Point rotation invariant features and attention fusion network for point cloud registration of 3D shapes

Point cloud registration of 3D shapes remains a formidable challenge in computer vision and autonomous driving. This paper introduces a novel learning-based registration method, titled Point Rotation Invariant Feature and Attention Fusion Network (PRIF), specifically tailored for point cloud registr...

Full description

Saved in:
Bibliographic Details
Published in:Scientific reports Vol. 15; no. 1; pp. 15094 - 16
Main Authors: Liu, Zeyang, Lu, Zhiguo, Shan, Yancong
Format: Journal Article
Language:English
Published: London Nature Publishing Group UK 29.04.2025
Nature Portfolio
Subjects:
ISSN:2045-2322, 2045-2322
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Point cloud registration of 3D shapes remains a formidable challenge in computer vision and autonomous driving. This paper introduces a novel learning-based registration method, titled Point Rotation Invariant Feature and Attention Fusion Network (PRIF), specifically tailored for point cloud registration tasks. A rapid and straightforward approach for extracting rotation-invariant information is put forward. Leveraging the strengths of the PointNet+ + structure and attention mechanism, a fresh feature extraction module for point clouds is devised, ensuring efficient feature extraction and matching. Furthermore, a novel feature fusion module is proposed for point cloud registration, facilitating the acquisition of high-quality point pair matching relationships. The network directly ingests raw point clouds and exhibits robust and precise registration capabilities for 3D shapes. The model is trained on the ModelNet40 (Wu et al. in: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 1912–1920, 2015) dataset and evaluated on both ModelNet40 and ShapeNet (Chang et al. in Shapenet: an information-rich 3d model repository, 2015. arXiv:1512.03012 ) datasets, demonstrating its generalization capabilities. The experimental results show that the method performs well in registration accuracy. Visualization experiments further illustrate the exceptional performance of our network in point cloud registration tasks.
AbstractList Point cloud registration of 3D shapes remains a formidable challenge in computer vision and autonomous driving. This paper introduces a novel learning-based registration method, titled Point Rotation Invariant Feature and Attention Fusion Network (PRIF), specifically tailored for point cloud registration tasks. A rapid and straightforward approach for extracting rotation-invariant information is put forward. Leveraging the strengths of the PointNet+ + structure and attention mechanism, a fresh feature extraction module for point clouds is devised, ensuring efficient feature extraction and matching. Furthermore, a novel feature fusion module is proposed for point cloud registration, facilitating the acquisition of high-quality point pair matching relationships. The network directly ingests raw point clouds and exhibits robust and precise registration capabilities for 3D shapes. The model is trained on the ModelNet40 (Wu et al. in: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 1912–1920, 2015) dataset and evaluated on both ModelNet40 and ShapeNet (Chang et al. in Shapenet: an information-rich 3d model repository, 2015. arXiv:1512.03012) datasets, demonstrating its generalization capabilities. The experimental results show that the method performs well in registration accuracy. Visualization experiments further illustrate the exceptional performance of our network in point cloud registration tasks.
Abstract Point cloud registration of 3D shapes remains a formidable challenge in computer vision and autonomous driving. This paper introduces a novel learning-based registration method, titled Point Rotation Invariant Feature and Attention Fusion Network (PRIF), specifically tailored for point cloud registration tasks. A rapid and straightforward approach for extracting rotation-invariant information is put forward. Leveraging the strengths of the PointNet+ + structure and attention mechanism, a fresh feature extraction module for point clouds is devised, ensuring efficient feature extraction and matching. Furthermore, a novel feature fusion module is proposed for point cloud registration, facilitating the acquisition of high-quality point pair matching relationships. The network directly ingests raw point clouds and exhibits robust and precise registration capabilities for 3D shapes. The model is trained on the ModelNet40 (Wu et al. in: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 1912–1920, 2015) dataset and evaluated on both ModelNet40 and ShapeNet (Chang et al. in Shapenet: an information-rich 3d model repository, 2015. arXiv:1512.03012 ) datasets, demonstrating its generalization capabilities. The experimental results show that the method performs well in registration accuracy. Visualization experiments further illustrate the exceptional performance of our network in point cloud registration tasks.
Point cloud registration of 3D shapes remains a formidable challenge in computer vision and autonomous driving. This paper introduces a novel learning-based registration method, titled Point Rotation Invariant Feature and Attention Fusion Network (PRIF), specifically tailored for point cloud registration tasks. A rapid and straightforward approach for extracting rotation-invariant information is put forward. Leveraging the strengths of the PointNet+ + structure and attention mechanism, a fresh feature extraction module for point clouds is devised, ensuring efficient feature extraction and matching. Furthermore, a novel feature fusion module is proposed for point cloud registration, facilitating the acquisition of high-quality point pair matching relationships. The network directly ingests raw point clouds and exhibits robust and precise registration capabilities for 3D shapes. The model is trained on the ModelNet40 (Wu et al. in: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 1912-1920, 2015) dataset and evaluated on both ModelNet40 and ShapeNet (Chang et al. in Shapenet: an information-rich 3d model repository, 2015. arXiv:1512.03012 ) datasets, demonstrating its generalization capabilities. The experimental results show that the method performs well in registration accuracy. Visualization experiments further illustrate the exceptional performance of our network in point cloud registration tasks.Point cloud registration of 3D shapes remains a formidable challenge in computer vision and autonomous driving. This paper introduces a novel learning-based registration method, titled Point Rotation Invariant Feature and Attention Fusion Network (PRIF), specifically tailored for point cloud registration tasks. A rapid and straightforward approach for extracting rotation-invariant information is put forward. Leveraging the strengths of the PointNet+ + structure and attention mechanism, a fresh feature extraction module for point clouds is devised, ensuring efficient feature extraction and matching. Furthermore, a novel feature fusion module is proposed for point cloud registration, facilitating the acquisition of high-quality point pair matching relationships. The network directly ingests raw point clouds and exhibits robust and precise registration capabilities for 3D shapes. The model is trained on the ModelNet40 (Wu et al. in: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 1912-1920, 2015) dataset and evaluated on both ModelNet40 and ShapeNet (Chang et al. in Shapenet: an information-rich 3d model repository, 2015. arXiv:1512.03012 ) datasets, demonstrating its generalization capabilities. The experimental results show that the method performs well in registration accuracy. Visualization experiments further illustrate the exceptional performance of our network in point cloud registration tasks.
Point cloud registration of 3D shapes remains a formidable challenge in computer vision and autonomous driving. This paper introduces a novel learning-based registration method, titled Point Rotation Invariant Feature and Attention Fusion Network (PRIF), specifically tailored for point cloud registration tasks. A rapid and straightforward approach for extracting rotation-invariant information is put forward. Leveraging the strengths of the PointNet+ + structure and attention mechanism, a fresh feature extraction module for point clouds is devised, ensuring efficient feature extraction and matching. Furthermore, a novel feature fusion module is proposed for point cloud registration, facilitating the acquisition of high-quality point pair matching relationships. The network directly ingests raw point clouds and exhibits robust and precise registration capabilities for 3D shapes. The model is trained on the ModelNet40 (Wu et al. in: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 1912–1920, 2015) dataset and evaluated on both ModelNet40 and ShapeNet (Chang et al. in Shapenet: an information-rich 3d model repository, 2015. arXiv:1512.03012 ) datasets, demonstrating its generalization capabilities. The experimental results show that the method performs well in registration accuracy. Visualization experiments further illustrate the exceptional performance of our network in point cloud registration tasks.
ArticleNumber 15094
Author Lu, Zhiguo
Liu, Zeyang
Shan, Yancong
Author_xml – sequence: 1
  givenname: Zeyang
  surname: Liu
  fullname: Liu, Zeyang
  email: liuzy0826@163.com
  organization: Department of Mechanical Engineering and Automation, Northeastern University
– sequence: 2
  givenname: Zhiguo
  surname: Lu
  fullname: Lu, Zhiguo
  organization: Department of Mechanical Engineering and Automation, Northeastern University
– sequence: 3
  givenname: Yancong
  surname: Shan
  fullname: Shan, Yancong
  organization: Department of Mechanical Engineering and Automation, Northeastern University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40301550$$D View this record in MEDLINE/PubMed
BookMark eNp9kk1v1DAQhiNUREvpH-CAcuQS8HfiE0KFQqVKcICz5djjXS9Ze7GdIv59nU2p2gu-jDXzzjPSzPuyOQkxQNO8xugdRnR4nxnmcugQ4Z2UhKEOPWvOCGK8I5SQk0f_0-Yi5x2qjxPJsHzRnDJEEeYcnTXb79GH0qZYdPExtD7c6uR1TTnQZU6QWx1sq0uBcBS4OS8hQPkT06_WxdQejggzxdm2CTY-l7TComvppzZv9QHyq-a501OGi_t43vy8-vzj8mt38-3L9eXHm84wIUo3cGSExNTQYYQBWUn0aAi1FjsHvREYj9YC1qK3I-e9BmQIGYgztmoEOHreXK9cG_VOHZLf6_RXRe3VMRHTRulUvJlAcYmEBWKFY45RiyV2SMiecWkw5lpU1oeVdZjHPVhTV5D09AT6tBL8Vm3ircJ1-RjLhfD2npDi7xlyUXufDUyTDhDnrCiWvWCI00X65vGwhyn_blUFZBWYFHNO4B4kGKnFE2r1hKqeUEdPqKWJrk25isMGktrFOYV6gf913QE9Prtu
Cites_doi 10.1109/ROBOT.2008.4543181
10.1109/CVPR.2017.29
10.1109/34.765655
10.1109/ICCV.2015.114
10.1109/IROS.2018.8594299
10.1007/978-3-319-46475-6_47
10.1007/978-3-642-15558-1_26
10.15607/RSS.2009.V.021
10.1007/978-3-030-58586-0_23
10.1109/ICRA.2018.8460653
10.1109/CVPR.2018.00484
10.1109/CVPR42600.2020.00722
10.1109/ICCV48922.2021.01595
10.1109/LRA.2022.3144795
10.1109/IROS.2008.4650967
10.1109/CVPR.2017.265
10.1007/s41095-021-0229-5
10.1109/ICCV.2019.00362
10.1109/ICCV.2017.26
10.1109/ICCV.2019.00010
10.1109/CVPR42600.2020.01184
10.1109/IROS.2015.7353455
10.1109/ROBOT.2009.5152473
10.1109/TPAMI.2019.2895794
10.1109/TPAMI.2022.3167288
10.1145/3326362
10.1109/CVPR.2019.00733
10.1109/IROS.2015.7353481
10.1109/TCSVT.2016.2616143
10.1109/CVPR46437.2021.01158
10.1109/CVPR.2019.00885
10.1109/TNNLS.2023.3331476
10.5220/0004692805920599
10.1109/ICRA.2011.5980407
10.1016/j.robot.2009.09.011
10.1109/ICRA48506.2021.9561364
10.1561/2300000035
10.1016/j.cviu.2014.04.011
10.1111/cgf.12178
10.1016/j.neucom.2021.01.095
ContentType Journal Article
Copyright The Author(s) 2025
2025. The Author(s).
The Author(s) 2025 2025
Copyright_xml – notice: The Author(s) 2025
– notice: 2025. The Author(s).
– notice: The Author(s) 2025 2025
DBID C6C
AAYXX
CITATION
NPM
7X8
5PM
DOA
DOI 10.1038/s41598-025-99240-0
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList

PubMed
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 16
ExternalDocumentID oai_doaj_org_article_5906de2d6f4f43d191f0697459c115a6
PMC12041196
40301550
10_1038_s41598_025_99240_0
Genre Journal Article
GroupedDBID 0R~
4.4
53G
5VS
7X7
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
AASML
ABDBF
ABUWG
ACGFS
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AFPKN
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M1P
M2P
M7P
M~E
NAO
OK1
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AAYXX
AFFHD
CITATION
PHGZM
PJZUB
PPXIY
PQGLB
NPM
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c466t-850c6913c38be80d92abc23dd1ffe7c611bdde1a67db557ae0c2282fcd3dd6ef3
IEDL.DBID DOA
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001479510600026&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2045-2322
IngestDate Fri Oct 03 12:52:58 EDT 2025
Tue Nov 04 02:03:31 EST 2025
Fri Sep 05 17:38:00 EDT 2025
Mon Jul 21 06:08:17 EDT 2025
Sat Nov 29 08:00:38 EST 2025
Wed Apr 30 01:16:14 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Point cloud registration
Feature extraction
Neural network
Language English
License 2025. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c466t-850c6913c38be80d92abc23dd1ffe7c611bdde1a67db557ae0c2282fcd3dd6ef3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://doaj.org/article/5906de2d6f4f43d191f0697459c115a6
PMID 40301550
PQID 3197640536
PQPubID 23479
PageCount 16
ParticipantIDs doaj_primary_oai_doaj_org_article_5906de2d6f4f43d191f0697459c115a6
pubmedcentral_primary_oai_pubmedcentral_nih_gov_12041196
proquest_miscellaneous_3197640536
pubmed_primary_40301550
crossref_primary_10_1038_s41598_025_99240_0
springer_journals_10_1038_s41598_025_99240_0
PublicationCentury 2000
PublicationDate 2025-04-29
PublicationDateYYYYMMDD 2025-04-29
PublicationDate_xml – month: 04
  year: 2025
  text: 2025-04-29
  day: 29
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2025
Publisher Nature Publishing Group UK
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Portfolio
References 99240_CR30
99240_CR31
C Chen (99240_CR44) 2021; 438
J Li (99240_CR37) 2022; 44
Y Wang (99240_CR32) 2019; 38
99240_CR3
99240_CR2
99240_CR7
99240_CR5
99240_CR4
99240_CR9
99240_CR24
99240_CR25
99240_CR26
99240_CR28
99240_CR29
Z Chen (99240_CR15) 2023; 34
99240_CR40
F Pomerleau (99240_CR16) 2015; 4
99240_CR41
99240_CR42
99240_CR43
RS Pahwa (99240_CR1) 2018; 28
M-H Guo (99240_CR45) 2021; 7
99240_CR33
99240_CR34
99240_CR35
99240_CR36
99240_CR38
H Andreasson (99240_CR11) 2010; 58
99240_CR39
99240_CR50
99240_CR10
Y Wang (99240_CR27) 2019; 41
AE Johnson (99240_CR22) 1999; 21
99240_CR46
S Bouaziz (99240_CR8) 2013; 32
99240_CR47
99240_CR48
99240_CR49
99240_CR20
99240_CR21
99240_CR19
M Frosi (99240_CR6) 2022; 7
99240_CR12
S Salti (99240_CR23) 2014; 125
99240_CR13
99240_CR14
99240_CR17
99240_CR18
References_xml – ident: 99240_CR40
– ident: 99240_CR9
  doi: 10.1109/ROBOT.2008.4543181
– ident: 99240_CR29
  doi: 10.1109/CVPR.2017.29
– volume: 21
  start-page: 433
  issue: 5
  year: 1999
  ident: 99240_CR22
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/34.765655
– ident: 99240_CR39
  doi: 10.1109/ICCV.2015.114
– ident: 99240_CR5
  doi: 10.1109/IROS.2018.8594299
– ident: 99240_CR25
– ident: 99240_CR48
  doi: 10.1007/978-3-319-46475-6_47
– ident: 99240_CR24
  doi: 10.1007/978-3-642-15558-1_26
– ident: 99240_CR26
  doi: 10.15607/RSS.2009.V.021
– ident: 99240_CR47
  doi: 10.1007/978-3-030-58586-0_23
– ident: 99240_CR3
  doi: 10.1109/ICRA.2018.8460653
– ident: 99240_CR43
  doi: 10.1109/CVPR.2018.00484
– ident: 99240_CR35
  doi: 10.1109/CVPR42600.2020.00722
– ident: 99240_CR46
  doi: 10.1109/ICCV48922.2021.01595
– ident: 99240_CR41
– volume: 7
  start-page: 2692
  issue: 2
  year: 2022
  ident: 99240_CR6
  publication-title: IEEE Robot. Autom. Lett.
  doi: 10.1109/LRA.2022.3144795
– ident: 99240_CR20
  doi: 10.1109/IROS.2008.4650967
– ident: 99240_CR31
  doi: 10.1109/CVPR.2017.265
– volume: 7
  start-page: 187
  year: 2021
  ident: 99240_CR45
  publication-title: Comput. Vis. Media
  doi: 10.1007/s41095-021-0229-5
– ident: 99240_CR49
– ident: 99240_CR13
  doi: 10.1109/ICCV.2019.00362
– ident: 99240_CR28
  doi: 10.1109/ICCV.2017.26
– ident: 99240_CR34
  doi: 10.1109/ICCV.2019.00010
– ident: 99240_CR14
  doi: 10.1109/CVPR42600.2020.01184
– ident: 99240_CR17
  doi: 10.1109/IROS.2015.7353455
– ident: 99240_CR21
  doi: 10.1109/ROBOT.2009.5152473
– volume: 41
  start-page: 1672
  issue: 8
  year: 2019
  ident: 99240_CR27
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2019.2895794
– volume: 44
  start-page: 1
  issue: 6
  year: 2022
  ident: 99240_CR37
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2022.3167288
– ident: 99240_CR7
– volume: 38
  start-page: 1
  issue: 5
  year: 2019
  ident: 99240_CR32
  publication-title: ACM Trans. Graph. (tog)
  doi: 10.1145/3326362
– ident: 99240_CR30
  doi: 10.1109/CVPR.2019.00733
– ident: 99240_CR36
  doi: 10.1109/CVPR.2017.29
– ident: 99240_CR38
  doi: 10.1109/IROS.2015.7353481
– volume: 28
  start-page: 626
  issue: 3
  year: 2018
  ident: 99240_CR1
  publication-title: IEEE Trans. Circuits Syst. Video Technol.
  doi: 10.1109/TCSVT.2016.2616143
– ident: 99240_CR42
  doi: 10.1109/CVPR46437.2021.01158
– ident: 99240_CR2
  doi: 10.1109/CVPR.2019.00885
– ident: 99240_CR12
– volume: 34
  start-page: 1
  year: 2023
  ident: 99240_CR15
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2023.3331476
– ident: 99240_CR33
– ident: 99240_CR18
  doi: 10.5220/0004692805920599
– ident: 99240_CR19
  doi: 10.1109/ICRA.2011.5980407
– ident: 99240_CR50
– ident: 99240_CR10
  doi: 10.1109/ICRA.2011.5980407
– volume: 58
  start-page: 157
  issue: 2
  year: 2010
  ident: 99240_CR11
  publication-title: Robot. Auton. Syst.
  doi: 10.1016/j.robot.2009.09.011
– ident: 99240_CR4
  doi: 10.1109/ICRA48506.2021.9561364
– volume: 4
  start-page: 1
  issue: 1
  year: 2015
  ident: 99240_CR16
  publication-title: Found. Trends Robot.
  doi: 10.1561/2300000035
– volume: 125
  start-page: 251
  year: 2014
  ident: 99240_CR23
  publication-title: Comput. Vis. Image Underst.
  doi: 10.1016/j.cviu.2014.04.011
– volume: 32
  start-page: 113
  issue: 5
  year: 2013
  ident: 99240_CR8
  publication-title: Comput. Graph. Forum
  doi: 10.1111/cgf.12178
– volume: 438
  start-page: 122
  year: 2021
  ident: 99240_CR44
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2021.01.095
SSID ssj0000529419
Score 2.4481575
Snippet Point cloud registration of 3D shapes remains a formidable challenge in computer vision and autonomous driving. This paper introduces a novel learning-based...
Abstract Point cloud registration of 3D shapes remains a formidable challenge in computer vision and autonomous driving. This paper introduces a novel...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 15094
SubjectTerms Feature extraction
Humanities and Social Sciences
multidisciplinary
Neural network
Point cloud registration
Science
Science (multidisciplinary)
Title Point rotation invariant features and attention fusion network for point cloud registration of 3D shapes
URI https://link.springer.com/article/10.1038/s41598-025-99240-0
https://www.ncbi.nlm.nih.gov/pubmed/40301550
https://www.proquest.com/docview/3197640536
https://pubmed.ncbi.nlm.nih.gov/PMC12041196
https://doaj.org/article/5906de2d6f4f43d191f0697459c115a6
Volume 15
WOSCitedRecordID wos001479510600026&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M7P
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: 7X7
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: PIMPY
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M2P
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3di9QwEA96p-CL-O2eukTwTcvlq2ny6OkdCt5SRGF9Cmk-2IWjXba7B_73N0m7x62KvvgyD21om5nJfDST3yD0xnNOm9KVhXKlL0SjVWFVjEWk1lWWeqVFPij8pZrN1Hyu6xutvlJN2AAPPDDuuNRE-sC8jCIK7iG9iERCEFxqB8GMzWDbpNI3kqkB1ZtpQfV4SoZwddyDp0qnyVhZaMg5SEH2PFEG7P9TlPl7seQvO6bZEZ09QPfHCBK_H778IboV2kfo7tBT8udjtKi7ZbvB627YY8fL9hLSYeAfjiGDePbYth4nWM1c6IjjNv0ww-1QD44hiMWr_Ah30W09Tp0bdti6uIuYf8T9wq5C_wR9Pzv99uFTMbZTKJyQclOokjipKXdcNUERr5ltHOPe0xhD5SSlDdg6amXlm7KsbCCOQUIWnYcxMkT-FB20XRueI6w4aXiESNPbIISXDSS6AUyBJJqD0w0T9HbHWrMaUDNM3u3mygyCMCAIkwVhyASdJO5fj0yI1_kC6IEZ9cD8Sw8m6PVOdgZWSNr2sG3otr0BI1NJiEs5jHk2yPL6VSJlhJCkTZDak_Let-zfaZeLjMJNGREU7NcEvdsphBnXf_-XyR79j8m-QPdY0mQiCqZfooPNehteoTvucrPs11N0u5pXmaopOjw5ndVfp3l5AD1ndaIV0MP683n94woYAxT7
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Point+rotation+invariant+features+and+attention+fusion+network+for+point+cloud+registration+of+3D+shapes&rft.jtitle=Scientific+reports&rft.au=Liu%2C+Zeyang&rft.au=Lu%2C+Zhiguo&rft.au=Shan%2C+Yancong&rft.date=2025-04-29&rft.issn=2045-2322&rft.eissn=2045-2322&rft.volume=15&rft.issue=1&rft.spage=15094&rft_id=info:doi/10.1038%2Fs41598-025-99240-0&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon