Cosaliency Detection Based on Intrasaliency Prior Transfer and Deep Intersaliency Mining

As an interesting and emerging topic, cosaliency detection aims at simultaneously extracting common salient objects in multiple related images. It differs from the conventional saliency detection paradigm in which saliency detection for each image is determined one by one independently without takin...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transaction on neural networks and learning systems Vol. 27; no. 6; pp. 1163 - 1176
Main Authors: Zhang, Dingwen, Han, Junwei, Han, Jungong, Shao, Ling
Format: Journal Article
Language:English
Published: United States IEEE 01.06.2016
Subjects:
ISSN:2162-237X, 2162-2388, 2162-2388
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract As an interesting and emerging topic, cosaliency detection aims at simultaneously extracting common salient objects in multiple related images. It differs from the conventional saliency detection paradigm in which saliency detection for each image is determined one by one independently without taking advantage of the homogeneity in the data pool of multiple related images. In this paper, we propose a novel cosaliency detection approach using deep learning models. Two new concepts, called intrasaliency prior transfer and deep intersaliency mining, are introduced and explored in the proposed work. For the intrasaliency prior transfer, we build a stacked denoising autoencoder (SDAE) to learn the saliency prior knowledge from auxiliary annotated data sets and then transfer the learned knowledge to estimate the intrasaliency for each image in cosaliency data sets. For the deep intersaliency mining, we formulate it by using the deep reconstruction residual obtained in the highest hidden layer of a self-trained SDAE. The obtained deep intersaliency can extract more intrinsic and general hidden patterns to discover the homogeneity of cosalient objects in terms of some higher level concepts. Finally, the cosaliency maps are generated by weighted integration of the proposed intrasaliency prior, deep intersaliency, and traditional shallow intersaliency. Comprehensive experiments over diverse publicly available benchmark data sets demonstrate consistent performance gains of the proposed method over the state-of-the-art cosaliency detection methods.
AbstractList As an interesting and emerging topic, cosaliency detection aims at simultaneously extracting common salient objects in multiple related images. It differs from the conventional saliency detection paradigm in which saliency detection for each image is determined one by one independently without taking advantage of the homogeneity in the data pool of multiple related images. In this paper, we propose a novel cosaliency detection approach using deep learning models. Two new concepts, called intrasaliency prior transfer and deep intersaliency mining, are introduced and explored in the proposed work. For the intrasaliency prior transfer, we build a stacked denoising autoencoder (SDAE) to learn the saliency prior knowledge from auxiliary annotated data sets and then transfer the learned knowledge to estimate the intrasaliency for each image in cosaliency data sets. For the deep intersaliency mining, we formulate it by using the deep reconstruction residual obtained in the highest hidden layer of a self-trained SDAE. The obtained deep intersaliency can extract more intrinsic and general hidden patterns to discover the homogeneity of cosalient objects in terms of some higher level concepts. Finally, the cosaliency maps are generated by weighted integration of the proposed intrasaliency prior, deep intersaliency, and traditional shallow intersaliency. Comprehensive experiments over diverse publicly available benchmark data sets demonstrate consistent performance gains of the proposed method over the state-of-the-art cosaliency detection methods.
As an interesting and emerging topic, cosaliency detection aims at simultaneously extracting common salient objects in multiple related images. It differs from the conventional saliency detection paradigm in which saliency detection for each image is determined one by one independently without taking advantage of the homogeneity in the data pool of multiple related images. In this paper, we propose a novel cosaliency detection approach using deep learning models. Two new concepts, called intrasaliency prior transfer and deep intersaliency mining, are introduced and explored in the proposed work. For the intrasaliency prior transfer, we build a stacked denoising autoencoder (SDAE) to learn the saliency prior knowledge from auxiliary annotated data sets and then transfer the learned knowledge to estimate the intrasaliency for each image in cosaliency data sets. For the deep intersaliency mining, we formulate it by using the deep reconstruction residual obtained in the highest hidden layer of a self-trained SDAE. The obtained deep intersaliency can extract more intrinsic and general hidden patterns to discover the homogeneity of cosalient objects in terms of some higher level concepts. Finally, the cosaliency maps are generated by weighted integration of the proposed intrasaliency prior, deep intersaliency, and traditional shallow intersaliency. Comprehensive experiments over diverse publicly available benchmark data sets demonstrate consistent performance gains of the proposed method over the state-of-the-art cosaliency detection methods.As an interesting and emerging topic, cosaliency detection aims at simultaneously extracting common salient objects in multiple related images. It differs from the conventional saliency detection paradigm in which saliency detection for each image is determined one by one independently without taking advantage of the homogeneity in the data pool of multiple related images. In this paper, we propose a novel cosaliency detection approach using deep learning models. Two new concepts, called intrasaliency prior transfer and deep intersaliency mining, are introduced and explored in the proposed work. For the intrasaliency prior transfer, we build a stacked denoising autoencoder (SDAE) to learn the saliency prior knowledge from auxiliary annotated data sets and then transfer the learned knowledge to estimate the intrasaliency for each image in cosaliency data sets. For the deep intersaliency mining, we formulate it by using the deep reconstruction residual obtained in the highest hidden layer of a self-trained SDAE. The obtained deep intersaliency can extract more intrinsic and general hidden patterns to discover the homogeneity of cosalient objects in terms of some higher level concepts. Finally, the cosaliency maps are generated by weighted integration of the proposed intrasaliency prior, deep intersaliency, and traditional shallow intersaliency. Comprehensive experiments over diverse publicly available benchmark data sets demonstrate consistent performance gains of the proposed method over the state-of-the-art cosaliency detection methods.
Author Zhang, Dingwen
Han, Jungong
Shao, Ling
Han, Junwei
Author_xml – sequence: 1
  givenname: Dingwen
  surname: Zhang
  fullname: Zhang, Dingwen
  email: zhangdingwen2006yyy@gmail.com
  organization: School of Automation, Northwestern Polytechnical University, Xi'an, China
– sequence: 2
  givenname: Junwei
  surname: Han
  fullname: Han, Junwei
  email: junweihan2010@gmail.com
  organization: School of Automation, Northwestern Polytechnical University, Xi'an, China
– sequence: 3
  givenname: Jungong
  surname: Han
  fullname: Han, Jungong
  email: jungong.han@northumbria.ac.uk
  organization: Department of Computer Science and Digital Technologies, Northumbria University, Newcastle upon Tyne, U.K
– sequence: 4
  givenname: Ling
  surname: Shao
  fullname: Shao, Ling
  email: ling.shao@ieee.org
  organization: Department of Computer Science and Digital Technologies, Northumbria University, Newcastle upon Tyne, U.K
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26571541$$D View this record in MEDLINE/PubMed
BookMark eNqFkb1OwzAURi1URAv0BUBCGVlSfO3ESUYof5VKQaJI3SLXuUZGqVPsdOjbk9CSgQG8-A7nXFvfd0x6trJIyBnQEQDNruaz2fR1xCjEIxZlMQg4IAMGgoWMp2mvm5NFnwy9_6DNETQWUXZE-kzECcQRDMhiXHlZGrRqG9xijao2lQ1upMciaIaJrZ3sgBdnKhfMnbReowukLRoH1y2FrqOejDX2_ZQcall6HO7vE_J2fzcfP4bT54fJ-HoaqkiIOtSR0jorlJaouRQKls3vaYZMaxZRFjNgSiFwCRHGQFGAKJArxWXCJSrOT8jlbu_aVZ8b9HW-Ml5hWUqL1cbnkIKgIo0z9j-aZMBZClG79WKPbpYrLPK1MyvptvlPcA3AdoBylfcOdYcAzduC8u-C8ragfF9QI6W_JGVq2SbepGzKv9XznWoQsXsr4SxpEuJfvlad4Q
CODEN ITNNAL
CitedBy_id crossref_primary_10_1016_j_cviu_2022_103611
crossref_primary_10_1142_S0218001424500149
crossref_primary_10_1109_TCSVT_2017_2701279
crossref_primary_10_1109_TCSVT_2018_2823769
crossref_primary_10_1109_TIP_2017_2769454
crossref_primary_10_1109_TIP_2017_2658957
crossref_primary_10_1109_TIP_2017_2738839
crossref_primary_10_1109_TIP_2019_2909649
crossref_primary_10_1109_TMM_2022_3167805
crossref_primary_10_1109_MGRS_2018_2853555
crossref_primary_10_1109_ACCESS_2017_2776344
crossref_primary_10_1007_s11042_017_4563_7
crossref_primary_10_1016_j_neucom_2017_09_031
crossref_primary_10_1016_j_neucom_2017_11_003
crossref_primary_10_1016_j_neucom_2017_07_021
crossref_primary_10_1109_ACCESS_2017_2764503
crossref_primary_10_1109_TNNLS_2019_2920374
crossref_primary_10_1109_TIP_2021_3087401
crossref_primary_10_1007_s00138_023_01462_7
crossref_primary_10_1016_j_jvcir_2017_12_002
crossref_primary_10_1016_j_neucom_2017_03_016
crossref_primary_10_1109_TIP_2017_2760512
crossref_primary_10_1109_TNNLS_2019_2901273
crossref_primary_10_1109_TCSVT_2017_2724940
crossref_primary_10_1016_j_displa_2024_102767
crossref_primary_10_1016_j_neucom_2017_09_028
crossref_primary_10_1007_s11042_018_6009_2
crossref_primary_10_1007_s11042_017_5182_z
crossref_primary_10_1007_s11042_018_6026_1
crossref_primary_10_1109_TMM_2021_3138246
crossref_primary_10_1007_s10489_021_02307_4
crossref_primary_10_1109_TIP_2017_2754941
crossref_primary_10_1145_3158674
crossref_primary_10_1109_TIP_2017_2695887
crossref_primary_10_1109_TMM_2016_2638207
crossref_primary_10_1007_s11063_017_9755_7
crossref_primary_10_1016_j_image_2016_06_002
crossref_primary_10_1007_s10772_021_09842_y
crossref_primary_10_1109_TIP_2017_2733200
crossref_primary_10_1007_s11042_022_13148_9
crossref_primary_10_1016_j_neucom_2018_07_079
crossref_primary_10_1145_3313874
crossref_primary_10_1109_TIP_2018_2843680
crossref_primary_10_1016_j_knosys_2022_109356
crossref_primary_10_1109_TIP_2017_2722691
crossref_primary_10_1007_s11042_020_08678_z
crossref_primary_10_1109_TPAMI_2017_2662005
crossref_primary_10_1007_s11042_017_4748_0
crossref_primary_10_1007_s11042_017_5125_8
crossref_primary_10_1016_j_imavis_2025_105623
crossref_primary_10_1016_j_patcog_2017_10_008
crossref_primary_10_1002_cpe_4273
crossref_primary_10_1016_j_neucom_2018_02_004
crossref_primary_10_1109_ACCESS_2019_2956508
crossref_primary_10_1109_TIP_2017_2745204
crossref_primary_10_1109_TITS_2017_2740303
crossref_primary_10_1016_j_patcog_2018_11_003
crossref_primary_10_1007_s00530_018_0585_x
crossref_primary_10_1109_TIP_2017_2699623
crossref_primary_10_1109_TIP_2017_2696747
crossref_primary_10_1109_TNNLS_2020_2967471
crossref_primary_10_1016_j_ijleo_2017_03_029
crossref_primary_10_1109_TCSVT_2017_2723302
crossref_primary_10_1007_s11042_017_5087_x
crossref_primary_10_1109_TCSVT_2022_3150923
crossref_primary_10_3390_rs10081229
crossref_primary_10_1109_TMM_2020_2972165
crossref_primary_10_1016_j_ins_2017_01_019
crossref_primary_10_1007_s00371_025_04155_6
crossref_primary_10_1109_TPAMI_2021_3060412
crossref_primary_10_1155_2021_8956396
crossref_primary_10_1007_s11704_016_6066_5
crossref_primary_10_1109_TII_2019_2934144
crossref_primary_10_1007_s00371_021_02231_1
crossref_primary_10_1109_ACCESS_2017_2756081
crossref_primary_10_1109_TNNLS_2017_2731999
crossref_primary_10_1109_TIP_2017_2755766
crossref_primary_10_1109_TNNLS_2017_2691545
crossref_primary_10_1109_TIP_2017_2781424
crossref_primary_10_1109_TITS_2017_2766093
crossref_primary_10_1109_TMM_2019_2936803
crossref_primary_10_1109_TIP_2018_2859752
crossref_primary_10_1016_j_neucom_2017_09_064
crossref_primary_10_1109_TMM_2021_3054526
crossref_primary_10_1016_j_neucom_2016_11_064
crossref_primary_10_1007_s00521_019_04265_y
crossref_primary_10_1109_LSP_2021_3049997
crossref_primary_10_1109_JPROC_2017_2675998
crossref_primary_10_1109_TCSVT_2017_2706264
crossref_primary_10_1109_TMM_2017_2769801
crossref_primary_10_1109_TIP_2018_2861217
crossref_primary_10_1109_TCSVT_2018_2804438
crossref_primary_10_1109_TCSVT_2020_2992054
crossref_primary_10_1109_TPAMI_2023_3336015
crossref_primary_10_1109_ACCESS_2018_2885507
crossref_primary_10_1109_ACCESS_2019_2943899
crossref_primary_10_1049_iet_cvi_2018_5591
crossref_primary_10_3390_s19061354
crossref_primary_10_1016_j_neucom_2017_03_020
crossref_primary_10_1109_TMM_2022_3198848
crossref_primary_10_1109_TCSVT_2017_2710120
crossref_primary_10_1109_TCYB_2017_2761361
crossref_primary_10_1109_TNNLS_2018_2890310
crossref_primary_10_1145_3661312
crossref_primary_10_1016_j_neucom_2017_10_052
crossref_primary_10_1007_s13042_022_01531_9
crossref_primary_10_1016_j_neucom_2017_04_066
crossref_primary_10_1016_j_neucom_2017_10_057
crossref_primary_10_1109_TMM_2020_3021251
crossref_primary_10_1007_s00371_020_01842_4
crossref_primary_10_1109_LSP_2017_2688136
crossref_primary_10_1049_cit2_12020
crossref_primary_10_1109_TIP_2017_2694224
crossref_primary_10_1007_s00530_020_00650_z
crossref_primary_10_1007_s11042_017_4550_z
crossref_primary_10_1016_j_cviu_2017_04_015
crossref_primary_10_1007_s11042_025_20888_x
crossref_primary_10_1109_TIP_2016_2639440
crossref_primary_10_1007_s11042_018_5856_1
crossref_primary_10_1016_j_isprsjprs_2018_09_014
Cites_doi 10.1109/CVPR.2009.5206596
10.1109/TNNLS.2014.2330900
10.1109/CVPR.2011.5995415
10.1109/CVPR.2013.412
10.1109/TCSVT.2005.859028
10.1109/ICASSP.2013.6638027
10.1145/1866029.1866066
10.1109/TMM.2013.2271476
10.1109/TCYB.2014.2358647
10.1007/978-3-642-35289-8_26
10.1109/TPAMI.2012.28
10.1109/TIP.2011.2156803
10.1007/978-3-642-42051-1_31
10.1109/TPAMI.2013.50
10.1109/CVPR.2013.153
10.1007/s11263-012-0538-3
10.1109/LGRS.2014.2358994
10.1109/TPAMI.2012.277
10.1016/j.isprsjprs.2013.12.011
10.1109/CVPR.2012.6247721
10.1007/978-3-319-10578-9_23
10.1109/TPAMI.2014.2345401
10.1109/TGRS.2014.2374218
10.1109/CVPR.2013.407
10.1109/CVPR.2010.5540080
10.1109/CVPR.2011.5995420
10.1109/CVPR.2014.81
10.1109/LSP.2013.2292873
10.1109/TPAMI.2011.158
10.1109/TCSVT.2014.2381471
10.1109/TIP.2014.2332399
10.1109/CVPR.2007.382973
10.1109/CVPR.2013.271
10.1109/TPAMI.2012.120
10.1109/TCSVT.2013.2242594
10.1007/s00138-013-0558-1
10.1109/TMM.2011.2162399
10.1109/BTAS.2014.6996300
10.1023/B:VISI.0000022288.19776.77
10.5244/C.26.78
10.1109/ICIP.2010.5650014
10.1109/TIP.2013.2260166
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7X8
7SC
7SP
8FD
F28
FR3
JQ2
L7M
L~C
L~D
DOI 10.1109/TNNLS.2015.2495161
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
MEDLINE - Academic
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database
PubMed
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2162-2388
EndPage 1176
ExternalDocumentID 26571541
10_1109_TNNLS_2015_2495161
7327212
Genre orig-research
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China; National Science Foundation of China
  grantid: 61473231; 61522207
  funderid: 10.13039/501100001809
– fundername: Doctorate Foundation through Northwestern Polytechnical University
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
ACPRK
AENEX
AFRAH
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IFIPE
IPLJI
JAVBF
M43
MS~
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
NPM
RIG
7X8
7SC
7SP
8FD
F28
FR3
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c466t-f4cff9dcfaef3a6c1b38809e2ff24025212cce13a14e510e616de3cc3a73aec33
IEDL.DBID RIE
ISICitedReferencesCount 153
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000377113300005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2162-237X
2162-2388
IngestDate Sun Sep 28 11:53:35 EDT 2025
Sat Sep 27 19:05:48 EDT 2025
Mon Jul 21 05:48:08 EDT 2025
Sat Nov 29 01:39:53 EST 2025
Tue Nov 18 22:27:46 EST 2025
Wed Aug 27 08:30:57 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 6
Keywords stacked denoising autoencoder (SDAE)
deep learning
Cosaliency detection
prior transfer
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c466t-f4cff9dcfaef3a6c1b38809e2ff24025212cce13a14e510e616de3cc3a73aec33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://ueaeprints.uea.ac.uk/id/eprint/62880/1/Accepted_manuscript.pdf
PMID 26571541
PQID 1791328143
PQPubID 23479
PageCount 14
ParticipantIDs proquest_miscellaneous_1816068592
crossref_primary_10_1109_TNNLS_2015_2495161
crossref_citationtrail_10_1109_TNNLS_2015_2495161
pubmed_primary_26571541
proquest_miscellaneous_1791328143
ieee_primary_7327212
PublicationCentury 2000
PublicationDate 2016-June
2016-6-00
2016-06-00
20160601
PublicationDateYYYYMMDD 2016-06-01
PublicationDate_xml – month: 06
  year: 2016
  text: 2016-June
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle IEEE transaction on neural networks and learning systems
PublicationTitleAbbrev TNNLS
PublicationTitleAlternate IEEE Trans Neural Netw Learn Syst
PublicationYear 2016
Publisher IEEE
Publisher_xml – name: IEEE
References ref13
kim (ref5) 2011
ref12
ref15
lin (ref42) 2014
ref14
ref53
ref52
ref11
bengio (ref22) 2011
ref10
zhang (ref49) 2015
ref17
ref16
han (ref47) 0
ref18
rumelhart (ref30) 1988
ref51
ref50
ref46
ref45
ref41
ref44
ref43
bengio (ref25) 2011
ref8
ref9
ref4
ref3
ref6
fu (ref7) 2013
ref40
ref35
ref34
ref37
ref36
ref31
ref32
ref2
ref1
ref39
ref38
shen (ref33) 2012
ref24
ref23
ref26
ref20
cao (ref19) 2013
ref21
ref28
ref27
vincent (ref29) 2010; 11
han (ref48) 2015; 25
References_xml – ident: ref35
  doi: 10.1109/CVPR.2009.5206596
– ident: ref24
  doi: 10.1109/TNNLS.2014.2330900
– ident: ref13
  doi: 10.1109/CVPR.2011.5995415
– ident: ref9
  doi: 10.1109/CVPR.2013.412
– start-page: 853
  year: 2012
  ident: ref33
  article-title: A unified approach to salient object detection via low rank matrix recovery
  publication-title: Proc IEEE Conf Comput Vis Pattern Recognit
– ident: ref1
  doi: 10.1109/TCSVT.2005.859028
– ident: ref18
  doi: 10.1109/ICASSP.2013.6638027
– ident: ref16
  doi: 10.1145/1866029.1866066
– ident: ref11
  doi: 10.1109/TMM.2013.2271476
– ident: ref53
  doi: 10.1109/TCYB.2014.2358647
– ident: ref45
  doi: 10.1007/978-3-642-35289-8_26
– ident: ref40
  doi: 10.1109/TPAMI.2012.28
– ident: ref12
  doi: 10.1109/TIP.2011.2156803
– ident: ref43
  doi: 10.1007/978-3-642-42051-1_31
– ident: ref26
  doi: 10.1109/TPAMI.2013.50
– ident: ref32
  doi: 10.1109/CVPR.2013.153
– start-page: 1
  year: 2013
  ident: ref19
  article-title: Saliency map fusion based on rank-one constraint
  publication-title: Proc IEEE Int Conf Multimedia Expo
– start-page: 169
  year: 2011
  ident: ref5
  article-title: Distributed cosegmentation via submodular optimization on anisotropic diffusion
  publication-title: Proc IEEE Int Conf Comput Vis
– ident: ref21
  doi: 10.1007/s11263-012-0538-3
– ident: ref51
  doi: 10.1109/LGRS.2014.2358994
– ident: ref41
  doi: 10.1109/TPAMI.2012.277
– year: 0
  ident: ref47
  article-title: Two-stage learning to predict human eye fixations via stacked denoising autoencoders
  publication-title: IEEE Trans Cybern
– ident: ref52
  doi: 10.1016/j.isprsjprs.2013.12.011
– ident: ref39
  doi: 10.1109/CVPR.2012.6247721
– ident: ref27
  doi: 10.1007/978-3-319-10578-9_23
– ident: ref3
  doi: 10.1109/TPAMI.2014.2345401
– ident: ref50
  doi: 10.1109/TGRS.2014.2374218
– ident: ref34
  doi: 10.1109/CVPR.2013.407
– ident: ref4
  doi: 10.1109/CVPR.2010.5540080
– ident: ref6
  doi: 10.1109/CVPR.2011.5995420
– start-page: 17
  year: 2011
  ident: ref22
  article-title: Deep learning of representations for unsupervised and transfer learning
  publication-title: Proceedings of the Unsupervised and Transfer Learning Challenge and Workshop
– ident: ref23
  doi: 10.1109/CVPR.2014.81
– ident: ref15
  doi: 10.1109/LSP.2013.2292873
– ident: ref38
  doi: 10.1109/TPAMI.2011.158
– volume: 25
  start-page: 1309
  year: 2015
  ident: ref48
  article-title: Background prior-based salient object detection via deep reconstruction residual
  publication-title: IEEE Trans Circuits Syst Video Technol
  doi: 10.1109/TCSVT.2014.2381471
– year: 1988
  ident: ref30
  publication-title: Learning Representations by Back-propagating Errors
– ident: ref28
  doi: 10.1109/TIP.2014.2332399
– ident: ref10
  doi: 10.1109/CVPR.2007.382973
– year: 2014
  ident: ref42
  article-title: Saliency detection within a deep convolutional architecture
  publication-title: Proc AAAI Conf Artif Intell
– ident: ref46
  doi: 10.1109/CVPR.2013.271
– start-page: 164
  year: 2011
  ident: ref25
  article-title: Deep learners benefit more from out-of-distribution examples
  publication-title: Proc Int Conf Artif Intell Statist
– ident: ref36
  doi: 10.1109/TPAMI.2012.120
– start-page: 3166
  year: 2013
  ident: ref7
  article-title: Object-based multiple foreground video co-segmentation
  publication-title: Proc IEEE Conf Comput Vis Pattern Recognit
– ident: ref31
  doi: 10.1109/TCSVT.2013.2242594
– ident: ref2
  doi: 10.1007/s00138-013-0558-1
– ident: ref8
  doi: 10.1109/TMM.2011.2162399
– volume: 11
  start-page: 3371
  year: 2010
  ident: ref29
  article-title: Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion
  publication-title: J Mach Learn Res
– ident: ref44
  doi: 10.1109/BTAS.2014.6996300
– ident: ref37
  doi: 10.1023/B:VISI.0000022288.19776.77
– start-page: 2994
  year: 2015
  ident: ref49
  article-title: Co-saliency detection via looking deep and wide
  publication-title: Proc IEEE Conf Comput Vis Pattern Recognit
– ident: ref20
  doi: 10.5244/C.26.78
– ident: ref17
  doi: 10.1109/ICIP.2010.5650014
– ident: ref14
  doi: 10.1109/TIP.2013.2260166
SSID ssj0000605649
Score 2.5537002
Snippet As an interesting and emerging topic, cosaliency detection aims at simultaneously extracting common salient objects in multiple related images. It differs from...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1163
SubjectTerms Construction
Cosaliency detection
Data mining
deep learning
Encoding
Feature extraction
Homogeneity
Image detection
Learning
Machine learning
Mining
Neural networks
Object recognition
prior transfer
Robustness
stacked denoising autoencoder (SDAE)
Training
Visualization
Title Cosaliency Detection Based on Intrasaliency Prior Transfer and Deep Intersaliency Mining
URI https://ieeexplore.ieee.org/document/7327212
https://www.ncbi.nlm.nih.gov/pubmed/26571541
https://www.proquest.com/docview/1791328143
https://www.proquest.com/docview/1816068592
Volume 27
WOSCitedRecordID wos000377113300005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2162-2388
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000605649
  issn: 2162-237X
  databaseCode: RIE
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JS8UwEA4qHry4L8_lUcGbVpumL2mPbg8FfQgq9FbykgkI0spb_P3OpAsIKnjLYbKQmWS-mWRmGDuRSWQp70nIE0ADxcYm1HLMQ5twJRPObWYiX2xCjUZpnmdPC-ysi4UBAP_5DM6p6d_ybWXm5Cq7UCJGgwUv3EWlVB2r1flTIsTl0qPdmMs4jIXK2xiZKLt4GY0enukj1-Ccii0jzKEswHKgEEHwbyrJ11j5HW56tTNc-9-C19lqAy-Dy1oeNtgClJtsrS3dEDQneYvl19UUETjFXQY3MPP_scrgClWaDbBxTy7fjuBp8lZNAq_VHA6iS4t94CPw3sSO6tGXmthmr8Pbl-u7sCmyEJpEylnoEuNcZo3T4ISWho8pPUwGsXP08EKhvcYAFxqZiecXJJcWhDFCK6HBCLHDlsqqhD0WcKPHMR5qrREzcLIEE1DKgHVA98S4x3i7z4VpMpBTIYz3wlsiUVZ4NhXEpqJhU4-ddn0-6vwbf1JvERM6ymb_e-y4ZWeBp4eeRHQJ1XxaUHJWEacIGv-gSTlaeekgw3F2a1noJmhFaP_niQ_YCi5P1l_LDtnSbDKHI7ZsPmdv00kfxThP-16MvwAKjeua
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ZSxxBEC5EA_ElJjExqzkmkLdkdPrYnp3HxESUrIOQDezb0NtdDYLMyB7-fqt6DhASwbd-qD7o6u76qroOgC9GZ57znqRCIykoXrrUmoVIvRa50UL4wmWx2ERelpP5vLjagm9DLAwiRuczPOZm_Mv3jduwqewkV5IUFnpwd8ZaS9FGaw0WlYyQuYl4VwojU6nyeR8lkxUns7Kc_mFXrvExl1smoMN5gM04JwwhHgilWGXl_4AzCp6zvact-SW86ABm8r09Ea9gC-vXsNcXb0i6u7wP89NmRRicIy-Tn7iOHll18oOEmk-occFG34HganndLJMo1wINYmtPffA2ifbEgeoyFpt4A3_Pfs1Oz9OuzELqtDHrNGgXQuFdsBiUNU4sOEFMgTIE_nrh4F7nUChL7KQbjEYYj8o5ZXNl0Sn1FrbrpsZ3kAhnF5KutbWEGgTrghrz3KEPyC_FYgSi3-fKdTnIuRTGTRV1kayoIpsqZlPVsWkEX4c-t20Gjkep95kJA2W3_yP43LOzovvDnyK2xmazqjg9q5ITgo2P0EwE6XmTcUHjHLRnYZigP0KH_574Ezw_n11Oq-lF-fsIdmmppnU0ew_b6-UGP8Azd7e-Xi0_xsN8D-Ip7fk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cosaliency+Detection+Based+on+Intrasaliency+Prior+Transfer+and+Deep+Intersaliency+Mining&rft.jtitle=IEEE+transaction+on+neural+networks+and+learning+systems&rft.au=Zhang%2C+Dingwen&rft.au=Han%2C+Junwei&rft.au=Han%2C+Jungong&rft.au=Shao%2C+Ling&rft.date=2016-06-01&rft.pub=IEEE&rft.issn=2162-237X&rft.volume=27&rft.issue=6&rft.spage=1163&rft.epage=1176&rft_id=info:doi/10.1109%2FTNNLS.2015.2495161&rft_id=info%3Apmid%2F26571541&rft.externalDocID=7327212
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-237X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-237X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-237X&client=summon