Spatio-Temporal Network for Sea Fog Forecasting

Sea fog can seriously affect schedules and safety by reducing visibility during marine transportation. Therefore, the forecasting of sea fog is an important issue in preventing accidents. Recently, in order to forecast sea fog, several deep learning methods have been applied to time series data cons...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Sustainability Ročník 14; číslo 23; s. 16163
Hlavní autori: Park, Jinhyeok, Lee, Young Jae, Jo, Yongwon, Kim, Jaehoon, Han, Jin Hyun, Kim, Kuk Jin, Kim, Young Taeg, Kim, Seoung Bum
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Basel MDPI AG 01.12.2022
Predmet:
ISSN:2071-1050, 2071-1050
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Sea fog can seriously affect schedules and safety by reducing visibility during marine transportation. Therefore, the forecasting of sea fog is an important issue in preventing accidents. Recently, in order to forecast sea fog, several deep learning methods have been applied to time series data consisting of meteorological and oceanographic observations or image data to predict fog. However, these methods only use a single image without considering meteorological and temporal characteristics. In this study, we propose a multi-modal learning method to improve the forecasting accuracy of sea fog using convolutional neural network (CNN) and gated recurrent unit (GRU) models. CNN and GRU extract useful features from closed-circuit television (CCTV) images and multivariate time series data, respectively. CCTV images and time series data collected at Daesan Port in South Korea from 1 March 2018 to 14 February 2021 by Korea Hydrographic and Oceanographic Agency (KHOA) were used to evaluate the proposed method. We compare the proposed method with deep learning methods that only consider temporal information or spatial information. The results indicate that the proposed method using both temporal and spatial information at the same time shows superior accuracy.
AbstractList Sea fog can seriously affect schedules and safety by reducing visibility during marine transportation. Therefore, the forecasting of sea fog is an important issue in preventing accidents. Recently, in order to forecast sea fog, several deep learning methods have been applied to time series data consisting of meteorological and oceanographic observations or image data to predict fog. However, these methods only use a single image without considering meteorological and temporal characteristics. In this study, we propose a multi-modal learning method to improve the forecasting accuracy of sea fog using convolutional neural network (CNN) and gated recurrent unit (GRU) models. CNN and GRU extract useful features from closed-circuit television (CCTV) images and multivariate time series data, respectively. CCTV images and time series data collected at Daesan Port in South Korea from 1 March 2018 to 14 February 2021 by Korea Hydrographic and Oceanographic Agency (KHOA) were used to evaluate the proposed method. We compare the proposed method with deep learning methods that only consider temporal information or spatial information. The results indicate that the proposed method using both temporal and spatial information at the same time shows superior accuracy.
Audience Academic
Author Jinhyeok Park
Jaehoon Kim
Kuk Jin Kim
Yongwon Jo
Young Taeg Kim
Young Jae Lee
Jin Hyun Han
Seoung Bum Kim
Author_xml – sequence: 1
  givenname: Jinhyeok
  surname: Park
  fullname: Park, Jinhyeok
– sequence: 2
  givenname: Young Jae
  surname: Lee
  fullname: Lee, Young Jae
– sequence: 3
  givenname: Yongwon
  surname: Jo
  fullname: Jo, Yongwon
– sequence: 4
  givenname: Jaehoon
  orcidid: 0000-0002-4773-6467
  surname: Kim
  fullname: Kim, Jaehoon
– sequence: 5
  givenname: Jin Hyun
  surname: Han
  fullname: Han, Jin Hyun
– sequence: 6
  givenname: Kuk Jin
  surname: Kim
  fullname: Kim, Kuk Jin
– sequence: 7
  givenname: Young Taeg
  surname: Kim
  fullname: Kim, Young Taeg
– sequence: 8
  givenname: Seoung Bum
  orcidid: 0000-0002-2205-8516
  surname: Kim
  fullname: Kim, Seoung Bum
BackLink https://cir.nii.ac.jp/crid/1871991017530912128$$DView record in CiNii
BookMark eNp1kE1LAzEQhoNUsNae_AMFvYhsm0mym82xFKuFomDreUm3kxJtNzVJUf-9KfVgBRnmg-F5Z-A9J63GNUjIJdA-54oOwg4E41BAwU9Im1EJGdCctn7NZ6Qbgl1QkXMmCkbbZDDb6mhdNsfN1nm97j1i_HD-rWec781Q98ZuldJjrUO0zeqCnBq9Dtj96R3yMr6bjx6y6dP9ZDScZrUoipghA41SwXIJWmOdlwIELnKtUKARPEfGaE0NU8YYutSlVgVDUFoWgIuSG94hV4e7W-_edxhi9ep2vkkvKyZFmRelzFmi-gdqpddY2ca46HWdYokbWyd7jE37oRSSUcYFTYKbI0FiIn7Gld6FUE1mz8csHNjauxA8mqq2cW9Wk57YdQW02vte_fI9aW7_aLbebrT_-oe-PtCNten4vkIpQSmgIHNOFTBgJf8GjE2Mhw
CitedBy_id crossref_primary_10_3390_atmos15111394
crossref_primary_10_1002_qj_4619
crossref_primary_10_1016_j_neucom_2023_126435
crossref_primary_10_3390_atmos16091073
crossref_primary_10_3724_j_1006_8775_2024_020
crossref_primary_10_1109_ACCESS_2024_3482969
crossref_primary_10_3390_atmos14030542
crossref_primary_10_1017_S0373463324000377
crossref_primary_10_1109_ACCESS_2024_3401179
crossref_primary_10_3389_feart_2023_1321422
Cites_doi 10.3390/su141710654
10.1109/CVPR.2009.5206848
10.1145/3065386
10.1016/j.atmosres.2018.07.017
10.1109/CVPR.2016.90
10.1016/j.neucom.2019.12.129
10.1016/j.isprsjprs.2022.03.007
10.1016/j.patcog.2019.06.017
10.1109/ACCESS.2020.3031283
10.1016/j.atmosres.2022.106157
10.3390/su122410499
10.1109/CVPR42600.2020.01170
10.1109/COBCOM.2016.7593490
10.1109/CVPR46437.2021.00051
10.1175/1520-0493(1978)106<1045:DOHMSF>2.0.CO;2
10.1007/s12524-021-01387-6
10.3390/su14084427
10.1023/A:1010933404324
10.1002/met.1344
10.3390/s21155232
ContentType Journal Article
Copyright COPYRIGHT 2022 MDPI AG
2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2022 MDPI AG
– notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID RYH
AAYXX
CITATION
ISR
4U-
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
DOI 10.3390/su142316163
DatabaseName CiNii Complete
CrossRef
Gale In Context: Science
University Readers
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
ProQuest Central
ProQuest One Community College
ProQuest Central
Proquest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
DatabaseTitle CrossRef
Publicly Available Content Database
University Readers
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList CrossRef
Publicly Available Content Database

Database_xml – sequence: 1
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Economics
Environmental Sciences
EISSN 2071-1050
ExternalDocumentID A747202340
10_3390_su142316163
GeographicLocations South Korea
GeographicLocations_xml – name: South Korea
GroupedDBID 29Q
2WC
2XV
4P2
5VS
7XC
8FE
8FH
A8Z
AAHBH
ACHQT
ADBBV
ADMLS
AENEX
AFFHD
AFKRA
AFMMW
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BENPR
CCPQU
E3Z
ECGQY
ESTFP
FRS
GX1
IAO
IEP
ISR
ITC
KQ8
ML.
MODMG
M~E
OK1
P2P
PHGZM
PHGZT
PIMPY
PROAC
RYH
TR2
AAYXX
CITATION
4U-
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
PUEGO
ID FETCH-LOGICAL-c466t-e21ae791dd1aaec58414eb5a9e4ef435e220c0f29fff0da8a962e19a761eb83f3
IEDL.DBID PIMPY
ISICitedReferencesCount 10
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000897359800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2071-1050
IngestDate Fri Sep 12 11:51:40 EDT 2025
Tue Nov 04 18:20:00 EST 2025
Wed Nov 26 11:04:53 EST 2025
Tue Nov 18 22:33:26 EST 2025
Sat Nov 29 07:13:20 EST 2025
Mon Nov 10 09:10:19 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 23
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c466t-e21ae791dd1aaec58414eb5a9e4ef435e220c0f29fff0da8a962e19a761eb83f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-1309-0602
0000-0002-2205-8516
0000-0002-4773-6467
0000-0003-2662-2038
OpenAccessLink https://www.proquest.com/publiccontent/docview/2748568752?pq-origsite=%requestingapplication%
PQID 2748568752
PQPubID 2032327
ParticipantIDs proquest_journals_2748568752
gale_infotracacademiconefile_A747202340
gale_incontextgauss_ISR_A747202340
crossref_citationtrail_10_3390_su142316163
crossref_primary_10_3390_su142316163
nii_cinii_1871991017530912128
PublicationCentury 2000
PublicationDate 2022-12-01
PublicationDateYYYYMMDD 2022-12-01
PublicationDate_xml – month: 12
  year: 2022
  text: 2022-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Sustainability
PublicationYear 2022
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Breiman (ref_30) 2001; 45
Zhao (ref_16) 2019; 95
Zhang (ref_23) 2022; 188
ref_14
ref_13
ref_11
ref_32
ref_31
Dewi (ref_10) 2020; Volume 1528
ref_19
ref_15
(ref_9) 2018; 214
Miao (ref_5) 2020; 408
Anthes (ref_3) 1978; 106
ref_25
Han (ref_4) 2006; 14
Heo (ref_1) 2014; 21
Zhao (ref_17) 2021; 49
Kamangir (ref_18) 2021; 5
ref_22
ref_21
Krizhevsky (ref_24) 2017; 60
ref_2
ref_29
ref_28
ref_27
ref_26
ref_8
Ghimire (ref_12) 2022; 272
ref_7
Wang (ref_20) 2020; 8
ref_6
References_xml – ident: ref_7
– ident: ref_28
– ident: ref_2
  doi: 10.3390/su141710654
– volume: 14
  start-page: 94
  year: 2006
  ident: ref_4
  article-title: Numerical forecasting of sea fog at West sea in spring
  publication-title: J. Korean Soc. Aviat. Aeronaut.
– volume: Volume 1528
  start-page: 012021
  year: 2020
  ident: ref_10
  article-title: Fog prediction using artificial intelligence: A case study in Wamena Airport
  publication-title: Proceedings of the Journal of Physics: Conference Series
– ident: ref_27
  doi: 10.1109/CVPR.2009.5206848
– ident: ref_32
– volume: 60
  start-page: 84
  year: 2017
  ident: ref_24
  article-title: Imagenet classification with deep convolutional neural networks
  publication-title: Commun. ACM
  doi: 10.1145/3065386
– volume: 214
  start-page: 64
  year: 2018
  ident: ref_9
  article-title: Prediction of low-visibility events due to fog using ordinal classification
  publication-title: Atmos. Res.
  doi: 10.1016/j.atmosres.2018.07.017
– ident: ref_26
  doi: 10.1109/CVPR.2016.90
– volume: 408
  start-page: 285
  year: 2020
  ident: ref_5
  article-title: Application of LSTM for short term fog forecasting based on meteorological elements
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2019.12.129
– volume: 188
  start-page: 380
  year: 2022
  ident: ref_23
  article-title: Multi-modal spatio-temporal meteorological forecasting with deep neural network
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2022.03.007
– volume: 95
  start-page: 272
  year: 2019
  ident: ref_16
  article-title: Weather recognition via classification labels and weather-cue maps
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2019.06.017
– volume: 8
  start-page: 217057
  year: 2020
  ident: ref_20
  article-title: Multimodal deep fusion network for visibility assessment with a small training dataset
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3031283
– ident: ref_14
– volume: 272
  start-page: 106157
  year: 2022
  ident: ref_12
  article-title: Machine learning regression and classification methods for fog events prediction
  publication-title: Atmos. Res.
  doi: 10.1016/j.atmosres.2022.106157
– ident: ref_15
  doi: 10.3390/su122410499
– ident: ref_21
  doi: 10.1109/CVPR42600.2020.01170
– ident: ref_6
– ident: ref_25
– ident: ref_8
  doi: 10.1109/COBCOM.2016.7593490
– ident: ref_31
– ident: ref_22
  doi: 10.1109/CVPR46437.2021.00051
– ident: ref_29
– volume: 106
  start-page: 1045
  year: 1978
  ident: ref_3
  article-title: Development of hydrodynamic models suitable for air pollution and other mesometerological studies
  publication-title: Mon. Weather Rev.
  doi: 10.1175/1520-0493(1978)106<1045:DOHMSF>2.0.CO;2
– volume: 49
  start-page: 2261
  year: 2021
  ident: ref_17
  article-title: The Method of Classifying Fog Level of Outdoor Video Images Based on Convolutional Neural Networks
  publication-title: J. Indian Soc. Remote Sens.
  doi: 10.1007/s12524-021-01387-6
– volume: 5
  start-page: 100038
  year: 2021
  ident: ref_18
  article-title: FogNet: A multiscale 3D CNN with double-branch dense block and attention mechanism for fog prediction
  publication-title: Mach. Learn. Appl.
– ident: ref_13
  doi: 10.3390/su14084427
– ident: ref_19
– volume: 45
  start-page: 5
  year: 2001
  ident: ref_30
  article-title: Random forests
  publication-title: Mach. Learn.
  doi: 10.1023/A:1010933404324
– volume: 21
  start-page: 350
  year: 2014
  ident: ref_1
  article-title: Algorithm for sea fog monitoring with the use of information technologies
  publication-title: Meteorol. Appl.
  doi: 10.1002/met.1344
– ident: ref_11
  doi: 10.3390/s21155232
SSID ssib045324620
ssib045324621
ssib045324622
ssib045320539
ssib045324625
ssib045315870
ssib045318104
ssib045320547
ssib045318624
ssib045318292
ssib045320526
ssib045315981
ssib045316398
ssib045316430
ssib045320534
ssib045316435
ssib045318855
ssib045316438
ssib045316437
ssib045324641
ssib002517928
ssib045324645
ssib045318001
ssib045316189
ssib045318768
ssib045317313
ssib045320563
ssib045316624
ssib045316508
ssib045318190
ssib045318192
ssib045324638
ssib045318873
ssj0000331916
ssib045316612
ssib045317822
ssib045320550
ssib045321361
ssib045325110
ssib045319071
ssib045324265
ssib045324548
ssib045315152
ssib045324549
ssib045316481
ssib045317052
ssib045317696
ssib045317332
ssib045320589
ssib045321799
ssib045315317
ssib045318703
ssib045316928
ssib045316927
ssib045316925
ssib045325103
ssib045319065
ssib045320968
ssib045320969
ssib045324539
ssib045316630
ssib045317048
ssib045316475
ssib045318774
ssib045322239
ssib045315149
ssib045318810
ssib045320573
ssib045320574
ssib045316517
ssib045320571
ssib045316516
ssib045320572
ssib045320570
ssib024195813
ssib045323906
ssib045316420
ssib045320523
ssib045315731
ssib045318844
ssib045320521
ssib045316940
ssib045318601
ssib045318843
ssib045318607
ssib045324550
ssib045324315
ssib045316494
ssib045316410
ssib045320357
ssib045318834
ssib045316930
ssib045318833
ssib045316015
ssib045318832
ssib045318835
ssib045320592
ssib045320590
Score 2.3512156
Snippet Sea fog can seriously affect schedules and safety by reducing visibility during marine transportation. Therefore, the forecasting of sea fog is an important...
SourceID proquest
gale
crossref
nii
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 16163
SubjectTerms Airports
Analysis
Artificial intelligence
Climate change
Deep learning
deep learning; encoder-decoder structure; forecasting; multi-modal learning; sea fog
Fog
Forecasting
Forecasts and trends
Humidity
Machine learning
Neural networks
Numerical analysis
Ports
Precipitation forecasting
Shipping industry
Support vector machines
Technology application
Time series
Title Spatio-Temporal Network for Sea Fog Forecasting
URI https://cir.nii.ac.jp/crid/1871991017530912128
https://www.proquest.com/docview/2748568752
Volume 14
WOSCitedRecordID wos000897359800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2071-1050
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331916
  issn: 2071-1050
  databaseCode: M~E
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2071-1050
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331916
  issn: 2071-1050
  databaseCode: BENPR
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2071-1050
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331916
  issn: 2071-1050
  databaseCode: PIMPY
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fa9swED6aZLC9dF23svRHMKUwGIhYtmxLT6UrCe1DQ2g66J6MLEslUJy2TvvYv713ttIfrOxpL37RgYU_6fSdfPcdwIHUgivjBNOli5jQWcgKDISYMklZKIMjiWmaTWSTiby8VFNfHl37tMqVT2wcdav2THnb6ISH5cLQjfkQYymZpMi1o8ObW0Y9pOhfq2-o0YEeCW_JLvSmp2fTP893LmGMC46nbZlejNE-os2RTyDrSeM3B5N3z51qPv_LSTcnz_jz_53zBqx7BhoctUvmC6zZahM-rgqU603YGr0Uv6Gh3_31VxjOmvRrdtHKWV0HkzaHPEDiG8ysDsaLq4B6fRpdUzb1N_g9Hl0cnzDfcIEZkaZLZiOubaZ4WXKtrUFuwoUtEq2ssA55lY2i0IQuUs65sNRSqzSyXOks5baQsYu3oFstKvsdgkwWcYL4c4PxmFBGy0SZmMQBeSG0Tfvwc_W1c-PVyKkpxnWOUQlBk7-Cpg8Hz8Y3rQjH-2b7BFtOshYV5c1c6fu6zk9n5_kRRk3UKF6EffjhjdwCX2i0L0PAaZMS1hvLPYQfZ0dPjoElUumQhE2RYuGBL_uwu0I99xu_zl9A3v738A58iqiSosmM2YXu8u7e7sEH87Cc13cD6P0aTabnA-icPY4Gfh0_AZb7_nY
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1La9wwEB6STSG9tGna0G0eNSWlUBCxZNkrHUoJTZYsSZalu4X0pMqyFBaCN403LflT_Y0d2XIepOSWQy--aPBrPs_MJ88DYFtoTqVxnOjCMcJ1LyY5EiEiTVrk0uBKauphE73hUJycyNEC_GlrYXxaZWsTa0NdzIzfI99B9iTSDKNr9vn8J_FTo_zf1XaERgOLQ3v1Gylb9Wmwh_p9z1h_f_LlgISpAsTwLJsTy6i2PUmLgmptDTpgym2eamm5dRg8WMZiEzsmnXNxoYWWGbNUauT7NheJS_C8i7DEEeyiA0ujwfHo-_WuTpwgpGnWFAImiYwRTxQjFoyrsuSO6wsOYLGcTu-5gdq39Z__b29lBZ6FKDrabWD_AhZsuQrLbZF1tQpr-zcFfCgYLFj1EnbGdQo5mTQtuc6iYZMHH2HwHo2tjvqz08jPKzW68hnhr-DbozzIGnTKWWlfQ9QTeZIihqlBTsml0SKVJvENDmnOtc268LHVpzKho7of7HGmkFl55atbyu_C9rXwedNI5N9i7zwwlG_NUfrcn1N9WVVqMP6qdpH5-WH3PO7ChyDkZnhBo0MpBd627-Z1R3ITAYZ3548UyTHSgdg3Z8UwEYMW0YWNFlcqGK9K3YDqzcPLb2H5YHJ8pI4Gw8N1eMp8ZUid6bMBnfnFpd2EJ-bXfFpdbIXvJIIfjw3Cv8KUT7g
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9wwEB7BUgGXPoAVS6GNKlAlJGtjx8nGh6pChVVXtKsVCxI9Gcex0UooC2Sh6l_rr-s4caCIqjcOXHLxKHHizzPfOPMA2E4Vp0JbTlRuGeGqF5IMHSEidJxnQuNIrKtmE73hMD09FaM5-N3kwriwykYnVoo6n2p3Rt5F7ymNE2TXrGt9WMRov__58oq4DlLuT2vTTqOGyKH59RPdt_LTYB_Xeoex_sHxl6_EdxggmifJjBhGlekJmudUKaPRGFNuslgJw41FImEYC3VombDWhrlKlUiYoUKh72-yNLIR3nceFpCSc96ChdHg--jH3QlPGCG8aVInBUaRCBFbFNkLcqwkemAGvTGYLyaTRyahsnP9V8_5C72Gl55dB3v1dngDc6ZYgaUm-bpcgfbBfWIfCnrNVq5Cd1yFlpPjulTXRTCs4-MDJPXB2KigPz0PXB9TrUoXKb4GJ0_yIm1oFdPCrEPQS7MoRmxTjb4mF1qlsdCRK3xIM65M0oHdZm2l9pXWXcOPC4kelwOC_AsIHdi-E76sC4z8W-yDA4l0JTsKt7Tn6qYs5WB8JPcQfgypFw878NEL2Sk-UCufYoHTdlW-HkhuIdhwdu5K0WlGNyF0RVuRPiKZSTuw2WBMeqVWynuAbfx_-D0sIvLkt8Hw8C0sM5cwUgUAbUJrdn1jtuCFvp1Nyut3fssEcPbUGPwDrCJYeQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spatio-Temporal+Network+for+Sea+Fog+Forecasting&rft.jtitle=Sustainability&rft.au=Jinhyeok+Park&rft.au=Young+Jae+Lee&rft.au=Yongwon+Jo&rft.au=Jaehoon+Kim&rft.date=2022-12-01&rft.pub=MDPI+AG&rft.eissn=2071-1050&rft.volume=14&rft.spage=16163&rft_id=info:doi/10.3390%2Fsu142316163
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2071-1050&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2071-1050&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2071-1050&client=summon