Machine learning in orthodontics: Automated facial analysis of vertical dimension for increased precision and efficiency

The digitization of dentistry has brought many opportunities to the specialty of orthodontics. Advances in computing power and artificial intelligence are set to significantly impact the specialty. In this article, the accuracy of automated facial analysis for vertical dimensions using machine learn...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:American journal of orthodontics and dentofacial orthopedics Ročník 161; číslo 3; s. 445 - 450
Hlavní autori: Rousseau, Maxime, Retrouvey, Jean-Marc
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: United States Elsevier Inc 01.03.2022
Predmet:
ISSN:0889-5406, 1097-6752, 1097-6752
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract The digitization of dentistry has brought many opportunities to the specialty of orthodontics. Advances in computing power and artificial intelligence are set to significantly impact the specialty. In this article, the accuracy of automated facial analysis for vertical dimensions using machine learning is evaluated. Automated facial analysis of 45 patients (20 female, 25 male) was conducted. The subjects’ ages were between 15 and 25 years (mean, 18.7; standard deviation, 3.2). A python program was written by the authors to detect the faces, annotate them and compute vertical dimensions. The accuracy of the manual annotation of digital images was compared with the proposed model. Intrarater and interrater reliability were evaluated for the manual method, whereas intraclass correlation and the Bland-Altman analysis were compared with manual and automated methods. The authors found acceptable intrarater reliability and moderate to poor interrater reliability for the manual method. The agreement was found between manual and automated methods of facial analysis. The 95% confidence interval limit of agreements was <10% for the metrics assessing vertical dimension. Machine learning offers the ability to conduct reliable and easily reproducible analyses on large datasets of images. This new tool presents opportunities for further advances in research and clinical orthodontics. •Manual facial analysis is time-consuming and has moderate to poor interrater reliability.•Automated facial analysis can gather a large and reproducible amount of patient data.•Automated facial analysis is reliable and less time-consuming than manual methods.
AbstractList The digitization of dentistry has brought many opportunities to the specialty of orthodontics. Advances in computing power and artificial intelligence are set to significantly impact the specialty. In this article, the accuracy of automated facial analysis for vertical dimensions using machine learning is evaluated. Automated facial analysis of 45 patients (20 female, 25 male) was conducted. The subjects' ages were between 15 and 25 years (mean, 18.7; standard deviation, 3.2). A python program was written by the authors to detect the faces, annotate them and compute vertical dimensions. The accuracy of the manual annotation of digital images was compared with the proposed model. Intrarater and interrater reliability were evaluated for the manual method, whereas intraclass correlation and the Bland-Altman analysis were compared with manual and automated methods. The authors found acceptable intrarater reliability and moderate to poor interrater reliability for the manual method. The agreement was found between manual and automated methods of facial analysis. The 95% confidence interval limit of agreements was <10% for the metrics assessing vertical dimension. Machine learning offers the ability to conduct reliable and easily reproducible analyses on large datasets of images. This new tool presents opportunities for further advances in research and clinical orthodontics.
The digitization of dentistry has brought many opportunities to the specialty of orthodontics. Advances in computing power and artificial intelligence are set to significantly impact the specialty. In this article, the accuracy of automated facial analysis for vertical dimensions using machine learning is evaluated. Automated facial analysis of 45 patients (20 female, 25 male) was conducted. The subjects’ ages were between 15 and 25 years (mean, 18.7; standard deviation, 3.2). A python program was written by the authors to detect the faces, annotate them and compute vertical dimensions. The accuracy of the manual annotation of digital images was compared with the proposed model. Intrarater and interrater reliability were evaluated for the manual method, whereas intraclass correlation and the Bland-Altman analysis were compared with manual and automated methods. The authors found acceptable intrarater reliability and moderate to poor interrater reliability for the manual method. The agreement was found between manual and automated methods of facial analysis. The 95% confidence interval limit of agreements was <10% for the metrics assessing vertical dimension. Machine learning offers the ability to conduct reliable and easily reproducible analyses on large datasets of images. This new tool presents opportunities for further advances in research and clinical orthodontics. •Manual facial analysis is time-consuming and has moderate to poor interrater reliability.•Automated facial analysis can gather a large and reproducible amount of patient data.•Automated facial analysis is reliable and less time-consuming than manual methods.
The digitization of dentistry has brought many opportunities to the specialty of orthodontics. Advances in computing power and artificial intelligence are set to significantly impact the specialty. In this article, the accuracy of automated facial analysis for vertical dimensions using machine learning is evaluated.INTRODUCTIONThe digitization of dentistry has brought many opportunities to the specialty of orthodontics. Advances in computing power and artificial intelligence are set to significantly impact the specialty. In this article, the accuracy of automated facial analysis for vertical dimensions using machine learning is evaluated.Automated facial analysis of 45 patients (20 female, 25 male) was conducted. The subjects' ages were between 15 and 25 years (mean, 18.7; standard deviation, 3.2). A python program was written by the authors to detect the faces, annotate them and compute vertical dimensions. The accuracy of the manual annotation of digital images was compared with the proposed model. Intrarater and interrater reliability were evaluated for the manual method, whereas intraclass correlation and the Bland-Altman analysis were compared with manual and automated methods.METHODSAutomated facial analysis of 45 patients (20 female, 25 male) was conducted. The subjects' ages were between 15 and 25 years (mean, 18.7; standard deviation, 3.2). A python program was written by the authors to detect the faces, annotate them and compute vertical dimensions. The accuracy of the manual annotation of digital images was compared with the proposed model. Intrarater and interrater reliability were evaluated for the manual method, whereas intraclass correlation and the Bland-Altman analysis were compared with manual and automated methods.The authors found acceptable intrarater reliability and moderate to poor interrater reliability for the manual method. The agreement was found between manual and automated methods of facial analysis. The 95% confidence interval limit of agreements was <10% for the metrics assessing vertical dimension.RESULTSThe authors found acceptable intrarater reliability and moderate to poor interrater reliability for the manual method. The agreement was found between manual and automated methods of facial analysis. The 95% confidence interval limit of agreements was <10% for the metrics assessing vertical dimension.Machine learning offers the ability to conduct reliable and easily reproducible analyses on large datasets of images. This new tool presents opportunities for further advances in research and clinical orthodontics.CONCLUSIONSMachine learning offers the ability to conduct reliable and easily reproducible analyses on large datasets of images. This new tool presents opportunities for further advances in research and clinical orthodontics.
IntroductionThe digitization of dentistry has brought many opportunities to the specialty of orthodontics. Advances in computing power and artificial intelligence are set to significantly impact the specialty. In this article, the accuracy of automated facial analysis for vertical dimensions using machine learning is evaluated. MethodsAutomated facial analysis of 45 patients (20 female, 25 male) was conducted. The subjects’ ages were between 15 and 25 years (mean, 18.7; standard deviation, 3.2). A python program was written by the authors to detect the faces, annotate them and compute vertical dimensions. The accuracy of the manual annotation of digital images was compared with the proposed model. Intrarater and interrater reliability were evaluated for the manual method, whereas intraclass correlation and the Bland-Altman analysis were compared with manual and automated methods. ResultsThe authors found acceptable intrarater reliability and moderate to poor interrater reliability for the manual method. The agreement was found between manual and automated methods of facial analysis. The 95% confidence interval limit of agreements was <10% for the metrics assessing vertical dimension. ConclusionsMachine learning offers the ability to conduct reliable and easily reproducible analyses on large datasets of images. This new tool presents opportunities for further advances in research and clinical orthodontics.
Author Rousseau, Maxime
Retrouvey, Jean-Marc
Author_xml – sequence: 1
  givenname: Maxime
  orcidid: 0000-0002-1417-2511
  surname: Rousseau
  fullname: Rousseau, Maxime
  email: maximerousseau08@gmail.com
  organization: Montreal Children’s Hospital, Montreal, Canada
– sequence: 2
  givenname: Jean-Marc
  surname: Retrouvey
  fullname: Retrouvey, Jean-Marc
  organization: Department of Orthodontics, University of Missouri, Kansas City, Missouri
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35184845$$D View this record in MEDLINE/PubMed
BookMark eNqFkkFv1DAQhS1URLeFX4CEcuSSMLYTxwFRqapaQCriAJwtrzOhDll7sZ2K_fc4u4VDJbSnkUbveyO9N2fkxHmHhLykUFGg4s1Y6dH3vmLAaAW8Ato-ISsKXVuKtmEnZAVSdmVTgzglZzGOANDVDJ6RU95QWcu6WZHfn7W5sw6LCXVw1v0orCt8SHfZ2SVr4tvick5-oxP2xaCN1VOhnZ520cbCD8U9hqzKy95u0EXrXTH4kE1MQB0zsw1o7H6vXV_gMFhj0Zndc_J00FPEFw_znHy_uf529bG8_fLh09XlbWlqIVI5AAXeAayHulsbzfu14BJF16BEo0UrGLSGdRKwQZSmM6A1ZVhrCZLWfcPPyeuD7zb4XzPGpDY2Gpwm7dDPUTHBqWA1bRbpqwfpvN5gr7bBbnTYqb9pZQE_CEzwMQYc_kkoqKUTNap9J2rpRAFXuZNMdY8oY5NOOZIUtJ2OsO8PLOaI7i0GFffxYW9zrkn13h7hLx7xZrJuKewn7jCOfg65zKioikyB-rp8zPIwjAK0nEE2ePd_g6Pn_wDO59L7
CitedBy_id crossref_primary_10_3390_healthcare10071269
crossref_primary_10_3390_healthcare11202760
crossref_primary_10_3390_jcm14103484
crossref_primary_10_1371_journal_pone_0290497
crossref_primary_10_3390_diagnostics13091553
crossref_primary_10_1002_cre2_70028
crossref_primary_10_1016_j_prosdent_2023_01_013
crossref_primary_10_1186_s12903_023_03389_x
crossref_primary_10_61186_jrdms_10_2_111
crossref_primary_10_1016_j_jdent_2025_105648
crossref_primary_10_1016_j_prosdent_2024_12_012
crossref_primary_10_1016_j_ajodo_2024_07_020
crossref_primary_10_1111_ocr_12641
crossref_primary_10_1016_j_ejwf_2024_08_002
crossref_primary_10_1155_2023_7542813
crossref_primary_10_7759_cureus_88171
crossref_primary_10_1080_1061186X_2024_2448711
crossref_primary_10_1007_s00784_022_04835_w
crossref_primary_10_3390_ai5010009
crossref_primary_10_7759_cureus_62045
crossref_primary_10_1016_j_ortho_2023_100759
crossref_primary_10_1016_j_prosdent_2024_04_007
Cites_doi 10.21105/joss.00855
10.1088/1361-6560/aa9f87
10.1016/j.jcm.2016.02.012
10.1145/3065386
10.1097/01.scs.0000171847.58031.9e
10.1136/emj.20.5.453
10.1001/jamapsychiatry.2020.2549
10.1109/LSP.2016.2603342
10.1016/0889-5406(92)70125-T
10.1127/0003-5548/2010/0012
10.1007/978-3-030-32226-7_60
10.1016/S0889-5406(98)70260-4
10.1016/S1073-8746(00)80007-9
10.1007/s12553-019-00313-8
10.1016/S0889-5406(99)70234-9
10.1038/s41591-020-0867-7
10.1155/2018/7068349
10.1038/s41591-018-0107-6
10.1179/146531204225011346
10.1007/s10462-020-09825-6
ContentType Journal Article
Copyright 2021 American Association of Orthodontists
American Association of Orthodontists
Copyright © 2021 American Association of Orthodontists. Published by Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2021 American Association of Orthodontists
– notice: American Association of Orthodontists
– notice: Copyright © 2021 American Association of Orthodontists. Published by Elsevier Inc. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.ajodo.2021.03.017
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE

MEDLINE - Academic


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Dentistry
EISSN 1097-6752
EndPage 450
ExternalDocumentID 35184845
10_1016_j_ajodo_2021_03_017
S0889540621007320
1_s2_0_S0889540621007320
Genre Journal Article
GroupedDBID ---
--K
--M
.1-
.55
.FO
.~1
0R~
1B1
1P~
1RT
1~.
1~5
23M
4.4
457
4G.
53G
5GY
5RE
5VS
6J9
7-5
71M
8P~
9JM
AABNK
AAEDT
AAEDW
AAGKA
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQQT
AAQXK
AATTM
AAWTL
AAXKI
AAXUO
AAYWO
ABBQC
ABFNM
ABFRF
ABJNI
ABLJU
ABMAC
ABMZM
ABOCM
ABWVN
ABXDB
ACDAQ
ACGFO
ACGFS
ACIEU
ACLOT
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFFNX
AFJKZ
AFPUW
AFRHN
AFTJW
AFXIZ
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
C45
CAG
COF
CS3
EBS
EFJIC
EFKBS
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HDX
HMK
HMO
HVGLF
HZ~
IHE
J1W
KOM
LH1
M29
M41
MO0
N9A
O-L
O9-
OAUVE
OB-
OM.
OVD
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SAE
SDF
SDG
SEL
SES
SEW
SJN
SPCBC
SSH
SSZ
T5K
TEORI
UHS
UV1
WUQ
X7M
Z5R
ZGI
ZXP
~G-
~HD
AACTN
AFCTW
AFKWA
AJOXV
AMFUW
RIG
AAIAV
ABLVK
ABYKQ
AHPSJ
AJBFU
LCYCR
9DU
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c466t-f0103900bf49bca3db638e695e8eca676207c2980e5ee8c9c0aa12e4a80814d53
ISICitedReferencesCount 21
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000760324700026&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0889-5406
1097-6752
IngestDate Sun Sep 28 00:46:00 EDT 2025
Wed Feb 19 02:26:34 EST 2025
Sat Nov 29 07:10:46 EST 2025
Tue Nov 18 22:40:07 EST 2025
Fri Feb 23 02:40:29 EST 2024
Sun Feb 23 10:19:38 EST 2025
Tue Oct 14 19:40:35 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License Copyright © 2021 American Association of Orthodontists. Published by Elsevier Inc. All rights reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c466t-f0103900bf49bca3db638e695e8eca676207c2980e5ee8c9c0aa12e4a80814d53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-1417-2511
PMID 35184845
PQID 2631624155
PQPubID 23479
PageCount 6
ParticipantIDs proquest_miscellaneous_2631624155
pubmed_primary_35184845
crossref_primary_10_1016_j_ajodo_2021_03_017
crossref_citationtrail_10_1016_j_ajodo_2021_03_017
elsevier_sciencedirect_doi_10_1016_j_ajodo_2021_03_017
elsevier_clinicalkeyesjournals_1_s2_0_S0889540621007320
elsevier_clinicalkey_doi_10_1016_j_ajodo_2021_03_017
PublicationCentury 2000
PublicationDate 2022-03-01
PublicationDateYYYYMMDD 2022-03-01
PublicationDate_xml – month: 03
  year: 2022
  text: 2022-03-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle American journal of orthodontics and dentofacial orthopedics
PublicationTitleAlternate Am J Orthod Dentofacial Orthop
PublicationYear 2022
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Zylinski, Nanda, Kapila (bib3) 1992; 101
De Fauw, Ledsam, Romera-Paredes, Nikolov, Tomasev, Blackwell (bib9) 2018; 24
Khan, Sohail, Zahoora, Qureshi (bib25) 2020; 53
Zhang, Zhang, Li, Qiao (bib19) 2016; 23
Altman, Bland (bib21) 1983; 32
Lo (bib10) 2007
Bulat, Tzimiropoulos (bib14) 2017
Li, Wei, Chan, Helvie, Roubidoux, Lu (bib12) 2018; 63
Yim, Chopra, Spitz, Winkens, Obika, Kelly (bib26) 2020; 26
Zhong Z, Li J, Zhang Z, Jiao Z, Gao X. An attention-guided deep regression model for landmark detection in cephalograms. In: International Conference on Medical Image Computing and Computer-Assisted Intervention. Berlin: Springer; 2019, p. 540-8.
Krizhevsky, Sutskever, Hinton (bib13) 2017; 60
Rousseau, Retrouvey (bib18) 2018; 3
Howard, Ruder (bib20)
Kusnoto, Schneider (bib5) 2000; 6
Farkas, Katic, Forrest, Alt, Bagic, Baltadjiev (bib6) 2005; 16
Voulodimos, Doulamis, Doulamis, Protopapadakis (bib11) 2018; 2018
Bzdok, Varoquaux, Steyerberg (bib28) 2020; 78
bib22
Mollov, Bosio, Pruszynski, Wirtz (bib23) 2012; 1
Arnett, Jelic, Kim, Cummings, Beress, Worley (bib2) 1999; 116
Tan, Sun, Kong, Zhang, Yang, Liu (bib27)
Jones, Carley, Harrison (bib17) 2003; 20
Beckmann, Kuitert, Prahl-Andersen, Segner, The, Tuinzing (bib4) 1998; 113
Franke-Gromberg, Schüler, Hermanussen, Scheffler (bib7) 2010; 68
Casalicchio, Molnar, Bischl (bib29) 2019
Hajeer, Millett, Ayoub, Siebert (bib8) 2004; 31
Koo, Li (bib1) 2016; 15
Mills (bib16) 1987
Rao, Srinivasa, Iskandar, Mokhtar (bib15) 2019; 9
Jones (10.1016/j.ajodo.2021.03.017_bib17) 2003; 20
Khan (10.1016/j.ajodo.2021.03.017_bib25) 2020; 53
Rao (10.1016/j.ajodo.2021.03.017_bib15) 2019; 9
Tan (10.1016/j.ajodo.2021.03.017_bib27)
Casalicchio (10.1016/j.ajodo.2021.03.017_bib29) 2019
Arnett (10.1016/j.ajodo.2021.03.017_bib2) 1999; 116
Franke-Gromberg (10.1016/j.ajodo.2021.03.017_bib7) 2010; 68
Krizhevsky (10.1016/j.ajodo.2021.03.017_bib13) 2017; 60
Koo (10.1016/j.ajodo.2021.03.017_bib1) 2016; 15
10.1016/j.ajodo.2021.03.017_bib24
Lo (10.1016/j.ajodo.2021.03.017_bib10) 2007
Altman (10.1016/j.ajodo.2021.03.017_bib21) 1983; 32
Mills (10.1016/j.ajodo.2021.03.017_bib16) 1987
Hajeer (10.1016/j.ajodo.2021.03.017_bib8) 2004; 31
Kusnoto (10.1016/j.ajodo.2021.03.017_bib5) 2000; 6
Bulat (10.1016/j.ajodo.2021.03.017_bib14) 2017
Mollov (10.1016/j.ajodo.2021.03.017_bib23) 2012; 1
Yim (10.1016/j.ajodo.2021.03.017_bib26) 2020; 26
Bzdok (10.1016/j.ajodo.2021.03.017_bib28) 2020; 78
Zhang (10.1016/j.ajodo.2021.03.017_bib19) 2016; 23
Zylinski (10.1016/j.ajodo.2021.03.017_bib3) 1992; 101
De Fauw (10.1016/j.ajodo.2021.03.017_bib9) 2018; 24
Voulodimos (10.1016/j.ajodo.2021.03.017_bib11) 2018; 2018
Li (10.1016/j.ajodo.2021.03.017_bib12) 2018; 63
Farkas (10.1016/j.ajodo.2021.03.017_bib6) 2005; 16
Howard (10.1016/j.ajodo.2021.03.017_bib20)
Beckmann (10.1016/j.ajodo.2021.03.017_bib4) 1998; 113
Rousseau (10.1016/j.ajodo.2021.03.017_bib18) 2018; 3
References_xml – volume: 2018
  year: 2018
  ident: bib11
  article-title: Deep learning for computer vision: a brief review
  publication-title: Comput Intell Neurosci
– volume: 63
  year: 2018
  ident: bib12
  article-title: Computer-aided assessment of breast density: comparison of supervised deep learning and feature-based statistical learning
  publication-title: Phys Med Biol
– volume: 68
  start-page: 11
  year: 2010
  end-page: 20
  ident: bib7
  article-title: Digital 2D-photogrammetry and direct anthropometry—a comparing study on test accomplishment and measurement data
  publication-title: Anthropol Anz
– ident: bib27
  article-title: A survey on deep transfer learning. Preprint. Posted August 6 2018. arXiv:1808.01974
– volume: 23
  start-page: 1499
  year: 2016
  end-page: 1503
  ident: bib19
  article-title: Joint face detection and alignment using multitask cascaded convolutional networks
  publication-title: IEEE Signal Process Lett
– volume: 1
  start-page: e157
  year: 2012
  end-page: e161
  ident: bib23
  article-title: Intra- and inter-examiner reliability of direct facial soft tissue measurements using digital calipers
  publication-title: J World Fed Orthod
– volume: 78
  start-page: 127
  year: 2020
  end-page: 128
  ident: bib28
  article-title: Prediction, not association, paves the road to precision medicine
  publication-title: JAMA Psychiatry
– volume: 32
  start-page: 307
  year: 1983
  end-page: 317
  ident: bib21
  article-title: Measurement in medicine: the analysis of method comparison studies
  publication-title: J R Stat Soc. Series D (The Statistician)
– volume: 20
  start-page: 453
  year: 2003
  end-page: 458
  ident: bib17
  article-title: An introduction to power and sample size estimation
  publication-title: Emerg Med J
– volume: 15
  start-page: 155
  year: 2016
  end-page: 163
  ident: bib1
  article-title: A guideline of selecting and reporting intraclass correlation coefficients for reliability research
  publication-title: J Chiropr Med
– year: 2007
  ident: bib10
  article-title: Large-scale Kernel Machines
– volume: 26
  start-page: 892
  year: 2020
  end-page: 899
  ident: bib26
  article-title: Predicting conversion to wet age-related macular degeneration using deep learning
  publication-title: Nat Med
– volume: 101
  start-page: 514
  year: 1992
  end-page: 518
  ident: bib3
  article-title: Analysis of soft tissue facial profile in white males
  publication-title: Am J Orthod Dentofacial Orthop
– volume: 60
  start-page: 84
  year: 2017
  end-page: 90
  ident: bib13
  article-title: ImageNet classification with deep convolutional neural networks
  publication-title: Commun ACM
– volume: 3
  start-page: 855
  year: 2018
  ident: bib18
  article-title: pfla: a python package for dental facial analysis using computer vision and statistical shape analysis
  publication-title: J Open Source Softw
– start-page: 1021
  year: 2017
  end-page: 1030
  ident: bib14
  article-title: How far are we from solving the 2D & 3D face alignment problem? (and a dataset of 230,000 3D facial landmarks)
  publication-title: Proceedings of the IEEE International Conference on Computer Vision (ICCV), 22-29 Oct. 2017
– year: 1987
  ident: bib16
  article-title: Principles and Practice of Orthodontics
– volume: 6
  start-page: 33
  year: 2000
  end-page: 42
  ident: bib5
  article-title: Control of the vertical dimension
  publication-title: Semin Orthod
– volume: 31
  start-page: 62
  year: 2004
  end-page: 70
  ident: bib8
  article-title: Applications of 3D imaging in orthodontics: part I
  publication-title: J Orthod
– volume: 113
  start-page: 498
  year: 1998
  end-page: 506
  ident: bib4
  article-title: Alveolar and skeletal dimensions associated with lower face height
  publication-title: Am J Orthod Dentofacial Orthop
– volume: 9
  start-page: 715
  year: 2019
  end-page: 724
  ident: bib15
  article-title: Identification and analysis of photometric points on 2D facial images: a machine learning approach in orthodontics
  publication-title: Health Technol
– reference: Zhong Z, Li J, Zhang Z, Jiao Z, Gao X. An attention-guided deep regression model for landmark detection in cephalograms. In: International Conference on Medical Image Computing and Computer-Assisted Intervention. Berlin: Springer; 2019, p. 540-8.
– volume: 116
  start-page: 239
  year: 1999
  end-page: 253
  ident: bib2
  article-title: Soft tissue cephalometric analysis: diagnosis and treatment planning of dentofacial deformity
  publication-title: Am J Orthod Dentofacial Orthop
– volume: 24
  start-page: 1342
  year: 2018
  end-page: 1350
  ident: bib9
  article-title: Clinically applicable deep learning for diagnosis and referral in retinal disease
  publication-title: Nat Med
– volume: 53
  start-page: 5455
  year: 2020
  end-page: 5516
  ident: bib25
  article-title: A survey of the recent architectures of deep convolutional neural networks
  publication-title: Artif Intell Rev
– ident: bib20
  article-title: Fine-tuned language models for text classification. Preprint. Posted January 18, 2018. arXiv:1801.06146
– ident: bib22
  article-title: R: a language and environment for statistical computing. R foundation for statistical computing
– year: 2019
  ident: bib29
  article-title: Visualizing the Feature Importance for Black Box Models
– volume: 16
  start-page: 615
  year: 2005
  end-page: 646
  ident: bib6
  article-title: International anthropometric study of facial morphology in various ethnic groups/races
  publication-title: J Craniofac Surg
– volume: 3
  start-page: 855
  year: 2018
  ident: 10.1016/j.ajodo.2021.03.017_bib18
  article-title: pfla: a python package for dental facial analysis using computer vision and statistical shape analysis
  publication-title: J Open Source Softw
  doi: 10.21105/joss.00855
– volume: 63
  year: 2018
  ident: 10.1016/j.ajodo.2021.03.017_bib12
  article-title: Computer-aided assessment of breast density: comparison of supervised deep learning and feature-based statistical learning
  publication-title: Phys Med Biol
  doi: 10.1088/1361-6560/aa9f87
– volume: 32
  start-page: 307
  year: 1983
  ident: 10.1016/j.ajodo.2021.03.017_bib21
  article-title: Measurement in medicine: the analysis of method comparison studies
  publication-title: J R Stat Soc. Series D (The Statistician)
– volume: 15
  start-page: 155
  year: 2016
  ident: 10.1016/j.ajodo.2021.03.017_bib1
  article-title: A guideline of selecting and reporting intraclass correlation coefficients for reliability research
  publication-title: J Chiropr Med
  doi: 10.1016/j.jcm.2016.02.012
– volume: 60
  start-page: 84
  year: 2017
  ident: 10.1016/j.ajodo.2021.03.017_bib13
  article-title: ImageNet classification with deep convolutional neural networks
  publication-title: Commun ACM
  doi: 10.1145/3065386
– volume: 16
  start-page: 615
  year: 2005
  ident: 10.1016/j.ajodo.2021.03.017_bib6
  article-title: International anthropometric study of facial morphology in various ethnic groups/races
  publication-title: J Craniofac Surg
  doi: 10.1097/01.scs.0000171847.58031.9e
– volume: 20
  start-page: 453
  year: 2003
  ident: 10.1016/j.ajodo.2021.03.017_bib17
  article-title: An introduction to power and sample size estimation
  publication-title: Emerg Med J
  doi: 10.1136/emj.20.5.453
– volume: 78
  start-page: 127
  year: 2020
  ident: 10.1016/j.ajodo.2021.03.017_bib28
  article-title: Prediction, not association, paves the road to precision medicine
  publication-title: JAMA Psychiatry
  doi: 10.1001/jamapsychiatry.2020.2549
– volume: 23
  start-page: 1499
  year: 2016
  ident: 10.1016/j.ajodo.2021.03.017_bib19
  article-title: Joint face detection and alignment using multitask cascaded convolutional networks
  publication-title: IEEE Signal Process Lett
  doi: 10.1109/LSP.2016.2603342
– volume: 101
  start-page: 514
  year: 1992
  ident: 10.1016/j.ajodo.2021.03.017_bib3
  article-title: Analysis of soft tissue facial profile in white males
  publication-title: Am J Orthod Dentofacial Orthop
  doi: 10.1016/0889-5406(92)70125-T
– volume: 68
  start-page: 11
  year: 2010
  ident: 10.1016/j.ajodo.2021.03.017_bib7
  article-title: Digital 2D-photogrammetry and direct anthropometry—a comparing study on test accomplishment and measurement data
  publication-title: Anthropol Anz
  doi: 10.1127/0003-5548/2010/0012
– year: 2019
  ident: 10.1016/j.ajodo.2021.03.017_bib29
– volume: 1
  start-page: e157
  year: 2012
  ident: 10.1016/j.ajodo.2021.03.017_bib23
  article-title: Intra- and inter-examiner reliability of direct facial soft tissue measurements using digital calipers
  publication-title: J World Fed Orthod
– ident: 10.1016/j.ajodo.2021.03.017_bib24
  doi: 10.1007/978-3-030-32226-7_60
– year: 2007
  ident: 10.1016/j.ajodo.2021.03.017_bib10
– ident: 10.1016/j.ajodo.2021.03.017_bib20
– volume: 113
  start-page: 498
  year: 1998
  ident: 10.1016/j.ajodo.2021.03.017_bib4
  article-title: Alveolar and skeletal dimensions associated with lower face height
  publication-title: Am J Orthod Dentofacial Orthop
  doi: 10.1016/S0889-5406(98)70260-4
– year: 1987
  ident: 10.1016/j.ajodo.2021.03.017_bib16
– volume: 6
  start-page: 33
  year: 2000
  ident: 10.1016/j.ajodo.2021.03.017_bib5
  article-title: Control of the vertical dimension
  publication-title: Semin Orthod
  doi: 10.1016/S1073-8746(00)80007-9
– volume: 9
  start-page: 715
  year: 2019
  ident: 10.1016/j.ajodo.2021.03.017_bib15
  article-title: Identification and analysis of photometric points on 2D facial images: a machine learning approach in orthodontics
  publication-title: Health Technol
  doi: 10.1007/s12553-019-00313-8
– volume: 116
  start-page: 239
  year: 1999
  ident: 10.1016/j.ajodo.2021.03.017_bib2
  article-title: Soft tissue cephalometric analysis: diagnosis and treatment planning of dentofacial deformity
  publication-title: Am J Orthod Dentofacial Orthop
  doi: 10.1016/S0889-5406(99)70234-9
– volume: 26
  start-page: 892
  year: 2020
  ident: 10.1016/j.ajodo.2021.03.017_bib26
  article-title: Predicting conversion to wet age-related macular degeneration using deep learning
  publication-title: Nat Med
  doi: 10.1038/s41591-020-0867-7
– volume: 2018
  year: 2018
  ident: 10.1016/j.ajodo.2021.03.017_bib11
  article-title: Deep learning for computer vision: a brief review
  publication-title: Comput Intell Neurosci
  doi: 10.1155/2018/7068349
– volume: 24
  start-page: 1342
  year: 2018
  ident: 10.1016/j.ajodo.2021.03.017_bib9
  article-title: Clinically applicable deep learning for diagnosis and referral in retinal disease
  publication-title: Nat Med
  doi: 10.1038/s41591-018-0107-6
– volume: 31
  start-page: 62
  year: 2004
  ident: 10.1016/j.ajodo.2021.03.017_bib8
  article-title: Applications of 3D imaging in orthodontics: part I
  publication-title: J Orthod
  doi: 10.1179/146531204225011346
– volume: 53
  start-page: 5455
  year: 2020
  ident: 10.1016/j.ajodo.2021.03.017_bib25
  article-title: A survey of the recent architectures of deep convolutional neural networks
  publication-title: Artif Intell Rev
  doi: 10.1007/s10462-020-09825-6
– ident: 10.1016/j.ajodo.2021.03.017_bib27
– start-page: 1021
  year: 2017
  ident: 10.1016/j.ajodo.2021.03.017_bib14
  article-title: How far are we from solving the 2D & 3D face alignment problem? (and a dataset of 230,000 3D facial landmarks)
SSID ssj0009420
Score 2.450924
Snippet The digitization of dentistry has brought many opportunities to the specialty of orthodontics. Advances in computing power and artificial intelligence are set...
IntroductionThe digitization of dentistry has brought many opportunities to the specialty of orthodontics. Advances in computing power and artificial...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 445
SubjectTerms Adolescent
Adult
Artificial Intelligence
Dentistry
Female
Humans
Machine Learning
Male
Orthodontics
Reproducibility of Results
Vertical Dimension
Young Adult
Title Machine learning in orthodontics: Automated facial analysis of vertical dimension for increased precision and efficiency
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0889540621007320
https://www.clinicalkey.es/playcontent/1-s2.0-S0889540621007320
https://dx.doi.org/10.1016/j.ajodo.2021.03.017
https://www.ncbi.nlm.nih.gov/pubmed/35184845
https://www.proquest.com/docview/2631624155
Volume 161
WOSCitedRecordID wos000760324700026&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection - Elsevier
  customDbUrl:
  eissn: 1097-6752
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009420
  issn: 0889-5406
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ba9swFBZpO9heyq5duq1osMe5OLJsyXsrW8dW1jK2DvImZFmBhNYOuZT8n_3RHV3jLmt3gUEwwYliKd8n6Ug65zsIveIjymAmp0laq8Js3dRJWVcqqbTUYH7DDCitiOsndnbGh8Pyc6_3PcTCXF2wpuGrVTn9r1DDPQDbhM7-BdzxR-EGvAfQ4Qqww_WPgD-17pE65IOwESvmcAbWn43RZLZbgctFC6YqGJsjaffMZUebxGZodoc3l8a93fsijhtjYM611RVwiXnsyYO2IhQmgrNr6MaToI40RbcWtqgJEm59DeyHU3NstPa-b5dzgGfpYopW48tIwi96MWuXPpfziZZNcgoodncwYPEbXbjctloIrbnm-Wndr8CcLK4N1U643XMy6wy81IlS-jmcOjHbjenB7VRMDuUEWnsIdRlYhVsXPfqT7vZXUwNTAWIcSTKSbqEdwvISRv-do4_Hw5O1tjN16p-hxkHcyroRbjzqJgPopgWONXTO76Ndv0LBR45ZD1BPNw_R3XfGq8wkBnyEVp5hODAMjxvcxfYNjvzCDl0c-IXbEQ78wpFfGPiFI79w5BcUq_GaX4_Rt_fH528_JD6BR6JoUSySkUkiUqZpNaJlpWRWVzDa66LMNddKFjAPp0yRkqc615qrUqVSDoim0qSDoXWePUHbTdvopwgTXjEGr6zOCqoJ5VITokoiWZVxJos-IuFfFcqr25skKxciuDFOhIVCGChEmgmAoo9ex0JTJ-5y-9dpgEuEuGWYaQWw6_Zi7FfF9Nx3wLkYiDkRqdhgXB8VsaQ3iJ2h-_tHvgxsEjBdmDNA2WjotIIU2aAwVnveR3uOZrHpWT7glNN8_9_a-QzdW_fu52h7MVvqF-iOugJ6zg7QFhvyA991fgDQ7PZ8
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+learning+in+orthodontics%3A+Automated+facial+analysis+of+vertical+dimension+for+increased+precision+and+efficiency&rft.jtitle=American+journal+of+orthodontics+and+dentofacial+orthopedics&rft.au=Rousseau%2C+Maxime&rft.au=Retrouvey%2C+Jean-Marc&rft.date=2022-03-01&rft.pub=Elsevier+Inc&rft.issn=0889-5406&rft.volume=161&rft.issue=3&rft.spage=445&rft.epage=450&rft_id=info:doi/10.1016%2Fj.ajodo.2021.03.017&rft.externalDocID=S0889540621007320
thumbnail_m http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F08895406%2FS0889540621X00042%2Fcov150h.gif