Point rotation invariant features and attention fusion network for point cloud registration of 3D shapes
Point cloud registration of 3D shapes remains a formidable challenge in computer vision and autonomous driving. This paper introduces a novel learning-based registration method, titled Point Rotation Invariant Feature and Attention Fusion Network (PRIF), specifically tailored for point cloud registr...
Saved in:
| Published in: | Scientific reports Vol. 15; no. 1; pp. 15094 - 16 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
London
Nature Publishing Group UK
29.04.2025
Nature Portfolio |
| Subjects: | |
| ISSN: | 2045-2322, 2045-2322 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Point cloud registration of 3D shapes remains a formidable challenge in computer vision and autonomous driving. This paper introduces a novel learning-based registration method, titled Point Rotation Invariant Feature and Attention Fusion Network (PRIF), specifically tailored for point cloud registration tasks. A rapid and straightforward approach for extracting rotation-invariant information is put forward. Leveraging the strengths of the PointNet+ + structure and attention mechanism, a fresh feature extraction module for point clouds is devised, ensuring efficient feature extraction and matching. Furthermore, a novel feature fusion module is proposed for point cloud registration, facilitating the acquisition of high-quality point pair matching relationships. The network directly ingests raw point clouds and exhibits robust and precise registration capabilities for 3D shapes. The model is trained on the ModelNet40 (Wu et al. in: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 1912–1920, 2015) dataset and evaluated on both ModelNet40 and ShapeNet (Chang et al. in Shapenet: an information-rich 3d model repository, 2015.
arXiv:1512.03012
) datasets, demonstrating its generalization capabilities. The experimental results show that the method performs well in registration accuracy. Visualization experiments further illustrate the exceptional performance of our network in point cloud registration tasks. |
|---|---|
| AbstractList | Point cloud registration of 3D shapes remains a formidable challenge in computer vision and autonomous driving. This paper introduces a novel learning-based registration method, titled Point Rotation Invariant Feature and Attention Fusion Network (PRIF), specifically tailored for point cloud registration tasks. A rapid and straightforward approach for extracting rotation-invariant information is put forward. Leveraging the strengths of the PointNet+ + structure and attention mechanism, a fresh feature extraction module for point clouds is devised, ensuring efficient feature extraction and matching. Furthermore, a novel feature fusion module is proposed for point cloud registration, facilitating the acquisition of high-quality point pair matching relationships. The network directly ingests raw point clouds and exhibits robust and precise registration capabilities for 3D shapes. The model is trained on the ModelNet40 (Wu et al. in: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 1912–1920, 2015) dataset and evaluated on both ModelNet40 and ShapeNet (Chang et al. in Shapenet: an information-rich 3d model repository, 2015. arXiv:1512.03012) datasets, demonstrating its generalization capabilities. The experimental results show that the method performs well in registration accuracy. Visualization experiments further illustrate the exceptional performance of our network in point cloud registration tasks. Abstract Point cloud registration of 3D shapes remains a formidable challenge in computer vision and autonomous driving. This paper introduces a novel learning-based registration method, titled Point Rotation Invariant Feature and Attention Fusion Network (PRIF), specifically tailored for point cloud registration tasks. A rapid and straightforward approach for extracting rotation-invariant information is put forward. Leveraging the strengths of the PointNet+ + structure and attention mechanism, a fresh feature extraction module for point clouds is devised, ensuring efficient feature extraction and matching. Furthermore, a novel feature fusion module is proposed for point cloud registration, facilitating the acquisition of high-quality point pair matching relationships. The network directly ingests raw point clouds and exhibits robust and precise registration capabilities for 3D shapes. The model is trained on the ModelNet40 (Wu et al. in: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 1912–1920, 2015) dataset and evaluated on both ModelNet40 and ShapeNet (Chang et al. in Shapenet: an information-rich 3d model repository, 2015. arXiv:1512.03012 ) datasets, demonstrating its generalization capabilities. The experimental results show that the method performs well in registration accuracy. Visualization experiments further illustrate the exceptional performance of our network in point cloud registration tasks. Point cloud registration of 3D shapes remains a formidable challenge in computer vision and autonomous driving. This paper introduces a novel learning-based registration method, titled Point Rotation Invariant Feature and Attention Fusion Network (PRIF), specifically tailored for point cloud registration tasks. A rapid and straightforward approach for extracting rotation-invariant information is put forward. Leveraging the strengths of the PointNet+ + structure and attention mechanism, a fresh feature extraction module for point clouds is devised, ensuring efficient feature extraction and matching. Furthermore, a novel feature fusion module is proposed for point cloud registration, facilitating the acquisition of high-quality point pair matching relationships. The network directly ingests raw point clouds and exhibits robust and precise registration capabilities for 3D shapes. The model is trained on the ModelNet40 (Wu et al. in: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 1912-1920, 2015) dataset and evaluated on both ModelNet40 and ShapeNet (Chang et al. in Shapenet: an information-rich 3d model repository, 2015. arXiv:1512.03012 ) datasets, demonstrating its generalization capabilities. The experimental results show that the method performs well in registration accuracy. Visualization experiments further illustrate the exceptional performance of our network in point cloud registration tasks.Point cloud registration of 3D shapes remains a formidable challenge in computer vision and autonomous driving. This paper introduces a novel learning-based registration method, titled Point Rotation Invariant Feature and Attention Fusion Network (PRIF), specifically tailored for point cloud registration tasks. A rapid and straightforward approach for extracting rotation-invariant information is put forward. Leveraging the strengths of the PointNet+ + structure and attention mechanism, a fresh feature extraction module for point clouds is devised, ensuring efficient feature extraction and matching. Furthermore, a novel feature fusion module is proposed for point cloud registration, facilitating the acquisition of high-quality point pair matching relationships. The network directly ingests raw point clouds and exhibits robust and precise registration capabilities for 3D shapes. The model is trained on the ModelNet40 (Wu et al. in: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 1912-1920, 2015) dataset and evaluated on both ModelNet40 and ShapeNet (Chang et al. in Shapenet: an information-rich 3d model repository, 2015. arXiv:1512.03012 ) datasets, demonstrating its generalization capabilities. The experimental results show that the method performs well in registration accuracy. Visualization experiments further illustrate the exceptional performance of our network in point cloud registration tasks. Point cloud registration of 3D shapes remains a formidable challenge in computer vision and autonomous driving. This paper introduces a novel learning-based registration method, titled Point Rotation Invariant Feature and Attention Fusion Network (PRIF), specifically tailored for point cloud registration tasks. A rapid and straightforward approach for extracting rotation-invariant information is put forward. Leveraging the strengths of the PointNet+ + structure and attention mechanism, a fresh feature extraction module for point clouds is devised, ensuring efficient feature extraction and matching. Furthermore, a novel feature fusion module is proposed for point cloud registration, facilitating the acquisition of high-quality point pair matching relationships. The network directly ingests raw point clouds and exhibits robust and precise registration capabilities for 3D shapes. The model is trained on the ModelNet40 (Wu et al. in: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 1912–1920, 2015) dataset and evaluated on both ModelNet40 and ShapeNet (Chang et al. in Shapenet: an information-rich 3d model repository, 2015. arXiv:1512.03012 ) datasets, demonstrating its generalization capabilities. The experimental results show that the method performs well in registration accuracy. Visualization experiments further illustrate the exceptional performance of our network in point cloud registration tasks. |
| ArticleNumber | 15094 |
| Author | Lu, Zhiguo Liu, Zeyang Shan, Yancong |
| Author_xml | – sequence: 1 givenname: Zeyang surname: Liu fullname: Liu, Zeyang email: liuzy0826@163.com organization: Department of Mechanical Engineering and Automation, Northeastern University – sequence: 2 givenname: Zhiguo surname: Lu fullname: Lu, Zhiguo organization: Department of Mechanical Engineering and Automation, Northeastern University – sequence: 3 givenname: Yancong surname: Shan fullname: Shan, Yancong organization: Department of Mechanical Engineering and Automation, Northeastern University |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40301550$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kk1v1DAQhiNUREvpH-CAcuQS8HfiE0KFQqVKcICz5djjXS9Ze7GdIv59nU2p2gu-jDXzzjPSzPuyOQkxQNO8xugdRnR4nxnmcugQ4Z2UhKEOPWvOCGK8I5SQk0f_0-Yi5x2qjxPJsHzRnDJEEeYcnTXb79GH0qZYdPExtD7c6uR1TTnQZU6QWx1sq0uBcBS4OS8hQPkT06_WxdQejggzxdm2CTY-l7TComvppzZv9QHyq-a501OGi_t43vy8-vzj8mt38-3L9eXHm84wIUo3cGSExNTQYYQBWUn0aAi1FjsHvREYj9YC1qK3I-e9BmQIGYgztmoEOHreXK9cG_VOHZLf6_RXRe3VMRHTRulUvJlAcYmEBWKFY45RiyV2SMiecWkw5lpU1oeVdZjHPVhTV5D09AT6tBL8Vm3ircJ1-RjLhfD2npDi7xlyUXufDUyTDhDnrCiWvWCI00X65vGwhyn_blUFZBWYFHNO4B4kGKnFE2r1hKqeUEdPqKWJrk25isMGktrFOYV6gf913QE9Prtu |
| Cites_doi | 10.1109/ROBOT.2008.4543181 10.1109/CVPR.2017.29 10.1109/34.765655 10.1109/ICCV.2015.114 10.1109/IROS.2018.8594299 10.1007/978-3-319-46475-6_47 10.1007/978-3-642-15558-1_26 10.15607/RSS.2009.V.021 10.1007/978-3-030-58586-0_23 10.1109/ICRA.2018.8460653 10.1109/CVPR.2018.00484 10.1109/CVPR42600.2020.00722 10.1109/ICCV48922.2021.01595 10.1109/LRA.2022.3144795 10.1109/IROS.2008.4650967 10.1109/CVPR.2017.265 10.1007/s41095-021-0229-5 10.1109/ICCV.2019.00362 10.1109/ICCV.2017.26 10.1109/ICCV.2019.00010 10.1109/CVPR42600.2020.01184 10.1109/IROS.2015.7353455 10.1109/ROBOT.2009.5152473 10.1109/TPAMI.2019.2895794 10.1109/TPAMI.2022.3167288 10.1145/3326362 10.1109/CVPR.2019.00733 10.1109/IROS.2015.7353481 10.1109/TCSVT.2016.2616143 10.1109/CVPR46437.2021.01158 10.1109/CVPR.2019.00885 10.1109/TNNLS.2023.3331476 10.5220/0004692805920599 10.1109/ICRA.2011.5980407 10.1016/j.robot.2009.09.011 10.1109/ICRA48506.2021.9561364 10.1561/2300000035 10.1016/j.cviu.2014.04.011 10.1111/cgf.12178 10.1016/j.neucom.2021.01.095 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2025 2025. The Author(s). The Author(s) 2025 2025 |
| Copyright_xml | – notice: The Author(s) 2025 – notice: 2025. The Author(s). – notice: The Author(s) 2025 2025 |
| DBID | C6C AAYXX CITATION NPM 7X8 5PM DOA |
| DOI | 10.1038/s41598-025-99240-0 |
| DatabaseName | Springer Nature OA Free Journals CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
| DatabaseTitleList | PubMed MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 2045-2322 |
| EndPage | 16 |
| ExternalDocumentID | oai_doaj_org_article_5906de2d6f4f43d191f0697459c115a6 PMC12041196 40301550 10_1038_s41598_025_99240_0 |
| Genre | Journal Article |
| GroupedDBID | 0R~ 4.4 53G 5VS 7X7 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD AASML ABDBF ABUWG ACGFS ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AFPKN ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M1P M2P M7P M~E NAO OK1 PHGZT PIMPY PQQKQ PROAC PSQYO RNT RNTTT RPM SNYQT UKHRP AAYXX AFFHD CITATION PHGZM PJZUB PPXIY PQGLB NPM 7X8 PUEGO 5PM |
| ID | FETCH-LOGICAL-c466t-850c6913c38be80d92abc23dd1ffe7c611bdde1a67db557ae0c2282fcd3dd6ef3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001479510600026&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2045-2322 |
| IngestDate | Fri Oct 03 12:52:58 EDT 2025 Tue Nov 04 02:03:31 EST 2025 Fri Sep 05 17:38:00 EDT 2025 Mon Jul 21 06:08:17 EDT 2025 Sat Nov 29 08:00:38 EST 2025 Wed Apr 30 01:16:14 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Point cloud registration Feature extraction Neural network |
| Language | English |
| License | 2025. The Author(s). Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c466t-850c6913c38be80d92abc23dd1ffe7c611bdde1a67db557ae0c2282fcd3dd6ef3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | https://doaj.org/article/5906de2d6f4f43d191f0697459c115a6 |
| PMID | 40301550 |
| PQID | 3197640536 |
| PQPubID | 23479 |
| PageCount | 16 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_5906de2d6f4f43d191f0697459c115a6 pubmedcentral_primary_oai_pubmedcentral_nih_gov_12041196 proquest_miscellaneous_3197640536 pubmed_primary_40301550 crossref_primary_10_1038_s41598_025_99240_0 springer_journals_10_1038_s41598_025_99240_0 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-04-29 |
| PublicationDateYYYYMMDD | 2025-04-29 |
| PublicationDate_xml | – month: 04 year: 2025 text: 2025-04-29 day: 29 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationTitle | Scientific reports |
| PublicationTitleAbbrev | Sci Rep |
| PublicationTitleAlternate | Sci Rep |
| PublicationYear | 2025 |
| Publisher | Nature Publishing Group UK Nature Portfolio |
| Publisher_xml | – name: Nature Publishing Group UK – name: Nature Portfolio |
| References | 99240_CR30 99240_CR31 C Chen (99240_CR44) 2021; 438 J Li (99240_CR37) 2022; 44 Y Wang (99240_CR32) 2019; 38 99240_CR3 99240_CR2 99240_CR7 99240_CR5 99240_CR4 99240_CR9 99240_CR24 99240_CR25 99240_CR26 99240_CR28 99240_CR29 Z Chen (99240_CR15) 2023; 34 99240_CR40 F Pomerleau (99240_CR16) 2015; 4 99240_CR41 99240_CR42 99240_CR43 RS Pahwa (99240_CR1) 2018; 28 M-H Guo (99240_CR45) 2021; 7 99240_CR33 99240_CR34 99240_CR35 99240_CR36 99240_CR38 H Andreasson (99240_CR11) 2010; 58 99240_CR39 99240_CR50 99240_CR10 Y Wang (99240_CR27) 2019; 41 AE Johnson (99240_CR22) 1999; 21 99240_CR46 S Bouaziz (99240_CR8) 2013; 32 99240_CR47 99240_CR48 99240_CR49 99240_CR20 99240_CR21 99240_CR19 M Frosi (99240_CR6) 2022; 7 99240_CR12 S Salti (99240_CR23) 2014; 125 99240_CR13 99240_CR14 99240_CR17 99240_CR18 |
| References_xml | – ident: 99240_CR40 – ident: 99240_CR9 doi: 10.1109/ROBOT.2008.4543181 – ident: 99240_CR29 doi: 10.1109/CVPR.2017.29 – volume: 21 start-page: 433 issue: 5 year: 1999 ident: 99240_CR22 publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/34.765655 – ident: 99240_CR39 doi: 10.1109/ICCV.2015.114 – ident: 99240_CR5 doi: 10.1109/IROS.2018.8594299 – ident: 99240_CR25 – ident: 99240_CR48 doi: 10.1007/978-3-319-46475-6_47 – ident: 99240_CR24 doi: 10.1007/978-3-642-15558-1_26 – ident: 99240_CR26 doi: 10.15607/RSS.2009.V.021 – ident: 99240_CR47 doi: 10.1007/978-3-030-58586-0_23 – ident: 99240_CR3 doi: 10.1109/ICRA.2018.8460653 – ident: 99240_CR43 doi: 10.1109/CVPR.2018.00484 – ident: 99240_CR35 doi: 10.1109/CVPR42600.2020.00722 – ident: 99240_CR46 doi: 10.1109/ICCV48922.2021.01595 – ident: 99240_CR41 – volume: 7 start-page: 2692 issue: 2 year: 2022 ident: 99240_CR6 publication-title: IEEE Robot. Autom. Lett. doi: 10.1109/LRA.2022.3144795 – ident: 99240_CR20 doi: 10.1109/IROS.2008.4650967 – ident: 99240_CR31 doi: 10.1109/CVPR.2017.265 – volume: 7 start-page: 187 year: 2021 ident: 99240_CR45 publication-title: Comput. Vis. Media doi: 10.1007/s41095-021-0229-5 – ident: 99240_CR49 – ident: 99240_CR13 doi: 10.1109/ICCV.2019.00362 – ident: 99240_CR28 doi: 10.1109/ICCV.2017.26 – ident: 99240_CR34 doi: 10.1109/ICCV.2019.00010 – ident: 99240_CR14 doi: 10.1109/CVPR42600.2020.01184 – ident: 99240_CR17 doi: 10.1109/IROS.2015.7353455 – ident: 99240_CR21 doi: 10.1109/ROBOT.2009.5152473 – volume: 41 start-page: 1672 issue: 8 year: 2019 ident: 99240_CR27 publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2019.2895794 – volume: 44 start-page: 1 issue: 6 year: 2022 ident: 99240_CR37 publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2022.3167288 – ident: 99240_CR7 – volume: 38 start-page: 1 issue: 5 year: 2019 ident: 99240_CR32 publication-title: ACM Trans. Graph. (tog) doi: 10.1145/3326362 – ident: 99240_CR30 doi: 10.1109/CVPR.2019.00733 – ident: 99240_CR36 doi: 10.1109/CVPR.2017.29 – ident: 99240_CR38 doi: 10.1109/IROS.2015.7353481 – volume: 28 start-page: 626 issue: 3 year: 2018 ident: 99240_CR1 publication-title: IEEE Trans. Circuits Syst. Video Technol. doi: 10.1109/TCSVT.2016.2616143 – ident: 99240_CR42 doi: 10.1109/CVPR46437.2021.01158 – ident: 99240_CR2 doi: 10.1109/CVPR.2019.00885 – ident: 99240_CR12 – volume: 34 start-page: 1 year: 2023 ident: 99240_CR15 publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2023.3331476 – ident: 99240_CR33 – ident: 99240_CR18 doi: 10.5220/0004692805920599 – ident: 99240_CR19 doi: 10.1109/ICRA.2011.5980407 – ident: 99240_CR50 – ident: 99240_CR10 doi: 10.1109/ICRA.2011.5980407 – volume: 58 start-page: 157 issue: 2 year: 2010 ident: 99240_CR11 publication-title: Robot. Auton. Syst. doi: 10.1016/j.robot.2009.09.011 – ident: 99240_CR4 doi: 10.1109/ICRA48506.2021.9561364 – volume: 4 start-page: 1 issue: 1 year: 2015 ident: 99240_CR16 publication-title: Found. Trends Robot. doi: 10.1561/2300000035 – volume: 125 start-page: 251 year: 2014 ident: 99240_CR23 publication-title: Comput. Vis. Image Underst. doi: 10.1016/j.cviu.2014.04.011 – volume: 32 start-page: 113 issue: 5 year: 2013 ident: 99240_CR8 publication-title: Comput. Graph. Forum doi: 10.1111/cgf.12178 – volume: 438 start-page: 122 year: 2021 ident: 99240_CR44 publication-title: Neurocomputing doi: 10.1016/j.neucom.2021.01.095 |
| SSID | ssj0000529419 |
| Score | 2.4481575 |
| Snippet | Point cloud registration of 3D shapes remains a formidable challenge in computer vision and autonomous driving. This paper introduces a novel learning-based... Abstract Point cloud registration of 3D shapes remains a formidable challenge in computer vision and autonomous driving. This paper introduces a novel... |
| SourceID | doaj pubmedcentral proquest pubmed crossref springer |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Publisher |
| StartPage | 15094 |
| SubjectTerms | Feature extraction Humanities and Social Sciences multidisciplinary Neural network Point cloud registration Science Science (multidisciplinary) |
| Title | Point rotation invariant features and attention fusion network for point cloud registration of 3D shapes |
| URI | https://link.springer.com/article/10.1038/s41598-025-99240-0 https://www.ncbi.nlm.nih.gov/pubmed/40301550 https://www.proquest.com/docview/3197640536 https://pubmed.ncbi.nlm.nih.gov/PMC12041196 https://doaj.org/article/5906de2d6f4f43d191f0697459c115a6 |
| Volume | 15 |
| WOSCitedRecordID | wos001479510600026&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: DOA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M7P dateStart: 20110101 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: 7X7 dateStart: 20110101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: BENPR dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: PIMPY dateStart: 20110101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M2P dateStart: 20110101 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3di9QwEA96p-CL-O2eukTwTcvlq2ny6OkdCt5SRGF9Cmk-2IWjXba7B_73N0m7x62KvvgyD21om5nJfDST3yD0xnNOm9KVhXKlL0SjVWFVjEWk1lWWeqVFPij8pZrN1Hyu6xutvlJN2AAPPDDuuNRE-sC8jCIK7iG9iERCEFxqB8GMzWDbpNI3kqkB1ZtpQfV4SoZwddyDp0qnyVhZaMg5SEH2PFEG7P9TlPl7seQvO6bZEZ09QPfHCBK_H778IboV2kfo7tBT8udjtKi7ZbvB627YY8fL9hLSYeAfjiGDePbYth4nWM1c6IjjNv0ww-1QD44hiMWr_Ah30W09Tp0bdti6uIuYf8T9wq5C_wR9Pzv99uFTMbZTKJyQclOokjipKXdcNUERr5ltHOPe0xhD5SSlDdg6amXlm7KsbCCOQUIWnYcxMkT-FB20XRueI6w4aXiESNPbIISXDSS6AUyBJJqD0w0T9HbHWrMaUDNM3u3mygyCMCAIkwVhyASdJO5fj0yI1_kC6IEZ9cD8Sw8m6PVOdgZWSNr2sG3otr0BI1NJiEs5jHk2yPL6VSJlhJCkTZDak_Let-zfaZeLjMJNGREU7NcEvdsphBnXf_-XyR79j8m-QPdY0mQiCqZfooPNehteoTvucrPs11N0u5pXmaopOjw5ndVfp3l5AD1ndaIV0MP683n94woYAxT7 |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Point+rotation+invariant+features+and+attention+fusion+network+for+point+cloud+registration+of+3D+shapes&rft.jtitle=Scientific+reports&rft.au=Liu%2C+Zeyang&rft.au=Lu%2C+Zhiguo&rft.au=Shan%2C+Yancong&rft.date=2025-04-29&rft.issn=2045-2322&rft.eissn=2045-2322&rft.volume=15&rft.issue=1&rft.spage=15094&rft_id=info:doi/10.1038%2Fs41598-025-99240-0&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |