H-YOLO: A Single-Shot Ship Detection Approach Based on Region of Interest Preselected Network

Ship detection from high-resolution optical satellite images is still an important task that deserves optimal solutions. This paper introduces a novel high-resolution image network-based approach based on the preselection of a region of interest (RoI). This pre-selected network first identifies and...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Remote sensing (Basel, Switzerland) Ročník 12; číslo 24; s. 4192
Hlavní autori: Tang, Gang, Liu, Shibo, Fujino, Iwao, Claramunt, Christophe, Wang, Yide, Men, Shaoyang
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: MDPI 21.12.2020
MDPI AG
Predmet:
ISSN:2072-4292, 2072-4292
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Ship detection from high-resolution optical satellite images is still an important task that deserves optimal solutions. This paper introduces a novel high-resolution image network-based approach based on the preselection of a region of interest (RoI). This pre-selected network first identifies and extracts a region of interest from input images. In order to efficiently match ship candidates, the principle of our approach is to distinguish suspected areas from the images based on hue, saturation, value (HSV) differences between ships and the background. The whole approach is the basis of an experiment with a large ship dataset, consisting of Google Earth images and HRSC2016 datasets. The experiment shows that the H-YOLO network, which uses the same weight training from a set of remote sensing images, has a 19.01% higher recognition rate and a 16.19% higher accuracy than applying the you only look once (YOLO) network alone. After image preprocessing, the value of the intersection over union (IoU) is also greatly improved.
AbstractList Ship detection from high-resolution optical satellite images is still an important task that deserves optimal solutions. This paper introduces a novel high-resolution image network-based approach based on the preselection of a region of interest (RoI). This pre-selected network first identifies and extracts a region of interest from input images. In order to efficiently match ship candidates, the principle of our approach is to distinguish suspected areas from the images based on hue, saturation, value (HSV) differences between ships and the background. The whole approach is the basis of an experiment with a large ship dataset, consisting of Google Earth images and HRSC2016 datasets. The experiment shows that the H-YOLO network, which uses the same weight training from a set of remote sensing images, has a 19.01% higher recognition rate and a 16.19% higher accuracy than applying the you only look once (YOLO) network alone. After image preprocessing, the value of the intersection over union (IoU) is also greatly improved.
Author Wang, Yide
Tang, Gang
Claramunt, Christophe
Men, Shaoyang
Fujino, Iwao
Liu, Shibo
Author_xml – sequence: 1
  givenname: Gang
  surname: Tang
  fullname: Tang, Gang
– sequence: 2
  givenname: Shibo
  surname: Liu
  fullname: Liu, Shibo
– sequence: 3
  givenname: Iwao
  surname: Fujino
  fullname: Fujino, Iwao
– sequence: 4
  givenname: Christophe
  orcidid: 0000-0002-5586-1997
  surname: Claramunt
  fullname: Claramunt, Christophe
– sequence: 5
  givenname: Yide
  orcidid: 0000-0002-1461-2003
  surname: Wang
  fullname: Wang, Yide
– sequence: 6
  givenname: Shaoyang
  surname: Men
  fullname: Men, Shaoyang
BackLink https://hal.science/hal-03096535$$DView record in HAL
BookMark eNptkU1vEzEQhi3USpS0F36Bj4C0MGPvOjG3UD4SKWoQgQMHZHm9s4nLdh1sF9R_j0MQX8KH8eidZ97DvA_YyRhGYuwhwlMpNTyLCYWoa9TiHjsTMBVVLbQ4-aO_zy5SuobypEQN9Rn7tKg-rlfr53zON37cDlRtdiHzzc7v-UvK5LIPI5_v9zFYt-MvbKKOF-UdbQ-D0PPlmClSyvxtqTSUjUJcUf4W4udzdtrbIdHFz3_CPrx-9f5yUa3Wb5aX81XlaqVyZZ22tpXYKqkACAWS0r0TaGeAciZAdV3d6GZqqXGkhNZNC7oH1YumFR3JCVsefbtgr80--hsb70yw3vwQQtwaG7N3A5nZtEPdgpj1imqpnYa-xmkLqEA7tK54PT567ezwl9VivjIHDSRo1cjmKxb20ZEt5_lyW45gbnxyNAx2pHCbjGgQUUso-IQ9OaIuhpQi9b-8EcwhPvM7vgLDP7Dz2R6iyNH64X8r3wEQk5rl
CitedBy_id crossref_primary_10_1109_LGRS_2023_3253775
crossref_primary_10_3390_rs17173119
crossref_primary_10_3390_s25010214
crossref_primary_10_3390_rs15020350
crossref_primary_10_1109_JSTARS_2025_3601579
crossref_primary_10_3390_rs14194857
crossref_primary_10_3390_pr13010201
crossref_primary_10_1109_TGRS_2024_3471890
crossref_primary_10_1155_2021_5808206
crossref_primary_10_3390_rs13040660
crossref_primary_10_1080_07038992_2021_1898937
crossref_primary_10_1109_TGRS_2024_3481370
crossref_primary_10_3389_fnbot_2021_723336
crossref_primary_10_1109_JSTARS_2021_3137811
crossref_primary_10_3390_drones8040145
crossref_primary_10_1117_1_JEI_32_4_043013
crossref_primary_10_1371_journal_pone_0316933
crossref_primary_10_1109_TGRS_2022_3180894
crossref_primary_10_3390_jmse11020452
crossref_primary_10_3390_s22218116
crossref_primary_10_1016_j_eswa_2023_122116
crossref_primary_10_3390_rs15112855
crossref_primary_10_3390_rs13030499
crossref_primary_10_3390_rs13183778
crossref_primary_10_3390_rs13214255
Cites_doi 10.1109/TGRS.2018.2848901
10.1109/TPAMI.2015.2389824
10.1109/TGRS.2016.2606481
10.1109/36.508418
10.1109/TGRS.2020.2995477
10.1109/TGRS.2008.2008721
10.1016/j.procs.2015.07.362
10.1109/TGRS.2010.2046330
10.1109/LGRS.2009.2031826
10.1109/TGRS.2016.2572736
10.1109/LGRS.2015.2498644
10.1109/TGRS.2019.2921242
10.1109/CVPR.2014.81
10.1109/TGRS.2007.907192
10.1109/CVPR.2016.91
10.1080/014311697217288
10.1109/LGRS.2013.2272492
10.1109/ICCV.2017.322
10.1080/07038992.1997.10874677
10.1109/ICIP.2017.8296411
10.3390/rs10122043
10.1109/LGRS.2015.2408355
10.3390/rs10010132
10.1109/CVPR.2017.690
10.5220/0006120603240331
10.1109/LGRS.2014.2319082
10.1109/LGRS.2005.845033
10.1109/LGRS.2010.2100076
10.1109/ICCV.2015.169
ContentType Journal Article
Copyright Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
7S9
L.6
1XC
VOOES
DOA
DOI 10.3390/rs12244192
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList CrossRef


AGRICOLA
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 2072-4292
ExternalDocumentID oai_doaj_org_article_87d19b028f6e439c90f417b01609c1ac
oai:HAL:hal-03096535v1
10_3390_rs12244192
GroupedDBID 29P
2WC
2XV
5VS
8FE
8FG
8FH
AADQD
AAHBH
AAYXX
ABDBF
ABJCF
ACUHS
ADBBV
ADMLS
AENEX
AFFHD
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BCNDV
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
CITATION
E3Z
ESX
FRP
GROUPED_DOAJ
HCIFZ
I-F
IAO
ITC
KQ8
L6V
LK5
M7R
M7S
MODMG
M~E
OK1
P62
PCBAR
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
PTHSS
TR2
TUS
7S9
L.6
PUEGO
1XC
C1A
IPNFZ
RIG
VOOES
ID FETCH-LOGICAL-c466t-ac9aab31b63600e121e69fc21a80138206dd45957ae5ce62995b09f06f25b2de3
IEDL.DBID DOA
ISICitedReferencesCount 30
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000603206600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2072-4292
IngestDate Fri Oct 03 12:50:38 EDT 2025
Tue Oct 14 20:14:44 EDT 2025
Fri Sep 05 11:39:07 EDT 2025
Tue Nov 18 21:26:05 EST 2025
Sat Nov 29 07:13:37 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 24
Keywords ship detection
remote sensing
YOLOv3
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c466t-ac9aab31b63600e121e69fc21a80138206dd45957ae5ce62995b09f06f25b2de3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-1461-2003
0000-0002-5586-1997
OpenAccessLink https://doaj.org/article/87d19b028f6e439c90f417b01609c1ac
PQID 2511193065
PQPubID 24069
ParticipantIDs doaj_primary_oai_doaj_org_article_87d19b028f6e439c90f417b01609c1ac
hal_primary_oai_HAL_hal_03096535v1
proquest_miscellaneous_2511193065
crossref_primary_10_3390_rs12244192
crossref_citationtrail_10_3390_rs12244192
PublicationCentury 2000
PublicationDate 20201221
PublicationDateYYYYMMDD 2020-12-21
PublicationDate_xml – month: 12
  year: 2020
  text: 20201221
  day: 21
PublicationDecade 2020
PublicationTitle Remote sensing (Basel, Switzerland)
PublicationYear 2020
Publisher MDPI
MDPI AG
Publisher_xml – name: MDPI
– name: MDPI AG
References Wang (ref_7) 2016; 55
Diao (ref_19) 2016; 13
He (ref_29) 2015; 37
Tello (ref_10) 2005; 2
Xu (ref_16) 2014; 11
ref_14
ref_36
ref_34
Liu (ref_9) 2007; 45
ref_33
ref_32
Qi (ref_4) 2015; 12
ref_31
ref_30
Zhu (ref_2) 2010; 48
Proia (ref_17) 2010; 7
ref_18
Liu (ref_20) 2014; 11
Eldhuset (ref_8) 1996; 34
Chen (ref_3) 2019; 57
Vachon (ref_12) 1997; 23
Margarit (ref_11) 2009; 47
Zou (ref_1) 2016; 54
ref_25
ref_24
ref_23
Ai (ref_15) 2011; 8
ref_22
ref_21
Li (ref_6) 2018; 56
Cai (ref_26) 2016; 9908
Shaik (ref_35) 2015; 57
ref_28
ref_27
ref_5
Morse (ref_13) 1997; 18
References_xml – ident: ref_24
– ident: ref_34
– volume: 56
  start-page: 7147
  year: 2018
  ident: ref_6
  article-title: HSF-Net: Multiscale Deep Feature Embedding for Ship Detection in Optical Remote Sensing Imagery
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2018.2848901
– volume: 37
  start-page: 1904
  year: 2015
  ident: ref_29
  article-title: Spatial pyramid pooling in deep convolutional networks for visual recognition
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2015.2389824
– volume: 55
  start-page: 351
  year: 2016
  ident: ref_7
  article-title: New Hierarchical Saliency Filtering for Fast Ship Detection in High-Resolution SAR Images
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2016.2606481
– volume: 34
  start-page: 1010
  year: 1996
  ident: ref_8
  article-title: An automatic ship and ship wake detection system for spaceborne SAR images in coastal regions
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/36.508418
– volume: 9908
  start-page: 354
  year: 2016
  ident: ref_26
  article-title: A Unified Multi-scale Deep Convolutional Neural Network for Fast Object Detection
  publication-title: Comput. Vis.
– ident: ref_33
  doi: 10.1109/TGRS.2020.2995477
– volume: 47
  start-page: 1224
  year: 2009
  ident: ref_11
  article-title: Exploitation of Ship Scattering in Polarimetric SAR for an Improved Classification Under High Clutter Conditions
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2008.2008721
– volume: 57
  start-page: 41
  year: 2015
  ident: ref_35
  article-title: Comparative Study of Skin Color Detection and Segmentation in HSV and YCbCr Color Space
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2015.07.362
– volume: 48
  start-page: 3446
  year: 2010
  ident: ref_2
  article-title: A Novel Hierarchical Method of Ship Detection from Spaceborne Optical Image Based on Shape and Texture Features
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2010.2046330
– volume: 7
  start-page: 226
  year: 2010
  ident: ref_17
  article-title: Characterization of a Bayesian Ship Detection Method in Optical Satellite Images
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2009.2031826
– ident: ref_18
– volume: 54
  start-page: 5832
  year: 2016
  ident: ref_1
  article-title: Ship Detection in Spaceborne Optical Image With SVD Networks
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2016.2572736
– ident: ref_23
– volume: 13
  start-page: 137
  year: 2016
  ident: ref_19
  article-title: Efficient Saliency-Based Object Detection in Remote Sensing Images Using Deep Belief Networks
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2015.2498644
– volume: 57
  start-page: 8458
  year: 2019
  ident: ref_3
  article-title: Contour Refinement and EG-GHT-Based Inshore Ship Detection in Optical Remote Sensing Image
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2019.2921242
– ident: ref_31
  doi: 10.1109/CVPR.2014.81
– volume: 45
  start-page: 3426
  year: 2007
  ident: ref_9
  article-title: A New Application for PolSAR Imagery in the Field of Moving Target Indication/Ship Detection
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2007.907192
– ident: ref_25
– ident: ref_21
  doi: 10.1109/CVPR.2016.91
– volume: 18
  start-page: 2709
  year: 1997
  ident: ref_13
  article-title: Cover Vessel classification as part of an automated vessel traffic monitoring system using SAR data
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/014311697217288
– volume: 11
  start-page: 617
  year: 2014
  ident: ref_20
  article-title: A New Method on Inshore Ship Detection in High-Resolution Satellite Images Using Shape and Context Information
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2013.2272492
– ident: ref_27
– ident: ref_28
  doi: 10.1109/ICCV.2017.322
– volume: 23
  start-page: 48
  year: 1997
  ident: ref_12
  article-title: Ship Detection by the RADARSAT SAR: Validation of Detection Model Predictions
  publication-title: Can. J. Remote Sens.
  doi: 10.1080/07038992.1997.10874677
– ident: ref_32
  doi: 10.1109/ICIP.2017.8296411
– ident: ref_14
  doi: 10.3390/rs10122043
– volume: 12
  start-page: 1451
  year: 2015
  ident: ref_4
  article-title: Unsupervised Ship Detection Based on Saliency and S-HOG Descriptor From Optical Satellite Images
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2015.2408355
– ident: ref_5
  doi: 10.3390/rs10010132
– ident: ref_22
  doi: 10.1109/CVPR.2017.690
– ident: ref_36
  doi: 10.5220/0006120603240331
– volume: 11
  start-page: 2070
  year: 2014
  ident: ref_16
  article-title: Automatic Detection of Inshore Ships in High-Resolution Remote Sensing Images Using Robust Invariant Generalized Hough Transform
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2014.2319082
– volume: 2
  start-page: 201
  year: 2005
  ident: ref_10
  article-title: A Novel Algorithm for Ship Detection in SAR Imagery Based on the Wavelet Transform
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2005.845033
– volume: 8
  start-page: 681
  year: 2011
  ident: ref_15
  article-title: A Novel Ship Wake CFAR Detection Algorithm Based on SCR Enhancement and Normalized Hough Transform
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2010.2100076
– ident: ref_30
  doi: 10.1109/ICCV.2015.169
SSID ssj0000331904
Score 2.4255521
Snippet Ship detection from high-resolution optical satellite images is still an important task that deserves optimal solutions. This paper introduces a novel...
SourceID doaj
hal
proquest
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 4192
SubjectTerms accuracy
data collection
detection
Engineering Sciences
exhibitions
extracts
Internet
remote sensing
ship detection
ships
Signal and Image processing
solutions
strength training
YOLOv3
Title H-YOLO: A Single-Shot Ship Detection Approach Based on Region of Interest Preselected Network
URI https://www.proquest.com/docview/2511193065
https://hal.science/hal-03096535
https://doaj.org/article/87d19b028f6e439c90f417b01609c1ac
Volume 12
WOSCitedRecordID wos000603206600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: DOA
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources (ISSN International Center)
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: M~E
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: P5Z
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Earth, Atmospheric & Aquatic Science Database
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: PCBAR
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/eaasdb
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: M7S
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: PROQUEST
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: BENPR
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: PIMPY
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYlLbSXkrQN2TRd1MelBxFLtmWrt91kwxbSjckmkASC0ctsIHjDrhPopb-9M7LzJNBLLzrIg2xmJM2M5-MbQr5lNtdcVo5FsoIExUaOKW9ylpkk9hBAw2hCs4lsMslPTlTxoNUXYsJaeuBWcdt55rgy4AUr6cF5WhVVCc8MEqMpy7XF2xeingfJVLiDY9haUdLykcaQ128vllhD6mqe9x4oEPWDX5khDPLJbRxczN4qedvFhnTQftMaeeHrd-R116Z89vs9OR-z04P9gx90QKfgci49m87mDZ3OLq7orm8Cqqqmg44mnA7BQzkKM4ceUcd0XtHwAxBeTRF6EVrggMSkhYJ_IMd7o6OdMev6IzCbSNkwbZXWJuYGOb8izwX3UlVWcJ1j_VFE0rkkVWmmfWpB8UqlJlIVWEWkRjgfr5OVel77DULhKBrOM-krq5IsgiW5doLbODfKeZ33yPdbnZW2Iw_HHhaXJSQRqN_yXr898vVO9qqlzHhWaoiqv5NAmuswAcYvO-OX_zJ-j3wBwz1aYzzYL3EOS0cyjdMb3iOfb-1awtnBgoiu_fx6WWJ6BQEsRGGb_-NrPpI3ArNxLpjgW2SlWVz7T-SVvWkulos-eTkcTYrDftiofcSYTnH8M4KxSM_gefHzV3H6F50u7Xo
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=H-YOLO%3A+A+Single-Shot+Ship+Detection+Approach+Based+on+Region+of+Interest+Preselected+Network&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Tang%2C+Gang&rft.au=Liu%2C+Shibo&rft.au=Fujino%2C+Iwao&rft.au=Claramunt%2C+Christophe&rft.date=2020-12-21&rft.pub=MDPI&rft.issn=2072-4292&rft.eissn=2072-4292&rft.volume=12&rft.issue=24&rft_id=info:doi/10.3390%2Frs12244192&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai%3AHAL%3Ahal-03096535v1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon