Spatio-Temporal Network for Sea Fog Forecasting
Sea fog can seriously affect schedules and safety by reducing visibility during marine transportation. Therefore, the forecasting of sea fog is an important issue in preventing accidents. Recently, in order to forecast sea fog, several deep learning methods have been applied to time series data cons...
Uložené v:
| Vydané v: | Sustainability Ročník 14; číslo 23; s. 16163 |
|---|---|
| Hlavní autori: | , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Basel
MDPI AG
01.12.2022
|
| Predmet: | |
| ISSN: | 2071-1050, 2071-1050 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Sea fog can seriously affect schedules and safety by reducing visibility during marine transportation. Therefore, the forecasting of sea fog is an important issue in preventing accidents. Recently, in order to forecast sea fog, several deep learning methods have been applied to time series data consisting of meteorological and oceanographic observations or image data to predict fog. However, these methods only use a single image without considering meteorological and temporal characteristics. In this study, we propose a multi-modal learning method to improve the forecasting accuracy of sea fog using convolutional neural network (CNN) and gated recurrent unit (GRU) models. CNN and GRU extract useful features from closed-circuit television (CCTV) images and multivariate time series data, respectively. CCTV images and time series data collected at Daesan Port in South Korea from 1 March 2018 to 14 February 2021 by Korea Hydrographic and Oceanographic Agency (KHOA) were used to evaluate the proposed method. We compare the proposed method with deep learning methods that only consider temporal information or spatial information. The results indicate that the proposed method using both temporal and spatial information at the same time shows superior accuracy. |
|---|---|
| AbstractList | Sea fog can seriously affect schedules and safety by reducing visibility during marine transportation. Therefore, the forecasting of sea fog is an important issue in preventing accidents. Recently, in order to forecast sea fog, several deep learning methods have been applied to time series data consisting of meteorological and oceanographic observations or image data to predict fog. However, these methods only use a single image without considering meteorological and temporal characteristics. In this study, we propose a multi-modal learning method to improve the forecasting accuracy of sea fog using convolutional neural network (CNN) and gated recurrent unit (GRU) models. CNN and GRU extract useful features from closed-circuit television (CCTV) images and multivariate time series data, respectively. CCTV images and time series data collected at Daesan Port in South Korea from 1 March 2018 to 14 February 2021 by Korea Hydrographic and Oceanographic Agency (KHOA) were used to evaluate the proposed method. We compare the proposed method with deep learning methods that only consider temporal information or spatial information. The results indicate that the proposed method using both temporal and spatial information at the same time shows superior accuracy. |
| Audience | Academic |
| Author | Jinhyeok Park Jaehoon Kim Kuk Jin Kim Yongwon Jo Young Taeg Kim Young Jae Lee Jin Hyun Han Seoung Bum Kim |
| Author_xml | – sequence: 1 givenname: Jinhyeok surname: Park fullname: Park, Jinhyeok – sequence: 2 givenname: Young Jae surname: Lee fullname: Lee, Young Jae – sequence: 3 givenname: Yongwon surname: Jo fullname: Jo, Yongwon – sequence: 4 givenname: Jaehoon orcidid: 0000-0002-4773-6467 surname: Kim fullname: Kim, Jaehoon – sequence: 5 givenname: Jin Hyun surname: Han fullname: Han, Jin Hyun – sequence: 6 givenname: Kuk Jin surname: Kim fullname: Kim, Kuk Jin – sequence: 7 givenname: Young Taeg surname: Kim fullname: Kim, Young Taeg – sequence: 8 givenname: Seoung Bum orcidid: 0000-0002-2205-8516 surname: Kim fullname: Kim, Seoung Bum |
| BackLink | https://cir.nii.ac.jp/crid/1871991017530912128$$DView record in CiNii |
| BookMark | eNp1kE1LAzEQhoNUsNae_AMFvYhsm0mym82xFKuFomDreUm3kxJtNzVJUf-9KfVgBRnmg-F5Z-A9J63GNUjIJdA-54oOwg4E41BAwU9Im1EJGdCctn7NZ6Qbgl1QkXMmCkbbZDDb6mhdNsfN1nm97j1i_HD-rWec781Q98ZuldJjrUO0zeqCnBq9Dtj96R3yMr6bjx6y6dP9ZDScZrUoipghA41SwXIJWmOdlwIELnKtUKARPEfGaE0NU8YYutSlVgVDUFoWgIuSG94hV4e7W-_edxhi9ep2vkkvKyZFmRelzFmi-gdqpddY2ca46HWdYokbWyd7jE37oRSSUcYFTYKbI0FiIn7Gld6FUE1mz8csHNjauxA8mqq2cW9Wk57YdQW02vte_fI9aW7_aLbebrT_-oe-PtCNten4vkIpQSmgIHNOFTBgJf8GjE2Mhw |
| CitedBy_id | crossref_primary_10_3390_atmos15111394 crossref_primary_10_1002_qj_4619 crossref_primary_10_1016_j_neucom_2023_126435 crossref_primary_10_3390_atmos16091073 crossref_primary_10_3724_j_1006_8775_2024_020 crossref_primary_10_1109_ACCESS_2024_3482969 crossref_primary_10_3390_atmos14030542 crossref_primary_10_1017_S0373463324000377 crossref_primary_10_1109_ACCESS_2024_3401179 crossref_primary_10_3389_feart_2023_1321422 |
| Cites_doi | 10.3390/su141710654 10.1109/CVPR.2009.5206848 10.1145/3065386 10.1016/j.atmosres.2018.07.017 10.1109/CVPR.2016.90 10.1016/j.neucom.2019.12.129 10.1016/j.isprsjprs.2022.03.007 10.1016/j.patcog.2019.06.017 10.1109/ACCESS.2020.3031283 10.1016/j.atmosres.2022.106157 10.3390/su122410499 10.1109/CVPR42600.2020.01170 10.1109/COBCOM.2016.7593490 10.1109/CVPR46437.2021.00051 10.1175/1520-0493(1978)106<1045:DOHMSF>2.0.CO;2 10.1007/s12524-021-01387-6 10.3390/su14084427 10.1023/A:1010933404324 10.1002/met.1344 10.3390/s21155232 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2022 MDPI AG 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: COPYRIGHT 2022 MDPI AG – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | RYH AAYXX CITATION ISR 4U- ABUWG AFKRA AZQEC BENPR CCPQU DWQXO PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS |
| DOI | 10.3390/su142316163 |
| DatabaseName | CiNii Complete CrossRef Gale In Context: Science University Readers ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials - QC ProQuest Central ProQuest One Community College ProQuest Central Proquest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China |
| DatabaseTitle | CrossRef Publicly Available Content Database University Readers ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | CrossRef Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Economics Environmental Sciences |
| EISSN | 2071-1050 |
| ExternalDocumentID | A747202340 10_3390_su142316163 |
| GeographicLocations | South Korea |
| GeographicLocations_xml | – name: South Korea |
| GroupedDBID | 29Q 2WC 2XV 4P2 5VS 7XC 8FE 8FH A8Z AAHBH ACHQT ADBBV ADMLS AENEX AFFHD AFKRA AFMMW ALMA_UNASSIGNED_HOLDINGS BCNDV BENPR CCPQU E3Z ECGQY ESTFP FRS GX1 IAO IEP ISR ITC KQ8 ML. MODMG M~E OK1 P2P PHGZM PHGZT PIMPY PROAC RYH TR2 AAYXX CITATION 4U- ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI PRINS PUEGO |
| ID | FETCH-LOGICAL-c466t-e21ae791dd1aaec58414eb5a9e4ef435e220c0f29fff0da8a962e19a761eb83f3 |
| IEDL.DBID | PIMPY |
| ISICitedReferencesCount | 10 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000897359800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2071-1050 |
| IngestDate | Fri Sep 12 11:51:40 EDT 2025 Tue Nov 04 18:20:00 EST 2025 Wed Nov 26 11:04:53 EST 2025 Tue Nov 18 22:33:26 EST 2025 Sat Nov 29 07:13:20 EST 2025 Mon Nov 10 09:10:19 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 23 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c466t-e21ae791dd1aaec58414eb5a9e4ef435e220c0f29fff0da8a962e19a761eb83f3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-1309-0602 0000-0002-2205-8516 0000-0002-4773-6467 0000-0003-2662-2038 |
| OpenAccessLink | https://www.proquest.com/publiccontent/docview/2748568752?pq-origsite=%requestingapplication% |
| PQID | 2748568752 |
| PQPubID | 2032327 |
| ParticipantIDs | proquest_journals_2748568752 gale_infotracacademiconefile_A747202340 gale_incontextgauss_ISR_A747202340 crossref_citationtrail_10_3390_su142316163 crossref_primary_10_3390_su142316163 nii_cinii_1871991017530912128 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-12-01 |
| PublicationDateYYYYMMDD | 2022-12-01 |
| PublicationDate_xml | – month: 12 year: 2022 text: 2022-12-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Sustainability |
| PublicationYear | 2022 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Breiman (ref_30) 2001; 45 Zhao (ref_16) 2019; 95 Zhang (ref_23) 2022; 188 ref_14 ref_13 ref_11 ref_32 ref_31 Dewi (ref_10) 2020; Volume 1528 ref_19 ref_15 (ref_9) 2018; 214 Miao (ref_5) 2020; 408 Anthes (ref_3) 1978; 106 ref_25 Han (ref_4) 2006; 14 Heo (ref_1) 2014; 21 Zhao (ref_17) 2021; 49 Kamangir (ref_18) 2021; 5 ref_22 ref_21 Krizhevsky (ref_24) 2017; 60 ref_2 ref_29 ref_28 ref_27 ref_26 ref_8 Ghimire (ref_12) 2022; 272 ref_7 Wang (ref_20) 2020; 8 ref_6 |
| References_xml | – ident: ref_7 – ident: ref_28 – ident: ref_2 doi: 10.3390/su141710654 – volume: 14 start-page: 94 year: 2006 ident: ref_4 article-title: Numerical forecasting of sea fog at West sea in spring publication-title: J. Korean Soc. Aviat. Aeronaut. – volume: Volume 1528 start-page: 012021 year: 2020 ident: ref_10 article-title: Fog prediction using artificial intelligence: A case study in Wamena Airport publication-title: Proceedings of the Journal of Physics: Conference Series – ident: ref_27 doi: 10.1109/CVPR.2009.5206848 – ident: ref_32 – volume: 60 start-page: 84 year: 2017 ident: ref_24 article-title: Imagenet classification with deep convolutional neural networks publication-title: Commun. ACM doi: 10.1145/3065386 – volume: 214 start-page: 64 year: 2018 ident: ref_9 article-title: Prediction of low-visibility events due to fog using ordinal classification publication-title: Atmos. Res. doi: 10.1016/j.atmosres.2018.07.017 – ident: ref_26 doi: 10.1109/CVPR.2016.90 – volume: 408 start-page: 285 year: 2020 ident: ref_5 article-title: Application of LSTM for short term fog forecasting based on meteorological elements publication-title: Neurocomputing doi: 10.1016/j.neucom.2019.12.129 – volume: 188 start-page: 380 year: 2022 ident: ref_23 article-title: Multi-modal spatio-temporal meteorological forecasting with deep neural network publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2022.03.007 – volume: 95 start-page: 272 year: 2019 ident: ref_16 article-title: Weather recognition via classification labels and weather-cue maps publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2019.06.017 – volume: 8 start-page: 217057 year: 2020 ident: ref_20 article-title: Multimodal deep fusion network for visibility assessment with a small training dataset publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3031283 – ident: ref_14 – volume: 272 start-page: 106157 year: 2022 ident: ref_12 article-title: Machine learning regression and classification methods for fog events prediction publication-title: Atmos. Res. doi: 10.1016/j.atmosres.2022.106157 – ident: ref_15 doi: 10.3390/su122410499 – ident: ref_21 doi: 10.1109/CVPR42600.2020.01170 – ident: ref_6 – ident: ref_25 – ident: ref_8 doi: 10.1109/COBCOM.2016.7593490 – ident: ref_31 – ident: ref_22 doi: 10.1109/CVPR46437.2021.00051 – ident: ref_29 – volume: 106 start-page: 1045 year: 1978 ident: ref_3 article-title: Development of hydrodynamic models suitable for air pollution and other mesometerological studies publication-title: Mon. Weather Rev. doi: 10.1175/1520-0493(1978)106<1045:DOHMSF>2.0.CO;2 – volume: 49 start-page: 2261 year: 2021 ident: ref_17 article-title: The Method of Classifying Fog Level of Outdoor Video Images Based on Convolutional Neural Networks publication-title: J. Indian Soc. Remote Sens. doi: 10.1007/s12524-021-01387-6 – volume: 5 start-page: 100038 year: 2021 ident: ref_18 article-title: FogNet: A multiscale 3D CNN with double-branch dense block and attention mechanism for fog prediction publication-title: Mach. Learn. Appl. – ident: ref_13 doi: 10.3390/su14084427 – ident: ref_19 – volume: 45 start-page: 5 year: 2001 ident: ref_30 article-title: Random forests publication-title: Mach. Learn. doi: 10.1023/A:1010933404324 – volume: 21 start-page: 350 year: 2014 ident: ref_1 article-title: Algorithm for sea fog monitoring with the use of information technologies publication-title: Meteorol. Appl. doi: 10.1002/met.1344 – ident: ref_11 doi: 10.3390/s21155232 |
| SSID | ssib045324620 ssib045324621 ssib045324622 ssib045320539 ssib045324625 ssib045315870 ssib045318104 ssib045320547 ssib045318624 ssib045318292 ssib045320526 ssib045315981 ssib045316398 ssib045316430 ssib045320534 ssib045316435 ssib045318855 ssib045316438 ssib045316437 ssib045324641 ssib002517928 ssib045324645 ssib045318001 ssib045316189 ssib045318768 ssib045317313 ssib045320563 ssib045316624 ssib045316508 ssib045318190 ssib045318192 ssib045324638 ssib045318873 ssj0000331916 ssib045316612 ssib045317822 ssib045320550 ssib045321361 ssib045325110 ssib045319071 ssib045324265 ssib045324548 ssib045315152 ssib045324549 ssib045316481 ssib045317052 ssib045317696 ssib045317332 ssib045320589 ssib045321799 ssib045315317 ssib045318703 ssib045316928 ssib045316927 ssib045316925 ssib045325103 ssib045319065 ssib045320968 ssib045320969 ssib045324539 ssib045316630 ssib045317048 ssib045316475 ssib045318774 ssib045322239 ssib045315149 ssib045318810 ssib045320573 ssib045320574 ssib045316517 ssib045320571 ssib045316516 ssib045320572 ssib045320570 ssib024195813 ssib045323906 ssib045316420 ssib045320523 ssib045315731 ssib045318844 ssib045320521 ssib045316940 ssib045318601 ssib045318843 ssib045318607 ssib045324550 ssib045324315 ssib045316494 ssib045316410 ssib045320357 ssib045318834 ssib045316930 ssib045318833 ssib045316015 ssib045318832 ssib045318835 ssib045320592 ssib045320590 |
| Score | 2.3512156 |
| Snippet | Sea fog can seriously affect schedules and safety by reducing visibility during marine transportation. Therefore, the forecasting of sea fog is an important... |
| SourceID | proquest gale crossref nii |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 16163 |
| SubjectTerms | Airports Analysis Artificial intelligence Climate change Deep learning deep learning; encoder-decoder structure; forecasting; multi-modal learning; sea fog Fog Forecasting Forecasts and trends Humidity Machine learning Neural networks Numerical analysis Ports Precipitation forecasting Shipping industry Support vector machines Technology application Time series |
| Title | Spatio-Temporal Network for Sea Fog Forecasting |
| URI | https://cir.nii.ac.jp/crid/1871991017530912128 https://www.proquest.com/docview/2748568752 |
| Volume | 14 |
| WOSCitedRecordID | wos000897359800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2071-1050 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331916 issn: 2071-1050 databaseCode: M~E dateStart: 20090101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2071-1050 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331916 issn: 2071-1050 databaseCode: BENPR dateStart: 20090301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2071-1050 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331916 issn: 2071-1050 databaseCode: PIMPY dateStart: 20090301 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fa9swED6aZLC9dF23svRHMKUwGIhYtmxLT6UrCe1DQ2g66J6MLEslUJy2TvvYv713ttIfrOxpL37RgYU_6fSdfPcdwIHUgivjBNOli5jQWcgKDISYMklZKIMjiWmaTWSTiby8VFNfHl37tMqVT2wcdav2THnb6ISH5cLQjfkQYymZpMi1o8ObW0Y9pOhfq2-o0YEeCW_JLvSmp2fTP893LmGMC46nbZlejNE-os2RTyDrSeM3B5N3z51qPv_LSTcnz_jz_53zBqx7BhoctUvmC6zZahM-rgqU603YGr0Uv6Gh3_31VxjOmvRrdtHKWV0HkzaHPEDiG8ysDsaLq4B6fRpdUzb1N_g9Hl0cnzDfcIEZkaZLZiOubaZ4WXKtrUFuwoUtEq2ssA55lY2i0IQuUs65sNRSqzSyXOks5baQsYu3oFstKvsdgkwWcYL4c4PxmFBGy0SZmMQBeSG0Tfvwc_W1c-PVyKkpxnWOUQlBk7-Cpg8Hz8Y3rQjH-2b7BFtOshYV5c1c6fu6zk9n5_kRRk3UKF6EffjhjdwCX2i0L0PAaZMS1hvLPYQfZ0dPjoElUumQhE2RYuGBL_uwu0I99xu_zl9A3v738A58iqiSosmM2YXu8u7e7sEH87Cc13cD6P0aTabnA-icPY4Gfh0_AZb7_nY |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1La9wwEB6STSG9tGna0G0eNSWlUBCxZNkrHUoJTZYsSZalu4X0pMqyFBaCN403LflT_Y0d2XIepOSWQy--aPBrPs_MJ88DYFtoTqVxnOjCMcJ1LyY5EiEiTVrk0uBKauphE73hUJycyNEC_GlrYXxaZWsTa0NdzIzfI99B9iTSDKNr9vn8J_FTo_zf1XaERgOLQ3v1Gylb9Wmwh_p9z1h_f_LlgISpAsTwLJsTy6i2PUmLgmptDTpgym2eamm5dRg8WMZiEzsmnXNxoYWWGbNUauT7NheJS_C8i7DEEeyiA0ujwfHo-_WuTpwgpGnWFAImiYwRTxQjFoyrsuSO6wsOYLGcTu-5gdq39Z__b29lBZ6FKDrabWD_AhZsuQrLbZF1tQpr-zcFfCgYLFj1EnbGdQo5mTQtuc6iYZMHH2HwHo2tjvqz08jPKzW68hnhr-DbozzIGnTKWWlfQ9QTeZIihqlBTsml0SKVJvENDmnOtc268LHVpzKho7of7HGmkFl55atbyu_C9rXwedNI5N9i7zwwlG_NUfrcn1N9WVVqMP6qdpH5-WH3PO7ChyDkZnhBo0MpBd627-Z1R3ITAYZ3548UyTHSgdg3Z8UwEYMW0YWNFlcqGK9K3YDqzcPLb2H5YHJ8pI4Gw8N1eMp8ZUid6bMBnfnFpd2EJ-bXfFpdbIXvJIIfjw3Cv8KUT7g |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9wwEB7BUgGXPoAVS6GNKlAlJGtjx8nGh6pChVVXtKsVCxI9Gcex0UooC2Sh6l_rr-s4caCIqjcOXHLxKHHizzPfOPMA2E4Vp0JbTlRuGeGqF5IMHSEidJxnQuNIrKtmE73hMD09FaM5-N3kwriwykYnVoo6n2p3Rt5F7ymNE2TXrGt9WMRov__58oq4DlLuT2vTTqOGyKH59RPdt_LTYB_Xeoex_sHxl6_EdxggmifJjBhGlekJmudUKaPRGFNuslgJw41FImEYC3VombDWhrlKlUiYoUKh72-yNLIR3nceFpCSc96ChdHg--jH3QlPGCG8aVInBUaRCBFbFNkLcqwkemAGvTGYLyaTRyahsnP9V8_5C72Gl55dB3v1dngDc6ZYgaUm-bpcgfbBfWIfCnrNVq5Cd1yFlpPjulTXRTCs4-MDJPXB2KigPz0PXB9TrUoXKb4GJ0_yIm1oFdPCrEPQS7MoRmxTjb4mF1qlsdCRK3xIM65M0oHdZm2l9pXWXcOPC4kelwOC_AsIHdi-E76sC4z8W-yDA4l0JTsKt7Tn6qYs5WB8JPcQfgypFw878NEL2Sk-UCufYoHTdlW-HkhuIdhwdu5K0WlGNyF0RVuRPiKZSTuw2WBMeqVWynuAbfx_-D0sIvLkt8Hw8C0sM5cwUgUAbUJrdn1jtuCFvp1Nyut3fssEcPbUGPwDrCJYeQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spatio-Temporal+Network+for+Sea+Fog+Forecasting&rft.jtitle=Sustainability&rft.au=Jinhyeok+Park&rft.au=Young+Jae+Lee&rft.au=Yongwon+Jo&rft.au=Jaehoon+Kim&rft.date=2022-12-01&rft.pub=MDPI+AG&rft.eissn=2071-1050&rft.volume=14&rft.spage=16163&rft_id=info:doi/10.3390%2Fsu142316163 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2071-1050&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2071-1050&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2071-1050&client=summon |