservation and Biology
– volume: 250
  start-page: 119
  year: 2013
  end-page: 125
  article-title: Application of hierarchical biphasic growth models to long‐term data for snapping turtles
  publication-title: Ecological Modelling
– volume: 7
  start-page: 457
  year: 1992
  end-page: 511
  article-title: Inference from iterative simulation using multiple sequences
  publication-title: Statistical Sciences
– start-page: 57
  year: 2012
  end-page: 67
– year: 1999
– ident: e_1_2_6_53_1
  doi: 10.2307/1565204
– ident: e_1_2_6_28_1
  doi: 10.1655/HERPETOLOGICA-D-11-00050.1
– ident: e_1_2_6_61_1
  doi: 10.2307/3546119
– ident: e_1_2_6_8_1
  doi: 10.2307/3545787
– volume: 29
  start-page: 265
  year: 1965
  ident: e_1_2_6_29_1
  article-title: Properties and fitting of the von Bertalanffy growth curve
  publication-title: Growth
– ident: e_1_2_6_20_1
  doi: 10.1643/0045-8511(2000)000[0402:TEOHRD]2.0.CO;2
– ident: e_1_2_6_33_1
  doi: 10.1214/ss/1177011136
– ident: e_1_2_6_45_1
  doi: 10.1111/j.1365-2486.2012.02673.x
– ident: e_1_2_6_2_1
  doi: 10.1086/285538
– ident: e_1_2_6_16_1
  doi: 10.1643/CH-08-096
– ident: e_1_2_6_51_1
  doi: 10.1577/1548-8659(1997)126<0549:LVILSS>2.3.CO;2
– ident: e_1_2_6_6_1
  doi: 10.1201/b13895-6
– ident: e_1_2_6_24_1
  doi: 10.1016/S0169-5347(00)89081-3
– ident: e_1_2_6_68_1
  doi: 10.1111/j.1558-5646.1986.tb00560.x
– ident: e_1_2_6_66_1
  doi: 10.1111/mec.12736
– volume: 3
  start-page: 143
  year: 2008
  ident: e_1_2_6_59_1
  article-title: Reproduction of Pacific pond turtles (Actinemys marmorata) in coastal streams of central California
  publication-title: Herpetological Conservation and Biology
– ident: e_1_2_6_73_1
  doi: 10.1201/b10201-2
– ident: e_1_2_6_34_1
  doi: 10.1894/GC-196.1
– start-page: 57
  volume-title: Western Pond Turtle: Biology, Sampling Techniques, Inventory and Monitoring, Conservation, and Management
  year: 2012
  ident: e_1_2_6_4_1
– ident: e_1_2_6_13_1
  doi: 10.2307/1564248
– start-page: 9
  volume-title: Western Pond Turtle: Biology, Sampling Techniques, Inventory and Monitoring, Conservation, and Management
  year: 2012
  ident: e_1_2_6_14_1
– volume: 3
  start-page: 123
  year: 1998
  ident: e_1_2_6_35_1
  article-title: Age determination in turtles: evidence of annual deposition of scute rings
  publication-title: Chelonian Conservation and Biology
– ident: e_1_2_6_37_1
  doi: 10.2744/CCB-0705.1
– ident: e_1_2_6_30_1
  doi: 10.2307/2426130
– ident: e_1_2_6_47_1
  doi: 10.4027/rgsfcc.2008.06
– ident: e_1_2_6_67_1
  doi: 10.2307/1311135
– ident: e_1_2_6_38_1
  doi: 10.1007/s00300-005-0716-7
– ident: e_1_2_6_54_1
  doi: 10.2307/3802535
– ident: e_1_2_6_42_1
  doi: 10.1139/F09-189
– ident: e_1_2_6_72_1
  doi: 10.1086/501029
– ident: e_1_2_6_44_1
  doi: 10.1017/S0952836902000584
– ident: e_1_2_6_7_1
  doi: 10.1670/07-1881.1
– start-page: 275
  volume-title: The Biology of Sea Turtles
  year: 2003
  ident: e_1_2_6_40_1
– ident: e_1_2_6_19_1
  doi: 10.1139/cjfas-2013-0295
– start-page: 255
  volume-title: Loggerhead Sea Turtles
  year: 2008
  ident: e_1_2_6_39_1
– volume: 8
  start-page: 207
  year: 2013
  ident: e_1_2_6_49_1
  article-title: Terrestrial movement patterns of western pond turtles (Actinemys marmorata) in central California
  publication-title: Herpetological Conservation and Biology
– volume: 39
  start-page: 147
  year: 1983
  ident: e_1_2_6_21_1
  article-title: Relationships of reproductive characteristics to body size in Pseudemys scripta
  publication-title: Herpetologica
– ident: e_1_2_6_36_1
  doi: 10.1670/08-033R2.1
– volume-title: Bayesian Data Analysis
  year: 2004
  ident: e_1_2_6_32_1
– ident: e_1_2_6_62_1
  doi: 10.1111/eff.12166
– ident: e_1_2_6_26_1
  doi: 10.1086/338989
– ident: e_1_2_6_5_1
  doi: 10.1643/cp‐15‐253
– ident: e_1_2_6_25_1
  doi: 10.2307/1941948
– ident: e_1_2_6_64_1
  doi: 10.1139/f05-058
– ident: e_1_2_6_65_1
  doi: 10.1016/j.biocon.2010.04.034
– ident: e_1_2_6_10_1
  doi: 10.1111/j.0014-3820.2001.tb00835.x
– ident: e_1_2_6_9_1
  doi: 10.1111/j.1558-5646.1979.tb04714.x
– ident: e_1_2_6_43_1
  doi: 10.1111/j.0014-3820.2001.tb00836.x
– ident: e_1_2_6_75_1
  doi: 10.1674/0003-0031-165.2.372
– ident: e_1_2_6_31_1
  doi: 10.2307/1445975
– ident: e_1_2_6_23_1
  doi: 10.1007/BF00317554
– ident: e_1_2_6_57_1
  doi: 10.1111/j.1600-0633.2012.00570.x
– ident: e_1_2_6_41_1
  doi: 10.1007/s10584-011-0326-z
– start-page: 571
  volume-title: Turtles: Perspectives and Research
  year: 1979
  ident: e_1_2_6_12_1
– ident: e_1_2_6_3_1
  doi: 10.1016/j.ecolmodel.2012.10.022
– ident: e_1_2_6_50_1
  doi: 10.1007/s00227-011-1759-7
– ident: e_1_2_6_71_1
  doi: 10.1139/F10-041
– ident: e_1_2_6_56_1
  doi: 10.1139/f2012-069
– ident: e_1_2_6_46_1
  doi: 10.1139/f07-003
– volume: 3
  start-page: 108
  year: 1998
  ident: e_1_2_6_15_1
  article-title: Annual deposition of scute rings in the western pond turtle, Clemmys marmorata
  publication-title: Chelonian Conservation and Biology
– ident: e_1_2_6_69_1
  doi: 10.1111/j.0014-3820.2000.tb00016.x
– ident: e_1_2_6_76_1
  doi: 10.1016/j.fishres.2008.09.035
– start-page: 17
  volume-title: The Biology of Turtles
  year: 2007
  ident: e_1_2_6_63_1
– ident: e_1_2_6_27_1
– ident: e_1_2_6_55_1
  doi: 10.1674/0003-0031-169.1.111
– ident: e_1_2_6_18_1
  doi: 10.1007/s10750-009-0043-z
– volume: 1168
  start-page: 100
  year: 2009
  ident: e_1_2_6_22_1
  article-title: The covariance between genetic and environmental influences across ecological gradients
  publication-title: The Year in Evolutionary Biology 2009: Annals of the New York Academy of Science
– ident: e_1_2_6_58_1
  doi: 10.1111/j.1600-0706.2013.00530.x
– ident: e_1_2_6_74_1
  doi: 10.1017/S0952836901001108
– start-page: 1
  volume-title: Western Pond Turtle: Biology, Sampling Techniques, Inventory and Monitoring, Conservation, and Management
  year: 2012
  ident: e_1_2_6_17_1
– start-page: 352
  volume-title: Proceedings: Conservation, Restoration, and Management of Tortoises and Turtles
  year: 1997
  ident: e_1_2_6_52_1
– ident: e_1_2_6_11_1
  doi: 10.1890/03-9000
– ident: e_1_2_6_70_1
– ident: e_1_2_6_60_1
  doi: 10.1111/j.1365-2435.2011.01915.x
– ident: e_1_2_6_48_1
  doi: 10.1111/j.1365-2427.2009.02179.x
SSID ssj0008572
Score 2.288069
Snippet Summary Counter‐gradient growth, where growth per unit temperature increases as temperature decreases, can reduce the variation in ectothermic growth rates...
Counter‐gradient growth, where growth per unit temperature increases as temperature decreases, can reduce the variation in ectothermic growth rates across...
Summary Counter-gradient growth, where growth per unit temperature increases as temperature decreases, can reduce the variation in ectothermic growth rates...
1. Counter-gradient growth, where growth per unit temperature increases as temperature decreases, can reduce the variation in ectothermic growth rates across...
SourceID proquest
crossref
wiley
istex
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1944
SubjectTerms Body size
California
Climate change
counter-gradient growth
Dams
Environmental gradient
Growth rate
habitats
heat sums
Maturity
phenotypic plasticity
Ponds
population dynamics
prediction
Rivers
sexual maturity
temperature profiles
Turtles
Water temperature
western pond turtle
Title Evidence of counter-gradient growth in western pond turtles (Actinemys marmorata) across thermal gradients
URI https://api.istex.fr/ark:/67375/WNG-JLMMVKSP-9/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Ffwb.12623
https://www.proquest.com/docview/1703898619
https://www.proquest.com/docview/1709164670
https://www.proquest.com/docview/1803096179
Volume 60
WOSCitedRecordID wos000359779000017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1365-2427
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0008572
  issn: 0046-5070
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dbtMwFD4aLUgIid9NFAYyCKFyEZTGce2IqwErCLoywWC7i2zHhok1nZKObXc8As_Ik3DsONEmAULizpJPLMfnPz75DsAjzLYKnijUNJGyKJWaRsoyG6FrtCrDFFo2nJ7y2Uzs7WXbK_Cs_RemwYfoPrg5zfD22im4VPUZJbfH6ukoQe99AfoJyi3rQf_l-8nHaWeIBeMNWHg6jjDsiQOwkCvk6R4-54767mRPzsWaZyNW73Im1_5rs9fhaog0yUYjGjdgxZQ34VLTe_IUR5s6jK6800aWAbr6Fhy0jUbJwhLfSsJUP7__wGlXHLYknzFxX34h-yUJKAvkcFEWBF0Xil1NhhtoQUszP63JXFZzJ2HyCZH-9YmLNue4qXaxehV2Jps7L15HoSdDpNGkOkaOaSIZTQxnmeBaW0qtoHRkeaZj19AqE5gBZgWzOpZMx1QZoalOjVSGS7oGvXJRmttAilSLMTe0KGKbjnWstCwULaSSaPikoAMYtpzJdcArd20zDvI2b8FDzf2hDuBhR3rYgHT8juixZ29HIauvrqqNs3x39ip_M93a-vT2w3aeDWC95X8eFLrOR9whEQpMNwfwoJtGVXT3K7I0iyNPkzm4Nh7_hUa4Oy0MG3GdoZeYP-84n-w-94M7_056Fy5jSMeaKrh16C2rI3MPLupvy_26uh805Bd9RxXM
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFD4aKwg0iTuiY4BBCJWHoLROakfiZcDKYGmZWGF7s2zHhmlrOiXdYG_8BH4jv4Rj56JNAoTEmyWfRI7P3T75DsATzLYyNlCoaTyKg0hqGigb2wBdo1UJptCy4nTKJhO-t5dsL8GL5l-YCh-iPXBzmuHttVNwdyB9RsvtV_W8P0D3fQE6EYoRynfn9YfRx7S1xDxmFVp4NAww7glrZCFXydM-fM4fddzWfjsXbJ4NWb3PGV37v9Veh6t1rEnWK-G4AUsmvwmXqu6Tpzja0PVo5b02Mq_Bq2_BYdNqlMwt8c0kTPHz-w-cduVhC_IZU_fFF7KfkxpngRzN84yg80LBK0lvHW1obmanJZnJYuZkTD4j0n8_cfHmDBfVvKy8DdPRxvTVZlB3ZQg0GlXHyiEdyJgODIsTzrS2lFpOad-yRIeupVXCMQdMstjqUMY6pMpwTXVkpDJM0juwnM9zcxdIFmk-ZIZmWWijoQ6VlpmimVQSTZ_ktAu9hjVC14jlrnHGoWgyF9xU4Te1C49b0qMKpuN3RE89f1sKWRy4ujYWi93JG_EuHY8_be1si6QLa40AiFqlS9FnDouQY8LZhUftNCqju2GRuZkfe5rEAbax8C803N1qYeCI7-l5kfnzisVo96UfrP476UO4vDkdpyJ9O9m6B1cwwIurmrg1WF4Ux-Y-XNQni_2yeFCryy8Orxm8
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFD4aLSCExHWIwgCDECoPmdI6rh2Jl8EWLutKxQbbm-X4AhNrWiUdsDd-Ar-RX8JxbtokQEi8WfKJ5fjc45PvADzGbMvwYYqaJiIWRErTIHXMBegaXRpjCq0qTo_5ZCIODuLpCjxr_oWp8CHaD25eM0p77RXcLow7peXua7o-GKL7PgfdyDeR6UB3813yftxaYsF4hRYejQKMe8IaWchX8rQPn_FHXX-0384Em6dD1tLnJFf_b7fX4Eoda5KNSjiuw4rNbsCFqvvkCY62dD26_FZbldXg1TfhqGk1SuaOlM0kbP7z-w-c9uVhS_IRU_flJ3KYkRpngSzmmSHovFDwCtLfQBua2dlJQWYqn3kZU0-JKt-f-HhzhptqFitWYS_Z2nvxKqi7MgQajapn5YgOFaNDy1ksuNaOUicoHTge69C3tIoF5oCxYU6HiumQplZoqiOrUssVvQWdbJ7Z20BMpMWIW2pM6KKRDlOtTEqNShWaPiVoD_oNa6SuEct944wj2WQueKiyPNQePGpJFxVMx--InpT8bSlU_tnXtXEm9ycv5Zvxzs6H7d2pjHuw1giArFW6kAPusQgFJpw9eNhOozL6GxaV2flxSRN7wDYe_oVG-FstDBxxnX4pMn_esUz2n5eDO_9O-gAuTjcTOX492b4LlzC-Y1VJ3Bp0lvmxvQfn9ZflYZHfr7XlF3TbGTc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evidence+of+counter%E2%80%90gradient+growth+in+western+pond+turtles+%28+Actinemys+marmorata+%29+across+thermal+gradients&rft.jtitle=Freshwater+biology&rft.au=Snover%2C+Melissa+L.&rft.au=Adams%2C+Michael+J.&rft.au=Ashton%2C+Donald+T.&rft.au=Bettaso%2C+Jamie+B.&rft.date=2015-09-01&rft.issn=0046-5070&rft.eissn=1365-2427&rft.volume=60&rft.issue=9&rft.spage=1944&rft.epage=1963&rft_id=info:doi/10.1111%2Ffwb.12623&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_fwb_12623
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0046-5070&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0046-5070&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0046-5070&client=summon