Statistical theory of branching morphogenesis

Branching morphogenesis remains a subject of abiding interest. Although much is known about the gene regulatory programs and signaling pathways that operate at the cellular scale, it has remained unclear how the macroscopic features of branched organs, including their size, network topology and spat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Development, growth & differentiation Jg. 60; H. 9; S. 512 - 521
Hauptverfasser: Hannezo, Edouard, Simons, Benjamin D.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Japan Wiley Subscription Services, Inc 01.12.2018
John Wiley and Sons Inc
Schlagworte:
ISSN:0012-1592, 1440-169X, 1440-169X
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Branching morphogenesis remains a subject of abiding interest. Although much is known about the gene regulatory programs and signaling pathways that operate at the cellular scale, it has remained unclear how the macroscopic features of branched organs, including their size, network topology and spatial patterning, are encoded. Lately, it has been proposed that, these features can be explained quantitatively in several organs within a single unifying framework. Based on large‐scale organ reconstructions and cell lineage tracing, it has been argued that morphogenesis follows from the collective dynamics of sublineage‐restricted self‐renewing progenitor cells, localized at ductal tips, that act cooperatively to drive a serial process of ductal elongation and stochastic tip bifurcation. By correlating differentiation or cell cycle exit with proximity to maturing ducts, this dynamic results in the specification of a complex network of defined density and statistical organization. These results suggest that, for several mammalian tissues, branched epithelial structures develop as a self‐organized process, reliant upon a strikingly simple, but generic, set of local rules, without recourse to a rigid and deterministic sequence of genetically programmed events. Here, we review the basis of these findings and discuss their implications. We review the basis of recent research activities that have developed and applied a unifying theory of branching morphogenesis in several mammalian tissues, including the mouse mammary gland epithelium, kidney and pancreas. We discuss the evidence in favor of the model, as well as the implications that these concepts have for the organization and function of ductal precursors.
AbstractList Branching morphogenesis remains a subject of abiding interest. Although much is known about the gene regulatory programs and signaling pathways that operate at the cellular scale, it has remained unclear how the macroscopic features of branched organs, including their size, network topology and spatial patterning, are encoded. Lately, it has been proposed that, these features can be explained quantitatively in several organs within a single unifying framework. Based on large-scale organ reconstructions and cell lineage tracing, it has been argued that morphogenesis follows from the collective dynamics of sublineage-restricted self-renewing progenitor cells, localized at ductal tips, that act cooperatively to drive a serial process of ductal elongation and stochastic tip bifurcation. By correlating differentiation or cell cycle exit with proximity to maturing ducts, this dynamic results in the specification of a complex network of defined density and statistical organization. These results suggest that, for several mammalian tissues, branched epithelial structures develop as a self-organized process, reliant upon a strikingly simple, but generic, set of local rules, without recourse to a rigid and deterministic sequence of genetically programmed events. Here, we review the basis of these findings and discuss their implications.
Branching morphogenesis remains a subject of abiding interest. Although much is known about the gene regulatory programs and signaling pathways that operate at the cellular scale, it has remained unclear how the macroscopic features of branched organs, including their size, network topology and spatial patterning, are encoded. Lately, it has been proposed that, these features can be explained quantitatively in several organs within a single unifying framework. Based on large-scale organ reconstructions and cell lineage tracing, it has been argued that morphogenesis follows from the collective dynamics of sublineage-restricted self-renewing progenitor cells, localized at ductal tips, that act cooperatively to drive a serial process of ductal elongation and stochastic tip bifurcation. By correlating differentiation or cell cycle exit with proximity to maturing ducts, this dynamic results in the specification of a complex network of defined density and statistical organization. These results suggest that, for several mammalian tissues, branched epithelial structures develop as a self-organized process, reliant upon a strikingly simple, but generic, set of local rules, without recourse to a rigid and deterministic sequence of genetically programmed events. Here, we review the basis of these findings and discuss their implications.Branching morphogenesis remains a subject of abiding interest. Although much is known about the gene regulatory programs and signaling pathways that operate at the cellular scale, it has remained unclear how the macroscopic features of branched organs, including their size, network topology and spatial patterning, are encoded. Lately, it has been proposed that, these features can be explained quantitatively in several organs within a single unifying framework. Based on large-scale organ reconstructions and cell lineage tracing, it has been argued that morphogenesis follows from the collective dynamics of sublineage-restricted self-renewing progenitor cells, localized at ductal tips, that act cooperatively to drive a serial process of ductal elongation and stochastic tip bifurcation. By correlating differentiation or cell cycle exit with proximity to maturing ducts, this dynamic results in the specification of a complex network of defined density and statistical organization. These results suggest that, for several mammalian tissues, branched epithelial structures develop as a self-organized process, reliant upon a strikingly simple, but generic, set of local rules, without recourse to a rigid and deterministic sequence of genetically programmed events. Here, we review the basis of these findings and discuss their implications.
Branching morphogenesis remains a subject of abiding interest. Although much is known about the gene regulatory programs and signaling pathways that operate at the cellular scale, it has remained unclear how the macroscopic features of branched organs, including their size, network topology and spatial patterning, are encoded. Lately, it has been proposed that, these features can be explained quantitatively in several organs within a single unifying framework. Based on large‐scale organ reconstructions and cell lineage tracing, it has been argued that morphogenesis follows from the collective dynamics of sublineage‐restricted self‐renewing progenitor cells, localized at ductal tips, that act cooperatively to drive a serial process of ductal elongation and stochastic tip bifurcation. By correlating differentiation or cell cycle exit with proximity to maturing ducts, this dynamic results in the specification of a complex network of defined density and statistical organization. These results suggest that, for several mammalian tissues, branched epithelial structures develop as a self‐organized process, reliant upon a strikingly simple, but generic, set of local rules, without recourse to a rigid and deterministic sequence of genetically programmed events. Here, we review the basis of these findings and discuss their implications. We review the basis of recent research activities that have developed and applied a unifying theory of branching morphogenesis in several mammalian tissues, including the mouse mammary gland epithelium, kidney and pancreas. We discuss the evidence in favor of the model, as well as the implications that these concepts have for the organization and function of ductal precursors.
Author Hannezo, Edouard
Simons, Benjamin D.
AuthorAffiliation 3 Wellcome Trust Centre for Stem Cell Research University of Cambridge Cambridge UK
2 The Wellcome Trust/Cancer Research UK Gurdon Institute University of Cambridge Cambridge UK
4 Cavendish Laboratory Department of Physics University of Cambridge Cambridge UK
1 IST Austria Klosterneuburg Austria
AuthorAffiliation_xml – name: 1 IST Austria Klosterneuburg Austria
– name: 4 Cavendish Laboratory Department of Physics University of Cambridge Cambridge UK
– name: 3 Wellcome Trust Centre for Stem Cell Research University of Cambridge Cambridge UK
– name: 2 The Wellcome Trust/Cancer Research UK Gurdon Institute University of Cambridge Cambridge UK
Author_xml – sequence: 1
  givenname: Edouard
  surname: Hannezo
  fullname: Hannezo, Edouard
  organization: IST Austria
– sequence: 2
  givenname: Benjamin D.
  orcidid: 0000-0002-3875-7071
  surname: Simons
  fullname: Simons, Benjamin D.
  email: bds10@cam.ac.uk
  organization: University of Cambridge
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30357803$$D View this record in MEDLINE/PubMed
BookMark eNp9kU1LAzEQhoMotn4c_ANS8KKHrZPsZpNeBKmfUPCggreQTbJtZJvUZKv035vaKiroXOYwz7zMO-8O2nTeGYQOMPRxqlM91n1MKIMN1MVFARkuB0-bqAuASYbpgHTQTozPAFAUmGyjTg45ZRzyLsruW9na2Folm147MT4ser7uVUE6NbFu3Jv6MJv4sXEm2riHtmrZRLO_7rvo8eryYXiTje6ub4fno0wVJYNMgzaaaU5rqJkpdEmoJspoyjnjVFe6AkorCbI0PFdQEVVpVuG6ZCXPMdf5Ljpb6c7m1dRoZVwbZCNmwU5lWAgvrfg5cXYixv5VlHleUOBJ4HgtEPzL3MRWTG1UpmmkM34eBUnvIgMKeIke_UKf_Ty4ZC9RlOGSEDxI1OH3i75O-fxkAk5WgAo-xmDqLwSDWKYkUkriI6XEnv5ilV3G4JdmbPPfxpttzOJvaXFxfbHaeAfc06LR
CitedBy_id crossref_primary_10_1111_dgd_12590
crossref_primary_10_1016_j_cels_2024_10_005
crossref_primary_10_1016_j_semcdb_2021_07_001
crossref_primary_10_1016_j_bbagen_2023_130375
crossref_primary_10_1007_s00285_025_02189_x
crossref_primary_10_1007_s10517_024_06292_9
crossref_primary_10_1088_1742_6596_1629_1_012029
crossref_primary_10_1089_scd_2021_0135
crossref_primary_10_1088_1478_3975_abd844
crossref_primary_10_1016_j_ceb_2019_07_001
Cites_doi 10.1038/nature21046
10.1038/s41556-018-0108-1
10.1242/dev.081315
10.1007/s10911-006-9027-z
10.1242/dev.022145
10.1242/dev.164079
10.1016/j.devcel.2018.06.028
10.1101/gad.267914.115
10.1098/rsob.130088
10.1242/dev.153874
10.1186/bcr1368
10.1038/nature14553
10.1126/science.aam6603
10.1038/nature07005
10.1371/journal.pbio.2002842
10.1002/wdev.35
10.1038/nature10573
10.1186/s12861-014-0035-8
10.1152/jappl.1990.68.2.457
10.1038/nature12930
10.1146/annurev-cellbio-101512-122405
10.1038/s41556-018-0095-2
10.1038/s41467-017-01971-w
10.1016/j.devcel.2010.04.008
10.1371/journal.pbio.1002069
10.1101/gad.280057.116
10.1016/j.cell.2017.08.026
10.1038/ncomms13053
10.1126/science.1196236
10.1038/nature12948
10.1038/nature12972
10.1681/ASN.2014090886
10.7554/eLife.38992
ContentType Journal Article
Copyright 2018 The Authors Development, Growth & Differentiation published by John Wiley & Sons Australia, Ltd on behalf of Japanese Society of Developmental Biologists
2018 The Authors Development, Growth & Differentiation published by John Wiley & Sons Australia, Ltd on behalf of Japanese Society of Developmental Biologists.
2018 Japanese Society of Developmental Biologists
Copyright_xml – notice: 2018 The Authors Development, Growth & Differentiation published by John Wiley & Sons Australia, Ltd on behalf of Japanese Society of Developmental Biologists
– notice: 2018 The Authors Development, Growth & Differentiation published by John Wiley & Sons Australia, Ltd on behalf of Japanese Society of Developmental Biologists.
– notice: 2018 Japanese Society of Developmental Biologists
DBID 24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SS
7TK
7TM
8FD
FR3
P64
RC3
7X8
5PM
DOI 10.1111/dgd.12570
DatabaseName Wiley Online Library Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Entomology Abstracts (Full archive)
Neurosciences Abstracts
Nucleic Acids Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Entomology Abstracts
Genetics Abstracts
Technology Research Database
Nucleic Acids Abstracts
Engineering Research Database
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic

Entomology Abstracts

CrossRef
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Zoology
Biology
Statistics
DocumentTitleAlternate HANNEZO and SIMONS
EISSN 1440-169X
EndPage 521
ExternalDocumentID PMC6334508
30357803
10_1111_dgd_12570
DGD12570
Genre reviewArticle
Journal Article
Review
GrantInformation_xml – fundername: CRUK
  funderid: C6946/A14492
– fundername: Royal Society
– fundername: Wellcome Trust
  funderid: 098357/Z/12/Z; 092096
– fundername: Medical Research Council
  grantid: MC_PC_12009
– fundername: Wellcome Trust
  grantid: 098357/Z/12/Z
– fundername: Wellcome Trust
  grantid: 092096
– fundername: Wellcome Trust
  grantid: 098357/Z/12/Z; 092096
– fundername: CRUK
  grantid: C6946/A14492
GroupedDBID ---
-~X
.3N
.GA
.Y3
05W
0R~
10A
1OC
24P
29F
2WC
31~
33P
36B
3O-
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5HH
5LA
5VS
66C
7.U
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ACAHQ
ACCFJ
ACCZN
ACGFS
ACNCT
ACPOU
ACPRK
ACSCC
ACUHS
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BAWUL
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
C45
CAG
COF
CS3
D-E
D-F
DCZOG
DIK
DPXWK
DR2
DRFUL
DRSTM
DU5
E3Z
EAD
EAP
EBC
EBD
EBS
EJD
EMB
EMK
EMOBN
EST
ESX
F00
F01
F04
F5P
FIJ
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HZI
HZ~
IHE
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OBS
OIG
OK1
OVD
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
R.K
ROL
RWI
RX1
SUPJJ
SV3
TEORI
TN5
TUS
UB1
W8V
W99
WBKPD
WH7
WIH
WIK
WIN
WNSPC
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XV2
ZCG
ZZTAW
~IA
~KM
~WT
1OB
AAMMB
AAYXX
AEFGJ
AEYWJ
AGHNM
AGXDD
AGYGG
AIDQK
AIDYY
CITATION
O8X
CGR
CUY
CVF
ECM
EIF
NPM
7SS
7TK
7TM
8FD
FR3
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-c4670-d0ded7d85f0f7e4d625d2ced588785dbdb055ba0a6e83c0b2cbd7b1f6768318d3
IEDL.DBID 24P
ISICitedReferencesCount 10
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000453555100002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0012-1592
1440-169X
IngestDate Thu Aug 21 14:07:20 EDT 2025
Wed Oct 01 14:31:25 EDT 2025
Fri Jul 25 12:06:54 EDT 2025
Mon Jul 21 06:08:12 EDT 2025
Sat Nov 29 03:19:38 EST 2025
Tue Nov 18 22:28:53 EST 2025
Wed Jan 22 16:50:04 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords statistical model
morphogenesis
mammary gland
stem cell
biophysical concepts
Language English
License Attribution
2018 The Authors Development, Growth & Differentiation published by John Wiley & Sons Australia, Ltd on behalf of Japanese Society of Developmental Biologists.
This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4670-d0ded7d85f0f7e4d625d2ced588785dbdb055ba0a6e83c0b2cbd7b1f6768318d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0002-3875-7071
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fdgd.12570
PMID 30357803
PQID 2157162219
PQPubID 1006517
PageCount 10
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6334508
proquest_miscellaneous_2125295018
proquest_journals_2157162219
pubmed_primary_30357803
crossref_primary_10_1111_dgd_12570
crossref_citationtrail_10_1111_dgd_12570
wiley_primary_10_1111_dgd_12570_DGD12570
PublicationCentury 2000
PublicationDate December 2018
PublicationDateYYYYMMDD 2018-12-01
PublicationDate_xml – month: 12
  year: 2018
  text: December 2018
PublicationDecade 2010
PublicationPlace Japan
PublicationPlace_xml – name: Japan
– name: Higashihiroshima
– name: Hoboken
PublicationTitle Development, growth & differentiation
PublicationTitleAlternate Dev Growth Differ
PublicationYear 2018
Publisher Wiley Subscription Services, Inc
John Wiley and Sons Inc
Publisher_xml – name: Wiley Subscription Services, Inc
– name: John Wiley and Sons Inc
References 2015; 13
2011; 479
2013; 29
2017; 8
2013; 3
2015; 523
2006; 11
2018; 145
2017; 171
2016; 30
2018; 20
2018; 46
2018; 7
2015; 26
2014; 507
1990; 68
2015; 29
2012; 1
2014; 506
2018; 359
2005; 8
2010; 330
2014; 14
2008; 135
2017; 144
2008; 453
2017; 542
2012; 139
2018; 16
2016; 25
2010; 8
e_1_2_8_28_1
e_1_2_8_29_1
e_1_2_8_24_1
e_1_2_8_25_1
e_1_2_8_26_1
e_1_2_8_27_1
e_1_2_8_3_1
e_1_2_8_2_1
e_1_2_8_5_1
e_1_2_8_4_1
e_1_2_8_7_1
e_1_2_8_6_1
e_1_2_8_9_1
e_1_2_8_8_1
e_1_2_8_20_1
e_1_2_8_21_1
e_1_2_8_22_1
e_1_2_8_23_1
e_1_2_8_17_1
e_1_2_8_18_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_14_1
e_1_2_8_15_1
e_1_2_8_16_1
e_1_2_8_32_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_30_1
References_xml – volume: 8
  start-page: 698
  year: 2010
  end-page: 712
  article-title: Patterning a complex organ: branching morphogenesis and nephron segmentation in kidney development
  publication-title: Developmental Cell
– volume: 506
  start-page: 322
  year: 2014
  end-page: 327
  article-title: identification of bipotent stem cells in the mammary gland
  publication-title: Nature
– volume: 507
  start-page: 362
  year: 2014
  end-page: 365
  article-title: Intestinal crypt homeostasis revealed at single‐stem‐cell level by live imaging
  publication-title: Nature
– volume: 145
  start-page: pii: dev164079
  year: 2018
  article-title: Neutral lineage tracing of proliferative embryonic and adult mammary stem/progenitor cells
  publication-title: Development
– volume: 542
  start-page: 313
  year: 2017
  end-page: 317
  article-title: Identity and dynamics of mammary stem cells during branching morphogenesis
  publication-title: Nature
– volume: 46
  start-page: 360
  year: 2018
  end-page: 375
  article-title: Defining lineage potential and fate behavior of precursors during pancreas development
  publication-title: Developmental Cell
– volume: 144
  start-page: 4377
  year: 2017
  end-page: 4385
  article-title: Branching morphogenesis in the developing kidney is governed by rules that pattern the ureteric tree
  publication-title: Development
– volume: 13
  start-page: 1002069
  year: 2015
  article-title: Luminal progenitors restrict their lineage potential during mammary gland development
  publication-title: PLoS Biology
– volume: 68
  start-page: 457
  year: 1990
  end-page: 461
  article-title: Diameters, generations and orders of branches in the bronchial tree
  publication-title: Journal of Applied Physiology
– volume: 359
  start-page: 1118
  year: 2018
  end-page: 1123
  article-title: Single‐cell Wnt signalling niches maintain stemness of alveolar type 2 cells
  publication-title: Science
– volume: 26
  start-page: 2414
  year: 2015
  end-page: 2422
  article-title: Developmental programming of branching morphogenesis in the kidney
  publication-title: Journal of the American Society of Nephrology
– volume: 8
  start-page: 201
  year: 2005
  end-page: 211
  article-title: Key stages in mammary gland development: The cues that regulate ductal branching morphogenesis
  publication-title: Breast Cancer Research
– volume: 20
  start-page: 677
  year: 2018
  end-page: 687
  article-title: Clonal analysis of Notch1‐expressing cells reveals the existence of unipotent stem cells that retain long‐term plasticity in the embryonic mammary gland
  publication-title: Nature Cell Biology
– volume: 453
  start-page: 745
  year: 2008
  end-page: 750
  article-title: The branching programme of mouse lung development
  publication-title: Nature
– volume: 479
  start-page: 189
  year: 2011
  end-page: 193
  article-title: Distinct stem cells contribute to mammary gland development and maintenance
  publication-title: Nature
– volume: 25
  start-page: 13053
  issue: 7
  year: 2016
  article-title: Single‐cell lineage tracing in the mammary gland reveals stochastic clonal dispersion of stem/progenitor cell progeny
  publication-title: Nature Communications
– volume: 139
  start-page: 3442
  year: 2012
  end-page: 3455
  article-title: Principles of branch dynamics governing shape characteristics of cerebellar Purkinje cell dendrites
  publication-title: Development
– volume: 3
  start-page: 130088
  year: 2013
  article-title: The control of branching morphogenesis
  publication-title: Open Biology
– volume: 29
  start-page: 2203
  year: 2015
  end-page: 2216
  article-title: Feedback control of growth, differentiation, and morphogenesis of pancreatic endocrine progenitors in an epithelial plexus niche
  publication-title: Genes and Development
– volume: 20
  start-page: 666
  year: 2018
  end-page: 676
  article-title: Early lineage segregation of multipotent embryonic mammary gland progenitors
  publication-title: Nature Cell Biology
– volume: 14
  start-page: 35
  year: 2014
  end-page: 46
  article-title: A self‐avoidance mechanism in patterning of the urinary collecting duct tree
  publication-title: BMC Developmental Biology
– volume: 507
  start-page: 190
  year: 2014
  end-page: 194
  article-title: Alveolar progenitor and stem cells in lung development, renewal and cancer
  publication-title: Nature
– volume: 523
  start-page: 597
  year: 2015
  end-page: 601
  article-title: Parent stem cells can serve as niches for their daughter cells
  publication-title: Nature
– volume: 29
  start-page: 81
  year: 2013
  end-page: 105
  article-title: Pancreas organogenesis: From lineage determination to morphogenesis
  publication-title: Annual Review of Cell and Developmental Biology
– volume: 30
  start-page: 1261
  year: 2016
  end-page: 1277
  article-title: Quantitative lineage tracing strategies to resolve multipotency in tissue‐specific stem cells
  publication-title: Genes and Development
– volume: 330
  start-page: 822
  year: 2010
  end-page: 825
  article-title: Intestinal stem cell replacement follows a pattern of neutral drift
  publication-title: Science
– volume: 171
  start-page: 242
  year: 2017
  end-page: 255
  article-title: A unifying theory of branching morphogenesis
  publication-title: Cell
– volume: 16
  start-page: e2002842
  year: 2018
  article-title: Deconstructing the principles of ductal network formation in the pancreas
  publication-title: PLoS Biology
– volume: 11
  start-page: 213
  year: 2006
  end-page: 228
  article-title: Comparative mechanisms of branching morphogenesis in diverse systems
  publication-title: Journal of Mammary Gland Biology and Neoplasia
– volume: 1
  start-page: 533
  year: 2012
  end-page: 557
  article-title: Mammary gland development
  publication-title: Wiley Interdisciplinary Reviews‐Developmental Biology
– volume: 135
  start-page: 2505
  year: 2008
  end-page: 2510
  article-title: Developmental plasticity and regenerative capacity in the renal ureteric bud/collecting duct system
  publication-title: Development
– volume: 8
  start-page: 1714
  year: 2017
  article-title: Long‐lived unipotent Blimp1‐positive luminal stem cells drive mammary gland organogenesis throughout adult life
  publication-title: Nature Communications
– volume: 7
  start-page: e38992
  year: 2018
  article-title: Branching morphogenesis in the developing kidney is not impacted by nephron formation or integration
  publication-title: eLife
– ident: e_1_2_8_26_1
  doi: 10.1038/nature21046
– ident: e_1_2_8_14_1
  doi: 10.1038/s41556-018-0108-1
– ident: e_1_2_8_9_1
  doi: 10.1242/dev.081315
– ident: e_1_2_8_17_1
  doi: 10.1007/s10911-006-9027-z
– ident: e_1_2_8_30_1
  doi: 10.1242/dev.022145
– ident: e_1_2_8_15_1
  doi: 10.1242/dev.164079
– ident: e_1_2_8_31_1
  doi: 10.1016/j.devcel.2018.06.028
– ident: e_1_2_8_2_1
  doi: 10.1101/gad.267914.115
– ident: e_1_2_8_12_1
  doi: 10.1098/rsob.130088
– ident: e_1_2_8_13_1
  doi: 10.1242/dev.153874
– ident: e_1_2_8_29_1
  doi: 10.1186/bcr1368
– ident: e_1_2_8_21_1
  doi: 10.1038/nature14553
– ident: e_1_2_8_20_1
  doi: 10.1126/science.aam6603
– ident: e_1_2_8_19_1
  doi: 10.1038/nature07005
– ident: e_1_2_8_4_1
  doi: 10.1371/journal.pbio.2002842
– ident: e_1_2_8_18_1
  doi: 10.1002/wdev.35
– ident: e_1_2_8_32_1
  doi: 10.1038/nature10573
– ident: e_1_2_8_5_1
  doi: 10.1186/s12861-014-0035-8
– ident: e_1_2_8_11_1
  doi: 10.1152/jappl.1990.68.2.457
– ident: e_1_2_8_7_1
  doi: 10.1038/nature12930
– ident: e_1_2_8_27_1
  doi: 10.1146/annurev-cellbio-101512-122405
– ident: e_1_2_8_34_1
  doi: 10.1038/s41556-018-0095-2
– ident: e_1_2_8_8_1
  doi: 10.1038/s41467-017-01971-w
– ident: e_1_2_8_3_1
  doi: 10.1016/j.devcel.2010.04.008
– ident: e_1_2_8_24_1
  doi: 10.1371/journal.pbio.1002069
– ident: e_1_2_8_33_1
  doi: 10.1101/gad.280057.116
– ident: e_1_2_8_10_1
  doi: 10.1016/j.cell.2017.08.026
– ident: e_1_2_8_6_1
  doi: 10.1038/ncomms13053
– ident: e_1_2_8_16_1
  doi: 10.1126/science.1196236
– ident: e_1_2_8_22_1
  doi: 10.1038/nature12948
– ident: e_1_2_8_23_1
  doi: 10.1038/nature12972
– ident: e_1_2_8_25_1
  doi: 10.1681/ASN.2014090886
– ident: e_1_2_8_28_1
  doi: 10.7554/eLife.38992
SSID ssj0004412
Score 2.2537856
SecondaryResourceType review_article
Snippet Branching morphogenesis remains a subject of abiding interest. Although much is known about the gene regulatory programs and signaling pathways that operate at...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 512
SubjectTerms Animals
biophysical concepts
Cell cycle
Cell Lineage
Cell Proliferation
Epithelial Cells - cytology
Epithelium - growth & development
Humans
Kidney - cytology
Kidney - growth & development
mammary gland
Models, Biological
Morphogenesis
Pancreas - cytology
Pancreas - growth & development
Progenitor cells
Review
statistical model
Statistics
stem cell
Stem cells
Title Statistical theory of branching morphogenesis
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fdgd.12570
https://www.ncbi.nlm.nih.gov/pubmed/30357803
https://www.proquest.com/docview/2157162219
https://www.proquest.com/docview/2125295018
https://pubmed.ncbi.nlm.nih.gov/PMC6334508
Volume 60
WOSCitedRecordID wos000453555100002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Free Content
  customDbUrl:
  eissn: 1440-169X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004412
  issn: 0012-1592
  databaseCode: WIN
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1440-169X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004412
  issn: 0012-1592
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fa9UwFD7MTWEv6vyx1c3RiQ--RJKmvU3xaezuqiCXIQ4vvpQkJ5kDbcfuNth_70naW3eZg4EvJW1PaZqTc86XNPkOwFuptVXCKua1cCwvEFmlPGdGakcRniB0ZmKyiXI6VbNZdbQCHxZ7YTp-iGHCLVhG9NfBwLWZ3zByPMH3IuRgewBrQkgV8jZk-dHfTZG56KjCRcYoZmc9rVBYxjM8uhyMbiHM2wslbwLYGIEmT_6r7k_hcQ880_2up2zAimuewaMuFeU1lX60sfQcWMCfkb6ZxOM-x-u09akJGTjCdFX6uyXdtCfBSZ7OX8Dx5PDbwSfWJ1VglnwiZ8jRYYmq8NyXLkca_2BmHRbkbVSBBg0vCqO5HjklLTeZNVga4Uc0LiH7R_kSVpu2cVuQjjThG42SEKTPC-0rrHJt6YLwKG1VJvBu0bq17RnHQ-KLX_Vi5EHtUMd2SODNIHrW0Wz8S2hnoaK6t7R5TZAlkGCR401gb7hNNhJ-fOjGtZdBJgv_M7lQCWx2Gh3eQiGcnBaXCZRLuh4EAv_28p3m9Gfk4R5JmRO-pc-Mur674vX44zgWXt1fdBvWCZupbuXMDqxenF-61_DQXlEPON-NXZ2O5Uztwtr46-T4C519_zz9A2M9BNw
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB7xKGovPAptUyikVQ9cjJw42TgSFwSlIGDVA1VRL5HtsRckSCoolfj3HTvZwIoiIfVmxRPF8XhmPr--AfgslDIyMZI5lViW5YislI4zLZSlCE8QOtUh2UQxHMqzs_LbFGyP78K0_BD9gpu3jOCvvYH7BekHVo4j3Ep8ErZpmM0IaPjEDT8Oh_e3IrOk5QpPUkZBO-14hfw5nv7VyWj0CGI-Pin5EMGGELS_8H-NX4T5DnrGO-1YWYIpW7-GuTYZ5R2VfjahtAzMI9BA4Ezi4abjXdy4WPscHH7BKr5qSDvNyLvJi5sV-L7_5XT3gHVpFZghr8gZcrRYoMwdd4XNkGZAmBqLOfkbmaNGzfNcK64GVgrDdWo0FjpxA5qZkAdA8QZm6qa27yAeKEI4CgVhSJflypVYZsrQg8ShMGURwea4eyvTcY771BeX1XjuQf1QhX6I4FMv-qsl2viX0NpYR1VnazcVgRZPg0WuN4KPfTVZid_6ULVtbr1M6nc0eSIjeNuqtP8KBXFyW1xEUEwouxfwDNyTNfXFeWDiHgiREcKl3wzKfrrh1d7XvVB4_3zRDXh5cHpyXB0fDo9W4RUhNdmeo1mDmd_Xt_YDvDB_aDRcr4dx_xcbvgWd
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB7Rpa249EVb0lJIKw5cjJw42TgSF9Ttlgq0QlWREJfI9thbpDZBu6US_75jJ5uyokhIvVnxRHE8npnPr28AdoRSRiZGMqcSy7IckZXScaaFshThCUKnOiSbKCYTeXZWnqzA_uIuTMsP0S-4ecsI_tobuL1Ed8PKcYp7iU_C9gBWM59EZgCro6_j0-O_9yKzpGULT1JGYTvtmIX8SZ7-5eV4dAtk3j4reRPDhiA0fvp_zX8GTzrwGR-0o-U5rNj6BTxq01FeU-m8CaV1YB6DBgpnEg93Ha_jxsXaZ-HwS1bxz4b000y9o7yYv4TT8advHw9Zl1iBGfKLnCFHiwXK3HFX2AxpDoSpsZiTx5E5atQ8z7XiamilMFynRmOhEzekuQn5ABSvYFA3td2AeKgI4ygUhCJdlitXYpkpQw8Sh8KURQS7i-6tTMc67pNf_KgWsw_qhyr0QwQfetHLlmrjX0KbCx1VnbXNK4ItngiLnG8E7_tqshO_-aFq21x5mdTvafJERvC6VWn_FQrj5Li4iKBYUnYv4Dm4l2vqi--Bi3soREYYl34zKPvuhlejz6NQeHN_0W14fDIaV8dfJkdvYY2gmmwP0mzC4Nfsyr6Dh-Y3DYbZVjfw_wDFAwZG
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Statistical+theory+of+branching+morphogenesis&rft.jtitle=Development%2C+growth+%26+differentiation&rft.au=Hannezo%2C+Edouard&rft.au=Simons%2C+Benjamin+D.&rft.date=2018-12-01&rft.issn=0012-1592&rft.eissn=1440-169X&rft.volume=60&rft.issue=9&rft.spage=512&rft.epage=521&rft_id=info:doi/10.1111%2Fdgd.12570&rft.externalDBID=10.1111%252Fdgd.12570&rft.externalDocID=DGD12570
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0012-1592&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0012-1592&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0012-1592&client=summon