Predicting misdiagnosed adult-onset type 1 diabetes using machine learning

It is now understood that almost half of newly diagnosed cases of type 1 diabetes are adult-onset. However, type 1 and type 2 diabetes are difficult to initially distinguish clinically in adults, potentially leading to ineffective care. In this study a machine learning model was developed to identif...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Diabetes research and clinical practice Jg. 191; S. 110029
Hauptverfasser: Cheheltani, Rabee, King, Nicholas, Lee, Suyin, North, Benjamin, Kovarik, Danny, Evans-Molina, Carmella, Leavitt, Nadejda, Dutta, Sanjoy
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Ireland Elsevier B.V 01.09.2022
Schlagworte:
ISSN:0168-8227, 1872-8227, 1872-8227
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract It is now understood that almost half of newly diagnosed cases of type 1 diabetes are adult-onset. However, type 1 and type 2 diabetes are difficult to initially distinguish clinically in adults, potentially leading to ineffective care. In this study a machine learning model was developed to identify type 1 diabetes patients misdiagnosed as type 2 diabetes. In this retrospective study, a machine learning model was developed to identify misdiagnosed type 1 diabetes patients from a population of patients with a prior type 2 diabetes diagnosis. Using Ambulatory Electronic Medical Records (AEMR), features capturing relevant information on age, demographics, risk factors, symptoms, treatments, procedures, vitals, or lab results were extracted from patients' medical history. The model identified age, BMI/weight, therapy history, and HbA1c/blood glucose values among top predictors of misdiagnosis. Model precision at low levels of recall (10 %) was 17 %, compared to <1 % incidence rate of misdiagnosis at the time of the first type 2 diabetes encounter in AEMR. This algorithm shows potential for being translated into screening guidelines or a clinical decision support tool embedded directly in an EMR system to reduce misdiagnosis of adult-onset type 1 diabetes and implement effective care at the outset.
AbstractList It is now understood that almost half of newly diagnosed cases of type 1 diabetes are adult-onset. However, type 1 and type 2 diabetes are difficult to initially distinguish clinically in adults, potentially leading to ineffective care. In this study a machine learning model was developed to identify type 1 diabetes patients misdiagnosed as type 2 diabetes. In this retrospective study, a machine learning model was developed to identify misdiagnosed type 1 diabetes patients from a population of patients with a prior type 2 diabetes diagnosis. Using Ambulatory Electronic Medical Records (AEMR), features capturing relevant information on age, demographics, risk factors, symptoms, treatments, procedures, vitals, or lab results were extracted from patients' medical history. The model identified age, BMI/weight, therapy history, and HbA1c/blood glucose values among top predictors of misdiagnosis. Model precision at low levels of recall (10 %) was 17 %, compared to <1 % incidence rate of misdiagnosis at the time of the first type 2 diabetes encounter in AEMR. This algorithm shows potential for being translated into screening guidelines or a clinical decision support tool embedded directly in an EMR system to reduce misdiagnosis of adult-onset type 1 diabetes and implement effective care at the outset.
It is now understood that almost half of newly diagnosed cases of type 1 diabetes are adult-onset. However, type 1 and type 2 diabetes are difficult to initially distinguish clinically in adults, potentially leading to ineffective care. In this study a machine learning model was developed to identify type 1 diabetes patients misdiagnosed as type 2 diabetes.AIMSIt is now understood that almost half of newly diagnosed cases of type 1 diabetes are adult-onset. However, type 1 and type 2 diabetes are difficult to initially distinguish clinically in adults, potentially leading to ineffective care. In this study a machine learning model was developed to identify type 1 diabetes patients misdiagnosed as type 2 diabetes.In this retrospective study, a machine learning model was developed to identify misdiagnosed type 1 diabetes patients from a population of patients with a prior type 2 diabetes diagnosis. Using Ambulatory Electronic Medical Records (AEMR), features capturing relevant information on age, demographics, risk factors, symptoms, treatments, procedures, vitals, or lab results were extracted from patients' medical history.METHODSIn this retrospective study, a machine learning model was developed to identify misdiagnosed type 1 diabetes patients from a population of patients with a prior type 2 diabetes diagnosis. Using Ambulatory Electronic Medical Records (AEMR), features capturing relevant information on age, demographics, risk factors, symptoms, treatments, procedures, vitals, or lab results were extracted from patients' medical history.The model identified age, BMI/weight, therapy history, and HbA1c/blood glucose values among top predictors of misdiagnosis. Model precision at low levels of recall (10 %) was 17 %, compared to <1 % incidence rate of misdiagnosis at the time of the first type 2 diabetes encounter in AEMR.RESULTSThe model identified age, BMI/weight, therapy history, and HbA1c/blood glucose values among top predictors of misdiagnosis. Model precision at low levels of recall (10 %) was 17 %, compared to <1 % incidence rate of misdiagnosis at the time of the first type 2 diabetes encounter in AEMR.This algorithm shows potential for being translated into screening guidelines or a clinical decision support tool embedded directly in an EMR system to reduce misdiagnosis of adult-onset type 1 diabetes and implement effective care at the outset.CONCLUSIONSThis algorithm shows potential for being translated into screening guidelines or a clinical decision support tool embedded directly in an EMR system to reduce misdiagnosis of adult-onset type 1 diabetes and implement effective care at the outset.
ArticleNumber 110029
Author Cheheltani, Rabee
Kovarik, Danny
Leavitt, Nadejda
Dutta, Sanjoy
Lee, Suyin
North, Benjamin
Evans-Molina, Carmella
King, Nicholas
Author_xml – sequence: 1
  givenname: Rabee
  surname: Cheheltani
  fullname: Cheheltani, Rabee
  organization: Predictive Analytics, Real World Solutions, IQVIA, Wayne, PA, USA
– sequence: 2
  givenname: Nicholas
  surname: King
  fullname: King, Nicholas
  organization: Predictive Analytics, Real World Solutions, IQVIA, Wayne, PA, USA
– sequence: 3
  givenname: Suyin
  surname: Lee
  fullname: Lee, Suyin
  organization: Predictive Analytics, Real World Solutions, IQVIA, Wayne, PA, USA
– sequence: 4
  givenname: Benjamin
  surname: North
  fullname: North, Benjamin
  organization: Predictive Analytics, Real World Solutions, IQVIA, Wayne, PA, USA
– sequence: 5
  givenname: Danny
  surname: Kovarik
  fullname: Kovarik, Danny
  organization: JDRF, New York, NY, USA
– sequence: 6
  givenname: Carmella
  surname: Evans-Molina
  fullname: Evans-Molina, Carmella
  organization: Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN, USA
– sequence: 7
  givenname: Nadejda
  surname: Leavitt
  fullname: Leavitt, Nadejda
  organization: Predictive Analytics, Real World Solutions, IQVIA, Wayne, PA, USA
– sequence: 8
  givenname: Sanjoy
  orcidid: 0000-0001-8117-1677
  surname: Dutta
  fullname: Dutta, Sanjoy
  email: sdutta@jdrf.org
  organization: JDRF, New York, NY, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35940302$$D View this record in MEDLINE/PubMed
BookMark eNqNkEtPAyEYRYnRaH38BM0s3UzlNa8YY0zjMya60DVh4EOpU6YCY9J_L7XVhRtdQeDc-8HZRZuud4DQIcFjgkl5Mh1rK1sPYUwxpWNCMKbNBhqRuqJ5TWm1iUaJq7_2O2g3hCnGuGS82EY7rGg4ZpiO0N2jB21VtO4lm9mQOl9cH0BnUg9dzHsXIGZxMYeMZMuBECFkQ_jCpXq1DrIOpHfpYB9tGdkFOFive-j56vJpcpPfP1zfTi7uc8XLMuamVaaQpCKyxKSlhEqqQHNjasxrSXm6ZmWh27pQja4M5U1p2oIrphoKRrdsDx2veue-fx8gRJEerqDrpIN-CIJWGDPCWcESerRGh3YGWsy9nUm_EN__T0CxApTvQ_BgfhCCxdKzmIq1Z7H0LFaeU-70V07ZKKPtXfTSdn-mz1dpSJo-LHgRlAWXNFgPKgrd2z8bzn41qM46q2T3Bot_5D8B1UqxDw
CitedBy_id crossref_primary_10_1089_dia_2024_2505
crossref_primary_10_3390_endocrines5040041
crossref_primary_10_3390_pharmaceutics16121559
crossref_primary_10_1109_ACCESS_2024_3351188
crossref_primary_10_1136_bmjhci_2022_100651
crossref_primary_10_1186_s13098_022_00969_9
crossref_primary_10_1016_j_clinthera_2024_07_002
crossref_primary_10_1111_dom_16402
crossref_primary_10_3390_ijms26093935
crossref_primary_10_2196_50935
crossref_primary_10_3389_fmed_2024_1479717
crossref_primary_10_15406_jdmdc_2025_12_00292
Cites_doi 10.1007/s00125-014-3225-9
10.1007/s00125-019-4863-8
10.1093/bioinformatics/btn141
10.1016/S0168-8227(00)00173-X
10.1038/s41598-017-17433-8
10.1136/bmjhci-2021-100510
10.1038/nrg3208
10.1186/s41512-020-00075-2
10.1038/s41598-020-67013-6
10.1016/j.csbj.2016.12.005
10.2337/dc21-1752
10.2337/db18-1263
10.4258/hir.2019.25.4.248
10.1145/2939672.2939785
10.1373/clinchem.2010.148221
10.2337/cd18-0088
10.2337/dc12-0931
10.1016/j.cmpb.2017.09.004
10.1001/jamanetworkopen.2021.11315
10.1038/nrendo.2017.99
10.1089/big.2015.0020
10.2337/db12-0207
10.3346/jkms.2020.35.e425
ContentType Journal Article
Copyright 2022 The Author(s)
Copyright © 2022 The Author(s). Published by Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2022 The Author(s)
– notice: Copyright © 2022 The Author(s). Published by Elsevier B.V. All rights reserved.
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.diabres.2022.110029
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1872-8227
ExternalDocumentID 35940302
10_1016_j_diabres_2022_110029
S0168822722008439
Genre Journal Article
GrantInformation_xml – fundername: NIDDK NIH HHS
  grantid: R21 DK119800
– fundername: NIDDK NIH HHS
  grantid: R01 DK127236
GroupedDBID ---
--K
--M
.1-
.55
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
29F
4.4
457
4G.
53G
5GY
5RE
5VS
6PF
7-5
71M
8P~
9JM
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQQT
AAQXK
AATTM
AAWTL
AAXKI
AAXUO
AAYWO
ABBQC
ABFNM
ABGSF
ABJNI
ABMAC
ABMZM
ABUDA
ABWVN
ABXDB
ACDAQ
ACGFS
ACIEU
ACIUM
ACLOT
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
ADUVX
ADVLN
AEBSH
AEHWI
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFPUW
AFRHN
AFTJW
AFXIZ
AGHFR
AGQPQ
AGRDE
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EFKBS
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HDZ
HMK
HMO
HVGLF
HZ~
IHE
J1W
KOM
LZ1
M29
M41
MO0
N9A
O-L
O9-
OAUVE
OB0
ON-
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SAE
SCC
SDF
SDG
SEL
SES
SEW
SPCBC
SSH
SSU
SSZ
T5K
WUQ
X7M
Z5R
ZGI
~G-
~HD
6I.
AACTN
AAFTH
AAIAV
ABLVK
ABYKQ
AFKWA
AHPSJ
AJBFU
AJOXV
AMFUW
DOVZS
LCYCR
RIG
ZA5
9DU
AAYXX
CITATION
AFCTW
AGCQF
AGRNS
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c466t-fbcf5a171a601b212a2ced4ff8048a24bcf365db85c9d7f2496fb54c3c92efdb3
ISICitedReferencesCount 16
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000858788300006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0168-8227
1872-8227
IngestDate Thu Oct 02 19:20:44 EDT 2025
Mon Jul 21 05:27:28 EDT 2025
Tue Nov 18 22:34:38 EST 2025
Sat Nov 29 07:28:25 EST 2025
Fri Feb 23 02:38:07 EST 2024
Tue Oct 14 19:34:44 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Misdiagnosis
AI
Clinical decision support tool
Adult-onset type 1 diabetes
Predictive algorithm
Machine learning
Language English
License This is an open access article under the CC BY-NC-ND license.
Copyright © 2022 The Author(s). Published by Elsevier B.V. All rights reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c466t-fbcf5a171a601b212a2ced4ff8048a24bcf365db85c9d7f2496fb54c3c92efdb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-8117-1677
OpenAccessLink https://www.clinicalkey.com/#!/content/1-s2.0-S0168822722008439
PMID 35940302
PQID 2700314353
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2700314353
pubmed_primary_35940302
crossref_primary_10_1016_j_diabres_2022_110029
crossref_citationtrail_10_1016_j_diabres_2022_110029
elsevier_sciencedirect_doi_10_1016_j_diabres_2022_110029
elsevier_clinicalkey_doi_10_1016_j_diabres_2022_110029
PublicationCentury 2000
PublicationDate September 2022
2022-09-00
2022-Sep
20220901
PublicationDateYYYYMMDD 2022-09-01
PublicationDate_xml – month: 09
  year: 2022
  text: September 2022
PublicationDecade 2020
PublicationPlace Ireland
PublicationPlace_xml – name: Ireland
PublicationTitle Diabetes research and clinical practice
PublicationTitleAlternate Diabetes Res Clin Pract
PublicationYear 2022
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Davis J, editor. Machine learning for personalized medicine: will this drug give me a heart attack? 2008.
Doyle, Leavitt, Rigg (b0105) 2020; 10
Rosen-Zvi, Altmann, Prosperi, Aharoni, Neuvirth, Sonnerborg (b0080) 2008; 24
Yasar, Long, Harder, Marshall, Bhasin, Lee (b0110) 2022; 29
Wang, Liu, Chen, Chen, Yuan, Li (b0125) 2017; 7
Harding, Wander, Zhang, Li, Karuranga, Chen (b0015) 2022; 45
Zhou, Xiang, Ji, Jia, Ning, Huang (b0045) 2013; 62
Lynam, Dennis, Owen, Oram, Jones, Shields (b0115) 2020; 4
Kavakiotis, Tsave, Salifoglou, Maglaveras, Vlahavas, Chouvarda (b0060) 2017; 15
Buzzetti, Zampetti, Maddaloni (b0025) 2017; 13
Munoz, Floreen, Garey, Karlya, Jelley, Alonso (b0010) 2019; 37
Sutanegara, Budhiarta (b0040) 2000; 50
Abhari, Niakan Kalhori, Ebrahimi, Hasannejadasl, Garavand (b0050) 2019; 25
Rawshani, Landin-Olsson, Svensson, Nyström, Arnqvist, Bolinder (b0035) 2014; 57
Maniruzzaman, Kumar, Menhazul Abedin, Shaykhul Islam, Suri, El-Baz (b0130) 2017; 152
Ravaut, Harish, Sadeghi, Leung, Volkovs, Kornas (b0085) 2021; 4
Thomas, Lynam, Hill, Weedon, Shields, Oram (b0020) 2019; 62
Park, Seo, Kang, Ko, Choi, Park (b0065) 2020; 35
Frohnert, Webb-Robertson, Bramer, Reehl, Waugh, Steck (b0090) 2020; 69
Steck, Rewers (b0005) 2011; 57
Chen T, Guestrin C. XGBoost: a scalable tree boosting system. In: Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining; San Francisco, California, USA: Association for Computing Machinery; 2016. p. 785–94.
Lundberg SM, Lee S-I, editors. A unified approach to interpreting model predictions. In: Proceedings of the 31st international conference on neural information processing systems; 2017.
Hawa, Kolb, Schloot, Beyan, Paschou, Buzzetti (b0030) 2013; 36
Razavian, Blecker, Schmidt, Smith-McLallen, Nigam, Sontag (b0070) 2015; 3
Jensen, Jensen, Brunak (b0055) 2012; 13
Nooney, Kirkman, Bullard, White, Meadows, Campione (b0120) 2020; 21
Rawshani (10.1016/j.diabres.2022.110029_b0035) 2014; 57
10.1016/j.diabres.2022.110029_b0100
Maniruzzaman (10.1016/j.diabres.2022.110029_b0130) 2017; 152
Buzzetti (10.1016/j.diabres.2022.110029_b0025) 2017; 13
Harding (10.1016/j.diabres.2022.110029_b0015) 2022; 45
Yasar (10.1016/j.diabres.2022.110029_b0110) 2022; 29
Kavakiotis (10.1016/j.diabres.2022.110029_b0060) 2017; 15
Sutanegara (10.1016/j.diabres.2022.110029_b0040) 2000; 50
Park (10.1016/j.diabres.2022.110029_b0065) 2020; 35
Lynam (10.1016/j.diabres.2022.110029_b0115) 2020; 4
Thomas (10.1016/j.diabres.2022.110029_b0020) 2019; 62
Doyle (10.1016/j.diabres.2022.110029_b0105) 2020; 10
Frohnert (10.1016/j.diabres.2022.110029_b0090) 2020; 69
10.1016/j.diabres.2022.110029_b0075
Hawa (10.1016/j.diabres.2022.110029_b0030) 2013; 36
10.1016/j.diabres.2022.110029_b0095
Munoz (10.1016/j.diabres.2022.110029_b0010) 2019; 37
Abhari (10.1016/j.diabres.2022.110029_b0050) 2019; 25
Jensen (10.1016/j.diabres.2022.110029_b0055) 2012; 13
Zhou (10.1016/j.diabres.2022.110029_b0045) 2013; 62
Wang (10.1016/j.diabres.2022.110029_b0125) 2017; 7
Razavian (10.1016/j.diabres.2022.110029_b0070) 2015; 3
Ravaut (10.1016/j.diabres.2022.110029_b0085) 2021; 4
Steck (10.1016/j.diabres.2022.110029_b0005) 2011; 57
Rosen-Zvi (10.1016/j.diabres.2022.110029_b0080) 2008; 24
Nooney (10.1016/j.diabres.2022.110029_b0120) 2020; 21
References_xml – volume: 35
  year: 2020
  ident: b0065
  article-title: Erratum: correction of author name and affiliation in the article “Artificial Intelligence in Health Care: Current Applications and Issues”
  publication-title: J Korean Med Sci
– volume: 24
  start-page: i399
  year: 2008
  end-page: i406
  ident: b0080
  article-title: Selecting anti-HIV therapies based on a variety of genomic and clinical factors
  publication-title: Bioinformatics
– volume: 13
  start-page: 674
  year: 2017
  end-page: 686
  ident: b0025
  article-title: Adult-onset autoimmune diabetes: current knowledge and implications for management
  publication-title: Nat Rev Endocrinol
– volume: 152
  start-page: 23
  year: 2017
  end-page: 34
  ident: b0130
  article-title: Comparative approaches for classification of diabetes mellitus data: machine learning paradigm
  publication-title: Comput Methods Programs Biomed
– volume: 3
  start-page: 277
  year: 2015
  end-page: 287
  ident: b0070
  article-title: Population-level prediction of type 2 diabetes from claims data and analysis of risk factors
  publication-title: Big Data
– volume: 69
  start-page: 238
  year: 2020
  end-page: 248
  ident: b0090
  article-title: Predictive modeling of type 1 diabetes stages using disparate data sources
  publication-title: Diabetes
– volume: 36
  start-page: 908
  year: 2013
  end-page: 913
  ident: b0030
  article-title: Adult-onset autoimmune diabetes in Europe is prevalent with a broad clinical phenotype: Action LADA 7
  publication-title: Diabetes Care
– volume: 4
  start-page: e2111315
  year: 2021
  ident: b0085
  article-title: Development and validation of a machine learning model using administrative health data to predict onset of type 2 diabetes
  publication-title: JAMA Netw Open
– volume: 45
  start-page: 994
  year: 2022
  end-page: 1006
  ident: b0015
  article-title: The incidence of adult-onset type 1 diabetes: a systematic review from 32 countries and regions
  publication-title: Diabetes Care
– reference: Davis J, editor. Machine learning for personalized medicine: will this drug give me a heart attack? 2008.
– volume: 25
  start-page: 248
  year: 2019
  end-page: 261
  ident: b0050
  article-title: Artificial intelligence applications in type 2 diabetes mellitus care: focus on machine learning methods
  publication-title: Healthc Inform Res
– volume: 62
  start-page: 1167
  year: 2019
  end-page: 1172
  ident: b0020
  article-title: Type 1 diabetes defined by severe insulin deficiency occurs after 30 years of age and is commonly treated as type 2 diabetes
  publication-title: Diabetologia
– volume: 57
  start-page: 176
  year: 2011
  end-page: 185
  ident: b0005
  article-title: Genetics of type 1 diabetes
  publication-title: Clin Chem
– volume: 15
  start-page: 104
  year: 2017
  end-page: 116
  ident: b0060
  article-title: Machine learning and data mining methods in diabetes research
  publication-title: Comput Struct Biotechnol J
– volume: 50
  start-page: S9
  year: 2000
  end-page: S16
  ident: b0040
  article-title: The epidemiology and management of diabetes mellitus in Indonesia
  publication-title: Diabetes Res Clin Pract
– volume: 7
  start-page: 17420
  year: 2017
  ident: b0125
  article-title: A novel classification indicator of type 1 and type 2 diabetes in China
  publication-title: Sci Rep
– volume: 21
  start-page: 100231
  year: 2020
  ident: b0120
  article-title: Identifying optimal survey-based algorithms to distinguish diabetes type among adults with diabetes
  publication-title: J Clin Transl Endocrinol
– volume: 62
  start-page: 543
  year: 2013
  end-page: 550
  ident: b0045
  article-title: Frequency, immunogenetics, and clinical characteristics of latent autoimmune diabetes in China (LADA China study): a nationwide, multicenter, clinic-based cross-sectional study
  publication-title: Diabetes
– volume: 57
  start-page: 1375
  year: 2014
  end-page: 1381
  ident: b0035
  article-title: The incidence of diabetes among 0–34 year olds in Sweden: new data and better methods
  publication-title: Diabetologia
– reference: Lundberg SM, Lee S-I, editors. A unified approach to interpreting model predictions. In: Proceedings of the 31st international conference on neural information processing systems; 2017.
– volume: 37
  start-page: 276
  year: 2019
  end-page: 281
  ident: b0010
  article-title: Misdiagnosis and diabetic ketoacidosis at diagnosis of type 1 diabetes: patient and caregiver perspectives
  publication-title: Clin Diabetes
– reference: Chen T, Guestrin C. XGBoost: a scalable tree boosting system. In: Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining; San Francisco, California, USA: Association for Computing Machinery; 2016. p. 785–94.
– volume: 4
  year: 2020
  ident: b0115
  article-title: Logistic regression has similar performance to optimised machine learning algorithms in a clinical setting: application to the discrimination between type 1 and type 2 diabetes in young adults
  publication-title: Diagn Progn Res
– volume: 10
  start-page: 10521
  year: 2020
  ident: b0105
  article-title: Finding undiagnosed patients with hepatitis C infection: an application of artificial intelligence to patient claims data
  publication-title: Sci Rep
– volume: 29
  start-page: e100510
  year: 2022
  ident: b0110
  article-title: Machine learning using longitudinal prescription and medical claims for the detection of non-alcoholic steatohepatitis (NASH)
  publication-title: BMJ Health Care Inform
– volume: 13
  start-page: 395
  year: 2012
  end-page: 405
  ident: b0055
  article-title: Mining electronic health records: towards better research applications and clinical care
  publication-title: Nat Rev Genet
– volume: 57
  start-page: 1375
  issue: 7
  year: 2014
  ident: 10.1016/j.diabres.2022.110029_b0035
  article-title: The incidence of diabetes among 0–34 year olds in Sweden: new data and better methods
  publication-title: Diabetologia
  doi: 10.1007/s00125-014-3225-9
– volume: 62
  start-page: 1167
  issue: 7
  year: 2019
  ident: 10.1016/j.diabres.2022.110029_b0020
  article-title: Type 1 diabetes defined by severe insulin deficiency occurs after 30 years of age and is commonly treated as type 2 diabetes
  publication-title: Diabetologia
  doi: 10.1007/s00125-019-4863-8
– volume: 24
  start-page: i399
  issue: 13
  year: 2008
  ident: 10.1016/j.diabres.2022.110029_b0080
  article-title: Selecting anti-HIV therapies based on a variety of genomic and clinical factors
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btn141
– volume: 50
  start-page: S9
  issue: Suppl. 2
  year: 2000
  ident: 10.1016/j.diabres.2022.110029_b0040
  article-title: The epidemiology and management of diabetes mellitus in Indonesia
  publication-title: Diabetes Res Clin Pract
  doi: 10.1016/S0168-8227(00)00173-X
– volume: 7
  start-page: 17420
  issue: 1
  year: 2017
  ident: 10.1016/j.diabres.2022.110029_b0125
  article-title: A novel classification indicator of type 1 and type 2 diabetes in China
  publication-title: Sci Rep
  doi: 10.1038/s41598-017-17433-8
– volume: 29
  start-page: e100510
  issue: 1
  year: 2022
  ident: 10.1016/j.diabres.2022.110029_b0110
  article-title: Machine learning using longitudinal prescription and medical claims for the detection of non-alcoholic steatohepatitis (NASH)
  publication-title: BMJ Health Care Inform
  doi: 10.1136/bmjhci-2021-100510
– volume: 13
  start-page: 395
  issue: 6
  year: 2012
  ident: 10.1016/j.diabres.2022.110029_b0055
  article-title: Mining electronic health records: towards better research applications and clinical care
  publication-title: Nat Rev Genet
  doi: 10.1038/nrg3208
– volume: 4
  issue: 1
  year: 2020
  ident: 10.1016/j.diabres.2022.110029_b0115
  article-title: Logistic regression has similar performance to optimised machine learning algorithms in a clinical setting: application to the discrimination between type 1 and type 2 diabetes in young adults
  publication-title: Diagn Progn Res
  doi: 10.1186/s41512-020-00075-2
– ident: 10.1016/j.diabres.2022.110029_b0100
– volume: 10
  start-page: 10521
  issue: 1
  year: 2020
  ident: 10.1016/j.diabres.2022.110029_b0105
  article-title: Finding undiagnosed patients with hepatitis C infection: an application of artificial intelligence to patient claims data
  publication-title: Sci Rep
  doi: 10.1038/s41598-020-67013-6
– volume: 15
  start-page: 104
  year: 2017
  ident: 10.1016/j.diabres.2022.110029_b0060
  article-title: Machine learning and data mining methods in diabetes research
  publication-title: Comput Struct Biotechnol J
  doi: 10.1016/j.csbj.2016.12.005
– volume: 45
  start-page: 994
  issue: 4
  year: 2022
  ident: 10.1016/j.diabres.2022.110029_b0015
  article-title: The incidence of adult-onset type 1 diabetes: a systematic review from 32 countries and regions
  publication-title: Diabetes Care
  doi: 10.2337/dc21-1752
– ident: 10.1016/j.diabres.2022.110029_b0075
– volume: 69
  start-page: 238
  issue: 2
  year: 2020
  ident: 10.1016/j.diabres.2022.110029_b0090
  article-title: Predictive modeling of type 1 diabetes stages using disparate data sources
  publication-title: Diabetes
  doi: 10.2337/db18-1263
– volume: 25
  start-page: 248
  issue: 4
  year: 2019
  ident: 10.1016/j.diabres.2022.110029_b0050
  article-title: Artificial intelligence applications in type 2 diabetes mellitus care: focus on machine learning methods
  publication-title: Healthc Inform Res
  doi: 10.4258/hir.2019.25.4.248
– ident: 10.1016/j.diabres.2022.110029_b0095
  doi: 10.1145/2939672.2939785
– volume: 57
  start-page: 176
  issue: 2
  year: 2011
  ident: 10.1016/j.diabres.2022.110029_b0005
  article-title: Genetics of type 1 diabetes
  publication-title: Clin Chem
  doi: 10.1373/clinchem.2010.148221
– volume: 37
  start-page: 276
  issue: 3
  year: 2019
  ident: 10.1016/j.diabres.2022.110029_b0010
  article-title: Misdiagnosis and diabetic ketoacidosis at diagnosis of type 1 diabetes: patient and caregiver perspectives
  publication-title: Clin Diabetes
  doi: 10.2337/cd18-0088
– volume: 36
  start-page: 908
  issue: 4
  year: 2013
  ident: 10.1016/j.diabres.2022.110029_b0030
  article-title: Adult-onset autoimmune diabetes in Europe is prevalent with a broad clinical phenotype: Action LADA 7
  publication-title: Diabetes Care
  doi: 10.2337/dc12-0931
– volume: 21
  start-page: 100231
  year: 2020
  ident: 10.1016/j.diabres.2022.110029_b0120
  article-title: Identifying optimal survey-based algorithms to distinguish diabetes type among adults with diabetes
  publication-title: J Clin Transl Endocrinol
– volume: 152
  start-page: 23
  year: 2017
  ident: 10.1016/j.diabres.2022.110029_b0130
  article-title: Comparative approaches for classification of diabetes mellitus data: machine learning paradigm
  publication-title: Comput Methods Programs Biomed
  doi: 10.1016/j.cmpb.2017.09.004
– volume: 4
  start-page: e2111315
  issue: 5
  year: 2021
  ident: 10.1016/j.diabres.2022.110029_b0085
  article-title: Development and validation of a machine learning model using administrative health data to predict onset of type 2 diabetes
  publication-title: JAMA Netw Open
  doi: 10.1001/jamanetworkopen.2021.11315
– volume: 13
  start-page: 674
  issue: 11
  year: 2017
  ident: 10.1016/j.diabres.2022.110029_b0025
  article-title: Adult-onset autoimmune diabetes: current knowledge and implications for management
  publication-title: Nat Rev Endocrinol
  doi: 10.1038/nrendo.2017.99
– volume: 3
  start-page: 277
  issue: 4
  year: 2015
  ident: 10.1016/j.diabres.2022.110029_b0070
  article-title: Population-level prediction of type 2 diabetes from claims data and analysis of risk factors
  publication-title: Big Data
  doi: 10.1089/big.2015.0020
– volume: 62
  start-page: 543
  issue: 2
  year: 2013
  ident: 10.1016/j.diabres.2022.110029_b0045
  article-title: Frequency, immunogenetics, and clinical characteristics of latent autoimmune diabetes in China (LADA China study): a nationwide, multicenter, clinic-based cross-sectional study
  publication-title: Diabetes
  doi: 10.2337/db12-0207
– volume: 35
  issue: 48
  year: 2020
  ident: 10.1016/j.diabres.2022.110029_b0065
  article-title: Erratum: correction of author name and affiliation in the article “Artificial Intelligence in Health Care: Current Applications and Issues”
  publication-title: J Korean Med Sci
  doi: 10.3346/jkms.2020.35.e425
SSID ssj0006345
Score 2.47855
Snippet It is now understood that almost half of newly diagnosed cases of type 1 diabetes are adult-onset. However, type 1 and type 2 diabetes are difficult to...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 110029
SubjectTerms Adult
Adult-onset type 1 diabetes
Blood Glucose
Clinical decision support tool
Diabetes Mellitus, Type 1 - diagnosis
Diabetes Mellitus, Type 1 - epidemiology
Diabetes Mellitus, Type 2 - diagnosis
Diabetes Mellitus, Type 2 - drug therapy
Diabetes Mellitus, Type 2 - epidemiology
Diagnostic Errors
Glycated Hemoglobin
Humans
Machine Learning
Misdiagnosis
Predictive algorithm
Retrospective Studies
Title Predicting misdiagnosed adult-onset type 1 diabetes using machine learning
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0168822722008439
https://dx.doi.org/10.1016/j.diabres.2022.110029
https://www.ncbi.nlm.nih.gov/pubmed/35940302
https://www.proquest.com/docview/2700314353
Volume 191
WOSCitedRecordID wos000858788300006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-8227
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0006345
  issn: 0168-8227
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwELYWqKpeqr67fSBX6q3KVomdODlSoGqRukItlfYW-UlZLQEtWQSn_vWO40cWKAUOvUSr2OONM5_tmck8EHpviGGKySwhtFIJlapKOAi-iRRpxbVMc05csQk2HpeTSbU7GPwOsTCnM9Y05dlZdfxfWQ33gNk2dPYO7I6Dwg34DUyHK7Adrrdi_O7cfnvpvJmBh8q50oFY2WXaSKzzdOsMr2lveF10FoPDzrFSh0oS-8uC61bo6rMD-YC4EFcZgq16bwH9S89aVzDqw3egjU2higpg0OrVUab3LkE_FucHEbDj4MD4STdTfugbvJEC9NvghRXtlkWZgCzCLmy8rk6X3zpt7jpn_LiyqzsDw3Rk3wrMcmT_YdT3v5hF-9LpFn0OgzvbtPbD1HaY2g2zgtYyllewLa5tfN2e7MTDvCDUecH65--DwD7-9XmuE2-uU186MWbvEXro9Q-84XDzGA108wTd_-Y9LJ6inR4-eBk-eAk-2MIHpzjAB3fwwR4-OMDnGfr5eXtv80vi620kkhZFmxghTQ4rNeWgpQuQaXgmtaLGlLDN84xCMylyJcpcVooZUNwLI3IqiawybZQgz9Fqc9TolwgX2i7ykmUC9HsuiVCUcCmoVqkwSsshouE11dIno7c1UWb1P9k0RKNIduyysdxEUAQe1GFJwOFYA7JuIiwjoZdFnYx5G9J3gdk1MMp-gOONPlpAJ2bPUFBQyBC9cCiI0yB5ReHAzV7ddYqv0YN-xb1Bq-18od-ie_K0PTiZr6MVNinXPar_AIllxLE
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Predicting+misdiagnosed+adult-onset+type+1+diabetes+using+machine+learning&rft.jtitle=Diabetes+research+and+clinical+practice&rft.au=Cheheltani%2C+Rabee&rft.au=King%2C+Nicholas&rft.au=Lee%2C+Suyin&rft.au=North%2C+Benjamin&rft.date=2022-09-01&rft.issn=0168-8227&rft.volume=191&rft.spage=110029&rft_id=info:doi/10.1016%2Fj.diabres.2022.110029&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_diabres_2022_110029
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0168-8227&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0168-8227&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0168-8227&client=summon