Zone adaptive fuel mapping for high resolution wildfire spread forecasting

Extreme wildfire events (EWE), although a rare natural hazard, account for a substantial portion of global wildfire damage, requiring proactive anticipation and mitigation due to their increasing occurrence. Wildfire spread simulators are crucial for reducing damage, but they rely heavily on accurat...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Scientific reports Ročník 15; číslo 1; s. 22254 - 16
Hlavní autori: Sánchez, Paula, González, Irene, Carrillo, Carlos, Cortés, Ana, Suppi, Remo, Margalef, Tomàs
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: London Nature Publishing Group UK 01.07.2025
Nature Portfolio
Predmet:
ISSN:2045-2322, 2045-2322
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Extreme wildfire events (EWE), although a rare natural hazard, account for a substantial portion of global wildfire damage, requiring proactive anticipation and mitigation due to their increasing occurrence. Wildfire spread simulators are crucial for reducing damage, but they rely heavily on accurate fuel maps, which are often outdated, have low resolution, or are unavailable in many regions. While land cover maps are more up-to-date, high-resolution globally, and widely available, there is no universally accepted method to convert land cover maps into fuel maps. In this work, an automatic methodology for generating high-resolution fuel maps from land cover maps called zone-adaptive fuel mapping (ZAFM) is proposed. ZAFM is a consistent local approach that makes use of public resources to create a fuel map. The proposed methodology has been tested using, as a study case, an EWE that occurred in the north-east of Spain during the summer of 2022. To assess the accuracy of the proposed fuel mapping method, we compared the fire spread forecast using the ZAFM fuel map with fire evolutions based on different fuel maps derived from the land cover map of the study area. The accuracy assessment, based on the F2-score metric, reveals that ZAFM achieves the highest F2-score of approximately 0.90, while the F2-scores for the other fuel maps range from 0.78 to 0.89, with no individual simulation reaching 0.90. ZAFM was also evaluated against other publicly available fuel maps covering Catalonia, and once again achieved higher F2-scores in the case study simulations. These results highlight the superior predictive performance of ZAFM and underscore the importance of using up-to-date, high-resolution data to improve wildfire spread forecasts. Furthermore, since ZAFM relies on open-access data maps, it can be applied worldwide with any available high-resolution land cover map.
AbstractList Abstract Extreme wildfire events (EWE), although a rare natural hazard, account for a substantial portion of global wildfire damage, requiring proactive anticipation and mitigation due to their increasing occurrence. Wildfire spread simulators are crucial for reducing damage, but they rely heavily on accurate fuel maps, which are often outdated, have low resolution, or are unavailable in many regions. While land cover maps are more up-to-date, high-resolution globally, and widely available, there is no universally accepted method to convert land cover maps into fuel maps. In this work, an automatic methodology for generating high-resolution fuel maps from land cover maps called zone-adaptive fuel mapping (ZAFM) is proposed. ZAFM is a consistent local approach that makes use of public resources to create a fuel map. The proposed methodology has been tested using, as a study case, an EWE that occurred in the north-east of Spain during the summer of 2022. To assess the accuracy of the proposed fuel mapping method, we compared the fire spread forecast using the ZAFM fuel map with fire evolutions based on different fuel maps derived from the land cover map of the study area. The accuracy assessment, based on the F2-score metric, reveals that ZAFM achieves the highest F2-score of approximately 0.90, while the F2-scores for the other fuel maps range from 0.78 to 0.89, with no individual simulation reaching 0.90. ZAFM was also evaluated against other publicly available fuel maps covering Catalonia, and once again achieved higher F2-scores in the case study simulations. These results highlight the superior predictive performance of ZAFM and underscore the importance of using up-to-date, high-resolution data to improve wildfire spread forecasts. Furthermore, since ZAFM relies on open-access data maps, it can be applied worldwide with any available high-resolution land cover map.
Extreme wildfire events (EWE), although a rare natural hazard, account for a substantial portion of global wildfire damage, requiring proactive anticipation and mitigation due to their increasing occurrence. Wildfire spread simulators are crucial for reducing damage, but they rely heavily on accurate fuel maps, which are often outdated, have low resolution, or are unavailable in many regions. While land cover maps are more up-to-date, high-resolution globally, and widely available, there is no universally accepted method to convert land cover maps into fuel maps. In this work, an automatic methodology for generating high-resolution fuel maps from land cover maps called zone-adaptive fuel mapping (ZAFM) is proposed. ZAFM is a consistent local approach that makes use of public resources to create a fuel map. The proposed methodology has been tested using, as a study case, an EWE that occurred in the north-east of Spain during the summer of 2022. To assess the accuracy of the proposed fuel mapping method, we compared the fire spread forecast using the ZAFM fuel map with fire evolutions based on different fuel maps derived from the land cover map of the study area. The accuracy assessment, based on the F2-score metric, reveals that ZAFM achieves the highest F2-score of approximately 0.90, while the F2-scores for the other fuel maps range from 0.78 to 0.89, with no individual simulation reaching 0.90. ZAFM was also evaluated against other publicly available fuel maps covering Catalonia, and once again achieved higher F2-scores in the case study simulations. These results highlight the superior predictive performance of ZAFM and underscore the importance of using up-to-date, high-resolution data to improve wildfire spread forecasts. Furthermore, since ZAFM relies on open-access data maps, it can be applied worldwide with any available high-resolution land cover map.
Extreme wildfire events (EWE), although a rare natural hazard, account for a substantial portion of global wildfire damage, requiring proactive anticipation and mitigation due to their increasing occurrence. Wildfire spread simulators are crucial for reducing damage, but they rely heavily on accurate fuel maps, which are often outdated, have low resolution, or are unavailable in many regions. While land cover maps are more up-to-date, high-resolution globally, and widely available, there is no universally accepted method to convert land cover maps into fuel maps. In this work, an automatic methodology for generating high-resolution fuel maps from land cover maps called zone-adaptive fuel mapping (ZAFM) is proposed. ZAFM is a consistent local approach that makes use of public resources to create a fuel map. The proposed methodology has been tested using, as a study case, an EWE that occurred in the north-east of Spain during the summer of 2022. To assess the accuracy of the proposed fuel mapping method, we compared the fire spread forecast using the ZAFM fuel map with fire evolutions based on different fuel maps derived from the land cover map of the study area. The accuracy assessment, based on the F2-score metric, reveals that ZAFM achieves the highest F2-score of approximately 0.90, while the F2-scores for the other fuel maps range from 0.78 to 0.89, with no individual simulation reaching 0.90. ZAFM was also evaluated against other publicly available fuel maps covering Catalonia, and once again achieved higher F2-scores in the case study simulations. These results highlight the superior predictive performance of ZAFM and underscore the importance of using up-to-date, high-resolution data to improve wildfire spread forecasts. Furthermore, since ZAFM relies on open-access data maps, it can be applied worldwide with any available high-resolution land cover map.Extreme wildfire events (EWE), although a rare natural hazard, account for a substantial portion of global wildfire damage, requiring proactive anticipation and mitigation due to their increasing occurrence. Wildfire spread simulators are crucial for reducing damage, but they rely heavily on accurate fuel maps, which are often outdated, have low resolution, or are unavailable in many regions. While land cover maps are more up-to-date, high-resolution globally, and widely available, there is no universally accepted method to convert land cover maps into fuel maps. In this work, an automatic methodology for generating high-resolution fuel maps from land cover maps called zone-adaptive fuel mapping (ZAFM) is proposed. ZAFM is a consistent local approach that makes use of public resources to create a fuel map. The proposed methodology has been tested using, as a study case, an EWE that occurred in the north-east of Spain during the summer of 2022. To assess the accuracy of the proposed fuel mapping method, we compared the fire spread forecast using the ZAFM fuel map with fire evolutions based on different fuel maps derived from the land cover map of the study area. The accuracy assessment, based on the F2-score metric, reveals that ZAFM achieves the highest F2-score of approximately 0.90, while the F2-scores for the other fuel maps range from 0.78 to 0.89, with no individual simulation reaching 0.90. ZAFM was also evaluated against other publicly available fuel maps covering Catalonia, and once again achieved higher F2-scores in the case study simulations. These results highlight the superior predictive performance of ZAFM and underscore the importance of using up-to-date, high-resolution data to improve wildfire spread forecasts. Furthermore, since ZAFM relies on open-access data maps, it can be applied worldwide with any available high-resolution land cover map.
Extreme wildfire events (EWE), although a rare natural hazard, account for a substantial portion of global wildfire damage, requiring proactive anticipation and mitigation due to their increasing occurrence. Wildfire spread simulators are crucial for reducing damage, but they rely heavily on accurate fuel maps, which are often outdated, have low resolution, or are unavailable in many regions. While land cover maps are more up-to-date, high-resolution globally, and widely available, there is no universally accepted method to convert land cover maps into fuel maps. In this work, an automatic methodology for generating high-resolution fuel maps from land cover maps called zone-adaptive fuel mapping (ZAFM) is proposed. ZAFM is a consistent local approach that makes use of public resources to create a fuel map. The proposed methodology has been tested using, as a study case, an EWE that occurred in the north-east of Spain during the summer of 2022. To assess the accuracy of the proposed fuel mapping method, we compared the fire spread forecast using the ZAFM fuel map with fire evolutions based on different fuel maps derived from the land cover map of the study area. The accuracy assessment, based on the F2-score metric, reveals that ZAFM achieves the highest F2-score of approximately 0.90, while the F2-scores for the other fuel maps range from 0.78 to 0.89, with no individual simulation reaching 0.90. ZAFM was also evaluated against other publicly available fuel maps covering Catalonia, and once again achieved higher F2-scores in the case study simulations. These results highlight the superior predictive performance of ZAFM and underscore the importance of using up-to-date, high-resolution data to improve wildfire spread forecasts. Furthermore, since ZAFM relies on open-access data maps, it can be applied worldwide with any available high-resolution land cover map.
ArticleNumber 22254
Author Suppi, Remo
Cortés, Ana
Margalef, Tomàs
Sánchez, Paula
Carrillo, Carlos
González, Irene
Author_xml – sequence: 1
  givenname: Paula
  surname: Sánchez
  fullname: Sánchez, Paula
  email: paula.sanchez.gayet@uab.cat
  organization: Computer Architecture and Operating Systems Department, Universitat Autònoma de Barcelona
– sequence: 2
  givenname: Irene
  surname: González
  fullname: González, Irene
  organization: Computer Architecture and Operating Systems Department, Universitat Autònoma de Barcelona
– sequence: 3
  givenname: Carlos
  surname: Carrillo
  fullname: Carrillo, Carlos
  email: carles.carrillo@uab.cat
  organization: Computer Architecture and Operating Systems Department, Universitat Autònoma de Barcelona
– sequence: 4
  givenname: Ana
  surname: Cortés
  fullname: Cortés, Ana
  organization: Computer Architecture and Operating Systems Department, Universitat Autònoma de Barcelona
– sequence: 5
  givenname: Remo
  surname: Suppi
  fullname: Suppi, Remo
  organization: Computer Architecture and Operating Systems Department, Universitat Autònoma de Barcelona
– sequence: 6
  givenname: Tomàs
  surname: Margalef
  fullname: Margalef, Tomàs
  organization: Computer Architecture and Operating Systems Department, Universitat Autònoma de Barcelona
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40596365$$D View this record in MEDLINE/PubMed
BookMark eNp9kUtv1TAQha2qVVtK_wALlCWbgN-JVwhVPIoqdQMbNpbjjO_1VW4c7KQV_565TanaDd54ZJ854-PvFTke0wiEvGH0PaOi_VAkU6atKVc11ZLymh2Rc06lqrng_PhZfUYuS9lRXIobycwpOZNUGS20Oifff6Ft5Xo3zfEOqrDAUO3dNMVxU4WUq23cbKsMJQ3LHNNY3cehDzFDVaYMrj9owLsyo_41OQluKHD5uF-Qn18-_7j6Vt_cfr2--nRTe6n1XIeuNwqAKSzwRV4EDCJCB065EJrOUGg70-hGAuUYQocGnPTghe-MaXpxQa5X3z65nZ1y3Lv8xyYX7cNByhvr8hz9ANZx1UoTgsevkqHrXBuoZwGTy951UqLXx9VrWro99B7GObvhhenLmzFu7SbdWcY5a5k4OLx7dMjp9wJltvtYPAyDGyEtxSIALVTDNUXp2-fDnqb8o4ECvgp8TqVkCE8SRu2Bul2pW6RuH6hbhk1ibUIiSAGy3aUlj0jgf11_AS5JsO0
Cites_doi 10.1007/s11069-017-2934-z
10.3390/rs15164112
10.1016/j.scitotenv.2021.147057
10.1109/TGRS.2020.3037160
10.3390/fire6020037
10.1016/j.geomat.2024.100036
10.1016/j.rse.2007.05.005
10.1007/s11069-023-05896-0
10.1071/WF01028
10.3390/fire4030059
10.1016/j.trd.2022.103190
10.1029/2006JG000230
10.3390/rs12213660
10.1016/j.rse.2018.08.018
10.3390/fire6100395
10.14195/978-989-26-0884-6_189
10.1038/s41559-016-0058
10.21950/YABYCN
10.5194/bg-13-2061-2016
10.3390/rs17030415
10.1038/s41612-025-00906-3
10.1016/j.mex.2023.102218
10.1016/B978-0-12-815721-3.00001-1
10.1071/WF23140
10.3390/f11080789
10.3390/su16103900
10.3390/rs14051264
10.1016/j.rse.2011.01.017
10.1071/wf12137
10.5194/isprs-annals-X-1-W1-2023-881-2023
10.5281/zenodo.7254221
10.2737/int-gtr-122
10.1016/j.rse.2010.03.008
10.1016/j.srs.2024.100185
10.3390/fire6050215
10.1139/x02-052
10.3390/f12081011
10.1016/j.earscirev.2025.105064
10.1016/j.rsase.2022.100810
10.5194/nhess-18-847-2018
10.1016/j.jag.2018.08.020
10.1016/j.jag.2025.104436
10.1016/j.foreco.2016.06.037
10.5194/nhess-10-2515-2010
10.1016/j.ecolind.2022.108726
10.1093/forestscience/35.2.319
10.1175/WCAS-D-22-0043.1
10.3390/rs16183536
10.5194/essd-15-1287-2023
10.1007/s11069-020-04197-0
10.2737/rmrs-gtr-153
10.2737/RMRS-RP-4
ContentType Journal Article
Copyright The Author(s) 2025
2025. The Author(s).
The Author(s) 2025 2025
Copyright_xml – notice: The Author(s) 2025
– notice: 2025. The Author(s).
– notice: The Author(s) 2025 2025
DBID C6C
AAYXX
CITATION
NPM
7X8
5PM
DOA
DOI 10.1038/s41598-025-06402-1
DatabaseName Springer Nature Link
CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList
CrossRef
PubMed
MEDLINE - Academic


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 16
ExternalDocumentID oai_doaj_org_article_a25849ffc5984fbba8f0c1f3654dab44
PMC12218134
40596365
10_1038_s41598_025_06402_1
Genre Journal Article
GrantInformation_xml – fundername: Ministerio de Ciencia e Innovación
  grantid: CPP2021-008762; CPP2021-008762; PID2020-113614RB-C21; CPP2021-008762; PID2023-146193OB-I00; CPP2021-008762
  funderid: https://doi.org/10.13039/501100004837
– fundername: Ministerio de Ciencia e Innovación
  grantid: CPP2021-008762
– fundername: Ministerio de Ciencia e Innovación
  grantid: PID2020-113614RB-C21
– fundername: Ministerio de Ciencia e Innovación
  grantid: PID2023-146193OB-I00
GroupedDBID 0R~
4.4
53G
5VS
7X7
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
AASML
ABDBF
ABUWG
ACGFS
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AFPKN
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M1P
M2P
M7P
M~E
NAO
OK1
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AAYXX
AFFHD
CITATION
PJZUB
PPXIY
PQGLB
NPM
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c466t-fbd95ee15fbd052c3f1593fbea5aff7b90e8b97674e022046f7ea4cec3cb997d3
IEDL.DBID DOA
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001522986200024&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2045-2322
IngestDate Fri Oct 03 12:52:17 EDT 2025
Tue Nov 04 02:04:53 EST 2025
Tue Aug 26 08:57:34 EDT 2025
Sat Jul 05 01:30:32 EDT 2025
Sat Nov 29 07:49:08 EST 2025
Wed Jul 02 02:43:42 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords High-resolution fuel mapping
Land cover map
Forest fires
Language English
License 2025. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c466t-fbd95ee15fbd052c3f1593fbea5aff7b90e8b97674e022046f7ea4cec3cb997d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://doaj.org/article/a25849ffc5984fbba8f0c1f3654dab44
PMID 40596365
PQID 3226357260
PQPubID 23479
PageCount 16
ParticipantIDs doaj_primary_oai_doaj_org_article_a25849ffc5984fbba8f0c1f3654dab44
pubmedcentral_primary_oai_pubmedcentral_nih_gov_12218134
proquest_miscellaneous_3226357260
pubmed_primary_40596365
crossref_primary_10_1038_s41598_025_06402_1
springer_journals_10_1038_s41598_025_06402_1
PublicationCentury 2000
PublicationDate 2025-07-01
PublicationDateYYYYMMDD 2025-07-01
PublicationDate_xml – month: 07
  year: 2025
  text: 2025-07-01
  day: 01
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2025
Publisher Nature Publishing Group UK
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Portfolio
References A Abdollahi (6402_CR54) 2025
A Ferrer Palomino (6402_CR55) 2021
6402_CR20
6402_CR22
6402_CR23
P Palaiologou (6402_CR9) 2020
A Carbone (6402_CR40) 2023
6402_CR28
M-N Tuanmu (6402_CR37) 2010; 114
B Granda (6402_CR14) 2023
6402_CR26
6402_CR27
ML Pettinari (6402_CR30) 2014; 23
M García (6402_CR53) 2011; 115
S Grajdura (6402_CR12) 2022; 104
I Mitsopoulos (6402_CR16) 2017
A Sá (6402_CR24) 2023; 10
J Ruffault (6402_CR6) 2018; 18
Ö Akyürek (6402_CR56) 2023; 117
E Aragoneses (6402_CR32) 2021; 4
R Keane (6402_CR18) 2001; 10
C Ardohain (6402_CR45) 2025; 11
6402_CR33
6402_CR34
AA Ager (6402_CR11) 2021; 784
6402_CR39
6402_CR35
M Huesca (6402_CR50) 2019; 74
I Rahimi (6402_CR36) 2024
R Hoffrén (6402_CR49) 2024
J Franke (6402_CR21) 2018; 217
M Senande-Rivera (6402_CR8) 2025
E Chuvieco (6402_CR15) 2023
E Chuvieco (6402_CR48) 2007
D Domingo (6402_CR52) 2020
6402_CR5
J Hollis (6402_CR19) 2024; 33
E Aragoneses (6402_CR25) 2023; 15
RU Shaik (6402_CR43) 2022
E Kutchartt (6402_CR29) 2024; 76
D Bowman (6402_CR3) 2017; 1
S Schulze (6402_CR2) 2020
6402_CR42
6402_CR44
M Mutlu (6402_CR51) 2008; 112
6402_CR46
RU Shaik (6402_CR17) 2025; 262
J Garner (6402_CR7) 2022
F Tedim (6402_CR1) 2020
AA Ager (6402_CR10) 2010; 10
M López-De-Castro (6402_CR41) 2022; 27
QE Barber (6402_CR38) 2016; 377
D Strauss (6402_CR4) 1989; 35
6402_CR13
6402_CR57
ML Pettinari (6402_CR31) 2016; 13
6402_CR58
6402_CR59
B Janga (6402_CR47) 2023
References_xml – year: 2017
  ident: 6402_CR16
  publication-title: Nat. Hazard.
  doi: 10.1007/s11069-017-2934-z
– year: 2023
  ident: 6402_CR47
  publication-title: Remote Sens.
  doi: 10.3390/rs15164112
– ident: 6402_CR5
– ident: 6402_CR22
– ident: 6402_CR26
– volume: 784
  year: 2021
  ident: 6402_CR11
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2021.147057
– ident: 6402_CR42
  doi: 10.1109/TGRS.2020.3037160
– year: 2023
  ident: 6402_CR14
  publication-title: Fire
  doi: 10.3390/fire6020037
– volume: 76
  year: 2024
  ident: 6402_CR29
  publication-title: Geomatica
  doi: 10.1016/j.geomat.2024.100036
– volume: 112
  start-page: 274
  year: 2008
  ident: 6402_CR51
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2007.05.005
– volume: 117
  start-page: 1105
  year: 2023
  ident: 6402_CR56
  publication-title: Nat. Hazard.
  doi: 10.1007/s11069-023-05896-0
– volume: 10
  start-page: 301
  year: 2001
  ident: 6402_CR18
  publication-title: Int. J. Wildland Fire
  doi: 10.1071/WF01028
– volume: 4
  start-page: 15
  year: 2021
  ident: 6402_CR32
  publication-title: Fire
  doi: 10.3390/fire4030059
– volume: 104
  year: 2022
  ident: 6402_CR12
  publication-title: Transp. Res. Part D Transp. Environ.
  doi: 10.1016/j.trd.2022.103190
– year: 2007
  ident: 6402_CR48
  publication-title: J. Geophys. Res.
  doi: 10.1029/2006JG000230
– year: 2020
  ident: 6402_CR52
  publication-title: Remote Sens.
  doi: 10.3390/rs12213660
– volume: 217
  start-page: 221
  year: 2018
  ident: 6402_CR21
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2018.08.018
– year: 2023
  ident: 6402_CR40
  publication-title: Fire
  doi: 10.3390/fire6100395
– ident: 6402_CR23
  doi: 10.14195/978-989-26-0884-6_189
– volume: 1
  start-page: 0058
  year: 2017
  ident: 6402_CR3
  publication-title: Nat. Ecol. Evol.
  doi: 10.1038/s41559-016-0058
– ident: 6402_CR27
  doi: 10.21950/YABYCN
– volume: 13
  start-page: 2061
  year: 2016
  ident: 6402_CR31
  publication-title: Biogeosciences
  doi: 10.5194/bg-13-2061-2016
– year: 2025
  ident: 6402_CR54
  publication-title: Remote Sens.
  doi: 10.3390/rs17030415
– year: 2025
  ident: 6402_CR8
  publication-title: NPJ Clim. Atmos. Sci.
  doi: 10.1038/s41612-025-00906-3
– ident: 6402_CR58
– volume: 10
  year: 2023
  ident: 6402_CR24
  publication-title: MethodsX
  doi: 10.1016/j.mex.2023.102218
– ident: 6402_CR33
– start-page: 3
  volume-title: Extreme Wildfire Events and Disasters
  year: 2020
  ident: 6402_CR1
  doi: 10.1016/B978-0-12-815721-3.00001-1
– volume: 33
  start-page: 1
  year: 2024
  ident: 6402_CR19
  publication-title: Int. J. Wildland Fire
  doi: 10.1071/WF23140
– year: 2020
  ident: 6402_CR9
  publication-title: Forests
  doi: 10.3390/f11080789
– year: 2024
  ident: 6402_CR36
  publication-title: Sustainability
  doi: 10.3390/su16103900
– year: 2022
  ident: 6402_CR43
  publication-title: Remote Sens.
  doi: 10.3390/rs14051264
– volume: 115
  start-page: 1369
  year: 2011
  ident: 6402_CR53
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2011.01.017
– ident: 6402_CR28
– volume: 23
  start-page: 643
  year: 2014
  ident: 6402_CR30
  publication-title: Int. J. Wildland Fire
  doi: 10.1071/wf12137
– ident: 6402_CR46
  doi: 10.5194/isprs-annals-X-1-W1-2023-881-2023
– ident: 6402_CR34
  doi: 10.5281/zenodo.7254221
– ident: 6402_CR35
  doi: 10.2737/int-gtr-122
– volume: 114
  start-page: 1833
  year: 2010
  ident: 6402_CR37
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2010.03.008
– volume: 11
  year: 2025
  ident: 6402_CR45
  publication-title: Sci. Remote Sens.
  doi: 10.1016/j.srs.2024.100185
– year: 2023
  ident: 6402_CR15
  publication-title: Fire
  doi: 10.3390/fire6050215
– ident: 6402_CR57
– ident: 6402_CR39
  doi: 10.1139/x02-052
– year: 2021
  ident: 6402_CR55
  publication-title: Forests
  doi: 10.3390/f12081011
– volume: 262
  year: 2025
  ident: 6402_CR17
  publication-title: Earth Sci. Rev.
  doi: 10.1016/j.earscirev.2025.105064
– volume: 27
  start-page: 100810
  year: 2022
  ident: 6402_CR41
  publication-title: Remote Sens. Appl. Soc. Environ.
  doi: 10.1016/j.rsase.2022.100810
– volume: 18
  start-page: 847
  year: 2018
  ident: 6402_CR6
  publication-title: Nat. Hazard.
  doi: 10.5194/nhess-18-847-2018
– volume: 74
  start-page: 159
  year: 2019
  ident: 6402_CR50
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
  doi: 10.1016/j.jag.2018.08.020
– ident: 6402_CR44
  doi: 10.1016/j.jag.2025.104436
– volume: 377
  start-page: 46
  year: 2016
  ident: 6402_CR38
  publication-title: For. Ecol. Manag.
  doi: 10.1016/j.foreco.2016.06.037
– volume: 10
  start-page: 2515
  year: 2010
  ident: 6402_CR10
  publication-title: Nat. Hazard.
  doi: 10.5194/nhess-10-2515-2010
– ident: 6402_CR13
  doi: 10.1016/j.ecolind.2022.108726
– volume: 35
  start-page: 319
  year: 1989
  ident: 6402_CR4
  publication-title: For. Sci.
  doi: 10.1093/forestscience/35.2.319
– year: 2022
  ident: 6402_CR7
  publication-title: Weather Clim. Soc.
  doi: 10.1175/WCAS-D-22-0043.1
– year: 2024
  ident: 6402_CR49
  publication-title: Remote Sens.
  doi: 10.3390/rs16183536
– volume: 15
  start-page: 1287
  year: 2023
  ident: 6402_CR25
  publication-title: Earth Syst. Sci. Data
  doi: 10.5194/essd-15-1287-2023
– year: 2020
  ident: 6402_CR2
  publication-title: Nat. Hazards
  doi: 10.1007/s11069-020-04197-0
– ident: 6402_CR20
  doi: 10.2737/rmrs-gtr-153
– ident: 6402_CR59
  doi: 10.2737/RMRS-RP-4
SSID ssj0000529419
Score 2.4534883
Snippet Extreme wildfire events (EWE), although a rare natural hazard, account for a substantial portion of global wildfire damage, requiring proactive anticipation...
Abstract Extreme wildfire events (EWE), although a rare natural hazard, account for a substantial portion of global wildfire damage, requiring proactive...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 22254
SubjectTerms 639/705
704/172
704/4111
Forest fires
High-resolution fuel mapping
Humanities and Social Sciences
Land cover map
multidisciplinary
Science
Science (multidisciplinary)
Title Zone adaptive fuel mapping for high resolution wildfire spread forecasting
URI https://link.springer.com/article/10.1038/s41598-025-06402-1
https://www.ncbi.nlm.nih.gov/pubmed/40596365
https://www.proquest.com/docview/3226357260
https://pubmed.ncbi.nlm.nih.gov/PMC12218134
https://doaj.org/article/a25849ffc5984fbba8f0c1f3654dab44
Volume 15
WOSCitedRecordID wos001522986200024&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M7P
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: 7X7
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: PIMPY
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M2P
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3di9QwEB_0TsEX8dv6sUTwTcu1Tdo0j57cocItRRRWX0KSzpwHundcdwX_eydp97hV0RdfhtKGJplfkpmQyW8AnhfoCo9G59gWOlfKNLlRSHnf16YhKkvdhJRsQs_n7WJhukupvmJM2EgPPCpuz1VsIg1RqE2ryHvXUhFKkk2teudVYgIttLm0mRpZvSujSjPdkilkuzewpYq3yao6j4dXVV5uWaJE2P8nL_P3YMlfTkyTITq8BTcnD1K8Glt-G67g8g5cH3NK_rgL7z6fLlG43p3FhUzQGr-Kby6yMBwLdlBF5CcWvMeehpxgX7knXvcE18d4xzIY3BCjoe_Bx8ODD6_f5FPChDyoplnl5HtTI5Y1P7AGgiTusySPrnZE2psCW28ifQ_GC7aqIY1OBQwyeGN0L-_DzpIb-RAEEaZExEHXpBwbrcajLEJfqVo2JYUMXmyUZ89GXgybzrNla0dVW1a1Taq2ZQb7Ub8XJSOndXrBSNsJafsvpDN4tkHH8hyIBxtuiafrwfKiFGn1eGuWwYMRrYuqVMwvxP_IoN3Ccast21-WJ18Sz3ZZRf9HcsUvN5DbaYYPf-nso__R2cdwo0pjNQYGP4Gd1fkan8K18H11MpzP4Kpe6CTbGezuH8y797M0AVgeVV2UmuVu9_ao-_QTRPkLvQ
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Zone+adaptive+fuel+mapping+for+high+resolution+wildfire+spread+forecasting&rft.jtitle=Scientific+reports&rft.au=S%C3%A1nchez%2C+Paula&rft.au=Gonz%C3%A1lez%2C+Irene&rft.au=Carrillo%2C+Carlos&rft.au=Cort%C3%A9s%2C+Ana&rft.date=2025-07-01&rft.issn=2045-2322&rft.eissn=2045-2322&rft.volume=15&rft.issue=1&rft_id=info:doi/10.1038%2Fs41598-025-06402-1&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_s41598_025_06402_1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon