A Real Data-Driven Clustering Approach for Countries Based on Happiness Score
In machine learning and data science literature, clustering is the task of dividing the observations (data points) into several categories in such a way that data points falling into one group are being dissimilar than the data points falling to the other groups such that the variation within a grou...
Uložené v:
| Vydané v: | Amfiteatru economic Ročník 23; číslo SI 15; s. 1031 - 1045 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Bucharest
EDITURA ASE
2021
ASE Publishing House The Bucharest University of Economic Studies Bucharest Academy of Economic Studies, Faculty of Commerce Editura ASE |
| Predmet: | |
| ISSN: | 1582-9146, 2247-9104, 2247-9104 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | In machine learning and data science literature, clustering is the task of dividing the observations (data points) into several categories in such a way that data points falling into one group are being dissimilar than the data points falling to the other groups such that the variation within a group is minimized and the variation between the groups is maximized. It falls under the class of unsupervised learning techniques. It is primarily a tool to classify individuals on the basis of similarity and dissimilarity between them. Our present study utilizes the world happiness data of 156 countries collected by the Gallup World Poll. Our study proposes a useful clustering approach with a very high degree of accuracy to classify different countries of the world based on several economic and social indicators. The most appropriate clustering algorithm has been selected based on different statistical methods. We also proceed to rank the top ten countries in each of the three clusters according to their happiness score. The three leading countries in terms of happiness from cluster 1 (medium happiness), cluster 2 (high happiness), and cluster 3 (low happiness) are Oman, Denmark, and Guyana, respectively, followed by United Arab Emirates, Finland, and Pakistan. Finally, we use four popular machine learning classification algorithms to validate our cluster-based algorithm and obtained very consistent results with high accuracy. |
|---|---|
| AbstractList | In machine learning and data science literature, clustering is the task of dividing the observations (data points) into several categories in such a way that data points falling into one group are being dissimilar than the data points falling to the other groups such that the variation within a group is minimized and the variation between the groups is maximized. It falls under the class of unsupervised learning techniques. It is primarily a tool to classify individuals on the basis of similarity and dissimilarity between them. Our present study utilizes the world happiness data of 156 countries collected by the Gallup World Poll. Our study proposes a useful clustering approach with a very high degree of accuracy to classify different countries of the world based on several economic and social indicators. The most appropriate clustering algorithm has been selected based on different statistical methods. We also proceed to rank the top ten countries in each of the three clusters according to their happiness score. The three leading countries in terms of happiness from cluster 1 (medium happiness), cluster 2 (high happiness), and cluster 3 (low happiness) are Oman, Denmark, and Guyana, respectively, followed by United Arab Emirates, Finland, and Pakistan. Finally, we use four popular machine learning classification algorithms to validate our cluster-based algorithm and obtained very consistent results with high accuracy. |
| Author | Chakraborty, Aditya Tsokos, Chris P |
| Author_xml | – sequence: 1 fullname: Chakraborty, Aditya – sequence: 2 fullname: Tsokos, Chris P |
| BookMark | eNp9UV1rFDEUDVLBtfYHCAoDvjrd3HxN5nHcrm2hIlh9Dpnkbs0yTsZktuC_N9tpEUTMyw2555yce89LcjLGEQl5DfScCQ16ve3WjDJY34JcA-XwjKwYE03dAhUnZAVSs3IX6gU5y3lPy2kkByFX5FNXfUE7VBd2tvVFCvc4VpvhkGdMYbyrumlK0brv1S6mahMP45wC5uqDzeirOFZXdprCiDlXty4mfEWe7-yQ8eyxnpJvH7dfN1f1zefL6013UzuhGqi9pN61zvWScaaE5Naj9l5Dj5oK7QT0rGlbKrn0wjrhoUEQvdII2EIL_JRcL7o-2r2ZUvhh0y8TbTAPDzHdGZvm4AY0LXprFTS0YeVzJ1uvpVJCMKF6T70vWu8WrTLpzwPm2ezjIY3FvineWs6Z4E1BNQvKpZhzwp1xYbZziGUjNgwGqHmIwmw7c4zClCjMMYrChL-YT37_x3m7cNDFMWRzLHmOyTANClTpv3_URIzDH8NPQ_voTKsbCcpMflfgb_4JXyD8N5c8rcI |
| CitedBy_id | crossref_primary_10_3390_math12152407 |
| Cites_doi | 10.1093/rpd/ncr465 10.5120/20639-3318 10.4236/ojapps.2021.111009 10.1086/681096 10.1016/j.socscimed.2014.05.024 10.1016/j.measurement.2019.107115 10.1023/A:1010933404324 10.1177/1745691617693393 10.34257/GJMRFVOL21IS3PG29 10.1257/089533006776526111 10.1007/978-3-540-92185-1_3 10.1016/S1874-8651(10)60092-0 10.1037/0033-2909.134.4.536 10.36347/sjpms.2021.v08i03.001 10.1111/1467-9868.00293 10.1016/0377-0427(87)90125-7 10.1016/S0167-9473(01)00065-2 |
| ContentType | Journal Article |
| Copyright | 2021. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2021. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| CorporateAuthor | University of South Florida, Tampa, FL, USA |
| CorporateAuthor_xml | – name: University of South Florida, Tampa, FL, USA |
| DBID | AE2 BIXPP REL OT2 AAYXX CITATION 3V. 7WY 7WZ 7XB 87Z 8BJ 8FK 8FL ABUWG AFKRA AZQEC BENPR BEZIV BYOGL CCPQU DWQXO FQK FRNLG F~G JBE K60 K6~ L.- M0C PHGZM PHGZT PIMPY PKEHL PQBIZ PQBZA PQEST PQQKQ PQUKI PRINS Q9U DOA |
| DOI | 10.24818/EA/2021/S15/1031 |
| DatabaseName | Central and Eastern European Online Library (C.E.E.O.L.) (DFG Nationallizenzen) CEEOL: Open Access Central and Eastern European Online Library - CEEOL Journals EconStor CrossRef ProQuest Central (Corporate) ABI/INFORM - ProQuest ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection International Bibliography of the Social Sciences (IBSS) ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials - QC ProQuest Central Database Suite (ProQuest) Business Premium Collection East Europe, Central Europe Database (ProQuest) ProQuest One ProQuest Central International Bibliography of the Social Sciences Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) International Bibliography of the Social Sciences ProQuest Business Collection (Alumni Edition) ProQuest Business Collection ABI/INFORM Professional Advanced ABI/INFORM Collection (ProQuest) Proquest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database ABI/INFORM Global (Corporate) ProQuest Business Collection (Alumni Edition) ProQuest One Business ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central China ABI/INFORM Complete ProQuest Central ABI/INFORM Professional Advanced International Bibliography of the Social Sciences (IBSS) ProQuest Central Korea ProQuest Central (New) ABI/INFORM Complete (Alumni Edition) Business Premium Collection ABI/INFORM Global ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest One Academic Eastern Edition East Europe, Central Europe Database ProQuest Business Collection ProQuest One Academic UKI Edition ProQuest One Business (Alumni) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
| DatabaseTitleList | Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: BYOGL name: East Europe, Central Europe Database url: https://search.proquest.com/eastcentraleurope sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Economics |
| DocumentTitleAlternate | A Real Data-Driven Clustering Approach for Countries Based on Happiness Score |
| EISSN | 2247-9104 |
| EndPage | 1045 |
| ExternalDocumentID | oai_doaj_org_article_9edaa617072c46c59d856644246bd0dd 10_24818_EA_2021_S15_1031 281616 987516 |
| GroupedDBID | 23M 5GY 5VS 7WY 8FL AAFWJ ABUWG ACHQT ADBBV AE2 AFFHD AFKRA AFPKN ALMA_UNASSIGNED_HOLDINGS BCNDV BENPR BEZIV BIXPP BPHCQ BYOGL CCPQU DWQXO EN8 EOH EOJEC FRNLG GROUPED_DOAJ IPNFZ K60 K6~ KQ8 M0C OBODZ OK1 PHGZM PHGZT PIMPY PQBIZ PQBZA PQQKQ PROAC REL RIG OT2 AAYXX CITATION 3V. 7XB 8BJ 8FK AZQEC FQK JBE L.- PKEHL PQEST PQUKI PRINS Q9U |
| ID | FETCH-LOGICAL-c4671-d50dc9ccb52326453ade8dd81be8048c41b27990535d4ac4d17e14b68e1e91913 |
| IEDL.DBID | DOA |
| ISSN | 1582-9146 2247-9104 |
| IngestDate | Tue Oct 14 18:10:25 EDT 2025 Sat Nov 08 21:39:26 EST 2025 Tue Nov 18 21:41:33 EST 2025 Sat Nov 29 07:42:28 EST 2025 Fri Dec 05 12:07:08 EST 2025 Tue Oct 28 18:48:21 EDT 2025 Tue Nov 07 20:42:57 EST 2023 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | SI 15 |
| Keywords | Clustering Algorithms Machine Learning Classification Algorithms Economic Indicators Stability Measures Subjective Well Being (SWB) |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4671-d50dc9ccb52326453ade8dd81be8048c41b27990535d4ac4d17e14b68e1e91913 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-1476-113X 0000-0002-5470-7410 |
| OpenAccessLink | https://doaj.org/article/9edaa617072c46c59d856644246bd0dd |
| PQID | 2649332437 |
| PQPubID | 1926338 |
| PageCount | 15 |
| ParticipantIDs | crossref_citationtrail_10_24818_EA_2021_S15_1031 doaj_primary_oai_doaj_org_article_9edaa617072c46c59d856644246bd0dd econis_econstor_281616 proquest_journals_2649332437 crossref_primary_10_24818_EA_2021_S15_1031 ceeol_journals_987516 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-00-00 |
| PublicationDateYYYYMMDD | 2021-01-01 |
| PublicationDate_xml | – year: 2021 text: 2021-00-00 |
| PublicationDecade | 2020 |
| PublicationPlace | Bucharest |
| PublicationPlace_xml | – name: Bucharest |
| PublicationSubtitle | Economic Amphitheater |
| PublicationTitle | Amfiteatru economic |
| PublicationTitleAlternate | Economic Amphitheater |
| PublicationYear | 2021 |
| Publisher | EDITURA ASE ASE Publishing House The Bucharest University of Economic Studies Bucharest Academy of Economic Studies, Faculty of Commerce Editura ASE |
| Publisher_xml | – name: EDITURA ASE – name: ASE Publishing House – name: The Bucharest University of Economic Studies – name: Bucharest Academy of Economic Studies, Faculty of Commerce – name: Editura ASE |
| References | ref13 Friedman, J.H. (ref10) 2002; 38 Oswald, A.J.; Proto, E.; Sgroi, D. (ref18) 2015; 33 Zambon, G.; Benocci, R.; Brambilla, G. (ref26) 2016; 10 Chakraborty, A.; Tsokos, C. P. (ref3) 2021; 8 Chen, T.; He, T.; Benesty, M.; Khotilovich, V.; Tang, Y.; Cho, H. (ref7) 2015; 0 Pandya, R.; Pandya, J. (ref19) 2015; 117 Pang, S.L.; Gong, J.Z. (ref20) 2009; 29 Charrad, M.; Ghazzali, N.; Boiteau, V.; Niknafs, A. (ref6) 2014; 61 Howell, R.T.; Howell, C.J. (ref12) 2008; 134 Breiman, L. (ref2) 2001; 45 Yarkoni, T.; Westfall, J. (ref25) 2017; 12 Sabatini, F. (ref24) 2014; 114 Natekin, A.; Knoll, A. (ref17) 2013; 7 Hastie, T.; Tibshirani, R.; Walther, G. (ref11) 2001; 63 Chakraborty, A.; Tsokos, C. P. (ref4) 2021; 11 Della Mea, V.; Demartini, G.; Di Gaspero, L.; Mizzaro, S. (ref8) 2006; 57 Di Tella, R.; MacCulloch, R. (ref9) 2006; 20 Rendijn, E.; Abundez, I.; Arizmendi, A.; Quiroz, E.M. (ref22) 2011; 5 Kermani, F. (ref15) 2017; 2 ref5 Moeinaddini, M., Asadi Shekari, Z., Aghaabbasi, M., Saadi, I., Shah, M.Z. and Cools, M. (ref16) 2020; 151 Rousseeuw, P.J. (ref23) 1987; 20 Borg, M.; Badr, I.; Royle, G.J. (ref1) 2012; 151 Quinlan, J.R. (ref21) 1986; 1 Jauhari, F.; Supianto, A.A. (ref14) 2019; 14 |
| References_xml | – volume: 151 start-page: 81 year: 2012 ident: ref1 publication-title: Radiation protection dosimetry doi: 10.1093/rpd/ncr465 – volume: 0 start-page: 1 year: 2015 ident: ref7 publication-title: R package version 0.4 – volume: 5 start-page: 27 year: 2011 ident: ref22 publication-title: International Journal of Computers and Communications – volume: 117 start-page: 18 year: 2015 ident: ref19 publication-title: International Journal of Computer Applications doi: 10.5120/20639-3318 – volume: 11 start-page: 126 year: 2021 ident: ref4 publication-title: Open Journal of Applied Sciences doi: 10.4236/ojapps.2021.111009 – volume: 33 start-page: 789 year: 2015 ident: ref18 publication-title: Journal of Labor Economics doi: 10.1086/681096 – volume: 7 start-page: 21 year: 2013 ident: ref17 publication-title: Frontiers in Neurorobotics – volume: 14 start-page: 1298 year: 2019 ident: ref14 publication-title: J. Electr. Eng. Comput. Sci – volume: 114 start-page: 178 year: 2014 ident: ref24 publication-title: Social Science Medicine doi: 10.1016/j.socscimed.2014.05.024 – volume: 151 start-page: 107115 year: 2020 ident: ref16 publication-title: Measurement doi: 10.1016/j.measurement.2019.107115 – volume: 45 start-page: 5 year: 2001 ident: ref2 publication-title: Machine learning doi: 10.1023/A:1010933404324 – volume: 12 start-page: 1100 year: 2017 ident: ref25 publication-title: Perspectives on Psychological Science doi: 10.1177/1745691617693393 – ident: ref5 doi: 10.34257/GJMRFVOL21IS3PG29 – volume: 20 start-page: 25 year: 2006 ident: ref9 publication-title: Journal of economic perspectives doi: 10.1257/089533006776526111 – ident: ref13 doi: 10.1007/978-3-540-92185-1_3 – volume: 29 start-page: 94 year: 2009 ident: ref20 publication-title: Systems Engineering-Theory Practice doi: 10.1016/S1874-8651(10)60092-0 – volume: 61 start-page: 1 year: 2014 ident: ref6 publication-title: Journal of statistical software – volume: 2 start-page: 116 year: 2017 ident: ref15 publication-title: ActaHealthMedica – volume: 134 start-page: 536 year: 2008 ident: ref12 publication-title: Psychological bulletin doi: 10.1037/0033-2909.134.4.536 – volume: 57 start-page: 433 year: 2006 ident: ref8 publication-title: Information Wissenschaft und Praxis – volume: 8 start-page: 45 year: 2021 ident: ref3 publication-title: Sch J Phys Math Stat doi: 10.36347/sjpms.2021.v08i03.001 – volume: 10 start-page: 411 year: 2016 ident: ref26 publication-title: International Journal of Environmental Research – volume: 63 start-page: 411 year: 2001 ident: ref11 publication-title: J Roy Stat Soc B doi: 10.1111/1467-9868.00293 – volume: 1 start-page: 81 year: 1986 ident: ref21 publication-title: Machine Learning – volume: 20 start-page: 53 year: 1987 ident: ref23 publication-title: Journal of Computational and Applied Mathematics doi: 10.1016/0377-0427(87)90125-7 – volume: 38 start-page: 367 year: 2002 ident: ref10 publication-title: Computational statistics data analysis doi: 10.1016/S0167-9473(01)00065-2 |
| SSID | ssj0000753145 ssib044729293 |
| Score | 2.1891172 |
| Snippet | In machine learning and data science literature, clustering is the task of dividing the observations (data points) into several categories in such a way that... |
| SourceID | doaj proquest crossref econis ceeol |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1031 |
| SubjectTerms | Accuracy Algorithms Business Economy / Management Classification Cluster analysis Clustering Clustering Algorithms Data Decision trees Economic Indicators GDP Gross Domestic Product Groups Happiness Industrialized nations Machine learning Machine Learning Classification Algorithms Productivity Research methodology Social indicators Socioeconomic factors Stability Measures Statistical methods Subjective Well Being (SWB) |
| SummonAdditionalLinks | – databaseName: ABI/INFORM Collection (ProQuest) dbid: M0C link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Nb9MwFLdgIMGFz00UBvIBLkhR7dRO4hPy0kxF6tKqH9NuVmI7aGhqSzP4-3kvH50AaRdOkRwnsv2-n-3fI-QjZxaUn1MBY74KhEKZcxUPwoJVseRVVDZwDJfTOM-Tqys17xJudXessteJjaJ2W4s58iEYboi9ET7vy-5HgFWjcHe1K6HxkDxCzwaP9F2wtOcnIcBz7M3Z93bTbsSbusVcgmOpQEu0G52hALs1zDSmAvhwyeUQqx8gaqf325s_TFaD7I-3kiBcva7_0eCNWTp__r8TekGedQ4p1S0HvSQP_OYVedLfV65fkwtNF5me0rFe6WC8-HqZ5TSdrperBo2K6vl8MdPphEI4SdPZOl8twMOkZ3qZjekspxONmQMgM12ms0V2TNbn2SqdBF0RhsCCDuWBk8xZZW0JESsMWY4K5xPnwNv1CUi_FbwMYzBpciSdKKxwPPZclFHiuVcQDI5OyNFmu_FvCI0F_CtkkkWuEoUqixj3zivpJIdQWbkBOW7W23RiVBsF0RSPBuTTX-2dVBmsnNL2MTtXDQjr6WRsh3COhTZuDEQ6DYlNpg2S2ACJDZJ4QD4fPtm18B73dT5D4h86IjJ307DdfzsMSXlXFIhyH4ewgFYql4DHLEQootIxB5M8aVnH4ANPwJowAbcbZnna88ndRO-Y5O39r9-RpzjWNjl0So5u9z_9e_LY_rq9rvcfGrH4DQpqBaw priority: 102 providerName: ProQuest |
| Title | A Real Data-Driven Clustering Approach for Countries Based on Happiness Score |
| URI | https://www.ceeol.com//search/article-detail?id=987516 https://www.econstor.eu/handle/10419/281616 https://www.proquest.com/docview/2649332437 https://doaj.org/article/9edaa617072c46c59d856644246bd0dd |
| Volume | 23 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: Directory of Open Access Journals customDbUrl: eissn: 2247-9104 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000753145 issn: 1582-9146 databaseCode: DOA dateStart: 20100101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2247-9104 dateEnd: 99991231 omitProxy: false ssIdentifier: ssib044729293 issn: 1582-9146 databaseCode: M~E dateStart: 19990101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ABI/INFORM Collection customDbUrl: eissn: 2247-9104 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000753145 issn: 1582-9146 databaseCode: 7WY dateStart: 20120201 isFulltext: true titleUrlDefault: https://www.proquest.com/abicomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ABI/INFORM Global customDbUrl: eissn: 2247-9104 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000753145 issn: 1582-9146 databaseCode: M0C dateStart: 20120201 isFulltext: true titleUrlDefault: https://search.proquest.com/abiglobal providerName: ProQuest – providerCode: PRVPQU databaseName: East Europe, Central Europe Database customDbUrl: eissn: 2247-9104 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000753145 issn: 1582-9146 databaseCode: BYOGL dateStart: 20120201 isFulltext: true titleUrlDefault: https://search.proquest.com/eastcentraleurope providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2247-9104 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000753145 issn: 1582-9146 databaseCode: BENPR dateStart: 20120201 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2247-9104 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000753145 issn: 1582-9146 databaseCode: PIMPY dateStart: 20120201 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwED_BQIIXxMcmAqPyA7wgRbUTO44f067TkGhVbXxsT5ZjO9JQ1U5tx9_PXZKWARK88JJIlvPhu_Pd7-L4dwBvBffo_IJJOY9NKg3NudCINHO80Uo0Rd3SMXz5qGez8vLSzO-U-qJ_wjp64E5wQxODc8QarjMvC69MKBGBSJnJog48BPK-XJs7yRRakpSIGXeB7Fu3XJeLtmKxUAgpDfqHbokzkxixhpOKPgKI4YVQQ6p7QHydMa4WvwSrltOf9iNhonq9-cN3twHp9Ck86ZEkq7oRPIN7cfkcHu02Gm9ewLRi5wgD2YnbuvRkTW6NjRe3xIyA8YpVPZs4Q9jKaGs6ldbasBGGtcBWS3bmiLoBHSG7IKrLQ_h8Ovk0Pkv76gkpykmLNCgevPG-xlQTUY_KXYhlCAhTY4nT1ktRZxpjkcpVkM7LIHQUsi7KKKLBLC4_goPlahlfAtMS75VxxYvQSGdqp2nRu1FBCcxxTUjgsBWX7e1_Yw2mQaJI4N1v7b1WLZU86frYm9AkwHditr6nJqcKGQuLKUqrITupLGnIooYsaSiB9_tLbjpejr91HpHu9h2JUrttQEPbv9K_DC2Bo07zlk7066rNSsTLOMrjnSX8HChK3OQ5sT2--h8Pfw2PaUTdt59jONiub-MbeOi_b6836wHc11-vBvBgNJnNzwftTMDjlI-xbf5hOr_6ARUgA7k |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELZKQSoXnq1YKOADvSBFG2ftPA4IudlUu2qaXe2j6s0ktoOKqt1lt4D4U_xGZvLYCpB664FTJMexMvbnmfn8mCHkHXM1KD8TOa5rS4dHOOdMyRwvd8tAsNIvqnAM52mQZeHFRTTeIb_auzB4rLLViZWiNkuNa-RdMNzAvTF83sfVVwezRuHuaptCo4bFqf35Ayjb5sOwD-N75HknySweOE1WAUeDUmCOEa7RkdYFUDBoVPRyY0NjwH2zIcBZc1Z4Aeho0ROG55obFljGCz-0zEbAbnrQ7j1yn3OYHnhU0I1b_HIOnmprPr_Um4Q9VuVJZgIc2Qi0Ur2x6nGwk91E4tID606Z6GK2BYwSau3y6g8TWWUSwFtQQI8vN_9YjMoMnjz-3zrwCXnUONxU1jPkKdmxi2dkr72PvXlOziSdJDKlfTmTTn8yPE8yGqfz6ayKtkXleDwZyXhAgS7TeDTPZhPwoOmxnCZ9OsroQOLKCMCYTuPRJNkn8zuR5oDsLpYL-4LQgENbnitc35Q8j4o8wLMBpTCCBeBomw7Zr8ZXNWpioyJgi8zvkKO_yhutoTAzTF1HrUzZIW6LC6WbCO6YSORKAZOrIKUSqRBSCiClEFId8n77yaoOX3Jb5WME27YiRh6vCpbrz9tfiqzJc4ziH3jQgVpEJgRGwLnH_cK4BoQ8qKGq8IEnfJUXAq0AKQ9bXN4IegPKl7e_fkv2BrOzVKXD7PQVeYj_XS-EHZLd6_U3-5o80N-vLzfrN9WUpOTTXUP4N5L9YPc |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFLbGQMAL100UBviBvSBFtVO7SR4Q8tJUq1bSqpdpb15iO2hoaks7QPw1fh3n5NIJkPa2B54iJU7iy-dzzmcfn0PIO84MCD8beYy5whMRzjlbcM_PWBFIXnTzMhzD6TBI0_DsLBrvkF_NWRh0q2xkYimo7dLgGnkbFDdwbwyf1y5qt4hxr_9x9dXDDFK409qk06ggcuJ-_gD6tvkw6MFYH_p-P5nFx16dYcAzICC4ZyWzJjImBzoGP5CdzLrQWjDlXAjQNoLnfgDyWnakFZkRlgeOi7wbOu4iYDod-O4dcjcQoDbRbZDFDZaFAKu1UaVfqg3DDi9zJnMJRm0EEqraZPUF6Mx2onAZgrenXLYx8wJGDHVuefmHuiyzCuCJKKDKF5t_tEepEvuP_-fOfEIe1YY4VdXMeUp23OIZedCc0948J58UnSRqSHtqprzeZHCapDQezqezMgoXVePxZKTiYwo0msajeTqbgGVNj9Q06dFRSo8VrpgAvOk0Hk2SPTK_ldbsk93FcuFeEArwYNZnknVtIbIozwL0GSiklTwAA9y2yF451roWHxsdAYvk3RY5_Ot-LU00ZoypyuiVLVqENRjRpo7sjglGLjUwvBJeOlEa4aUBXhrh1SLvt6-sqrAmNxU-QuBtC2JE8vLGcv15W6XI2SzD6P6BDx1oZGRDYApC-KKbW2ahkfsVbDVe0PNX-yHQDWjlQYPR64ZeA_TlzY_fkvuAXD0cpCevyEOsdrU-dkB2r9bf3Gtyz3y_utis35Szk5Lz20bwb7duab0 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Real+Data-Driven+Clustering+Approach+for+Countries+Based+on+Happiness+Score&rft.jtitle=Amfiteatru+economic&rft.au=Aditya+Chakraborty&rft.au=Chris+P+Tsokos&rft.date=2021&rft.pub=Editura+ASE&rft.issn=1582-9146&rft.eissn=2247-9104&rft.volume=23&rft.issue=Special+Issue+No.+15&rft.spage=1031&rft.epage=1045&rft_id=info:doi/10.24818%2FEA%2F2021%2FS15%2F1031&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_9edaa617072c46c59d856644246bd0dd |
| thumbnail_s | http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fwww.ceeol.com%2F%2Fapi%2Fimage%2Fgetissuecoverimage%3Fid%3Dpicture_2021_63613.jpg |