Predicting misdiagnosed adult-onset type 1 diabetes using machine learning
It is now understood that almost half of newly diagnosed cases of type 1 diabetes are adult-onset. However, type 1 and type 2 diabetes are difficult to initially distinguish clinically in adults, potentially leading to ineffective care. In this study a machine learning model was developed to identif...
Uloženo v:
| Vydáno v: | Diabetes research and clinical practice Ročník 191; s. 110029 |
|---|---|
| Hlavní autoři: | , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Ireland
Elsevier B.V
01.09.2022
|
| Témata: | |
| ISSN: | 0168-8227, 1872-8227, 1872-8227 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | It is now understood that almost half of newly diagnosed cases of type 1 diabetes are adult-onset. However, type 1 and type 2 diabetes are difficult to initially distinguish clinically in adults, potentially leading to ineffective care. In this study a machine learning model was developed to identify type 1 diabetes patients misdiagnosed as type 2 diabetes.
In this retrospective study, a machine learning model was developed to identify misdiagnosed type 1 diabetes patients from a population of patients with a prior type 2 diabetes diagnosis. Using Ambulatory Electronic Medical Records (AEMR), features capturing relevant information on age, demographics, risk factors, symptoms, treatments, procedures, vitals, or lab results were extracted from patients' medical history.
The model identified age, BMI/weight, therapy history, and HbA1c/blood glucose values among top predictors of misdiagnosis. Model precision at low levels of recall (10 %) was 17 %, compared to <1 % incidence rate of misdiagnosis at the time of the first type 2 diabetes encounter in AEMR.
This algorithm shows potential for being translated into screening guidelines or a clinical decision support tool embedded directly in an EMR system to reduce misdiagnosis of adult-onset type 1 diabetes and implement effective care at the outset. |
|---|---|
| AbstractList | It is now understood that almost half of newly diagnosed cases of type 1 diabetes are adult-onset. However, type 1 and type 2 diabetes are difficult to initially distinguish clinically in adults, potentially leading to ineffective care. In this study a machine learning model was developed to identify type 1 diabetes patients misdiagnosed as type 2 diabetes.
In this retrospective study, a machine learning model was developed to identify misdiagnosed type 1 diabetes patients from a population of patients with a prior type 2 diabetes diagnosis. Using Ambulatory Electronic Medical Records (AEMR), features capturing relevant information on age, demographics, risk factors, symptoms, treatments, procedures, vitals, or lab results were extracted from patients' medical history.
The model identified age, BMI/weight, therapy history, and HbA1c/blood glucose values among top predictors of misdiagnosis. Model precision at low levels of recall (10 %) was 17 %, compared to <1 % incidence rate of misdiagnosis at the time of the first type 2 diabetes encounter in AEMR.
This algorithm shows potential for being translated into screening guidelines or a clinical decision support tool embedded directly in an EMR system to reduce misdiagnosis of adult-onset type 1 diabetes and implement effective care at the outset. It is now understood that almost half of newly diagnosed cases of type 1 diabetes are adult-onset. However, type 1 and type 2 diabetes are difficult to initially distinguish clinically in adults, potentially leading to ineffective care. In this study a machine learning model was developed to identify type 1 diabetes patients misdiagnosed as type 2 diabetes.AIMSIt is now understood that almost half of newly diagnosed cases of type 1 diabetes are adult-onset. However, type 1 and type 2 diabetes are difficult to initially distinguish clinically in adults, potentially leading to ineffective care. In this study a machine learning model was developed to identify type 1 diabetes patients misdiagnosed as type 2 diabetes.In this retrospective study, a machine learning model was developed to identify misdiagnosed type 1 diabetes patients from a population of patients with a prior type 2 diabetes diagnosis. Using Ambulatory Electronic Medical Records (AEMR), features capturing relevant information on age, demographics, risk factors, symptoms, treatments, procedures, vitals, or lab results were extracted from patients' medical history.METHODSIn this retrospective study, a machine learning model was developed to identify misdiagnosed type 1 diabetes patients from a population of patients with a prior type 2 diabetes diagnosis. Using Ambulatory Electronic Medical Records (AEMR), features capturing relevant information on age, demographics, risk factors, symptoms, treatments, procedures, vitals, or lab results were extracted from patients' medical history.The model identified age, BMI/weight, therapy history, and HbA1c/blood glucose values among top predictors of misdiagnosis. Model precision at low levels of recall (10 %) was 17 %, compared to <1 % incidence rate of misdiagnosis at the time of the first type 2 diabetes encounter in AEMR.RESULTSThe model identified age, BMI/weight, therapy history, and HbA1c/blood glucose values among top predictors of misdiagnosis. Model precision at low levels of recall (10 %) was 17 %, compared to <1 % incidence rate of misdiagnosis at the time of the first type 2 diabetes encounter in AEMR.This algorithm shows potential for being translated into screening guidelines or a clinical decision support tool embedded directly in an EMR system to reduce misdiagnosis of adult-onset type 1 diabetes and implement effective care at the outset.CONCLUSIONSThis algorithm shows potential for being translated into screening guidelines or a clinical decision support tool embedded directly in an EMR system to reduce misdiagnosis of adult-onset type 1 diabetes and implement effective care at the outset. |
| ArticleNumber | 110029 |
| Author | Cheheltani, Rabee Kovarik, Danny Leavitt, Nadejda Dutta, Sanjoy Lee, Suyin North, Benjamin Evans-Molina, Carmella King, Nicholas |
| Author_xml | – sequence: 1 givenname: Rabee surname: Cheheltani fullname: Cheheltani, Rabee organization: Predictive Analytics, Real World Solutions, IQVIA, Wayne, PA, USA – sequence: 2 givenname: Nicholas surname: King fullname: King, Nicholas organization: Predictive Analytics, Real World Solutions, IQVIA, Wayne, PA, USA – sequence: 3 givenname: Suyin surname: Lee fullname: Lee, Suyin organization: Predictive Analytics, Real World Solutions, IQVIA, Wayne, PA, USA – sequence: 4 givenname: Benjamin surname: North fullname: North, Benjamin organization: Predictive Analytics, Real World Solutions, IQVIA, Wayne, PA, USA – sequence: 5 givenname: Danny surname: Kovarik fullname: Kovarik, Danny organization: JDRF, New York, NY, USA – sequence: 6 givenname: Carmella surname: Evans-Molina fullname: Evans-Molina, Carmella organization: Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN, USA – sequence: 7 givenname: Nadejda surname: Leavitt fullname: Leavitt, Nadejda organization: Predictive Analytics, Real World Solutions, IQVIA, Wayne, PA, USA – sequence: 8 givenname: Sanjoy orcidid: 0000-0001-8117-1677 surname: Dutta fullname: Dutta, Sanjoy email: sdutta@jdrf.org organization: JDRF, New York, NY, USA |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35940302$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkEtPAyEYRYnRaH38BM0s3UzlNa8YY0zjMya60DVh4EOpU6YCY9J_L7XVhRtdQeDc-8HZRZuud4DQIcFjgkl5Mh1rK1sPYUwxpWNCMKbNBhqRuqJ5TWm1iUaJq7_2O2g3hCnGuGS82EY7rGg4ZpiO0N2jB21VtO4lm9mQOl9cH0BnUg9dzHsXIGZxMYeMZMuBECFkQ_jCpXq1DrIOpHfpYB9tGdkFOFive-j56vJpcpPfP1zfTi7uc8XLMuamVaaQpCKyxKSlhEqqQHNjasxrSXm6ZmWh27pQja4M5U1p2oIrphoKRrdsDx2veue-fx8gRJEerqDrpIN-CIJWGDPCWcESerRGh3YGWsy9nUm_EN__T0CxApTvQ_BgfhCCxdKzmIq1Z7H0LFaeU-70V07ZKKPtXfTSdn-mz1dpSJo-LHgRlAWXNFgPKgrd2z8bzn41qM46q2T3Bot_5D8B1UqxDw |
| CitedBy_id | crossref_primary_10_1089_dia_2024_2505 crossref_primary_10_3390_endocrines5040041 crossref_primary_10_3390_pharmaceutics16121559 crossref_primary_10_1109_ACCESS_2024_3351188 crossref_primary_10_1136_bmjhci_2022_100651 crossref_primary_10_1186_s13098_022_00969_9 crossref_primary_10_1016_j_clinthera_2024_07_002 crossref_primary_10_1111_dom_16402 crossref_primary_10_3390_ijms26093935 crossref_primary_10_2196_50935 crossref_primary_10_3389_fmed_2024_1479717 crossref_primary_10_15406_jdmdc_2025_12_00292 |
| Cites_doi | 10.1007/s00125-014-3225-9 10.1007/s00125-019-4863-8 10.1093/bioinformatics/btn141 10.1016/S0168-8227(00)00173-X 10.1038/s41598-017-17433-8 10.1136/bmjhci-2021-100510 10.1038/nrg3208 10.1186/s41512-020-00075-2 10.1038/s41598-020-67013-6 10.1016/j.csbj.2016.12.005 10.2337/dc21-1752 10.2337/db18-1263 10.4258/hir.2019.25.4.248 10.1145/2939672.2939785 10.1373/clinchem.2010.148221 10.2337/cd18-0088 10.2337/dc12-0931 10.1016/j.cmpb.2017.09.004 10.1001/jamanetworkopen.2021.11315 10.1038/nrendo.2017.99 10.1089/big.2015.0020 10.2337/db12-0207 10.3346/jkms.2020.35.e425 |
| ContentType | Journal Article |
| Copyright | 2022 The Author(s) Copyright © 2022 The Author(s). Published by Elsevier B.V. All rights reserved. |
| Copyright_xml | – notice: 2022 The Author(s) – notice: Copyright © 2022 The Author(s). Published by Elsevier B.V. All rights reserved. |
| DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1016/j.diabres.2022.110029 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 1872-8227 |
| ExternalDocumentID | 35940302 10_1016_j_diabres_2022_110029 S0168822722008439 |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: NIDDK NIH HHS grantid: R21 DK119800 – fundername: NIDDK NIH HHS grantid: R01 DK127236 |
| GroupedDBID | --- --K --M .1- .55 .FO .GJ .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 29F 4.4 457 4G. 53G 5GY 5RE 5VS 6PF 7-5 71M 8P~ 9JM AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQQT AAQXK AATTM AAWTL AAXKI AAXUO AAYWO ABBQC ABFNM ABGSF ABJNI ABMAC ABMZM ABUDA ABWVN ABXDB ACDAQ ACGFS ACIEU ACIUM ACLOT ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADMUD ADNMO ADUVX ADVLN AEBSH AEHWI AEIPS AEKER AENEX AEUPX AEVXI AFJKZ AFPUW AFRHN AFTJW AFXIZ AGHFR AGQPQ AGRDE AGUBO AGYEJ AHHHB AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EFKBS EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HDZ HMK HMO HVGLF HZ~ IHE J1W KOM LZ1 M29 M41 MO0 N9A O-L O9- OAUVE OB0 ON- OZT P-8 P-9 P2P PC. Q38 R2- ROL RPZ SAE SCC SDF SDG SEL SES SEW SPCBC SSH SSU SSZ T5K WUQ X7M Z5R ZGI ~G- ~HD 6I. AACTN AAFTH AAIAV ABLVK ABYKQ AFKWA AHPSJ AJBFU AJOXV AMFUW DOVZS LCYCR RIG ZA5 9DU AAYXX CITATION AFCTW AGCQF AGRNS CGR CUY CVF ECM EIF NPM 7X8 |
| ID | FETCH-LOGICAL-c466t-fbcf5a171a601b212a2ced4ff8048a24bcf365db85c9d7f2496fb54c3c92efdb3 |
| ISICitedReferencesCount | 16 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000858788300006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0168-8227 1872-8227 |
| IngestDate | Thu Oct 02 19:20:44 EDT 2025 Mon Jul 21 05:27:28 EDT 2025 Tue Nov 18 22:34:38 EST 2025 Sat Nov 29 07:28:25 EST 2025 Fri Feb 23 02:38:07 EST 2024 Tue Oct 14 19:34:44 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Misdiagnosis AI Clinical decision support tool Adult-onset type 1 diabetes Predictive algorithm Machine learning |
| Language | English |
| License | This is an open access article under the CC BY-NC-ND license. Copyright © 2022 The Author(s). Published by Elsevier B.V. All rights reserved. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c466t-fbcf5a171a601b212a2ced4ff8048a24bcf365db85c9d7f2496fb54c3c92efdb3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0001-8117-1677 |
| OpenAccessLink | https://www.clinicalkey.com/#!/content/1-s2.0-S0168822722008439 |
| PMID | 35940302 |
| PQID | 2700314353 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_2700314353 pubmed_primary_35940302 crossref_primary_10_1016_j_diabres_2022_110029 crossref_citationtrail_10_1016_j_diabres_2022_110029 elsevier_sciencedirect_doi_10_1016_j_diabres_2022_110029 elsevier_clinicalkey_doi_10_1016_j_diabres_2022_110029 |
| PublicationCentury | 2000 |
| PublicationDate | September 2022 2022-09-00 2022-Sep 20220901 |
| PublicationDateYYYYMMDD | 2022-09-01 |
| PublicationDate_xml | – month: 09 year: 2022 text: September 2022 |
| PublicationDecade | 2020 |
| PublicationPlace | Ireland |
| PublicationPlace_xml | – name: Ireland |
| PublicationTitle | Diabetes research and clinical practice |
| PublicationTitleAlternate | Diabetes Res Clin Pract |
| PublicationYear | 2022 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Davis J, editor. Machine learning for personalized medicine: will this drug give me a heart attack? 2008. Doyle, Leavitt, Rigg (b0105) 2020; 10 Rosen-Zvi, Altmann, Prosperi, Aharoni, Neuvirth, Sonnerborg (b0080) 2008; 24 Yasar, Long, Harder, Marshall, Bhasin, Lee (b0110) 2022; 29 Wang, Liu, Chen, Chen, Yuan, Li (b0125) 2017; 7 Harding, Wander, Zhang, Li, Karuranga, Chen (b0015) 2022; 45 Zhou, Xiang, Ji, Jia, Ning, Huang (b0045) 2013; 62 Lynam, Dennis, Owen, Oram, Jones, Shields (b0115) 2020; 4 Kavakiotis, Tsave, Salifoglou, Maglaveras, Vlahavas, Chouvarda (b0060) 2017; 15 Buzzetti, Zampetti, Maddaloni (b0025) 2017; 13 Munoz, Floreen, Garey, Karlya, Jelley, Alonso (b0010) 2019; 37 Sutanegara, Budhiarta (b0040) 2000; 50 Abhari, Niakan Kalhori, Ebrahimi, Hasannejadasl, Garavand (b0050) 2019; 25 Rawshani, Landin-Olsson, Svensson, Nyström, Arnqvist, Bolinder (b0035) 2014; 57 Maniruzzaman, Kumar, Menhazul Abedin, Shaykhul Islam, Suri, El-Baz (b0130) 2017; 152 Ravaut, Harish, Sadeghi, Leung, Volkovs, Kornas (b0085) 2021; 4 Thomas, Lynam, Hill, Weedon, Shields, Oram (b0020) 2019; 62 Park, Seo, Kang, Ko, Choi, Park (b0065) 2020; 35 Frohnert, Webb-Robertson, Bramer, Reehl, Waugh, Steck (b0090) 2020; 69 Steck, Rewers (b0005) 2011; 57 Chen T, Guestrin C. XGBoost: a scalable tree boosting system. In: Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining; San Francisco, California, USA: Association for Computing Machinery; 2016. p. 785–94. Lundberg SM, Lee S-I, editors. A unified approach to interpreting model predictions. In: Proceedings of the 31st international conference on neural information processing systems; 2017. Hawa, Kolb, Schloot, Beyan, Paschou, Buzzetti (b0030) 2013; 36 Razavian, Blecker, Schmidt, Smith-McLallen, Nigam, Sontag (b0070) 2015; 3 Jensen, Jensen, Brunak (b0055) 2012; 13 Nooney, Kirkman, Bullard, White, Meadows, Campione (b0120) 2020; 21 Rawshani (10.1016/j.diabres.2022.110029_b0035) 2014; 57 10.1016/j.diabres.2022.110029_b0100 Maniruzzaman (10.1016/j.diabres.2022.110029_b0130) 2017; 152 Buzzetti (10.1016/j.diabres.2022.110029_b0025) 2017; 13 Harding (10.1016/j.diabres.2022.110029_b0015) 2022; 45 Yasar (10.1016/j.diabres.2022.110029_b0110) 2022; 29 Kavakiotis (10.1016/j.diabres.2022.110029_b0060) 2017; 15 Sutanegara (10.1016/j.diabres.2022.110029_b0040) 2000; 50 Park (10.1016/j.diabres.2022.110029_b0065) 2020; 35 Lynam (10.1016/j.diabres.2022.110029_b0115) 2020; 4 Thomas (10.1016/j.diabres.2022.110029_b0020) 2019; 62 Doyle (10.1016/j.diabres.2022.110029_b0105) 2020; 10 Frohnert (10.1016/j.diabres.2022.110029_b0090) 2020; 69 10.1016/j.diabres.2022.110029_b0075 Hawa (10.1016/j.diabres.2022.110029_b0030) 2013; 36 10.1016/j.diabres.2022.110029_b0095 Munoz (10.1016/j.diabres.2022.110029_b0010) 2019; 37 Abhari (10.1016/j.diabres.2022.110029_b0050) 2019; 25 Jensen (10.1016/j.diabres.2022.110029_b0055) 2012; 13 Zhou (10.1016/j.diabres.2022.110029_b0045) 2013; 62 Wang (10.1016/j.diabres.2022.110029_b0125) 2017; 7 Razavian (10.1016/j.diabres.2022.110029_b0070) 2015; 3 Ravaut (10.1016/j.diabres.2022.110029_b0085) 2021; 4 Steck (10.1016/j.diabres.2022.110029_b0005) 2011; 57 Rosen-Zvi (10.1016/j.diabres.2022.110029_b0080) 2008; 24 Nooney (10.1016/j.diabres.2022.110029_b0120) 2020; 21 |
| References_xml | – volume: 35 year: 2020 ident: b0065 article-title: Erratum: correction of author name and affiliation in the article “Artificial Intelligence in Health Care: Current Applications and Issues” publication-title: J Korean Med Sci – volume: 24 start-page: i399 year: 2008 end-page: i406 ident: b0080 article-title: Selecting anti-HIV therapies based on a variety of genomic and clinical factors publication-title: Bioinformatics – volume: 13 start-page: 674 year: 2017 end-page: 686 ident: b0025 article-title: Adult-onset autoimmune diabetes: current knowledge and implications for management publication-title: Nat Rev Endocrinol – volume: 152 start-page: 23 year: 2017 end-page: 34 ident: b0130 article-title: Comparative approaches for classification of diabetes mellitus data: machine learning paradigm publication-title: Comput Methods Programs Biomed – volume: 3 start-page: 277 year: 2015 end-page: 287 ident: b0070 article-title: Population-level prediction of type 2 diabetes from claims data and analysis of risk factors publication-title: Big Data – volume: 69 start-page: 238 year: 2020 end-page: 248 ident: b0090 article-title: Predictive modeling of type 1 diabetes stages using disparate data sources publication-title: Diabetes – volume: 36 start-page: 908 year: 2013 end-page: 913 ident: b0030 article-title: Adult-onset autoimmune diabetes in Europe is prevalent with a broad clinical phenotype: Action LADA 7 publication-title: Diabetes Care – volume: 4 start-page: e2111315 year: 2021 ident: b0085 article-title: Development and validation of a machine learning model using administrative health data to predict onset of type 2 diabetes publication-title: JAMA Netw Open – volume: 45 start-page: 994 year: 2022 end-page: 1006 ident: b0015 article-title: The incidence of adult-onset type 1 diabetes: a systematic review from 32 countries and regions publication-title: Diabetes Care – reference: Davis J, editor. Machine learning for personalized medicine: will this drug give me a heart attack? 2008. – volume: 25 start-page: 248 year: 2019 end-page: 261 ident: b0050 article-title: Artificial intelligence applications in type 2 diabetes mellitus care: focus on machine learning methods publication-title: Healthc Inform Res – volume: 62 start-page: 1167 year: 2019 end-page: 1172 ident: b0020 article-title: Type 1 diabetes defined by severe insulin deficiency occurs after 30 years of age and is commonly treated as type 2 diabetes publication-title: Diabetologia – volume: 57 start-page: 176 year: 2011 end-page: 185 ident: b0005 article-title: Genetics of type 1 diabetes publication-title: Clin Chem – volume: 15 start-page: 104 year: 2017 end-page: 116 ident: b0060 article-title: Machine learning and data mining methods in diabetes research publication-title: Comput Struct Biotechnol J – volume: 50 start-page: S9 year: 2000 end-page: S16 ident: b0040 article-title: The epidemiology and management of diabetes mellitus in Indonesia publication-title: Diabetes Res Clin Pract – volume: 7 start-page: 17420 year: 2017 ident: b0125 article-title: A novel classification indicator of type 1 and type 2 diabetes in China publication-title: Sci Rep – volume: 21 start-page: 100231 year: 2020 ident: b0120 article-title: Identifying optimal survey-based algorithms to distinguish diabetes type among adults with diabetes publication-title: J Clin Transl Endocrinol – volume: 62 start-page: 543 year: 2013 end-page: 550 ident: b0045 article-title: Frequency, immunogenetics, and clinical characteristics of latent autoimmune diabetes in China (LADA China study): a nationwide, multicenter, clinic-based cross-sectional study publication-title: Diabetes – volume: 57 start-page: 1375 year: 2014 end-page: 1381 ident: b0035 article-title: The incidence of diabetes among 0–34 year olds in Sweden: new data and better methods publication-title: Diabetologia – reference: Lundberg SM, Lee S-I, editors. A unified approach to interpreting model predictions. In: Proceedings of the 31st international conference on neural information processing systems; 2017. – volume: 37 start-page: 276 year: 2019 end-page: 281 ident: b0010 article-title: Misdiagnosis and diabetic ketoacidosis at diagnosis of type 1 diabetes: patient and caregiver perspectives publication-title: Clin Diabetes – reference: Chen T, Guestrin C. XGBoost: a scalable tree boosting system. In: Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining; San Francisco, California, USA: Association for Computing Machinery; 2016. p. 785–94. – volume: 4 year: 2020 ident: b0115 article-title: Logistic regression has similar performance to optimised machine learning algorithms in a clinical setting: application to the discrimination between type 1 and type 2 diabetes in young adults publication-title: Diagn Progn Res – volume: 10 start-page: 10521 year: 2020 ident: b0105 article-title: Finding undiagnosed patients with hepatitis C infection: an application of artificial intelligence to patient claims data publication-title: Sci Rep – volume: 29 start-page: e100510 year: 2022 ident: b0110 article-title: Machine learning using longitudinal prescription and medical claims for the detection of non-alcoholic steatohepatitis (NASH) publication-title: BMJ Health Care Inform – volume: 13 start-page: 395 year: 2012 end-page: 405 ident: b0055 article-title: Mining electronic health records: towards better research applications and clinical care publication-title: Nat Rev Genet – volume: 57 start-page: 1375 issue: 7 year: 2014 ident: 10.1016/j.diabres.2022.110029_b0035 article-title: The incidence of diabetes among 0–34 year olds in Sweden: new data and better methods publication-title: Diabetologia doi: 10.1007/s00125-014-3225-9 – volume: 62 start-page: 1167 issue: 7 year: 2019 ident: 10.1016/j.diabres.2022.110029_b0020 article-title: Type 1 diabetes defined by severe insulin deficiency occurs after 30 years of age and is commonly treated as type 2 diabetes publication-title: Diabetologia doi: 10.1007/s00125-019-4863-8 – volume: 24 start-page: i399 issue: 13 year: 2008 ident: 10.1016/j.diabres.2022.110029_b0080 article-title: Selecting anti-HIV therapies based on a variety of genomic and clinical factors publication-title: Bioinformatics doi: 10.1093/bioinformatics/btn141 – volume: 50 start-page: S9 issue: Suppl. 2 year: 2000 ident: 10.1016/j.diabres.2022.110029_b0040 article-title: The epidemiology and management of diabetes mellitus in Indonesia publication-title: Diabetes Res Clin Pract doi: 10.1016/S0168-8227(00)00173-X – volume: 7 start-page: 17420 issue: 1 year: 2017 ident: 10.1016/j.diabres.2022.110029_b0125 article-title: A novel classification indicator of type 1 and type 2 diabetes in China publication-title: Sci Rep doi: 10.1038/s41598-017-17433-8 – volume: 29 start-page: e100510 issue: 1 year: 2022 ident: 10.1016/j.diabres.2022.110029_b0110 article-title: Machine learning using longitudinal prescription and medical claims for the detection of non-alcoholic steatohepatitis (NASH) publication-title: BMJ Health Care Inform doi: 10.1136/bmjhci-2021-100510 – volume: 13 start-page: 395 issue: 6 year: 2012 ident: 10.1016/j.diabres.2022.110029_b0055 article-title: Mining electronic health records: towards better research applications and clinical care publication-title: Nat Rev Genet doi: 10.1038/nrg3208 – volume: 4 issue: 1 year: 2020 ident: 10.1016/j.diabres.2022.110029_b0115 article-title: Logistic regression has similar performance to optimised machine learning algorithms in a clinical setting: application to the discrimination between type 1 and type 2 diabetes in young adults publication-title: Diagn Progn Res doi: 10.1186/s41512-020-00075-2 – ident: 10.1016/j.diabres.2022.110029_b0100 – volume: 10 start-page: 10521 issue: 1 year: 2020 ident: 10.1016/j.diabres.2022.110029_b0105 article-title: Finding undiagnosed patients with hepatitis C infection: an application of artificial intelligence to patient claims data publication-title: Sci Rep doi: 10.1038/s41598-020-67013-6 – volume: 15 start-page: 104 year: 2017 ident: 10.1016/j.diabres.2022.110029_b0060 article-title: Machine learning and data mining methods in diabetes research publication-title: Comput Struct Biotechnol J doi: 10.1016/j.csbj.2016.12.005 – volume: 45 start-page: 994 issue: 4 year: 2022 ident: 10.1016/j.diabres.2022.110029_b0015 article-title: The incidence of adult-onset type 1 diabetes: a systematic review from 32 countries and regions publication-title: Diabetes Care doi: 10.2337/dc21-1752 – ident: 10.1016/j.diabres.2022.110029_b0075 – volume: 69 start-page: 238 issue: 2 year: 2020 ident: 10.1016/j.diabres.2022.110029_b0090 article-title: Predictive modeling of type 1 diabetes stages using disparate data sources publication-title: Diabetes doi: 10.2337/db18-1263 – volume: 25 start-page: 248 issue: 4 year: 2019 ident: 10.1016/j.diabres.2022.110029_b0050 article-title: Artificial intelligence applications in type 2 diabetes mellitus care: focus on machine learning methods publication-title: Healthc Inform Res doi: 10.4258/hir.2019.25.4.248 – ident: 10.1016/j.diabres.2022.110029_b0095 doi: 10.1145/2939672.2939785 – volume: 57 start-page: 176 issue: 2 year: 2011 ident: 10.1016/j.diabres.2022.110029_b0005 article-title: Genetics of type 1 diabetes publication-title: Clin Chem doi: 10.1373/clinchem.2010.148221 – volume: 37 start-page: 276 issue: 3 year: 2019 ident: 10.1016/j.diabres.2022.110029_b0010 article-title: Misdiagnosis and diabetic ketoacidosis at diagnosis of type 1 diabetes: patient and caregiver perspectives publication-title: Clin Diabetes doi: 10.2337/cd18-0088 – volume: 36 start-page: 908 issue: 4 year: 2013 ident: 10.1016/j.diabres.2022.110029_b0030 article-title: Adult-onset autoimmune diabetes in Europe is prevalent with a broad clinical phenotype: Action LADA 7 publication-title: Diabetes Care doi: 10.2337/dc12-0931 – volume: 21 start-page: 100231 year: 2020 ident: 10.1016/j.diabres.2022.110029_b0120 article-title: Identifying optimal survey-based algorithms to distinguish diabetes type among adults with diabetes publication-title: J Clin Transl Endocrinol – volume: 152 start-page: 23 year: 2017 ident: 10.1016/j.diabres.2022.110029_b0130 article-title: Comparative approaches for classification of diabetes mellitus data: machine learning paradigm publication-title: Comput Methods Programs Biomed doi: 10.1016/j.cmpb.2017.09.004 – volume: 4 start-page: e2111315 issue: 5 year: 2021 ident: 10.1016/j.diabres.2022.110029_b0085 article-title: Development and validation of a machine learning model using administrative health data to predict onset of type 2 diabetes publication-title: JAMA Netw Open doi: 10.1001/jamanetworkopen.2021.11315 – volume: 13 start-page: 674 issue: 11 year: 2017 ident: 10.1016/j.diabres.2022.110029_b0025 article-title: Adult-onset autoimmune diabetes: current knowledge and implications for management publication-title: Nat Rev Endocrinol doi: 10.1038/nrendo.2017.99 – volume: 3 start-page: 277 issue: 4 year: 2015 ident: 10.1016/j.diabres.2022.110029_b0070 article-title: Population-level prediction of type 2 diabetes from claims data and analysis of risk factors publication-title: Big Data doi: 10.1089/big.2015.0020 – volume: 62 start-page: 543 issue: 2 year: 2013 ident: 10.1016/j.diabres.2022.110029_b0045 article-title: Frequency, immunogenetics, and clinical characteristics of latent autoimmune diabetes in China (LADA China study): a nationwide, multicenter, clinic-based cross-sectional study publication-title: Diabetes doi: 10.2337/db12-0207 – volume: 35 issue: 48 year: 2020 ident: 10.1016/j.diabres.2022.110029_b0065 article-title: Erratum: correction of author name and affiliation in the article “Artificial Intelligence in Health Care: Current Applications and Issues” publication-title: J Korean Med Sci doi: 10.3346/jkms.2020.35.e425 |
| SSID | ssj0006345 |
| Score | 2.47855 |
| Snippet | It is now understood that almost half of newly diagnosed cases of type 1 diabetes are adult-onset. However, type 1 and type 2 diabetes are difficult to... |
| SourceID | proquest pubmed crossref elsevier |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 110029 |
| SubjectTerms | Adult Adult-onset type 1 diabetes Blood Glucose Clinical decision support tool Diabetes Mellitus, Type 1 - diagnosis Diabetes Mellitus, Type 1 - epidemiology Diabetes Mellitus, Type 2 - diagnosis Diabetes Mellitus, Type 2 - drug therapy Diabetes Mellitus, Type 2 - epidemiology Diagnostic Errors Glycated Hemoglobin Humans Machine Learning Misdiagnosis Predictive algorithm Retrospective Studies |
| Title | Predicting misdiagnosed adult-onset type 1 diabetes using machine learning |
| URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0168822722008439 https://dx.doi.org/10.1016/j.diabres.2022.110029 https://www.ncbi.nlm.nih.gov/pubmed/35940302 https://www.proquest.com/docview/2700314353 |
| Volume | 191 |
| WOSCitedRecordID | wos000858788300006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1872-8227 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0006345 issn: 0168-8227 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELa2LUK9IN4sj8pI3FCWTezYzrFAEVSwqmiR9hYcP6CrbVpts1X594xjO9mqVC1IXKIofiTxfLG_mcyMEXqlNTEKiENiSGYTyqRIZF6AlmJBGdNibKlsk7h-5pOJmE6LvcHge4yFOZvzuhbn58XJfxU1XANhu9DZvxB31ylcgHMQOhxB7HC8keD3Fu7fS-vNDDLU3pUOaGWbaSNxztONN7ymveF12VoMjlrHShN3kvixSlzfx6ohO1AIiItxlTHYqvcWMD_NvPEbRr3-Cm27oriLCmDQ6dUdpw8uQfvLX4cdYCfRgfGtqWfyKBQEIwXot9ELK1jOLkXPeGMmEwkQFH5hNvabd12a2b2RYTZyIwNvOnJ3cTEM42AwuZg0e9_17brOnH8HkK41tJHxvIB5b2P70850t1utGaHezTU8Sx_l9eaPN7uKv1yln7Q85eAuuhMUDLztgXEPDUx9H93-ElwoHqDdHh94FR94BR_Y4QOnOOIDt_jAAR844uMh-vZh5-DdxyRsqJEoyliT2ErZXKY8laCGV0BaZKaMptYKmMdlRqGYsFxXIleF5hY0c2arnCoCX7OxuiKP0Hp9XJsnCAPrG3Ngl0pAtcqxWk0KLVOqWJGp1A4RjcNUqpBt3m16Mi-jW-GsDKNbutEt_egO0ahrduLTrVzXgEUZlBHzsPqVAJvrGoquYSCbnkTepOnLKOwSBOX-sMnaHC-hEneLJGggZIgeexR0r0HygsKKmj391yd-hjb7T-s5Wm8WS_MC3VJnzeHpYgut8anYCuj-DTNiu7s |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Predicting+misdiagnosed+adult-onset+type+1+diabetes+using+machine+learning&rft.jtitle=Diabetes+research+and+clinical+practice&rft.au=Cheheltani%2C+Rabee&rft.au=King%2C+Nicholas&rft.au=Lee%2C+Suyin&rft.au=North%2C+Benjamin&rft.date=2022-09-01&rft.pub=Elsevier+B.V&rft.issn=0168-8227&rft.volume=191&rft_id=info:doi/10.1016%2Fj.diabres.2022.110029&rft.externalDocID=S0168822722008439 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0168-8227&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0168-8227&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0168-8227&client=summon |