H-YOLO: A Single-Shot Ship Detection Approach Based on Region of Interest Preselected Network
Ship detection from high-resolution optical satellite images is still an important task that deserves optimal solutions. This paper introduces a novel high-resolution image network-based approach based on the preselection of a region of interest (RoI). This pre-selected network first identifies and...
Uložené v:
| Vydané v: | Remote sensing (Basel, Switzerland) Ročník 12; číslo 24; s. 4192 |
|---|---|
| Hlavní autori: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
MDPI
21.12.2020
MDPI AG |
| Predmet: | |
| ISSN: | 2072-4292, 2072-4292 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Ship detection from high-resolution optical satellite images is still an important task that deserves optimal solutions. This paper introduces a novel high-resolution image network-based approach based on the preselection of a region of interest (RoI). This pre-selected network first identifies and extracts a region of interest from input images. In order to efficiently match ship candidates, the principle of our approach is to distinguish suspected areas from the images based on hue, saturation, value (HSV) differences between ships and the background. The whole approach is the basis of an experiment with a large ship dataset, consisting of Google Earth images and HRSC2016 datasets. The experiment shows that the H-YOLO network, which uses the same weight training from a set of remote sensing images, has a 19.01% higher recognition rate and a 16.19% higher accuracy than applying the you only look once (YOLO) network alone. After image preprocessing, the value of the intersection over union (IoU) is also greatly improved. |
|---|---|
| AbstractList | Ship detection from high-resolution optical satellite images is still an important task that deserves optimal solutions. This paper introduces a novel high-resolution image network-based approach based on the preselection of a region of interest (RoI). This pre-selected network first identifies and extracts a region of interest from input images. In order to efficiently match ship candidates, the principle of our approach is to distinguish suspected areas from the images based on hue, saturation, value (HSV) differences between ships and the background. The whole approach is the basis of an experiment with a large ship dataset, consisting of Google Earth images and HRSC2016 datasets. The experiment shows that the H-YOLO network, which uses the same weight training from a set of remote sensing images, has a 19.01% higher recognition rate and a 16.19% higher accuracy than applying the you only look once (YOLO) network alone. After image preprocessing, the value of the intersection over union (IoU) is also greatly improved. |
| Author | Wang, Yide Tang, Gang Claramunt, Christophe Men, Shaoyang Fujino, Iwao Liu, Shibo |
| Author_xml | – sequence: 1 givenname: Gang surname: Tang fullname: Tang, Gang – sequence: 2 givenname: Shibo surname: Liu fullname: Liu, Shibo – sequence: 3 givenname: Iwao surname: Fujino fullname: Fujino, Iwao – sequence: 4 givenname: Christophe orcidid: 0000-0002-5586-1997 surname: Claramunt fullname: Claramunt, Christophe – sequence: 5 givenname: Yide orcidid: 0000-0002-1461-2003 surname: Wang fullname: Wang, Yide – sequence: 6 givenname: Shaoyang surname: Men fullname: Men, Shaoyang |
| BackLink | https://hal.science/hal-03096535$$DView record in HAL |
| BookMark | eNptkU1vEzEQhi3USpS0F36Bj4C0MGPvOjG3UD4SKWoQgQMHZHm9s4nLdh1sF9R_j0MQX8KH8eidZ97DvA_YyRhGYuwhwlMpNTyLCYWoa9TiHjsTMBVVLbQ4-aO_zy5SuobypEQN9Rn7tKg-rlfr53zON37cDlRtdiHzzc7v-UvK5LIPI5_v9zFYt-MvbKKOF-UdbQ-D0PPlmClSyvxtqTSUjUJcUf4W4udzdtrbIdHFz3_CPrx-9f5yUa3Wb5aX81XlaqVyZZ22tpXYKqkACAWS0r0TaGeAciZAdV3d6GZqqXGkhNZNC7oH1YumFR3JCVsefbtgr80--hsb70yw3vwQQtwaG7N3A5nZtEPdgpj1imqpnYa-xmkLqEA7tK54PT567ezwl9VivjIHDSRo1cjmKxb20ZEt5_lyW45gbnxyNAx2pHCbjGgQUUso-IQ9OaIuhpQi9b-8EcwhPvM7vgLDP7Dz2R6iyNH64X8r3wEQk5rl |
| CitedBy_id | crossref_primary_10_1109_LGRS_2023_3253775 crossref_primary_10_3390_rs17173119 crossref_primary_10_3390_s25010214 crossref_primary_10_3390_rs15020350 crossref_primary_10_1109_JSTARS_2025_3601579 crossref_primary_10_3390_rs14194857 crossref_primary_10_3390_pr13010201 crossref_primary_10_1109_TGRS_2024_3471890 crossref_primary_10_1155_2021_5808206 crossref_primary_10_3390_rs13040660 crossref_primary_10_1080_07038992_2021_1898937 crossref_primary_10_1109_TGRS_2024_3481370 crossref_primary_10_3389_fnbot_2021_723336 crossref_primary_10_1109_JSTARS_2021_3137811 crossref_primary_10_3390_drones8040145 crossref_primary_10_1117_1_JEI_32_4_043013 crossref_primary_10_1371_journal_pone_0316933 crossref_primary_10_1109_TGRS_2022_3180894 crossref_primary_10_3390_jmse11020452 crossref_primary_10_3390_s22218116 crossref_primary_10_1016_j_eswa_2023_122116 crossref_primary_10_3390_rs15112855 crossref_primary_10_3390_rs13030499 crossref_primary_10_3390_rs13183778 crossref_primary_10_3390_rs13214255 |
| Cites_doi | 10.1109/TGRS.2018.2848901 10.1109/TPAMI.2015.2389824 10.1109/TGRS.2016.2606481 10.1109/36.508418 10.1109/TGRS.2020.2995477 10.1109/TGRS.2008.2008721 10.1016/j.procs.2015.07.362 10.1109/TGRS.2010.2046330 10.1109/LGRS.2009.2031826 10.1109/TGRS.2016.2572736 10.1109/LGRS.2015.2498644 10.1109/TGRS.2019.2921242 10.1109/CVPR.2014.81 10.1109/TGRS.2007.907192 10.1109/CVPR.2016.91 10.1080/014311697217288 10.1109/LGRS.2013.2272492 10.1109/ICCV.2017.322 10.1080/07038992.1997.10874677 10.1109/ICIP.2017.8296411 10.3390/rs10122043 10.1109/LGRS.2015.2408355 10.3390/rs10010132 10.1109/CVPR.2017.690 10.5220/0006120603240331 10.1109/LGRS.2014.2319082 10.1109/LGRS.2005.845033 10.1109/LGRS.2010.2100076 10.1109/ICCV.2015.169 |
| ContentType | Journal Article |
| Copyright | Distributed under a Creative Commons Attribution 4.0 International License |
| Copyright_xml | – notice: Distributed under a Creative Commons Attribution 4.0 International License |
| DBID | AAYXX CITATION 7S9 L.6 1XC VOOES DOA |
| DOI | 10.3390/rs12244192 |
| DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | CrossRef AGRICOLA |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geography |
| EISSN | 2072-4292 |
| ExternalDocumentID | oai_doaj_org_article_87d19b028f6e439c90f417b01609c1ac oai:HAL:hal-03096535v1 10_3390_rs12244192 |
| GroupedDBID | 29P 2WC 2XV 5VS 8FE 8FG 8FH AADQD AAHBH AAYXX ABDBF ABJCF ACUHS ADBBV ADMLS AENEX AFFHD AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS BCNDV BENPR BGLVJ BHPHI BKSAR CCPQU CITATION E3Z ESX FRP GROUPED_DOAJ HCIFZ I-F IAO ITC KQ8 L6V LK5 M7R M7S MODMG M~E OK1 P62 PCBAR PHGZM PHGZT PIMPY PQGLB PROAC PTHSS TR2 TUS 7S9 L.6 PUEGO 1XC C1A IPNFZ RIG VOOES |
| ID | FETCH-LOGICAL-c466t-ac9aab31b63600e121e69fc21a80138206dd45957ae5ce62995b09f06f25b2de3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 30 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000603206600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2072-4292 |
| IngestDate | Fri Oct 03 12:50:38 EDT 2025 Tue Oct 14 20:14:44 EDT 2025 Fri Sep 05 11:39:07 EDT 2025 Tue Nov 18 21:26:05 EST 2025 Sat Nov 29 07:13:37 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 24 |
| Keywords | ship detection remote sensing YOLOv3 |
| Language | English |
| License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c466t-ac9aab31b63600e121e69fc21a80138206dd45957ae5ce62995b09f06f25b2de3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0002-1461-2003 0000-0002-5586-1997 |
| OpenAccessLink | https://doaj.org/article/87d19b028f6e439c90f417b01609c1ac |
| PQID | 2511193065 |
| PQPubID | 24069 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_87d19b028f6e439c90f417b01609c1ac hal_primary_oai_HAL_hal_03096535v1 proquest_miscellaneous_2511193065 crossref_primary_10_3390_rs12244192 crossref_citationtrail_10_3390_rs12244192 |
| PublicationCentury | 2000 |
| PublicationDate | 20201221 |
| PublicationDateYYYYMMDD | 2020-12-21 |
| PublicationDate_xml | – month: 12 year: 2020 text: 20201221 day: 21 |
| PublicationDecade | 2020 |
| PublicationTitle | Remote sensing (Basel, Switzerland) |
| PublicationYear | 2020 |
| Publisher | MDPI MDPI AG |
| Publisher_xml | – name: MDPI – name: MDPI AG |
| References | Wang (ref_7) 2016; 55 Diao (ref_19) 2016; 13 He (ref_29) 2015; 37 Tello (ref_10) 2005; 2 Xu (ref_16) 2014; 11 ref_14 ref_36 ref_34 Liu (ref_9) 2007; 45 ref_33 ref_32 Qi (ref_4) 2015; 12 ref_31 ref_30 Zhu (ref_2) 2010; 48 Proia (ref_17) 2010; 7 ref_18 Liu (ref_20) 2014; 11 Eldhuset (ref_8) 1996; 34 Chen (ref_3) 2019; 57 Vachon (ref_12) 1997; 23 Margarit (ref_11) 2009; 47 Zou (ref_1) 2016; 54 ref_25 ref_24 ref_23 Ai (ref_15) 2011; 8 ref_22 ref_21 Li (ref_6) 2018; 56 Cai (ref_26) 2016; 9908 Shaik (ref_35) 2015; 57 ref_28 ref_27 ref_5 Morse (ref_13) 1997; 18 |
| References_xml | – ident: ref_24 – ident: ref_34 – volume: 56 start-page: 7147 year: 2018 ident: ref_6 article-title: HSF-Net: Multiscale Deep Feature Embedding for Ship Detection in Optical Remote Sensing Imagery publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2018.2848901 – volume: 37 start-page: 1904 year: 2015 ident: ref_29 article-title: Spatial pyramid pooling in deep convolutional networks for visual recognition publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2015.2389824 – volume: 55 start-page: 351 year: 2016 ident: ref_7 article-title: New Hierarchical Saliency Filtering for Fast Ship Detection in High-Resolution SAR Images publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2016.2606481 – volume: 34 start-page: 1010 year: 1996 ident: ref_8 article-title: An automatic ship and ship wake detection system for spaceborne SAR images in coastal regions publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/36.508418 – volume: 9908 start-page: 354 year: 2016 ident: ref_26 article-title: A Unified Multi-scale Deep Convolutional Neural Network for Fast Object Detection publication-title: Comput. Vis. – ident: ref_33 doi: 10.1109/TGRS.2020.2995477 – volume: 47 start-page: 1224 year: 2009 ident: ref_11 article-title: Exploitation of Ship Scattering in Polarimetric SAR for an Improved Classification Under High Clutter Conditions publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2008.2008721 – volume: 57 start-page: 41 year: 2015 ident: ref_35 article-title: Comparative Study of Skin Color Detection and Segmentation in HSV and YCbCr Color Space publication-title: Procedia Comput. Sci. doi: 10.1016/j.procs.2015.07.362 – volume: 48 start-page: 3446 year: 2010 ident: ref_2 article-title: A Novel Hierarchical Method of Ship Detection from Spaceborne Optical Image Based on Shape and Texture Features publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2010.2046330 – volume: 7 start-page: 226 year: 2010 ident: ref_17 article-title: Characterization of a Bayesian Ship Detection Method in Optical Satellite Images publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2009.2031826 – ident: ref_18 – volume: 54 start-page: 5832 year: 2016 ident: ref_1 article-title: Ship Detection in Spaceborne Optical Image With SVD Networks publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2016.2572736 – ident: ref_23 – volume: 13 start-page: 137 year: 2016 ident: ref_19 article-title: Efficient Saliency-Based Object Detection in Remote Sensing Images Using Deep Belief Networks publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2015.2498644 – volume: 57 start-page: 8458 year: 2019 ident: ref_3 article-title: Contour Refinement and EG-GHT-Based Inshore Ship Detection in Optical Remote Sensing Image publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2019.2921242 – ident: ref_31 doi: 10.1109/CVPR.2014.81 – volume: 45 start-page: 3426 year: 2007 ident: ref_9 article-title: A New Application for PolSAR Imagery in the Field of Moving Target Indication/Ship Detection publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2007.907192 – ident: ref_25 – ident: ref_21 doi: 10.1109/CVPR.2016.91 – volume: 18 start-page: 2709 year: 1997 ident: ref_13 article-title: Cover Vessel classification as part of an automated vessel traffic monitoring system using SAR data publication-title: Int. J. Remote Sens. doi: 10.1080/014311697217288 – volume: 11 start-page: 617 year: 2014 ident: ref_20 article-title: A New Method on Inshore Ship Detection in High-Resolution Satellite Images Using Shape and Context Information publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2013.2272492 – ident: ref_27 – ident: ref_28 doi: 10.1109/ICCV.2017.322 – volume: 23 start-page: 48 year: 1997 ident: ref_12 article-title: Ship Detection by the RADARSAT SAR: Validation of Detection Model Predictions publication-title: Can. J. Remote Sens. doi: 10.1080/07038992.1997.10874677 – ident: ref_32 doi: 10.1109/ICIP.2017.8296411 – ident: ref_14 doi: 10.3390/rs10122043 – volume: 12 start-page: 1451 year: 2015 ident: ref_4 article-title: Unsupervised Ship Detection Based on Saliency and S-HOG Descriptor From Optical Satellite Images publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2015.2408355 – ident: ref_5 doi: 10.3390/rs10010132 – ident: ref_22 doi: 10.1109/CVPR.2017.690 – ident: ref_36 doi: 10.5220/0006120603240331 – volume: 11 start-page: 2070 year: 2014 ident: ref_16 article-title: Automatic Detection of Inshore Ships in High-Resolution Remote Sensing Images Using Robust Invariant Generalized Hough Transform publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2014.2319082 – volume: 2 start-page: 201 year: 2005 ident: ref_10 article-title: A Novel Algorithm for Ship Detection in SAR Imagery Based on the Wavelet Transform publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2005.845033 – volume: 8 start-page: 681 year: 2011 ident: ref_15 article-title: A Novel Ship Wake CFAR Detection Algorithm Based on SCR Enhancement and Normalized Hough Transform publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2010.2100076 – ident: ref_30 doi: 10.1109/ICCV.2015.169 |
| SSID | ssj0000331904 |
| Score | 2.4255521 |
| Snippet | Ship detection from high-resolution optical satellite images is still an important task that deserves optimal solutions. This paper introduces a novel... |
| SourceID | doaj hal proquest crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database |
| StartPage | 4192 |
| SubjectTerms | accuracy data collection detection Engineering Sciences exhibitions extracts Internet remote sensing ship detection ships Signal and Image processing solutions strength training YOLOv3 |
| Title | H-YOLO: A Single-Shot Ship Detection Approach Based on Region of Interest Preselected Network |
| URI | https://www.proquest.com/docview/2511193065 https://hal.science/hal-03096535 https://doaj.org/article/87d19b028f6e439c90f417b01609c1ac |
| Volume | 12 |
| WOSCitedRecordID | wos000603206600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: DOA dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources (ISSN International Center) customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: M~E dateStart: 20090101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: P5Z dateStart: 20090301 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Earth, Atmospheric & Aquatic Science Database customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: PCBAR dateStart: 20090301 isFulltext: true titleUrlDefault: https://search.proquest.com/eaasdb providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: M7S dateStart: 20090301 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: PROQUEST customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: BENPR dateStart: 20090301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: PIMPY dateStart: 20090301 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYlLbSXkrQN2TRd1MelBxFLtmWrt91kwxbSjckmkASC0ctsIHjDrhPopb-9M7LzJNBLLzrIg2xmJM2M5-MbQr5lNtdcVo5FsoIExUaOKW9ylpkk9hBAw2hCs4lsMslPTlTxoNUXYsJaeuBWcdt55rgy4AUr6cF5WhVVCc8MEqMpy7XF2xeingfJVLiDY9haUdLykcaQ128vllhD6mqe9x4oEPWDX5khDPLJbRxczN4qedvFhnTQftMaeeHrd-R116Z89vs9OR-z04P9gx90QKfgci49m87mDZ3OLq7orm8Cqqqmg44mnA7BQzkKM4ceUcd0XtHwAxBeTRF6EVrggMSkhYJ_IMd7o6OdMev6IzCbSNkwbZXWJuYGOb8izwX3UlVWcJ1j_VFE0rkkVWmmfWpB8UqlJlIVWEWkRjgfr5OVel77DULhKBrOM-krq5IsgiW5doLbODfKeZ33yPdbnZW2Iw_HHhaXJSQRqN_yXr898vVO9qqlzHhWaoiqv5NAmuswAcYvO-OX_zJ-j3wBwz1aYzzYL3EOS0cyjdMb3iOfb-1awtnBgoiu_fx6WWJ6BQEsRGGb_-NrPpI3ArNxLpjgW2SlWVz7T-SVvWkulos-eTkcTYrDftiofcSYTnH8M4KxSM_gefHzV3H6F50u7Xo |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=H-YOLO%3A+A+Single-Shot+Ship+Detection+Approach+Based+on+Region+of+Interest+Preselected+Network&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Tang%2C+Gang&rft.au=Liu%2C+Shibo&rft.au=Fujino%2C+Iwao&rft.au=Claramunt%2C+Christophe&rft.date=2020-12-21&rft.pub=MDPI&rft.issn=2072-4292&rft.eissn=2072-4292&rft.volume=12&rft.issue=24&rft_id=info:doi/10.3390%2Frs12244192&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai%3AHAL%3Ahal-03096535v1 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon |