The Bile Acid Chenodeoxycholic Acid Increases Human Brown Adipose Tissue Activity

The interest in brown adipose tissue (BAT) as a target to combat metabolic disease has recently been renewed with the discovery of functional BAT in humans. In rodents, BAT can be activated by bile acids, which activate type 2 iodothyronine deiodinase (D2) in BAT via the G-coupled protein receptor T...

Full description

Saved in:
Bibliographic Details
Published in:Cell metabolism Vol. 22; no. 3; p. 418
Main Authors: Broeders, Evie P M, Nascimento, Emmani B M, Havekes, Bas, Brans, Boudewijn, Roumans, Kay H M, Tailleux, Anne, Schaart, Gert, Kouach, Mostafa, Charton, Julie, Deprez, Benoit, Bouvy, Nicole D, Mottaghy, Felix, Staels, Bart, van Marken Lichtenbelt, Wouter D, Schrauwen, Patrick
Format: Journal Article
Language:English
Published: United States 01.09.2015
Subjects:
ISSN:1932-7420, 1932-7420
Online Access:Get more information
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The interest in brown adipose tissue (BAT) as a target to combat metabolic disease has recently been renewed with the discovery of functional BAT in humans. In rodents, BAT can be activated by bile acids, which activate type 2 iodothyronine deiodinase (D2) in BAT via the G-coupled protein receptor TGR5, resulting in increased oxygen consumption and energy expenditure. Here we examined the effects of oral supplementation of the bile acid chenodeoxycholic acid (CDCA) on human BAT activity. Treatment of 12 healthy female subjects with CDCA for 2 days resulted in increased BAT activity. Whole-body energy expenditure was also increased upon CDCA treatment. In vitro treatment of primary human brown adipocytes derived with CDCA or specific TGR5 agonists increased mitochondrial uncoupling and D2 expression, an effect that was absent in human primary white adipocytes. These findings identify bile acids as a target to activate BAT in humans.
AbstractList The interest in brown adipose tissue (BAT) as a target to combat metabolic disease has recently been renewed with the discovery of functional BAT in humans. In rodents, BAT can be activated by bile acids, which activate type 2 iodothyronine deiodinase (D2) in BAT via the G-coupled protein receptor TGR5, resulting in increased oxygen consumption and energy expenditure. Here we examined the effects of oral supplementation of the bile acid chenodeoxycholic acid (CDCA) on human BAT activity. Treatment of 12 healthy female subjects with CDCA for 2 days resulted in increased BAT activity. Whole-body energy expenditure was also increased upon CDCA treatment. In vitro treatment of primary human brown adipocytes derived with CDCA or specific TGR5 agonists increased mitochondrial uncoupling and D2 expression, an effect that was absent in human primary white adipocytes. These findings identify bile acids as a target to activate BAT in humans.The interest in brown adipose tissue (BAT) as a target to combat metabolic disease has recently been renewed with the discovery of functional BAT in humans. In rodents, BAT can be activated by bile acids, which activate type 2 iodothyronine deiodinase (D2) in BAT via the G-coupled protein receptor TGR5, resulting in increased oxygen consumption and energy expenditure. Here we examined the effects of oral supplementation of the bile acid chenodeoxycholic acid (CDCA) on human BAT activity. Treatment of 12 healthy female subjects with CDCA for 2 days resulted in increased BAT activity. Whole-body energy expenditure was also increased upon CDCA treatment. In vitro treatment of primary human brown adipocytes derived with CDCA or specific TGR5 agonists increased mitochondrial uncoupling and D2 expression, an effect that was absent in human primary white adipocytes. These findings identify bile acids as a target to activate BAT in humans.
The interest in brown adipose tissue (BAT) as a target to combat metabolic disease has recently been renewed with the discovery of functional BAT in humans. In rodents, BAT can be activated by bile acids, which activate type 2 iodothyronine deiodinase (D2) in BAT via the G-coupled protein receptor TGR5, resulting in increased oxygen consumption and energy expenditure. Here we examined the effects of oral supplementation of the bile acid chenodeoxycholic acid (CDCA) on human BAT activity. Treatment of 12 healthy female subjects with CDCA for 2 days resulted in increased BAT activity. Whole-body energy expenditure was also increased upon CDCA treatment. In vitro treatment of primary human brown adipocytes derived with CDCA or specific TGR5 agonists increased mitochondrial uncoupling and D2 expression, an effect that was absent in human primary white adipocytes. These findings identify bile acids as a target to activate BAT in humans.
Author Broeders, Evie P M
Mottaghy, Felix
Roumans, Kay H M
Deprez, Benoit
Schaart, Gert
Nascimento, Emmani B M
Tailleux, Anne
Brans, Boudewijn
van Marken Lichtenbelt, Wouter D
Schrauwen, Patrick
Havekes, Bas
Bouvy, Nicole D
Staels, Bart
Charton, Julie
Kouach, Mostafa
Author_xml – sequence: 1
  givenname: Evie P M
  surname: Broeders
  fullname: Broeders, Evie P M
  organization: Department of Human Biology and Human Movement Sciences, NUTRIM, School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht 6200 MD, the Netherlands; Department of General Surgery, NUTRIM, School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht 6200 MD, the Netherlands
– sequence: 2
  givenname: Emmani B M
  surname: Nascimento
  fullname: Nascimento, Emmani B M
  organization: Department of Human Biology and Human Movement Sciences, NUTRIM, School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht 6200 MD, the Netherlands
– sequence: 3
  givenname: Bas
  surname: Havekes
  fullname: Havekes, Bas
  organization: Department of Endocrinology, NUTRIM, School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht 6200 MD, the Netherlands
– sequence: 4
  givenname: Boudewijn
  surname: Brans
  fullname: Brans, Boudewijn
  organization: Department of Nuclear Medicine, NUTRIM, School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht 6200 MD, the Netherlands
– sequence: 5
  givenname: Kay H M
  surname: Roumans
  fullname: Roumans, Kay H M
  organization: Department of Human Biology and Human Movement Sciences, NUTRIM, School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht 6200 MD, the Netherlands
– sequence: 6
  givenname: Anne
  surname: Tailleux
  fullname: Tailleux, Anne
  organization: University of Lille, Institut Pasteur de Lille, Inserm UMR 1011, EGID, 59000 Lille, France
– sequence: 7
  givenname: Gert
  surname: Schaart
  fullname: Schaart, Gert
  organization: Department of Human Biology and Human Movement Sciences, NUTRIM, School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht 6200 MD, the Netherlands
– sequence: 8
  givenname: Mostafa
  surname: Kouach
  fullname: Kouach, Mostafa
  organization: University of Lille, Centre Universitaire de Mesures et d'Analyses, 59000 Lille, France
– sequence: 9
  givenname: Julie
  surname: Charton
  fullname: Charton, Julie
  organization: University of Lille, Institut Pasteur de Lille, Inserm UMR1177, Biostructures and Drug Discovery, 59000 Lille, France
– sequence: 10
  givenname: Benoit
  surname: Deprez
  fullname: Deprez, Benoit
  organization: University of Lille, Institut Pasteur de Lille, Inserm UMR1177, Biostructures and Drug Discovery, 59000 Lille, France
– sequence: 11
  givenname: Nicole D
  surname: Bouvy
  fullname: Bouvy, Nicole D
  organization: Department of General Surgery, NUTRIM, School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht 6200 MD, the Netherlands
– sequence: 12
  givenname: Felix
  surname: Mottaghy
  fullname: Mottaghy, Felix
  organization: Department of Nuclear Medicine, NUTRIM, School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht 6200 MD, the Netherlands; Nuclear Medicine, University Hospital Aachen, 52072 Aachen, Germany
– sequence: 13
  givenname: Bart
  surname: Staels
  fullname: Staels, Bart
  organization: University of Lille, Institut Pasteur de Lille, Inserm UMR 1011, EGID, 59000 Lille, France
– sequence: 14
  givenname: Wouter D
  surname: van Marken Lichtenbelt
  fullname: van Marken Lichtenbelt, Wouter D
  organization: Department of Human Biology and Human Movement Sciences, NUTRIM, School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht 6200 MD, the Netherlands
– sequence: 15
  givenname: Patrick
  surname: Schrauwen
  fullname: Schrauwen, Patrick
  email: p.schrauwen@maastrichtuniversity.nl
  organization: Department of Human Biology and Human Movement Sciences, NUTRIM, School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht 6200 MD, the Netherlands. Electronic address: p.schrauwen@maastrichtuniversity.nl
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26235421$$D View this record in MEDLINE/PubMed
BookMark eNpNUEtLw0AYXKRiH_oHPEiOXhK_3U02m2Nbqi0URKjnsI-vdEuSrdlE7b-30gqeZhhmhmHGZND4Bgm5p5BQoOJpn5gau4QBzRLIEwB2RUa04CzOUwaDf3xIxiHsAbjgBb8hQyYYz1JGR-Rts8No5iqMpsbZaL7Dxlv030ez85UzZ3XVmBZVwBAt-1o10az1X000te7gA0YbF0L_m-_cp-uOt-R6q6qAdxeckPfnxWa-jNevL6v5dB2bVIgullQLK0EzjjIrJNNS5NrmVFpmjWZUKiZPyzlwzjEFWygjETIuCs1ytdVsQh7PvYfWf_QYurJ2wWBVqQZ9H0qaQ5GDzICerA8Xa69rtOWhdbVqj-XfDewHHYhgcw
CitedBy_id crossref_primary_10_3390_nu14102097
crossref_primary_10_3389_fnut_2024_1393575
crossref_primary_10_3390_cells8040373
crossref_primary_10_1016_j_molmet_2024_101931
crossref_primary_10_3389_fendo_2020_00633
crossref_primary_10_1016_j_phrs_2015_12_007
crossref_primary_10_1177_1756284819858470
crossref_primary_10_3945_ajcn_116_144972
crossref_primary_10_1038_s42255_021_00409_4
crossref_primary_10_1371_journal_pone_0149458
crossref_primary_10_3389_fcell_2022_836741
crossref_primary_10_3390_nu13051450
crossref_primary_10_1016_j_ecoenv_2025_118922
crossref_primary_10_1016_j_phytochem_2024_114162
crossref_primary_10_1111_hepr_13001
crossref_primary_10_1038_s41575_018_0011_z
crossref_primary_10_1016_j_mce_2017_01_018
crossref_primary_10_3389_fphys_2019_00038
crossref_primary_10_1016_j_jcmgh_2025_101546
crossref_primary_10_1002_hep_30908
crossref_primary_10_1016_j_mce_2020_110869
crossref_primary_10_1093_toxsci_kfy271
crossref_primary_10_1111_dom_12946
crossref_primary_10_3390_ph18091247
crossref_primary_10_1016_j_bbrc_2023_02_070
crossref_primary_10_4155_tde_2023_0034
crossref_primary_10_1016_j_biopha_2021_112078
crossref_primary_10_1016_j_cmet_2021_04_009
crossref_primary_10_1016_j_jbc_2023_105617
crossref_primary_10_1016_j_tice_2016_08_001
crossref_primary_10_1016_j_jhep_2016_01_025
crossref_primary_10_1002_hep_28709
crossref_primary_10_1016_j_jep_2025_120266
crossref_primary_10_1007_s00018_022_04658_8
crossref_primary_10_3390_cancers13246389
crossref_primary_10_1111_hepr_13473
crossref_primary_10_1371_journal_pone_0182297
crossref_primary_10_1007_s13679_019_00334_4
crossref_primary_10_1210_er_2018_00275
crossref_primary_10_3390_nu12123709
crossref_primary_10_1007_s12011_023_03854_2
crossref_primary_10_1016_j_nbd_2024_106428
crossref_primary_10_1038_s41589_021_00861_z
crossref_primary_10_1038_s41538_022_00156_0
crossref_primary_10_1002_nbm_3583
crossref_primary_10_1016_j_jare_2024_11_003
crossref_primary_10_5409_wjcp_v11_i3_221
crossref_primary_10_1016_j_nut_2022_111723
crossref_primary_10_3389_fphys_2016_00646
crossref_primary_10_1093_bbb_zbae133
crossref_primary_10_3390_nu11112837
crossref_primary_10_3390_nu12092598
crossref_primary_10_1016_j_pharmthera_2022_108238
crossref_primary_10_1038_s42255_022_00559_z
crossref_primary_10_1126_scitranslmed_adg2773
crossref_primary_10_1155_2021_4847941
crossref_primary_10_3389_fendo_2023_1224396
crossref_primary_10_1146_annurev_physiol_022724_105443
crossref_primary_10_3389_fphys_2017_01047
crossref_primary_10_1007_s11695_020_04638_6
crossref_primary_10_1186_s40064_016_3029_0
crossref_primary_10_1002_oby_22062
crossref_primary_10_1016_j_biopha_2021_111320
crossref_primary_10_3389_fcimb_2021_634780
crossref_primary_10_1002_dmrr_3594
crossref_primary_10_1038_s41467_024_53673_9
crossref_primary_10_1038_s41387_022_00229_9
crossref_primary_10_1111_1750_3841_15951
crossref_primary_10_15252_embr_202255664
crossref_primary_10_1002_lt_24628
crossref_primary_10_3389_fendo_2022_1014901
crossref_primary_10_3390_ijms222111738
crossref_primary_10_1080_17446651_2020_1720511
crossref_primary_10_1016_j_suc_2020_12_010
crossref_primary_10_1093_ajcn_nqx025
crossref_primary_10_1210_endocr_bqab059
crossref_primary_10_1242_jeb_165381
crossref_primary_10_1016_j_redox_2022_102452
crossref_primary_10_1053_j_gastro_2017_01_055
crossref_primary_10_1038_nm_4365
crossref_primary_10_1136_bmjdrc_2017_000469
crossref_primary_10_1016_j_molmet_2018_05_016
crossref_primary_10_1016_j_beem_2016_08_002
crossref_primary_10_1074_jbc_RA118_002733
crossref_primary_10_1016_j_beem_2016_08_003
crossref_primary_10_1016_j_mam_2017_04_001
crossref_primary_10_1124_dmd_118_081547
crossref_primary_10_1016_j_beem_2016_08_005
crossref_primary_10_1515_hmbci_2017_0017
crossref_primary_10_3389_fcimb_2022_774335
crossref_primary_10_3389_fendo_2022_908868
crossref_primary_10_3390_jcm10215024
crossref_primary_10_1124_mol_117_109900
crossref_primary_10_3389_fmicb_2022_853566
crossref_primary_10_59717_j_xinn_life_2024_100093
crossref_primary_10_1038_s41580_018_0044_8
crossref_primary_10_1016_j_carbpol_2022_119862
crossref_primary_10_15252_embr_201846404
crossref_primary_10_1007_s11154_019_09512_0
crossref_primary_10_1007_s12975_022_01096_3
crossref_primary_10_1016_j_drudis_2025_104386
crossref_primary_10_1016_j_lfs_2021_120152
crossref_primary_10_3389_fmicb_2024_1341938
crossref_primary_10_3390_cells11060968
crossref_primary_10_3390_microorganisms12040764
crossref_primary_10_3390_metabo15090583
crossref_primary_10_1016_j_jff_2024_106287
crossref_primary_10_1038_nm_4357
crossref_primary_10_1016_j_metabol_2019_07_003
crossref_primary_10_1016_S2213_8587_16_30155_3
crossref_primary_10_1038_s44161_025_00637_x
crossref_primary_10_1530_EJE_17_0966
crossref_primary_10_1128_mSystems_00058_19
crossref_primary_10_1016_j_prp_2025_156073
crossref_primary_10_1007_s11739_023_03343_3
crossref_primary_10_1194_jlr_M064709
crossref_primary_10_1016_j_jece_2021_107078
crossref_primary_10_1038_s41574_021_00562_6
crossref_primary_10_1093_ejendo_lvae034
crossref_primary_10_1186_s40168_020_00821_0
crossref_primary_10_1016_j_phrs_2023_106983
crossref_primary_10_1016_j_ijbiomac_2024_134607
crossref_primary_10_1038_s41598_020_78419_7
crossref_primary_10_1128_mSystems_00465_20
crossref_primary_10_1016_j_foodres_2022_111941
crossref_primary_10_1186_s13098_022_00880_3
crossref_primary_10_1016_j_foodchem_2023_136540
crossref_primary_10_2337_dbi17_0007
crossref_primary_10_1186_s43556_022_00091_2
crossref_primary_10_1038_s41580_021_00350_0
crossref_primary_10_1039_D1FO00671A
crossref_primary_10_1016_j_micres_2025_128309
crossref_primary_10_1002_j_2040_4603_2018_tb00046_x
crossref_primary_10_1016_j_mam_2019_07_001
crossref_primary_10_1016_j_molmet_2018_01_023
crossref_primary_10_3390_ijms26094240
crossref_primary_10_1210_clinem_dgaa960
crossref_primary_10_1016_j_foodres_2022_110971
crossref_primary_10_1016_j_jnutbio_2023_109358
crossref_primary_10_1016_j_tem_2024_08_002
crossref_primary_10_2337_db16_0040
crossref_primary_10_3390_nu12010079
crossref_primary_10_1002_ptr_7517
crossref_primary_10_1186_s40360_020_00422_5
crossref_primary_10_3389_fgene_2019_00972
crossref_primary_10_3389_fendo_2023_1148954
crossref_primary_10_3389_fimmu_2023_1285357
crossref_primary_10_3892_etm_2021_10423
crossref_primary_10_1111_joim_12527
crossref_primary_10_2337_db18_0462
crossref_primary_10_1016_j_cmet_2016_07_014
crossref_primary_10_1080_19490976_2024_2390136
crossref_primary_10_3389_fendo_2022_1025706
crossref_primary_10_1080_10408398_2021_1997905
crossref_primary_10_1016_j_clinthera_2022_08_009
crossref_primary_10_3389_fendo_2020_00222
crossref_primary_10_3390_antiox13010008
crossref_primary_10_3389_fphys_2019_01192
crossref_primary_10_1007_s11434_016_1051_9
crossref_primary_10_1097_MNH_0000000000000374
crossref_primary_10_1371_journal_pone_0228932
crossref_primary_10_1016_j_bbagen_2016_09_024
crossref_primary_10_1016_j_yjmcc_2020_10_014
crossref_primary_10_3389_fcvm_2025_1572948
crossref_primary_10_1016_j_cmet_2021_12_011
crossref_primary_10_1016_j_apsb_2021_12_011
crossref_primary_10_1530_JOE_17_0557
crossref_primary_10_1002_hep_29199
crossref_primary_10_1016_j_cellsig_2023_110901
crossref_primary_10_1142_S0192415X24500137
crossref_primary_10_1016_j_bbalip_2022_159257
crossref_primary_10_1097_MOL_0000000000000508
crossref_primary_10_1007_s11427_023_2353_0
crossref_primary_10_1055_s_0041_1723752
crossref_primary_10_2337_db23_0520
crossref_primary_10_3390_ani12202762
crossref_primary_10_1681_ASN_2018030271
crossref_primary_10_1074_jbc_RA120_016203
crossref_primary_10_1016_j_ebiom_2017_09_035
crossref_primary_10_3389_fendo_2017_00267
crossref_primary_10_3389_fmicb_2020_585066
crossref_primary_10_3389_fendo_2023_1090039
crossref_primary_10_1002_mco2_171
crossref_primary_10_1016_j_tem_2017_11_002
crossref_primary_10_3390_metabo10030100
crossref_primary_10_4093_dmj_2019_0043
crossref_primary_10_1007_s11901_020_00547_5
crossref_primary_10_1016_j_molmet_2018_04_004
crossref_primary_10_3390_microorganisms12081674
crossref_primary_10_1016_j_metabol_2020_154429
crossref_primary_10_1097_MED_0000000000000235
crossref_primary_10_1111_liv_15098
crossref_primary_10_1038_s41420_020_00347_2
crossref_primary_10_1210_endrev_bnac015
crossref_primary_10_3390_ijms23020639
crossref_primary_10_1002_mnfr_202400147
crossref_primary_10_1007_s11154_019_09523_x
crossref_primary_10_1016_j_mce_2018_12_006
crossref_primary_10_1039_D3FO02063K
crossref_primary_10_1016_j_molmet_2024_102071
crossref_primary_10_1186_s12951_025_03190_8
crossref_primary_10_1186_s12986_022_00694_0
crossref_primary_10_1016_j_biochi_2022_07_006
crossref_primary_10_1016_j_beem_2021_101493
crossref_primary_10_1016_j_bbalip_2018_05_004
crossref_primary_10_1002_hep_28689
crossref_primary_10_1016_j_peptides_2023_170962
crossref_primary_10_1111_apha_14065
crossref_primary_10_1172_JCI131126
crossref_primary_10_3390_biology10080726
crossref_primary_10_1016_j_bbalip_2018_05_012
crossref_primary_10_3390_nu12020472
crossref_primary_10_1016_j_bbalip_2018_05_014
crossref_primary_10_1038_s41467_018_06769_y
crossref_primary_10_3389_fmicb_2025_1559178
crossref_primary_10_1007_s00394_019_02052_y
crossref_primary_10_1097_MOL_0000000000000296
crossref_primary_10_1093_advances_nmy067
crossref_primary_10_1007_s13238_017_0378_6
crossref_primary_10_1016_j_crfs_2025_101081
crossref_primary_10_1016_j_suc_2025_07_001
crossref_primary_10_3390_cells10113030
crossref_primary_10_1128_jb_00479_24
crossref_primary_10_3892_etm_2024_12716
crossref_primary_10_1186_s13098_017_0299_9
crossref_primary_10_1210_clinem_dgac659
crossref_primary_10_1210_clinem_dgae399
crossref_primary_10_1084_jem_20171965
crossref_primary_10_1016_j_apsb_2018_09_007
crossref_primary_10_1007_s12672_022_00504_2
crossref_primary_10_2337_db17_1538
crossref_primary_10_3390_metabo10110475
crossref_primary_10_1007_s13238_020_00804_9
crossref_primary_10_1210_endocr_bqad068
crossref_primary_10_1016_j_tifs_2021_01_055
crossref_primary_10_1016_j_mam_2019_04_001
crossref_primary_10_1016_j_jsbmb_2019_03_005
crossref_primary_10_1039_D1FO04387K
crossref_primary_10_1371_journal_pone_0179226
crossref_primary_10_3389_fendo_2020_00275
crossref_primary_10_3389_fphys_2018_01908
crossref_primary_10_1016_j_plipres_2022_101210
crossref_primary_10_1177_09645284211056663
crossref_primary_10_3390_antibiotics13050392
crossref_primary_10_3390_nu12072124
crossref_primary_10_1016_j_ijbiomac_2023_124259
crossref_primary_10_1152_japplphysiol_00021_2017
crossref_primary_10_1172_JCI136476
crossref_primary_10_3390_ijms241814052
crossref_primary_10_1016_j_expneurol_2020_113504
crossref_primary_10_1530_JOE_17_0503
crossref_primary_10_3892_etm_2017_5232
crossref_primary_10_1631_jzus_B1900158
crossref_primary_10_1038_s12276_025_01411_6
crossref_primary_10_1002_j_2040_4603_2020_tb00108_x
crossref_primary_10_3390_gidisord6010005
crossref_primary_10_3389_fendo_2015_00158
crossref_primary_10_1111_jdi_13499
crossref_primary_10_1038_s41467_024_52622_w
crossref_primary_10_1111_dom_12585
crossref_primary_10_1038_s41388_020_1349_6
crossref_primary_10_1016_j_ebiom_2020_102766
crossref_primary_10_3390_ijms26146547
crossref_primary_10_3390_ijms23169448
crossref_primary_10_1016_j_cmet_2016_05_005
crossref_primary_10_1016_j_pcad_2018_07_002
crossref_primary_10_1007_s13679_017_0283_6
crossref_primary_10_1530_JOE_18_0598
crossref_primary_10_1186_s12918_019_0705_z
crossref_primary_10_1002_cbin_10946
crossref_primary_10_1016_j_tcb_2021_11_009
crossref_primary_10_3389_fimmu_2024_1448116
crossref_primary_10_1016_S2468_1253_23_00357_6
crossref_primary_10_3390_fermentation9010050
crossref_primary_10_15829_1728_8800_2021_2860
crossref_primary_10_3390_antiox11112285
crossref_primary_10_3390_nu14234950
crossref_primary_10_1016_j_jcjd_2017_02_002
crossref_primary_10_1097_XCE_0000000000000074
crossref_primary_10_1038_nm_4185
crossref_primary_10_1016_j_bcp_2018_12_018
crossref_primary_10_1038_s41467_017_02068_0
crossref_primary_10_1007_s00125_022_05829_9
crossref_primary_10_3389_fendo_2023_1215772
crossref_primary_10_1016_j_jhep_2021_02_011
crossref_primary_10_3390_biom15081140
crossref_primary_10_1210_clinem_dgab773
crossref_primary_10_3389_fphar_2017_00468
crossref_primary_10_1016_j_livres_2023_09_002
crossref_primary_10_1038_ijo_2017_7
crossref_primary_10_5534_wjmh_220224
crossref_primary_10_1016_j_cell_2017_01_025
crossref_primary_10_1146_annurev_animal_021419_083852
crossref_primary_10_1016_j_tem_2023_08_002
crossref_primary_10_1111_brv_12389
crossref_primary_10_4252_wjsc_v11_i3_180
crossref_primary_10_2337_db17_1502
crossref_primary_10_1038_s41574_024_01067_8
crossref_primary_10_3390_pharmaceutics13081184
crossref_primary_10_3389_fphys_2019_00374
crossref_primary_10_1016_j_immuni_2016_09_008
crossref_primary_10_1016_j_tem_2019_07_020
crossref_primary_10_1016_j_biochi_2016_12_006
crossref_primary_10_3390_ijms222413440
crossref_primary_10_1210_clinem_dgz025
crossref_primary_10_1210_en_2017_00288
crossref_primary_10_1002_1873_3468_13070
crossref_primary_10_1038_s41575_023_00867_z
crossref_primary_10_1016_j_mce_2021_111403
crossref_primary_10_1111_obr_12963
crossref_primary_10_3389_fendo_2023_1239276
crossref_primary_10_1016_j_gene_2024_148421
ContentType Journal Article
Copyright Copyright © 2015 Elsevier Inc. All rights reserved.
Copyright_xml – notice: Copyright © 2015 Elsevier Inc. All rights reserved.
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.cmet.2015.07.002
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Biology
EISSN 1932-7420
ExternalDocumentID 26235421
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
0R~
1~5
29B
2WC
4.4
457
4G.
53G
5GY
62-
6J9
7-5
AACTN
AAEDT
AAEDW
AAKRW
AAKUH
AALRI
AAMRU
AAVLU
AAXUO
ABJNI
ABMAC
ACGFO
ACGFS
ADBBV
ADEZE
ADVLN
AEFWE
AENEX
AEXQZ
AFTJW
AGHFR
AGKMS
AITUG
AKAPO
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ASPBG
AVWKF
AZFZN
BAWUL
CGR
CS3
CUY
CVF
DIK
DU5
E3Z
EBS
ECM
EIF
EJD
F5P
FCP
FDB
FEDTE
FIRID
HVGLF
IHE
IXB
J1W
JIG
M3Z
M41
NPM
O-L
O9-
OK1
P2P
RIG
ROL
RPZ
SES
SSZ
TR2
UNMZH
7X8
AAYWO
ABDGV
ACVFH
ADCNI
AEUPX
AFPUW
AIGII
AKBMS
AKYEP
APXCP
EFKBS
ID FETCH-LOGICAL-c466t-81b6d80b23e85982b867bd718d2dcb218a2842030333e40d9ac8e05369b27afb2
IEDL.DBID 7X8
ISICitedReferencesCount 351
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000360453900014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1932-7420
IngestDate Sat Sep 27 21:52:31 EDT 2025
Thu Apr 03 06:59:05 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License Copyright © 2015 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c466t-81b6d80b23e85982b867bd718d2dcb218a2842030333e40d9ac8e05369b27afb2
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://dx.doi.org/10.1016/j.cmet.2015.07.002
PMID 26235421
PQID 1709708501
PQPubID 23479
ParticipantIDs proquest_miscellaneous_1709708501
pubmed_primary_26235421
PublicationCentury 2000
PublicationDate 2015-Sep-01
20150901
PublicationDateYYYYMMDD 2015-09-01
PublicationDate_xml – month: 09
  year: 2015
  text: 2015-Sep-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Cell metabolism
PublicationTitleAlternate Cell Metab
PublicationYear 2015
SSID ssj0036393
Score 2.619328
Snippet The interest in brown adipose tissue (BAT) as a target to combat metabolic disease has recently been renewed with the discovery of functional BAT in humans. In...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 418
SubjectTerms Adipocytes, Brown - drug effects
Adipocytes, Brown - metabolism
Adipose Tissue, Brown - drug effects
Adipose Tissue, Brown - metabolism
Administration, Oral
Adult
Cells, Cultured
Chenodeoxycholic Acid - administration & dosage
Chenodeoxycholic Acid - blood
Chenodeoxycholic Acid - pharmacology
Energy Metabolism - drug effects
Female
Humans
Receptors, G-Protein-Coupled - metabolism
Signal Transduction - drug effects
Young Adult
Title The Bile Acid Chenodeoxycholic Acid Increases Human Brown Adipose Tissue Activity
URI https://www.ncbi.nlm.nih.gov/pubmed/26235421
https://www.proquest.com/docview/1709708501
Volume 22
WOSCitedRecordID wos000360453900014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA7qKnjx_VhfRPBabJu0SU6yiosXlxVW2FvJq9iD7WpX0X_vJOnqSRC89FBaKJPpN19mJvMhdMFLqTLLSJRowyKqBHcjb0kktOaSl5xTE8Qm2GjEp1Mx7hJubddWucBED9Sm0S5HfpmwWDA3Xy25mr1ETjXKVVc7CY1l1CNAZVxLF5t-VxEIRF8SqsrAImkad4dmQn-XfraulzLJ_PBOn1b5hWL6UDPc_O9HbqGNjmTiQfCKbbRk6x20FmQnP3fRA_gGvgY4wANdGXzzZOvG2ObDQ2Glw10ADtevblvs8_zY79fxwFSzprV44tcLngziE3vocXg7ubmLOmmFSNM8n0dAVnPDY5USy90IP8VzpgzEKZMarSDsSwhbKQAAIcTS2AipuRORyIVKmSxVuo9W6qa2hwgzKrjMbUZUTmBvWUoiLOWuHOikr5Kyj84XtirAdV09Qta2eWuLH2v10UEweDELMzaKFGhZRtPk6A9vH6N1t46h8-sE9Ur4ce0pWtXv86p9PfM-AdfR-P4LK8m-hg
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Bile+Acid+Chenodeoxycholic+Acid+Increases+Human+Brown+Adipose+Tissue+Activity&rft.jtitle=Cell+metabolism&rft.au=Broeders%2C+Evie+P+M&rft.au=Nascimento%2C+Emmani+B+M&rft.au=Havekes%2C+Bas&rft.au=Brans%2C+Boudewijn&rft.date=2015-09-01&rft.issn=1932-7420&rft.eissn=1932-7420&rft.volume=22&rft.issue=3&rft.spage=418&rft_id=info:doi/10.1016%2Fj.cmet.2015.07.002&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-7420&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-7420&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-7420&client=summon